

Studies in Big Data 45
Taeho Jo
Text Mining
Concepts, Implementation, and Big
Data Challenge
Studies in Big Data
Volume 45
Series editor
Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl
The series “Studies in Big Data” (SBD) publishes new developments and advances
in the various areas of Big Data- quickly and with a high quality. The intent is to
cover the theory, research, development, and applications of Big Data, as embedded
in the fields of engineering, computer science, physics, economics and life sciences.
The books of the series refer to the analysis and understanding of large, complex,
and/or distributed data sets generated from recent digital sources coming from
sensors or other physical instruments as well as simulations, crowd sourcing, social
networks or other internet transactions, such as emails or video click streams and
others. The series contains monographs, lecture notes and edited volumes in Big
Data spanning the areas of computational intelligence including neural networks,
evolutionary computation, soft computing, fuzzy systems, as well as artificial
intelligence, data mining, modern statistics and operations research, as well as
self-organizing systems. Of particular value to both the contributors and the
readership are the short publication timeframe and the world-wide distribution,
which enable both wide and rapid dissemination of research output.
**Indexing: The books of this series are submitted to ISI Web of Science, DBLP,
Ulrichs, MathSciNet, Current Mathematical Publications, Mathematical Reviews,
Zentralblatt Math: MetaPress and Springerlink.
More information about this series at http://www.springer.com/series/11970
Taeho Jo
Text Mining
Concepts, Implementation,
and Big Data Challenge
123
Taeho Jo
School of Game
Hongik University
Seoul, Korea (Republic of)
ISSN 2197-6503
ISSN 2197-6511
(electronic)
Studies in Big Data
ISBN 978-3-319-91814-3
ISBN 978-3-319-91815-0
(eBook)
https://doi.org/10.1007/978-3-319-91815-0
Library of Congress Control Number: 2018942701
© Springer International Publishing AG, part of Springer Nature 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.
Printed on acid-free paper
This Springer imprint is published by the registered company Springer International Publishing AG part
of Springer Nature.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland
Preface
This book is concerned with the concept, the theories, and the implementations of
text mining. In Part I, we provide the fundamental knowledge about the text mining
tasks, such as text preprocessing and text association. In Parts II and III, we describe
the representative approaches to text mining tasks, provide guides for implementing
the text mining systems by presenting the source codes in Java, and explain the
schemes of evaluating them. In Part IV, we cover other text mining tasks, such as
text summarization and segmentation, and the composite text mining tasks. Overall,
in this book, we explain the text mining tasks in the functional view, describe the
main approaches, and provide guidance for implementing systems, mainly about
text categorization and clustering.
There are a few factors that provided motivation for writing this book. Textual
data including web documents were already dominant over relational data items in
information systems, strongly, since the 1990s. So we need techniques of mining
important knowledge from textual data as well as relational data. Once obtaining
the techniques, we need to provide guides for implementing text mining systems for
system developers. Therefore, in this book, we set the functional views of the text
mining tasks, the approaches to them, and the implementation of the text mining
systems as the scope of this book.
This book consists of four parts: foundation (Chaps. 1–4), text categorization
(Chaps. 5–8), text clustering (Chaps. 9–12), and advanced topics (Chaps. 13–16). In the first part of this book, we provide the introduction to text mining and the schemes
of preprocessing texts before performing the text mining tasks. In the second part,
we cover types of text categorization, the approaches to the task, and the schemes
of implementing and evaluating the text categorization systems. In the third part, we
describe text clustering with respect to its types, approaches, implementations, and
evaluation schemes. In the last part, we consider other text mining tasks such as text
summarization and segmentation, and combinations of the text mining tasks.
This book is intended for the three groups of readers: students, professors,
and researchers. Senior undergraduate and graduate students are able to study the
contents of text mining by themselves with this book. For lecturers and professors
v
vi
Preface
Foundation
Text
Text
Text
Introduction
Indexing
Encoding
Similarity
Concepts
Concepts
Text
Approaches
Approaches
Text
Categorization
Clustering
Implementation
Implementation
Evaluation
Evaluation
Automatic
Text
Text
Taxonomy
Text
Summarization
Segmentation
Generation
Management
Advanced Topics
Fig. 1 Organization of four parts
in universities, this book may be used as the main material for providing lectures
on text mining. For researchers and system developers in industrial organizations,
it may be used as the guide book for developing text mining systems. For
understanding this book, it requires only elementary level of the three disciplines
of mathematics: probabilities, linear algebra, and vector calculus.
As illustrated in Fig. 1, this book is organized with the four parts. Part I deals with
the four aspects: introduction, text indexing, text encoding, and text association.
Part II focuses on the text categorization with respect to its concepts, approaches,
implementations, and evaluation schemes. Part III mention the text clustering with
respect to its four aspects. Part IV is concerned with other text mining tasks and the
hybrid ones, as the advanced topics.
Sejong, Korea
Taeho Jo
Contents
Part I
Foundation
1
Introduction .
3
1.1
Definition of Text Mining .
3
1.2
Texts .
4
1.2.1
Text Components .
5
1.2.2
Text Formats .
6
1.3
Data Mining Tasks .
7
1.3.1
Classification.
7
1.3.2
Clustering .
9
1.3.3
Association.
10
1.4
Data Mining Types .
11
1.4.1
Relational Data Mining.
12
1.4.2
Web Mining .
13
1.4.3
Big Data Mining .
14
1.5
Summary.
16
2
Text Indexing .
19
2.1
Overview of Text Indexing.
19
2.2
Steps of Text Indexing .
21
2.2.1
Tokenization .
21
2.2.2
Stemming .
23
2.2.3
Stop-Word Removal .
24
2.2.4
Term Weighting .
25
2.3
Text Indexing: Implementation .
27
2.3.1
Class Definition .
27
2.3.2
Stemming Rule .
30
2.3.3
Method Implementations .
32
vii
viii
Contents
2.4
Additional Steps .
35
2.4.1
Index Filtering .
35
2.4.2
Index Expansion .
37
2.4.3
Index Optimization .
38
2.5
Summary.
40
3
Text Encoding .
41
3.1
Overview of Text Encoding .
41
3.2
Feature Selection .
43
3.2.1
Wrapper Approach .
43
3.2.2
Principal Component Analysis .
44
3.2.3
Independent Component Analysis .
46
3.2.4
Singular Value Decomposition .
49
3.3
Feature Value Assignment .
50
3.3.1
Assignment Schemes .
50
3.3.2
Similarity Computation .
52
3.4
Issues of Text Encoding .
53
3.4.1
Huge Dimensionality .
53
3.4.2
Sparse Distribution .
54
3.4.3
Poor Transparency .
55
3.5
Summary.
57
4
Text Association .
59
4.1
Overview of Text Association .
59
4.2
Data Association .
61
4.2.1
Functional View .
61
4.2.2
Support and Confidence .
62
4.2.3
Apriori Algorithm .
64
4.3
Word Association .
66
4.3.1
Word Text Matrix .
66
4.3.2
Functional View .
68
4.3.3
Simple Example .
69
4.4
Text Association .
71
4.4.1
Functional View .
71
4.4.2
Simple Example .
72
4.5
Overall Summary .
74
Part II
Text Categorization
5
Text Categorization: Conceptual View .
79
5.1
Definition of Text Categorization .
79
5.2
Data Classification .
81
5.2.1
Binary Classification .
81
5.2.2
Multiple Classification .
82
5.2.3
Classification Decomposition .
83
5.2.4
Regression .
85
Contents
ix
5.3
Classification Types .
86
5.3.1
Hard vs Soft Classification .
86
5.3.2
Flat vs Hierarchical Classification .
88
5.3.3
Single vs Multiple Viewed Classification
90
5.3.4
Independent vs Dependent Classification
92
5.4
Variants of Text Categorization .
94
5.4.1
Spam Mail Filtering .
94
5.4.2
Sentimental Analysis .
95
5.4.3
Information Filtering .
97
5.4.4
Topic Routing .
98
5.5
Summary and Further Discussions .
99
6
Text Categorization: Approaches . 101
6.1
Machine Learning . 101
6.2
Lazy Learning . 103
6.2.1

K Nearest Neighbor . 104
6.2.2
Radius Nearest Neighbor . 106
6.2.3
Distance-Based Nearest Neighbor . 107
6.2.4
Attribute Discriminated Nearest Neighbor 109
6.3
Probabilistic Learning . 110
6.3.1
Bayes Rule . 111
6.3.2
Bayes Classifier . 112
6.3.3
Naive Bayes . 114
6.3.4
Bayesian Learning . 116
6.4
Kernel Based Classifier . 118
6.4.1
Perceptron . 119
6.4.2
Kernel Functions. 120
6.4.3
Support Vector Machine. 122
6.4.4
Optimization Constraints . 124
6.5
Summary and Further Discussions . 126
7
Text Categorization: Implementation . 129
7.1
System Architecture . 129
7.2
Class Definitions . 131
7.2.1
Classes: Word, Text, and PlainText . 131
7.2.2
Interface and Class: Classifier and KNearestNeighbor . . . 134
7.2.3
Class: TextClassificationAPI . 136
7.3
Method Implementations . 137
7.3.1
Class: Word . 138
7.3.2
Class: PlainText . 139
7.3.3
Class: KNearestNeighbor . 141
7.3.4
Class: TextClassificationAPI . 142
7.4
Graphic User Interface and Demonstration . 145
7.4.1
Class: TextClassificationGUI . 145
7.4.2
Preliminary Tasks and Encoding . 147
x
Contents
7.4.3
Classification Process . 152
7.4.4
System Upgrading . 155
7.5
Summary and Further Discussions . 156
8
Text Categorization: Evaluation . 157
8.1
Evaluation Overview . 157
8.2
Text Collections . 159
8.2.1
NewsPage.com . 159
8.2.2
20NewsGroups . 160
8.2.3
Reuter21578 . 161
8.2.4
OSHUMED . 163
8.3
F1 Measure . 164
8.3.1
Contingency Table . 165
8.3.2
Micro-Averaged F1 . 166
8.3.3
Macro-Averaged F1 . 168
8.3.4
Example . 170
8.4
Statistical t-Test . 171
8.4.1
Student’s t-Distribution . 171
8.4.2
Unpaired Difference Inference . 174
8.4.3
Paired Difference Inference . 175
8.4.4
Example . 177
8.5
Summary and Further Discussions . 178
Part III
Text Clustering
9
Text Clustering: Conceptual View . 183
9.1
Definition of Text Clustering . 183
9.2
Data Clustering . 184
9.2.1
SubSubsectionTitle . 185
9.2.2
Association vs Clustering . 186
9.2.3
Classification vs Clustering . 187
9.2.4
Constraint Clustering . 188
9.3
Clustering Types. 189
9.3.1
Static vs Dynamic Clustering . 190
9.3.2
Crisp vs Fuzzy Clustering . 191
9.3.3
Flat vs Hierarchical Clustering. 193
9.3.4
Single vs Multiple Viewed Clustering . 194
9.4
Derived Tasks from Text Clustering . 196
9.4.1
Cluster Naming . 196
9.4.2
Subtext Clustering . 197
9.4.3
Automatic Sampling for Text Categorization 199
9.4.4
Redundant Project Detection . 200
9.5
Summary and Further Discussions . 201
Contents
xi
10
Text Clustering: Approaches . 203
10.1
Unsupervised Learning . 203
10.2
Simple Clustering Algorithms . 204
10.2.1
AHC Algorithm. 205
10.2.2
Divisive Clustering Algorithm . 206
10.2.3
Single Pass Algorithm . 207
10.2.4
Growing Algorithm . 209
10.3

K Means Algorithm . 211
10.3.1
Crisp K Means Algorithm . 211
10.3.2
Fuzzy K Means Algorithm . 212
10.3.3
Gaussian Mixture . 213
10.3.4

K Medoid Algorithm . 214
10.4
Competitive Learning . 217
10.4.1
Kohonen Networks . 217
10.4.2
Learning Vector Quantization . 219
10.4.3
Two-Dimensional Self-Organizing Map. 220
10.4.4
Neural Gas . 222
10.5
Summary and Further Discussions . 223
11
Text Clustering: Implementation . 225
11.1
System Architecture . 225
11.2
Class Definitions . 227
11.2.1
Classes in Text Categorization System . 227
11.2.2
Class: Cluster . 230
11.2.3
Interface: ClusterAnalyzer . 232
11.2.4
Class: AHCAlgorithm . 233
11.3
Method Implementations . 235
11.3.1
Methods in Previous Classes . 235
11.3.2
Class: Cluster . 237
11.3.3
Class: AHC Algorithm . 239
11.4
Class: ClusterAnalysisAPI . 240
11.4.1
Class: ClusterAnalysisAPI . 241
11.4.2
Class: ClusterAnalyzerGUI . 242
11.4.3
Demonstration . 244
11.4.4
System Upgrading . 245
11.5
Summary and Further Discussions . 246
12
Text Clustering: Evaluation . 249
12.1
Introduction . 249
12.2
Cluster Validations . 250
12.2.1
Intra-Cluster and Inter-Cluster Similarities. 250
12.2.2
Internal Validation . 252
12.2.3
Relative Validation . 253
12.2.4
External Validation . 255
12.3
Clustering Index . 257
12.3.1
Computation Process . 257
xii
Contents
12.3.2
Evaluation of Crisp Clustering . 258
12.3.3
Evaluation of Fuzzy Clustering . 259
12.3.4
Evaluation of Hierarchical Clustering . 261
12.4
Parameter Tuning. 263
12.4.1
Clustering Index for Unlabeled Documents 263
12.4.2
Simple Clustering Algorithm with Parameter Tuning 264
12.4.3

K Means Algorithm with Parameter Tuning 265
12.4.4
Evolutionary Clustering Algorithm . 266
12.5
Summary and Further Discussions . 267
Part IV
Advanced Topics
13
Text Summarization . 271
13.1
Definition of Text Summarization . 271
13.2
Text Summarization Types . 272
13.2.1
Manual vs Automatic Text Summarization. 273
13.2.2
Single vs Multiple Text Summarization 274
13.2.3
Flat vs Hierarchical Text Summarization 276
13.2.4
Abstraction vs Query-Based Summarization 278
13.3
Approaches to Text Summarization . 279
13.3.1
Heuristic Approaches. 280
13.3.2
Mapping into Classification Task . 281
13.3.3
Sampling Schemes . 283
13.3.4
Application of Machine Learning Algorithms 285
13.4
Combination with Other Text Mining Tasks . 287
13.4.1
Summary-Based Classification . 288
13.4.2
Summary-Based Clustering . 289
13.4.3
Topic-Based Summarization . 290
13.4.4
Text Expansion . 292
13.5
Summary and Further Discussions . 293
14
Text Segmentation . 295
14.1
Definition of Text Segmentation . 295
14.2
Text Segmentation Type . 296
14.2.1
Spoken vs Written Text Segmentation . 296
14.2.2
Ordered vs Unordered Text Segmentation 298
14.2.3
Exclusive vs Overlapping Segmentation 300
14.2.4
Flat vs Hierarchical Text Segmentation 302
14.3
Machine Learning-Based Approaches . 304
14.3.1
Heuristic Approaches. 304
14.3.2
Mapping into Classification . 305
14.3.3
Encoding Adjacent Paragraph Pairs . 307
14.3.4
Application of Machine Learning. 309
14.4
Derived Tasks . 311
14.4.1
Temporal Topic Analysis . 311
14.4.2
Subtext Retrieval. 313
Contents
xiii
14.4.3
Subtext Synthesization . 314
14.4.4
Virtual Text . 315
14.5
Summary and Further Discussions . 316
15
Taxonomy Generation. 319
15.1
Definition of Taxonomy Generation . 319
15.2
Relevant Tasks to Taxonomy Generation . 320
15.2.1
Keyword Extraction . 320
15.2.2
Word Categorization . 322
15.2.3
Word Clustering . 324
15.2.4
Topic Routing . 325
15.3
Taxonomy Generation Schemes . 327
15.3.1
Index-Based Scheme . 327
15.3.2
Clustering-Based Scheme . 328
15.3.3
Association-Based Scheme . 329
15.3.4
Link Analysis-Based Scheme . 331
15.4
Taxonomy Governance. 332
15.4.1
Taxonomy Maintenance . 332
15.4.2
Taxonomy Growth . 334
15.4.3
Taxonomy Integration . 335
15.4.4
Ontology . 337
15.5
Summary and Further Discussions . 339
16
Dynamic Document Organization . 341
16.1
Definition of Dynamic Document Organization . 341
16.2
Online Clustering. 342
16.2.1
Online Clustering in Functional View . 342
16.2.2
Online K Means Algorithm . 344
16.2.3
Online Unsupervised KNN Algorithm . 345
16.2.4
Online Fuzzy Clustering . 346
16.3
Dynamic Organization . 348
16.3.1
Execution Process . 348
16.3.2
Maintenance Mode . 349
16.3.3
Creation Mode . 350
16.3.4
Additional Tasks . 351
16.4
Issues of Dynamic Document Organization . 352
16.4.1
Text Representation. 353
16.4.2
Binary Decomposition. 353
16.4.3
Transition into Creation Mode . 354
16.4.4
Variants of DDO System . 355
16.5
Summary and Further Discussions . 356
References . 359
Index . 365
Part I
Foundation
Part I is concerned with the foundation of text mining and text processing as the
preparation for its main tasks. Because textual data are dominant over numerical
one in the real world, we need to realize the importance of text mining and explore
its basic concepts. In this part, we mention text indexing and encoding as the main
preprocessing before performing the main text mining tasks. We study the schemes
of computing the similarities between texts and extracting association rules from
textual data as the basic data mining task. Therefore, in this section, we mention
what concerns the four chapters involved in this chapter.
Chapter 1 is concerned with the introduction to text mining. We will mention
text categorization, text clustering, text summarization, and text segmentation as the
typical instances of text mining. Machine learning algorithms will be mentioned as
the main approaches to the text mining tasks, rather than other kinds of ones. We
explore other areas which are related mainly to the text mining, comparing it with
them. Therefore, in this book, the kinds of approaches are restricted to the machine
learning algorithms.
Chapter 2 is concerned with the process of indexing a text into a list of words. The
tokenization and its implementation will be mentioned as the process of segmenting
a text into tokens. We mention stemming as the process of mapping a varied form
of words into their root forms, and present its implementation, together with its
explanations. We will present the process, the implementation, and examples of the
process, stop-word removal. We also mention the additional steps of text indexing
to the three basic steps.
Chapter 3 is concerned with the process of encoding texts into their structured
forms, which are numerical vectors. We explore the criteria for selecting some
feature candidates which are extracted from texts through the process which is
covered in Chap. 2. We describe the process of computing the feature values for
representing texts into numerical vectors. We provide also the scheme of computing
similarity between texts and between text groups. Although numerical vectors are
popular representations of texts, we need to consider the issues in encoding texts to
them.
2
I
Foundation
Chapter 4 is concerned with the scheme of extracting the association rules from
text. We mention data association as the primitive data mining tasks and introduce
the Apriori algorithm as its tool. The data association is specialized into the word
association which extracts the association rules from a text collection. We deal also
with the text association which does the rules from it. The output from the task
which is covered in this chapter is given as symbolic rules as the form of if-then.

Chapter 1
Introduction
This chapter is concerned with the introduction to the text mining and its overview is
provided in Sect. 1.1. In Sect. 1.2, we explain the texts which are source from which
the text mining is performed with respect to their structures and formats. In Sect. 1.3,
we describe the tasks of data mining, such as the classification, the clustering, and
the association. In Sect. 1.4, we cover other types of data mining than text mining,
in order to provide its background. Therefore, this chapter is intended to provide
the basic concepts of text mining and the background for understanding it in the
subsequent chapters.
1.1
Definition of Text Mining
Text mining is defined as the process of extracting the implicit knowledge from
textual data [18]. Because the implicit knowledge which is the output of text
mining does not exist in the given storage, it should be distinguished from the
information which is retrieved from the storage. The text classification, clustering,
and association are the typical tasks of text mining, and they are covered in the
subsequent chapters, in detail. Text mining is the special type of data mining, and
other types such as relational data mining, web mining, and big data mining are
explained in Sect. 1.4. Therefore, this section is intended to explore the overview of
text mining, before mentioning the tasks of text mining and the types of data mining.
Text is defined as the unstructured data which consists of strings which are
called words [82]. Even if the collection of strings belongs to text in the broad
view, it requires the meanings of individual strings and the combination of them
by rules, called grammars, for making the text. Here, the scope of text is restricted
to the article which consists of paragraphs and is written in a natural language.
We assume that a paragraph is referred to an organized group of sentences and a
© Springer International Publishing AG, part of Springer Nature 2019
3
T. Jo, Text Mining, Studies in Big Data 45,
https://doi.org/10.1007/978-3-319-91815-0_1
4
1
Introduction
text is an ordered set of paragraphs. Note that what consists of words written in an
artificial language such as source code or mathematical equations is excluded from
the text scope.
Text mining is regarded as the special type of data mining, as mentioned above,
and we need to explore the data mining conceptually, in order to understand it. The
data mining is referred to the process of getting the implicit knowledge from any
kind of data in the broad view. However, in the traditional data mining, the type of
data which plays roles of source is restricted to the relational data. Classification,
regression, clustering, and association are typical main tasks of data mining [91]
and will be mentioned in Sect. 1.3. In Sect. 1.4, we will consider web mining and
big data mining as the other types of text mining.
We already mentioned classification, regression, clustering, and association, as
the main tasks of data mining. Classification is referred to the process of classifying
data items into their own categories, and Regression is done to that of estimating
an output value or output values to each data item. Clustering is regarded as the
process of segmenting a group of various data items into several subgroups of
similar ones, which are called clusters. Association is considered as the task of
extracting associations of data items in the form of if-them. In Sect. 1.2, they will be
described in detail.
In Table 1.1, the differences between the mining and the retrieval are presented.
The output of data mining is the implicit knowledge which is necessary directly for
making decisions, whereas that of retrieval is some of data items which are relevant
to the given query. For example, in the domain of stock prices, the prediction of
future stock prices is a typical task of data mining, whereas taking some of past and
current stock prices is that of information retrieval. Note that the perfect certainty
never exists in the data mining, compared to the retrieval. The more advanced
computation for making knowledge from the raw data, which is called synthesis,
is required for doing the data mining tasks.
1.2
Texts
This section is concerned with the concepts of texts before discussing the text
mining. This section is divided into the two subsections: text components and
formats. In Sect. 1.2.1, we explain the words, sentences, and paragraphs as the
text components. In Sect. 1.2.2, we describe the three typical text formats: plain
Table 1.1 Mining vs
Mining
Retrieval
retrieval
Output
Knowledge
Relevant data items
Example
Predicted values
Past or current values
Certainty
Probabilistic
Crisp
Synthesis
Required
Optional
1.2 Texts
5
text, XML (Extensible Markup Language), and PDF (Portable Document Format).
Therefore, this section is intended to describe texts as the source of text mining,
with respect to their components and formats.

1.2.1

Text Components
In this study, the text is defined as the group of sentences or paragraphs which are
written in a natural language. Even if what is written in an artificial language such as
a source code belongs to the text in the broad view, it is excluded out from the scope
of text, in this study. Individual words are basic text units, they are combined into
a sentence, grammatically, and sentences are organized into a paragraph, logically.
A full text consists of paragraphs with their variable lengths and its information
such as data, author, title, and so on may be attached to the full text. Therefore,
this subsection is intended to describe the text components: words, sentences, and
paragraphs.
A word is considered as the basic text unit, here. Because a single word consists
of several characters, a single character may be regarded as the further basic unit.
The reason of setting a word as the basic unit is that a character has no meaning by
itself, but a word has its own meaning. A word is mentioned as the meaningful basic
unit, and it is distinguished from the strong which consists of arbitrary characters,
ignoring the meaning. The grammatical words which are called stop words and used
only for grammatical functions such as “a” or “the” have no meaning, so they are
usually excluded in the text preprocessing.
Words are combined into a sentence by the rules which are called grammars. In
English, each sentence is decomposed into words by white space in the process,
called tokenization [65]. Each sentence starts with a capital letter and ends with
the punctuation marks: period, question mark, or exclamation mark, especially in
English. A sentence may have a single clause which basically consists of subjective
and its verbs, or several clauses, depending on its types; a sentence may be
decomposed into clauses. Since English is used most popularly in our world, texts
will be characterized based on it, in this study.
In explaining a text, a paragraph is defined as an ordered set of sentences, keeping
the consistence for a particular subtopic [49]. A paragraph is decomposed into
sentences by their punctuation marks. A paragraph starts with an indented position
and ends with its carriage return, as usual case in writing English texts. Each
paragraph has its variable length in a natural language; it has a variable number
of sentences with their variable lengths. Note that sentences are combined into a
paragraph by the logical order or the semantic rules, rather than the grammar.
A text is viewed as an article such as a news article, a journal article, a patent,
and a letter, and it consists of a single paragraph, a single group of paragraphs, and
several groups of ones. An abstract of a technical article or a news article with its
only text exists as a short text. A text which has a single group of paragraph which
is called section may be considered as a medium one. A text with multiple groups
of paragraphs as a multi-sectioned article is regarded as a long text.

6
1
Introduction
Fig. 1.1 Plain text file

1.2.2

Text Formats
Various text formats exist in processing texts. The popular text formats are those
which are made by the software MS Office, such as MS Word file whose extension
is “doc,” MS PowerPoint file whose extension is “ppt,” and MS Excel file whose
extension is “xls.” Texts tend to be transferred most popularly in the PDF format
through the Internet between users by uploading and downloading them. An e-mail
message may be viewed as a kind of text; the spam mail filtering is a typical task of
text mining. Therefore, we mention some typical text formats in this subsection.
The plain text which is mentioned as the simplest format is the text which is made
by the text editor which is presented in Fig. 1.1. Each text usually corresponds to its
own file whose extension is “txt.” The plain text collection is set as the course of text
mining in implementing the text categorization and clustering system in Chaps. 7
and 11. The collection is called corpus and given as a directory in implementing
them. Exceptionally, a file may correspond to a corpus rather than a text in the news
collection, “Reuter21578” [85].
The XML (Extensive Markup Language) may be considered as another text
format as shown in Fig. 1.2. The XML is the more flexible format of web document
which is designed based on the HTML as the standard format in web browsers. The
XML is currently used as the standard form for describing textual data items as their
relational forms. Each field is given as its start and end tag, and its value is given
between them. Because it is possible to convert the XML documents into records
[86], they are called semi-structured data [53].
Let us consider the PDF (Portable Document Format) as the file format which is
independent of system configurations for presenting the document. A plain text or a
text in any format in MS Office is able to be converted into a PDF file. The PDF file
may include images as well as texts. It is possible to convert a PDF file into a plain
text by an application program. The PDF file has been evolved into the multimedia
composite containing sounds, videos, text, and images.
In the information retrieval system, each text is viewed as a record. The fields of
each text are title, author, abstract, publication time, full text, and so on. Text with

1.3 Data Mining Tasks
7
Fig. 1.2 XML document
their variable length may be given as values of the fields: title, abstract, and full text.
We need to define the similarity between texts for processing such kinds of records.
In this study, we assume that each item is a record with its single field, “full text,”
whose value is absolutely a text, for simplicity.
1.3
Data Mining Tasks
Even if we provided the brief description of data tasks in Sect. 1.1, we need to
explore individual tasks for specifying them further, and this section is divided into
the three subsections. In Sect. 1.3.1, we cover the classification and regression. In
Sect. 1.3.2, we describe the clustering as another task in detail. We mention also the
association, in Sect. 1.3.3. Therefore, this section is intended to specify the concept
of data mining by describing its individual tasks.

1.3.1

Classification
Classification is defined as the process of assigning a category or some categories
among the predefined ones to each data item as shown in Fig. 1.3. As the preliminary
tasks for the classification, a list of categories is predefined as the classification
system and data items are allocated to each category as the sample data. For
the task, we consider two kinds of approaches: the rule-based approaches where
symbolic rules are defined manually and each data item is classified by the rules,
and the machine learning-based approaches where the classification capacity is
constructed by the sample data and each item is classified by it. In this study, the
rule-based approaches are excluded because of their limits: the poor flexibility and
the prior knowledge requirements. Therefore, this subsection is intended to describe
the classification in its functional view, the process of applying machine learning
algorithms, and the evaluation schemes.
8
1
Introduction
Fig. 1.3 Data classification
Classification is viewed as the black box whose input and output are a data item
and its category, respectively, and let us explore types of classification. The hard
classification refers to the classification where only one category is assigned to each
data item, whereas the soft classification does to one where more than one category
may be assigned to it [14]. In the flat classification, the categories are predefined as
a single list, whereas in the hierarchical one, they are done as a hierarchical tree;
nested categories exist in some categories [14]. The single viewed classification is
regarded as one where only one classification system is predefined whether it is a flat
or hierarchical one, whereas the multiple viewed classification is done as one where
more than one classification system is predefined as same time. Before building the
automatic classification system, it takes very much time for predefining categories
and collecting sample data, depending on application areas [25].
Let us consider the steps of classifying data items by a machine learning algo-
rithm. Categories are predefined as a list or a tree, and sample data is collected and
allocated to each category, as mentioned above. By applying the machine learning
algorithm to the sample data, the classification capacity is constructed which is given
in the various forms: symbolic rules, mathematical equations, and probabilities [70].
By applying classification capacity, data items which are separated from the sample
data are classified. Data items which are given subsequently as classification targets
should be distinguished from the sample data items which are labeled manually and
given in advance.
Let us consider the scheme of evaluating the results from classifying the data
items. A test collection which consists of labeled data items is divided into the
1.3 Data Mining Tasks
9
Fig. 1.4 Data clustering
two sets: training set and test set. The training set is used as the sample data
for building the classification capacity using the machine learning algorithm. We
classify the data items in the test set and observe the differences between their
true and classified labels. The accuracy as the rate of consistently labeled items
to total and the F1 measure which will be described later in Chap. 8 are used as the
evaluation measures [95].
Regression is mentioned as another task which looks similar as the classification.
Regression refers to the process of estimating a continuous value or values by
analyzing the input data. Its difference from the classification is that the classifi-
cation generates a discrete value or values as its output, while the regression does a
continuous one or ones. The nonlinear function approximation and the time series
prediction are typical examples of regression. There are two types of regression:
univariate regression where a single value is estimated and multivariate regression
where multiple values are done [29, 32].

1.3.2

Clustering
Clustering is defined as the process of segmenting a group of various items into
subgroups of similar ones as shown in Fig. 1.4. In the task, unlabeled data items
are given initially, and the similarity measures among them should be defined.
A group of items is segmented, depending on the similarities among them, into
subgroups. Let us assume that the supervised learning algorithms which are
described in Chap. 6 will be applied to the classification and the regression, whereas
the unsupervised ones which are described in Chap. 10 will be applied to it. In this
subsection, we will describe the clustering types, process, and evaluation.
Let us explore the types of clustering depending on views. The hard clustering
is the clustering where each item is arranged into only one cluster, whereas the
soft one is the task where each item may be arranged into more than one cluster
[14]. The flat clustering is the clustering where clusters are made as a single list,
whereas the hierarchical clustering is the task where they are made as a tree; nested
clusters in a cluster exist in the hierarchical one but do not in the flat one [14]. The
single viewed clustering means the task where only group of clusters is made as the
results, whereas the multiple viewed clustering does the task where several groups
of clusters may be constructed. The clustering is a very expensive computation; it
takes the quadratic complexity to the number of items [70].
10
1
Introduction
Let us consider the process of clustering data items by the unsupervised
machine learning algorithms. Initially, a group of unlabeled data items is given
and the unsupervised learning algorithm as the clustering tool is decided. We
define the scheme of computing the similarities among data items and parameter
configurations depending on clustering algorithms. By running the unsupervised
learning algorithm, the group of data items is segmented into subgroups of similar
ones. The clustering may automate the preliminary tasks for the classification by
predefining the categories as a list or a tree of clusters and arranging data items into
them as the sample data [25].
The desired direction of clustering data items is to maximize the similarities
among items within each cluster and to minimize the similarities among clusters
[25, 44]. The value which averages the similarities among items within each cluster
is called the intra-cluster similarity or the cohesion. The value which averages
the similarities among clusters is called intercluster similarity, and reversed into
the discrimination among clusters. Hence, the maximization of both the cohesion
and the discrimination is the direction of clustering data items. The minimum
requirement for implementing the clustering systems is that the cohesion and the
discrimination are higher than results from clustering data items at random.
Let us consider the differences between the clustering and the classification.
Classification requires the preliminary tasks, the category predefinition, and the
sample data collection, whereas the clustering does not. Clustering is the task to
which the unsupervised learning algorithms are applied as the approaches, whereas
the classification is one to which the supervised ones are done. In the evaluation,
classification requires the division of the test collection into the training set and the
test set, whereas the clustering does not. The automatic data management system
may be implemented by combining the clustering and the classification with each
other, rather than leaving them separated tasks.

1.3.3

Association
Association is defined as the process of extracting the association rules in the form
of if-then, as shown in Fig. 1.5. The association is initially intended to analyze the
purchase trends of customers in big marts such Wall Mart; for example, it is intended
to discover that if a customer buys a beers, he or she does also diapers. The groups
of items called item sets are given as the input of this task and a list of association
rules which are given as if-then ones is generated as the output. The data association
should be distinguished from the clustering in that the similarity between two items
is bidirectional in clustering, whereas if-then from item to another is unidirectional
in the association. Hence, in this subsection, we describe the association with respect
to its functional view, process, and evaluation.
The data association which was the initial data mining task was intended to get
the purchase trends of customers. The collection of purchased items consists of
item sets bought by customers; each item set is a list of ones which are purchased

1.4 Data Mining Types
11
Fig. 1.5 Data association
by the customer as a single transaction. For each item, the item sets including it are
selected and association rules are extracted from the selected sets. The association
rule is given as if-then rule symbolically; notate ’if A then B by A → B. However,

A → B is not always same to B → A in the association rules.
Let us describe briefly the process of extracting association rules from the item
sets by Apriori algorithm. In the initial step, all possible items and item subsets
which have a single item are generated as many as items from the list of item sets.
For each item, the item subsets are expanded by adding itself, depending on their
frequencies. The association rule is generated for each item subset, depending on its
relative frequency [91]. The process of data association will be described in detail
in Chap. 4.
Let us explain the important measures, support, and confidence, for doing the
data association [91]. Support refers to the rate of item sets including the item subset
to all; in A → B, it is the ratio of the item sets including both A and B to all
item sets [91]. Confidence refers to the rate of item sets including the item subset
to the item sets including the conditional item; in A → B, it is the ratio of item
sets including A and B to the item sets including A [91]. In the process of data
association, the support is used for expanding the item subsets, and the confidence
is used for generating the association rule from each item subset. In comparing the
support with the confidence, the numerator is the same in both, but the denominators
are different.
Even if the association and the clustering look similar as each other, they should
be distinguished from each other. In the clustering, a single group of unlabeled
items is given as the input, whereas in the association, item sets are given as the
input. The similarity between two items is the important measures for performing
the clustering, whereas the support and the confidence are ones for doing the
association. The clustering generates subgroups of similar items as results, whereas
the association does a list of associations rules. The clustering may provide the
subgroups of items which are able to become item sets as input to the data
association in connecting both tasks with each other.
1.4
Data Mining Types
This section is concerned with the types of data mining, depending on the source,
and it is divided into the three subsections. In Sect. 1.4.1, we mention relational
data mining as the traditional type. In Sect. 1.4.2, we describe web mining as

12
1
Introduction
Fig. 1.6 Relational data
the expansion of text mining. In Sect. 1.4.3, we also consider big data mining as
the recently challenging topic. Therefore, this section is intended to explore the
three types of data mining for providing the background for understanding the text
mining.

1.4.1

Relational Data Mining
This subsection is concerned with relational data mining as the traditional type. It
is assumed that the collection of data items is given as a table or tables. The typical
tasks of relational data mining are classification, clustering, and regression which
are described in Sect. 1.2. The conversion of relational data items into numerical
vectors as the preprocessing for using the machine learning algorithms is trivial in
this type of data mining. Therefore, in this subsection, we describe the relational
data mining tasks, and the preprocessing.
Relational data refers to the list of records in the tabular form shown in Fig. 1.6.
Before making the relational data, the fields and their types are defined. Each field
has its own value as the basic unit, and each record consists of a fixed number of
field values. A collection of records is given as a table, and a table or tables are given
depending on the given domain. In the relational data mining, it is assumed that a
table or tables are given in the database independently of application programs [11].
The typical tasks for the relation data mining are classification, regression, and
clustering, and it is assumed that a single table is given as the source. In the
classification, the categories are defined in advance and records are classified into
one or some among them. In the regression, an important value or values are
estimated by analyzing attribute values of the given record. The records in the given
table are organized into several tables of similar records in the clustering. Before
doing the main data mining tasks, we need to clean data items by removing their
noises, depending on the application area.
Because the different scales, string values, and noises always exist in raw data,
we need to clean them for improving the performance [57]. All field values need
to be normalized between zero and one using their maximum and minimum against
1.4 Data Mining Types
13
the different scales over attributes. Each string value should correspond to its own
numerical value; it is called data coding. Smoothing over attribute values and
removal of very strange values need to be considered against their noises. Since
a record looks similar as a numerical vector, the preprocessing which is required for
the relational data mining tasks is very simple.
Let us consider the differences between relational data mining and text mining.
The relational data items, a table or tables, are given as the source for relational data
mining, whereas a text collection, which is called corpus, is given in text mining.
The preprocessing, such as normalization, smoothing, and coding, in relational
data mining is simpler than those in text mining such as text indexing and text
encoding which will be covered in Chaps. 2 and 3. In relational data mining, the
performance depends on only approaches, whereas in the text mining, it depends
on both preprocessing schemes and approaches. The case where a list of XML
documents is converted into that of records may be regarded as the mixture of both
relational data mining and text mining.

1.4.2

Web Mining
Web mining refers to the special type of data mining where web data is given as the
source. The web document is the data item which is expanded from a text by adding
URL address, the hyperlinked words, and access logs. Web mining is divided into
web content mining, web structured mining, and web usage mining [66]. The web
document which is given as the source code in HTML as well as text, and the access
logs to web documents are given as the source in this type of data mining. Therefore,
in this subsection, we describe briefly the three types of web mining.
The web content mining refers to the type of web mining where contents of
web documents are referred for the mining tasks [66]. Each web document is
classified into its topic or topics as a task of web content mining. Web documents
may be organized into subgroups of content-based similar ones as the clustering.
The automatic summarization of web documents for the brief view needs to be
considered as another task of web content mining. The web content mining looks
almost the same to text mining, but fonts and colors of characters as well as words
may be considered as its difference from the text mining.
The web structure mining refers to the type of web mining where structures
or templates of web documents are considered for the mining tasks [66]. Unlike
the text mining and the web contents mining, the categories are predefined by the
templates or structures which are given as tag configurations, and web documents
are collected as sample data, following them. We need the techniques of encoding
tag configurations of web documents into numerical vectors, ignoring contents. Web
documents are classified and organized by their templates and structures. Two web
documents with their different contents but their similar structures are regarded as
similar ones in this type of web mining.
14
1
Introduction
The web usage mining refers to the type of web mining where the trends
of accessing web documents are considered [66]. The trend of accessing web
documents is represented into a directed graph where each node indicates its
corresponding URL address and each edge does the access route from one URL
address to another. The access behaviors of users within a fixed period may be given
as source. We need the techniques of encoding graphs into numerical vectors or
modifying existing machine learning algorithms into their graph-based versions for
doing the tasks of web usage mining. The web documents are given as the source
in the previous two types, whereas the access routes within a period are given as
source in this type.
The text mining and the web usage mining are different clearly from each other,
but it may look similar as the web contents mining and web structure mining. In the
text mining, data items are classified and organized purely by their contents, whereas
in web mining, they are done by templates and access trends as well as contents.
In the web structure mining, items are classified by templates with regardless of
contents as mentioned above. In the text mining, words and their posting information
and grammatical ones are used as features or attributes, whereas in web mining, tags,
hyperlinked, and other properties of characters in addition are used. However, the
techniques of text mining are necessary for doing the web mining tasks as their core
parts, especially in the web contents mining.

1.4.3

Big Data Mining
Big data mining is introduced recently as the challenging type of data mining. Big
data is characterized as its variety, velocity, variability, and veracity, as well as its big
volume [97]. Additional media such as mobile phones, sensors, and other ubiquitous
equipment are to PCs exist for collecting data items; it causes to generate big data.
The traditional algorithms of processing data items and PC-based software face the
limits in processing big data. Therefore, this subsection is intended to characterize
big data, present the three layers of big data mining, and mention the directions of
developing the techniques.
As mentioned above, big data is characterized as follows:
• Variety: Big data consists of data items in their various formats, so the
preprocessing is very complicated compared with relational data mining and web
mining.
• Velocity: In big data, data items are updated very frequently; the very big volume
of data items is added and deleted within a time.
• Variability: In big data, data items have very much inconsistency and noise, so
it takes too much time for cleaning them.
• Veracity: In big data, data items are discriminated very much by their quality,
and some data items are very reliable but others are very poor; the reliable data
items are not known.
1.4 Data Mining Types
15
Fig. 1.7 Three tiers of big
data mining
Big Data
Mining
Text Mining
Relational
Data
Complex
Dynamic
Mining
Bio
Web
Mining
Mining
Uncertain
The three layers of big data mining may be considered as presented in Fig. 1.7.
The techniques for relational data mining are shown in the inner circle of Fig. 1.7, as
the basic ones. In the medium circle, the techniques for text mining, web mining, and
bio mining, are shown. In the outer circle, we consider the techniques of big data
mining where the data which has very complex structures, very frequent updates,
and incomplete values is given as the source. The techniques for the relational data
mining become the basis for developing ones for text mining, web mining, and bio
mining; ones for the three types of data mining are used as the basis for developing
the techniques of big data mining.
Because the individual techniques of encoding raw data into structured forms
and classifying or organizing items which are used in the three kinds of data mining
are not feasible to the big data mining tasks, we need to consider the directions for
developing them. As the simplest one, we may mention the fusion of techniques
which were developed for existing types of data mining into ones for processing
data items in various formats. In applying the existing machine learning algorithms,
we consider more cases such as the frequent updates of data items by the deletion
and the insertion and discriminations among data items. We need to develop new
machine learning algorithms, modify existing ones, or organize multiple machine
learning algorithms for making them feasible to big data mining. The directions
which are mentioned above become the challenges against big data mining.
Let us consider the relation of text mining with big data mining which is covered
in this study. In text mining, textual data is given as the source in the uniform format,
whereas in big data mining, various formats of data items including unfamiliar
formats may be given. In text mining, it is assumed that the data items are fixed
or updated not frequently, whereas in big data mining it is assumed that they are
16
1
Introduction
updated very frequently or constantly. In text mining, the data items are collected
through the Internet, whereas in big data mining, they are collected by ubiquitous
media such as sensors, RFID tags, and mobile phones. Even if the messages which
are transferred among mobile phones belong to big data, they become the source of
text mining, as well as texts provided by the Internet.
1.5
Summary
This section provides the overall summary of this chapter. Words, sentences, and
paragraphs are regarded as the text components and the typical text formats are
plain texts, XML documents, and PDF files. We studied classification, clustering,
and association as the specific tasks of data mining. We mentioned the relational
data mining as the basis for text mining, web mining as the subsequent area from text
mining, and big data mining as the new challenging area. This section is intended to
summarize the entire contents of this chapter.
Text mining refers to the process of extracting knowledge which is necessary
directly for making the important decision from the textual data. Text mining is the
special type of data mining and should be distinguished from the traditional data
mining where knowledge is extracted from relational data items. The text classifi-
cation, the text clustering, and the text summarization which will be described in
the subsequent parts are the typical tasks of text mining. We adopted the machine
learning algorithms as the approaches to the text mining tasks and describe them
in Chaps. 6 and 10. Text mining should be also distinguished from the information
retrieval where texts relevant to the query are retrieved.
The scope of text is restricted to what is written in a natural language; what is
written in an artificial language such as source codes is excluded from the scope.
The words are the basic semantic units of text and need to be distinguished from
the string which is a simple combination of characters, ignoring its meaning. A
text which refers to an article is decomposed into paragraphs, each paragraph is a
semantically ordered set of sentences, and each sentence is a combination of words
by the grammatical rules. The typical formats of text are the plain text which is
made by a simple editor, the XML web document as the semi-structured data, and
the PDF file as the standard format of documents. Text formats are plain texts in
implementing the text mining systems in Chaps. 7 and 11, and the text collection is
given as a directory.
We explored some data mining tasks: the classification, the clustering, and the
association. The classification refers to the process of assigning a category or
categories among the predefined ones to each data item, and the regression refers
to that of estimating a continuous value or values by analyzing input values. The
clustering refers to the process of segmenting a group of data items into subgroups of
similar ones by computing their similarities. The association is the task of extracting
the association rules which are given in the if-then form from a list of item sets. In
this study, the supervised learning algorithms will be applied to the classification
and the regression, and the unsupervised ones will be done to the clustering.
1.5 Summary
17
We explored other types of data mining: relational data mining, web mining, and
big data mining. Relational data mining refers to the type of data mining where the
relational data items are given as the source from which the implicit knowledge is
extracted. Web mining is the type of data mining where the web documents and
access logs are given as the source, and it is divided into the web contents mining,
web structure mining, and web usage mining. Big data mining is the challenging
area where we need to develop techniques by the three directions: fusion of existing
approaches, consideration of dynamic status of data items such as frequent updates
and various qualities, and proposal of approaches more suitable for big data mining
through the modification and organizational combinations. This book on the text
mining provides the techniques which may be advanced to ones for big data mining.

Chapter 2
Text Indexing
This chapter is concerned with text indexing which is the initial step of processing
texts. In Sect. 2.1, we present the overview of text indexing, and explain it
functionally step by step in Sect. 2.2. In Sect. 2.3, we present and explain the
implementation of text indexing in Java. In Sect. 2.4, we cover the further steps for
reinforcing text indexing with respect to its performance and efficiency. Therefore,
this chapter is intended to study text indexing as the initial step.
2.1
Overview of Text Indexing
Text indexing is defined as the process of converting a text or texts into a list
of words [54]. Since a text or texts are given as unstructured forms by itself or
themselves essentially, it is almost impossible to process its raw form directly by
using a computer program. In other words, the text indexing means the process of
segmenting a text which consists of sentences into included words. A list of words
is the result from indexing a text as the output of text indexing, and will become
the input to the text representation which is covered in Chap. 3. Therefore, in this
section, we provide the overview of text indexing before discussing it in detail.
Let us consider the necessities of text indexing [82]. Text is essentially the
unstructured data unlikely the numerical one, so computer programs cannot process
it in its raw form. It is impossible to apply numerical operations to texts and is not
easy to encode a text into its own numerical value. A text is a too long string which
is different from a short string, so it is very difficult to give text its own categorical
value. Therefore, what mentioned above becomes the reason for the need to segment
a text into words which are short strings as the process of text indexing.
The three basic steps of text indexing are illustrated in Fig. 2.1. The first step
is tokenization which is the process of segmenting a text by white spaces or
punctuation marks into tokens. The second step is stemming which is the process
© Springer International Publishing AG, part of Springer Nature 2019
19
T. Jo, Text Mining, Studies in Big Data 45,
https://doi.org/10.1007/978-3-319-91815-0_2
20
2
Text Indexing
Stopword
Tokenization
Stemming
Removal
Word
Text
List
Fig. 2.1 The three steps of text indexing
of converting each token into its own root form using grammar rules. The last step
is the stop-word removal which is the process of removing the grammatical words
such as articles, conjunctions, and prepositions. Tokenization is the prerequisite for
the next two steps, but the stemming and the stop-word removal may be swapped
with each other, depending on the given situation.
The additional steps may be considered for improving the performance and the
efficiency of the text mining and information retrieval tasks. We may attach the POS
(Position Of Speech) tagging which is the process of classifying words into one of
nouns, verbs, adjectives, and so on, grammatically to text indexing as an additional
module. The weights of words may be computed as their importance degree, and
words with relatively lower weights may be removed after the three steps, which
is called index filtering. We take external words which are relevant to the strongly
weighted words and, using search engines, add them to the results from indexing a
text, which is called index expansion. We may consider the case of applying both of
them, altogether, which is called index optimization.
The occurrences and weights of words may depend strongly on the text lengths;
the overestimation and underestimation may be caused to long texts and short ones,
respectively. We may reject too short text which consists of only their titles, and
select only part in long texts as the text length normalization. We may use the
relative frequencies or weights, instead of absolute ones, by dividing the absolute
ones by their maximum. We consider applying the index filtering to long texts and
index expansion to short ones. Without the above actions, long texts may retrieve
more frequently to given query in the information retrieval tasks, and have strong
influences in text mining tasks.
2.2 Steps of Text Indexing
21
2.2
Steps of Text Indexing
This section is concerned with the three basic steps of text indexing. In Sect. 2.2.1,
we explain tokenization as the first step, together with its examples. In Sects. 2.2.2
and 2.2.3, we study stemming and the stop-word removal, respectively. In
Sect. 2.2.4, we cover schemes of computing weights of words. Therefore, this
section is intended to study the process of indexing a text or texts with the three
basic steps and computing the word weights.

2.2.1

Tokenization
Tokenization is defined as the process of segmenting a text or texts into tokens by
the white space or punctuation marks. It is able to apply the tokenization to the
source codes in C, C++, and Java [1], as well as the texts which are written in a
natural language. However, the scope is restricted to only text in this study, in spite
of the possibility. The morphological analysis is required for tokenizing texts which
are written in oriental languages: Chinese, Japanese, and Korean. So, here, omitting
the morphological analysis, we explain the process of tokenizing texts which are
written in English.
The functional view of tokenization is illustrated in Fig. 2.2. A text is given as
the input, and the list of tokens is generated as the output in the process. The text is
segmented into tokens by the white space or punctuation marks. As the subsequent
processing, the words which include special characters or numerical values are
removed, and the tokens are changed into their lowercase characters. The list of
tokens becomes the input of the next steps of text indexing: the stemming or the
stop-word removal.
The process of tokenizing a text is shown in Fig. 2.3. The given text is partitioned
into tokens by the white space, punctuation marks, and special characters. The words
which include one or some of special characters, such as “16%,” are removed. The
first character of each sentence is given as the uppercase character, so it should be
changed into the lowercase. Redundant words should be removed after the steps of
text indexing.
Tokens
Tokenization
Text
Token List
Fig. 2.2 Functional view of tokenization

22
2
Text Indexing
Special
Segmentation
Character
Lower Case
Removal
Token
Text
List
Fig. 2.3 The process of tokenizing text
Fig. 2.4 The example of tokenizing text
The example of tokenizing a text is illustrated in Fig. 2.4. In the example, the text
consists of the two sentences. Text is segmented into tokens by the white space, as
illustrated in the right side in Fig. 2.4. The first word of the two sentences, “Text,”
is converted into “text,” by the third tokenization step. In the example, all of words
have no special character, so the second step is passed.
Let us consider the process of tokenizing the text written in one of the oriental
languages, Chinese or Japanese. The two languages do not allow the white space
in their sentences, so it is impossible to tokenize the text by it. It is required to
develop and attach the morphological analyzer which segments the text depending
on the grammatical rules for tokenizing the text. Even if the white space is allowed
in the Korean texts, tokens which are results from segmenting each of them are
not incomplete, so the morphological analyzer is also required for doing the further
one. Since English is currently used as the global language in our world, the scope
is restricted to only the texts which are written in English, in this study.

2.2 Steps of Text Indexing
23
Fig. 2.5 Stemming process

2.2.2

Stemming
Stemming refers to the process of mapping each token which is generated from
the previous step into its own root form [54]. The stemming rules which are the
association rules of tokens with their own root form are required for implementing
it. Stemming is usually applicable to nouns, verbs, and adjectives, as shown in
Fig. 2.5. The list of root forms is generated as the output of this step. Therefore,
in this subsection, we describe the stemming which is the second or third step of
text indexing.
In the stemming, the nouns which are given in their plural form are converted
into their singular form, as shown in Fig. 2.5. In order to convert it into its singular
form, the character, “s,” is removed from the noun in the regular cases. However, we
need to consider some exceptional cases in the stemming process; for some nouns
which end with the character, “s,” such as “process,” the post fix, “es,” should be
removed instead of “s,” and the plural and singular forms are completely different
from each other like the case of words, “child” and “children.” Before stemming
nouns, we need to classify words into nouns or not by the POS tagging. Here, we
use the association rules of each noun with its own plural forms for implementing
the stemming.
Let us consider the case of stemming verbs into their root forms. The verbs
which are given in their third-person singular form need to be converted into their
root forms by removing the postfix, “s” or “es.” The verbs which are given as the
noun or used as the present progressive form may be changed into their root forms
by removing the post fix, “ing.” If the verbs are used as the past tense or particle,
they are converted into their root form by removing the postfix, “ed,” in the regular
cases. Note that the irregular verbs where their root and varied forms are different
completely exist as exceptional cases.

24
2
Text Indexing
Fig. 2.6 Hard vs soft
stemming
Let us consider the case of stemming adjectives into their root forms. If the
adjective is given as the adverb, it is changed into its root form by removing the
postfix, “ly.” If the adjectives are given as their comparative degree, the postfix,
“er,” is removed for taking its root form. If the adjectives are expressed as their
superlative degree, the postfix, “est,” is removed in each of them. However, the
majority of adjectives are expressed as their comparative and superlative degree
by adding the words, “more” or “most,” before them, respectively.
The two versions of stemming rules are illustrated in Fig. 2.6. Nouns may be
derived from verbs by adding the postfixes, such as “ation” and “ment.” The two
words, “assignment” and “categorization,” are the examples of this case. The noun,
“complexity,” is derived from the adjective, “complex.” In the soft stemming, the
words are used as root forms by themselves, whereas in the hard stemming, they are
converted into their verbs or adjectives.

2.2.3

Stop-Word Removal
Stop-word removal refers to the process of removing stop words from the list of
tokens or stemmed words [54]. Stop words are the grammatical words which are
irrelevant to text contents, so they need to be removed for more efficiency. The stop-
word list is loaded from a file, and if they are registered in the list, they are removed.
The stemming and the stop-word removal may be swapped; stop words are removed
before stemming the tokens. Therefore, in this subsection, we provide the detailed
description of stop words and the stop-word removal.
2.2 Steps of Text Indexing
25
The stop word refers to the word which functions only grammatically and is
irrelevant to the given text contents. Prepositions, such as “in,” “on,” “to”; and so
on, typically belong to the stop-word group. Conjunctions such as “and,” “or,” “but,”
and “however” also belong to the group. The definite article, “the,” and the infinite
articles, “a” and “an,” are also more frequent stop words. The stop words occur
dominantly in all texts in the collection; removing them causes to improve very
much efficiency in processing texts.
Let us explain the process of removing stop words in the ing. The stop-word
list is prepared as a file, and is loaded from it. For each word, if it is registered in
the list, it is removed. The remaining words after removing stop words are usually
nouns, verbs, and adjectives. Instead of loading the stop-word list from a file, we
may consider using the classifier which decides whether each word is a stop word
or not.
Some nouns, verbs, and adjectives as the remaining words may occur in other
texts as well as in the current one. The words are called common words, and they
are not useful for identifying text contents, so they need to be removed like stop
words. The TF-IDF (Term Frequency Inverse Term Frequency) weight is the criteria
for deciding whether each word is a common word, or not, and will be explained
in Sect. 2.2.4. The remaining words after removing stop words are useful in the
news article collection, but not all of them are so in the technical one medical text
collections. We may consider the further removal, depending on text lengths; it is
applied to long texts.
Let us consider the sentimental analysis as the kind of text classification; it is
the process of classifying texts into one of the three categories: positive, neural, and
negative. We may need some of the stop words for doing the task, as exceptional
cases. For example, the stop words, such as “but,” “not,” and “however,” indicate the
negative opinion. Not all of the stop words are useful for identifying the sentimental
style of texts; we need to decide whether each stop word is useful, or not. If
implementing the text processing system for doing the sentimental analysis, the
process of text indexing needs to be modified.

2.2.4

Term Weighting
The term weighting refers to the process of calculating and assigning the weight of
each word as its importance degree. We may need the process for removing words
further as well as stop words for further efficiency. The term frequency and the TF-
IDF weight are the popular schemes of weighting words, so they will be described
formally, showing their mathematical equations. The term weights may be used as
attribute values in encoding texts into numerical vectors, which will be covered in
the next chapter. Therefore, in this subsection, we describe the schemes of weighing
words: TF-IDF and its variants.
We may use the term frequency which is the occurrence of each word in the given
text as the scheme of weighting words [63]. It is assumed that the stop words which
26
2
Text Indexing
occur most frequently in texts are completely removed in advance. The words are
weighted by counting their occurrences in the given text in this scheme. There are
two kinds of term frequency: the absolute term frequency as the occurrence of words
and the relative term frequency as the ratio of their occurrences to the maximal ones.
The relative term frequency is preferred to the absolute one, in order to avoid the
overestimation and underestimation by the text lengths.
TF-IDF (Term Frequency-Inverse Document Frequency) is the most popular
scheme of weighting words in the area of information retrieval but requires the
references to the entire text collection which is called corpus. The word weights
which are computed by the TF-IDF scheme are proportional to the occurrences in
the given text, but reversely proportional to that in other texts. The TF-IDF weight,

wij , of the word, ti, in the text, di, is computed by Eq. (2.1) [83],

N

wij = log

(1 + logT Fi)
(2.1)

DFi
where N is the total number of texts in the collection, DFi is the number of texts
which include the word, ti, in the collection, and T Fi is the occurrence of the word,

ti, in the text, di. If the word occurs only one time in the text, its weight depends on
the number of texts which include itself in the corpus, assuming that N is a constant.
In encoding a text into a numerical vector, zero is assigned to the word which does
not occur at all in the text.
We may derive some variants from the TF-IDF weight which is calculated by
Eq. (2.1) [4]. By replacing the absolute term frequency by the relative one, Eq. (2.1)
is modified into Eq. (2.2).

N

T Fi

wij = log
1 + log
(2.2)

DFi

T F max
where T F max is the maximal occurrences in the text, di. By modifying the inverse
document frequency, log N
into 1 + log N , the word weight is computed by

DFi

DFi
Eq. (2.3),

N

T Fi

wij = 1 + log
1 + log
(2.3)

DFi

T F max
We may use log N− DFi as the probabilistic inverse document frequency, instead of

DFi

log N and 1 + log N , so the words are weighted by Eq. (2.4),

DFi

DFi

N − DFi

T Fi

wij = 1 + log
1 + log
(2.4)

DFi

T F max
In implementing text indexing, we adopt Eq. (2.3) for computing the word weights.
2.3 Text Indexing: Implementation
27
In addition to text indexing and the term weighting, we may need the POS
tagging. As mentioned in the previous section, the POS tagging refers to the process
of classifying each word into one of the grammatical categories. Since the words
around the given word are indicators, HMM (Hidden Markov Model) tends to be
used as the approach [53]. We may apply the POS tagging to the stemming, the
stop-word removal, and the term weighting as the optional step. However, the POS
tagging is omitted in implementing the text indexing program, in Sect. 2.3.
2.3
Text Indexing: Implementation
This section is concerned with the process of implementing the text indexing
program in Java. In Sect. 2.3.1, we define the classes which are involved in
implementing the text indexing program. In Sect. 2.3.2, we mention the stemming
rule for implementing the stemming process as the data structure. In Sect. 2.3.3, we
implement the methods of the classes. Therefore, this section is intended to provide
the guide for implementing text indexing.

2.3.1

Class Definition
In this subsection, we present the classes which are involved in implementing the
text indexing program. Since the file access is the most frequent task in indexing
a text, we need the class for doing it. Since a text is given as input and the word
list is generated as the output, we need to define the classes for processing a text
and words. We need to define the integrated class which is called API (Application
Program Interface) class. In this subsection, we will explain the each class definition.
In Fig. 2.7, the class, “FileString,” is defined. The property, “fileName,” indicates
the name of the file to which we try to access, and the property, “fileString,”
indicates the stream which is loaded and saved from and to the file; the object
of the class “FileString” is created with the file name or with the file name and
the file stream. The method, “loadFileString,” loads the contents from the file as
a string and assigns it to the property, “filesString.” The method, “saveFileString”
saves the property value, “fileString,” into the file which is named by the property,
“fileName.” The method, “getFileString,” gets the value which is assigned to the
property, “fileString,” and the method, “setFileString,” mutates it.
The class, “Word,” is defined in Fig. 2.8. The property, “wordName,” indicates
the word by itself, and the property, “wordWeight,” indicates the importance degree,
in the class, “Word.” The object of class, “Word,” is created by the value of the prop-
erty, “wordName,” and the property values are accessed and mutated by the methods
whose prefix is “get” and “set,” respectively. The method, “computeWordWeight,”
computes the word weight and assigns it to the property, “wordWeight.” The weight
is computed by Eq. (2.3), and its implementation is omitted in this book.

28
2
Text Indexing
Fig. 2.7 The definition of class: FileString
Fig. 2.8 The definition of class: word

2.3 Text Indexing: Implementation
29
Fig. 2.9 The definition of
class: text
The class, “Text,” is defined in Fig. 2.9. Each text is identified by its own file
name by assuming that each text is given as a single file; the property, “fileName,”
becomes the text identifier. The property, “textContent,” is the input of indexing
the text, and the property, “wordList,” is the output which consists of objects of
the class, “Word.” By the method, “loadTextContent,” the text is loaded from the
file, and it is indexed into the list of words by the method, “indexTextContent.” The
three methods whose access level is set “private” never were called externally but
called in the method, “indexTextContent”; we will explain their implementations in
Sect. 2.3.3.
The class, “TextIndexAPI,” is defined in Fig. 2.10. The postfix, “API,” which
is attached to “TextIndex,” indicates the interface between the main program and
the involved classes. The object of the class is created with the file name and the
directory path which identifies the corpus location, and the method, “indexText,” is
involved for indexing the text into the list of objects of the class, “Word,” in the main
program. The list of objects is converted into a stream for saving it into a file as the
results. The final output of this program is given as a file where the list of words and
their weights are saved.

30
2
Text Indexing
Fig. 2.10 The definition of class: TextIndexAPI
Fig. 2.11 The definition of class: StemmingRule

2.3.2

Stemming Rule
This subsection is concerned with the stemming rule as the data structure for
implementing the stemming process. The stemming rule is given as the association
of the root form with its derivations, for each word. We add one more class,
“StemmingRule,” to those which are mentioned in Sect. 2.3.1. We need to load the
list of stemming rules from a file, initially. In this subsection, we define the class,
“StemmingRule,” and implement the involved methods.
The class, “StemmingRule,” is defined in Fig. 2.11. The property, “rootForm,”
indicates the root of each word, and the property, “variedFormList,” indicates the list
of varied forms. It is assumed that in the file, the root form and its varied forms are

2.3 Text Indexing: Implementation
31
Fig. 2.12 The implementation of method: stemWordList
given as a line: “root varied1 varied2” An object is created line by line, reading
the stream from the file, the line is segmented into tokens by the white space, and the
first token is set as the root and the others are set as its varied forms. The method,
“isRegistered,” checks whether the word is registered in the list of varied forms,
or not.
The method, “stemString,” of the class, “Text,” is implemented in Fig. 2.12. The
list of stemming rules is loaded from the file, by calling the method, “loadStem-
mingRuleList.” The objects of the class, “StemmingRule,” are created line by line
in the method, “loadStemmingRule.” Each word is checked in each stemming rule
whether it is registered as its varied form, or not, and if so, the word is changed into
its root form, by getting it from the corresponding stemming rule. Redundant words
are removed after stemming words.

32
2
Text Indexing
Fig. 2.13 The implementation of method: isRegistered
The method, “isRegistered,” is implemented in Fig. 2.11. The method belongs
to the predicate method which has the prefix “is,” and checks the program status
by returning true or false. If discovering the varied form which matches the value
which is assigned to the property, “wordName,” it returns true. The sequential search
is adopted in the current implementation, but it needs to be replaced by the more
advanced search strategies such as the binary search and the hashing, in the next
version. When using the sequential search, it takes the quadratic complexity, O(n 2),
for stemming each token, assuming the n stemming rules and n varied forms per
each stemming rule (Fig. 2.13).
Since it takes very high cost for stemming a word, as mentioned in Fig. 2.13, we
need to improve the search for varied forms in each stemming rule and use one of
more advanced search strategies. We need to sort the varied forms in each stemming
rule, and replace the sequential search by the binary search. In each stemming rule,
we may build a binary search tree or its variants such as RVL tree and Red-Black
Tree. As an alternative strategy, we implement the search for the varied forms by the
hashing which takes only constant complexity. We also need to improve the search

for matching the stemming rule as well as the search for the varied forms.

2.3.3

Method Implementations
This section is concerned with implementing methods in the classes which were
mentioned in Sect. 2.3.1. We already described the definitions and methods of
the class, “StemmingRule,” in Sect. 2.3.2. This subsection focuses on the two
methods, “loadFileString” and “saveFileString” in the class, “FileString,” and the
three methods, “tokenizeString,” “removeStopWords,” and “indexTextContent” in
the class, “Text.” Since the class, “Word,” has the methods with their trivial
implementations, we omit the explanation about them. Therefore, in this subsection,
we explain the method implementations of the classes, “FileString” and “Text.”
We present implementing the methods, “loadFileString” and “saveFileString,” in
Figs. 2.14 and 2.15. The method, “loadFileString,” takes what is stored in the given
file with the exception handling for opening it. The file is opened, its content is read

2.3 Text Indexing: Implementation
33
Fig. 2.14 The implementation of method: loadFileString
Fig. 2.15 The implementation of method: saveFileString
Fig. 2.16 The implementation of method: tokenizeTextContent
as a string by invoking “readFully,” and it is assigned to the property, “fileString.”
The method, “saveFileString,” saves the value of the property, “fileString,” into the
given file with the exception handling. In its implementation, the file is opened, the
property value is written by invoking the method, “writeBytes.”
The method, “tokenizeString,” is implemented in Fig. 2.16. By invoking the
method, “loadTextContent,” the text which is the input of text indexing is loaded
from the file. The text which is given as a string is segmented into tokens by invoking

34
2
Text Indexing
Fig. 2.17 The implementation of method: removeStopWords
the method, “split,” and the string which is given as the argument in the method
indicates the list of characters of partition boundaries. Each token is converted into
its lowercases and added to the property, “wordList.” The token list is generated as
the results from the step.
The method, “removeStopWords,” is implemented in Fig. 2.17. The list of stop
words is loaded from the file, by invoking the method, “loadStopWordList.” For
each word in the property, “wordList,” it is checked whether it is registered
in the stop-word list, and if so, it is removed from the property. The method,
“isRegistered,” in the class, “StemmingRule,” checks the registration in the varied
form list, while the method, “isRegistered,” in the class, “Text,” does it in the
stop-word list. By replacing the sequential search which is used in the current
implementation by the more advanced search strategies, we improve the process
of removing stop words.

2.4 Additional Steps
35
Fig. 2.18 The implementation of method: indexTextContent
In Fig. 2.18, the method, “indexTextContent,” is implemented. In its implementa-
tion, the methods whose access levels are set private are involved. The string which
is loaded from the file by invoking the method, “loadTextContent,” is tokenized into
tokens by the method, “tokenizeTextContent,” they are stemmed into their roots by
invoking the method, “stemWordList,” and among them, stop words are removed
by invoking the method, “removeStopWords,” following the steps of text indexing
which were illustrated in Fig. 2.1. The additional steps which are mentioned in
Sect. 2.4 may be implemented by adding more methods in the class. Therefore, the
implementation is intended to provide the prototype version of indexing a text or
texts rather than the real version.
2.4
Additional Steps
This section is concerned with the additional steps to ones which were covered in
Sects. 2.2 and 2.3. In Sect. 2.4.1, we describe index filtering as the further removal
of some words. In Sect. 2.4.2, we consider the index expansion which is the addition
of more relevant words to the list of words, as the opposite one to index filtering.
In Sect. 2.4.3, we cover index optimization as the composite of index filtering and
expansion. In this section, we describe the three further steps to the basic ones which
were mentioned in the previous sections.

2.4.1

Index Filtering
In Fig. 2.19, we illustrate index filtering which is the process of removing further
words among remaining ones after doing stop words. The list of words which result
from indexing a text with the basic three steps is given as the input, and the words
are called actual words, here. The actual words are weighted by one of the equations
which were presented in Sect. 2.2.4, and only words with their higher weights are
selected among them. Index filtering generates a shorter list of words as its output
and is usually applicable to long texts. Therefore, in this subsection, we describe the
process of removing some words, further.
36
2
Text Indexing
Low
High
Word
Weighted
Weighted
Posting
Words
Words
Word
Removal
Expansion
Word
List
List
Text
Fig. 2.19 Controlling word list from indexing text
The weights of words which are generated from indexing a text with the three
basic steps are computed. As mentioned in the previous section, the weights are
proportional to the absolute and relative frequencies of words in the given text, and
reversely proportional to the number of other texts which include the words in the
corpus. The words are sorted by their weights, and ones with their lower weights
are cut off. Index filtering means the process of removing some of nouns, verbs,
and adjectives in addition to the stop words for more efficiency. Therefore, in the
process, the longer list of words is given as the input and the shorter list is generated
as the output.
Let us consider the three schemes of selecting words by their weights. The first
scheme is called rank-based selection where the words are sorted by their weights
and the fixed number of words is selected among them. The second scheme is called
score-based selection where the words with their higher weights than the given
threshold are selected. The third scheme is the hybrid one which is the mixture of
the first and second schemes. There is trade-off between the two schemes; the rank-
based selection where the constant number of words is selected, but it is required
to sort the words by their weights, and the score-based selection where it is not
required to sort them, but the very variable number of words is selected.
We may consider the word positions in the given text for doing the index filtering,
as well as their weights. Almost all of texts tend to be written, putting the essential
part in the first and last paragraphs. Even if the words have their identical weights,
they need to be discriminated among each other by their positions in the given
text. More importance should be put to the words in the first and last paragraphs,
than those in the medium ones. Grammatical information about words such as their
grammatical categories and their roles in the sentences may be also considered, as
well as the posting information.
2.4 Additional Steps
37
Fig. 2.20 Index expansion
Let us make remarks on index filtering. Before applying the index filtering as
the additional step, we need to consider the text length. We expect more efficiency
which results from applying the index filtering to long texts by getting more compact
representations. When applying it to short texts, information loss is caused. We had
better omit the index filtering to the short text, in order to avoid the information loss.

2.4.2

Index Expansion
Index expansion refers to the process of adding more relevant words to ones to which
are indexed from the text, and it is illustrated in Fig. 2.20 [89]. The text is indexed
into a list of words with the three steps. External words, called virtual words, which
are relevant to the actual words are fetched through search engines. The external
words are added to the list of actual words, and the longer list is generated as the
output. Therefore, in this subsection, we describe the index expansion process.
The collocation of words is the essential criterion for fetching associated words
from the external sources. Collocation refers to the occurrence of more than
two words in the same text. The more collocations of words, the more semantic
cohesion. The collocation of the two words, ti and tj , is computed by Eq. (2.5),
2 DFij

col(ti, tj) =
(2.5)

DFi + DFj
where DFij is the number of texts which include the two words, ti and tj in the
corpus. The more the texts which include both the words, the higher the collocation
of them, by Eq. (2.5).
In Fig. 2.20, the process of expanding the list of words is illustrated. The given
text is indexed into the list of words with the three steps. For each word in the list, its
collocations with other words in the external sources are computed by Eq. (2.5), and
ones with higher collocations are fetched. The fetched words are added to the list of
actual words, and the list is expanded with the virtual words. It is more desirable to
fetch the external words which are relevant to only some actual words rather than
all ones for more efficiency.
38
2
Text Indexing
Fig. 2.21 Example of index expansion
The example of the index expansion is presented in Fig. 2.21. The text is indexed
into words: “computer,” “software,” “information,” and “data.” The words are sent
as the queries, and their associated words are retrieved as the virtual words. Both
the actual and virtual words are given as the text surrogates, through the index
expansion. However, note that the process of fetching the relevant words from the
external sources is very expansive.
Let us consider the query expansion which is the process of adding more relevant
words to the given query, as the similar task as the index expansion [78]. The
query is given by a user, and he or she expresses his or her information needs,
unclearly and abstractly. The initial query is given by the user, its collocations with
other words are computed, and highly collocated words are fetched. The references
to the user profiles may be used for doing the query expansion, as well as the
collocations. Therefore, the query expansion is intended to make the query more
clear and specific.

2.4.3

Index Optimization
Index optimization refers to the process of optimizing a list of words in order
to maximize the information retrieval performance, and is illustrated in Fig. 2.22
[35]. It is viewed as the combination of the index filtering and expansion which
were covered in Sects. 2.4.1 and 2.4.2. In other words, the index optimization
contains the removal of unnecessary words for more efficiency and addition of
more relevant words for more reliability. It is interpreted into an instance of
word classification where each word is classified into one of the three categories:
“expansion,” “inclusion,” and “removal.” In this subsection, we provide the detailed
description of the index optimization as the composite task of the index filtering and
expansion.
In Sects. 2.4.1 and 2.4.2, we already studied the two tasks, and we need both
for getting more efficiency and reliability. The index filtering is useful for long
texts for more efficiency, and the index expansion is so for short texts for more
reliability. The actual words in the given text are classified into the three groups: the
2.4 Additional Steps
39
Fig. 2.22 Index optimization
words with their higher weights which should be reinforced by adding more relevant
words to them, the words with their medium weights which should be remained,
and the words with their lower weights which should be removed. The index
expansion causes more unnecessary computations, and the index filtering causes
the information loss. Therefore, we need the index optimization which is applicable
to any text, regardless of its length for solving problems from the two tasks.
In Fig. 2.22, the index optimization process is presented. With the three basic
steps, the text is indexed into a list of words. The shorter list of words is generated
by the index filtering. The collocations of the words in the short list with other
words are computed, and their associated words are fetched and added to the list.
As illustrated in Fig. 2.22, the index optimization is viewed into the combination of
the two tasks.
In 2015 and 2016, Jo interpreted index optimization into the classification task as
another view, as illustrated in Fig. 2.23 [35, 41]. The three categories, “expansion,”
“inclusion,” and “removal,” are predefined, in advance. The words which are labeled
with one of the three categories are prepared as the sample data, and the adopted
machine learning is trained with them. The words which are indexed from a text
are classified into one of the three categories. To the words which are labeled with
“expansion,” their associated words are added from the external sources; to the
words which are labeled with “inclusion,” they are remained; and to the words which
are labeled with “removal,” they are excluded.
We need to consider some issues in applying machine learning algorithms to
index optimization which is viewed into the classification task. The first issue is how
many sample words we need to prepare for the robustness, in advance. The second
issue is to use which of the machine learning algorithms we use as the classifier. The
third issue is how to define the domain scope of text as a source of sample words: the
narrow scope where there is more reliability but less sufficiency of sample words,
and the broad scope where there is more sufficiency but less reliability of them. The
last issue is how to define the attributes for deciding one of the three categories.
40
2
Text Indexing
Fig. 2.23 View of index optimization into classification task
2.5
Summary
This chapter is concerned with the process of indexing a text or texts into a list of
words. The three steps are basically needed for doing text indexing. Text indexing
is implemented in Java for providing the guide for developing the text processing
system. Index filtering, expansion, and optimization are considered as the further
text indexing steps. In this section, we summarize the entire content of this chapter.
Text indexing refers to the process of mapping a text or texts into a list of words.
It is needed for encoding texts into their structured forms. The list of nouns, verbs,
and adjectives is usually the output of text indexing with the three basic steps. We
consider the addition of index filtering, index expansion, and index optimization
to the basic steps for improving the efficiency and the reliability. We consider other
kinds of information about words such as the text length, the grammatical categories
of words, and word positions, for doing the additional tasks.
A text is indexed into a list of words with the three basic steps: tokenization,
stemming, and stop-word removal. Tokenization refers to the process of segmenting
a text simply by white spaces and punctuation marks. Stemming refers to the
process of changing each word into its own root form. Stop-word removal means the
process of removing stop words which function only grammatically, regardless of
the content. The words are usually weighted by the TF-IDF scheme and its variants.
We tried to implement the text indexing program in Java, in order to provide the
development guides. We define the classes: “FileString,” “StemmingRule,” “Word,”
“Text,” and “TextIndexAPI.” The class, “StemmingRule,” is for defining the data
structure for associating a root form with its varied forms. We implemented the
process of indexing a text by invoking the methods which correspond to the text
indexing steps. We need to improve the search algorithm which is used in the
implementation for more scalability.
Index filtering, expansion, and optimization are considered as the additional
tasks for improving efficiency and reliability. Index filtering refers to the process of
removing nouns, verbs, adjectives which are unimportant for identifying the content
for more efficiency. Index expansion refers to the process of adding associated
words which are fetched from the external sources to the original list of words.
Index optimization, where important words are selected through the index filtering
and their associated words are added through the index expansion, is viewed as the
combination of both the tasks. Index optimization is regarded as a classification task,
and we may apply a machine learning algorithm.

Chapter 3
Text Encoding
This chapter is concerned with the process of encoding texts into numerical vectors
as their representations, and its overview will be presented in Sect. 3.1. In Sect. 3.2,
we describe the schemes of selecting features from their candidates in generic cases,
and point out its limits in applying them to the text mining cases. In Sect. 3.3, we
cover the schemes of assigning values to the selected features as the main step of the
text encoding. In Sect. 3.4, we point some issues in encoding texts into numerical
vectors, and consider the solutions to them. Therefore, this chapter is intended to
describe in detail the process of mapping a list of words, which is the output from
the process which was described in Chap. 2, into a numerical vector.
3.1
Overview of Text Encoding
Text encoding refers to the process of mapping a text into the structured form as
text preprocessing. The first half of text preprocessing is called text indexing which
was covered in the previous chapter, and the output from the process becomes the
input to the process which is covered in this chapter. In the process of text encoding,
some among the words which were extracted from the text indexing are selected
as features, and numerical values are assigned to them in encoding each text. The
numerical vector which is generated from the process represents a text, but we need
to consider some issues from the process. Hence, in this section, we explore the
overview of text encoding before describing it in detail.
Let us review the results from indexing a text through the process which was
covered in Chap. 2. A text is given as the input, and it is segmented into tokens in the
tokenization process. Each token is mapped into its own root form by the stemming
process. For more efficiency, stop words which carry out only grammatical functions
irrelevantly to the given contents are removed. A list of words which result from
indexing a text is given as the input to the text encoding process.
© Springer International Publishing AG, part of Springer Nature 2019
41
T. Jo, Text Mining, Studies in Big Data 45,
https://doi.org/10.1007/978-3-319-91815-0_3

42
3
Text Encoding
Fig. 3.1 The steps of encoding text into numerical vector
The process of encoding a text into a numerical vector is illustrated in Fig. 3.1. A
list of words which is generated from the process which was mentioned in Chap. 2
is given as feature candidates. Some among them are selected features, using one of
the schemes which are described in Sect. 3.2. The numerical vector is constructed
by assigning values to features with the reference to the text which is given as the
initial input. Even if it is popular to encode texts into numerical vectors as text
preprocessing, we need to consider some issues in doing so.
Let us present simple example for understanding the text encoding process, more
easily. By indexing a corpus, ten words are generated as the feature candidates:
“information,” “data,” “computer,” “software,” “hardware,” “database,” “structure,”
“programming,” “text,” and “string.” By the process which is covered in Sect. 3.2,
the four words, “information,” “data,” “computer,” and “software,” are selected as
features. Their occurrences in the given text which we try to represent are assigned
to the selected features as their values; the text is represented into a four-dimensional
numerical vector. In real systems, several hundreds of features are selected among
ten thousand feature candidates; a text is really represented into a vector whose
dimension is several hundreds.
In 2006, Jo pointed out some issues in encoding texts into numerical vectors
as their representations [25]. It requires keeping enough robustness to encode a text
into a huge dimensional vector; three hundred features are usually selected for doing
so. Another problem in encoding texts so is the sparse distribution in each numerical
vector; zero values are dominant over nonzero ones in each numerical vector. The
poor transparency usually underlies in numerical vectors which represent texts; it
is very difficult to trace symbolically the results from classifying and clustering
texts. However, there are some trials in previous works to solve the above issues by
encoding texts into alternatives to numerical vectors.
3.2 Feature Selection
43
3.2
Feature Selection
This section is concerned with the schemes of selecting some of words as features.
In Sects. 3.2.1 and 3.2.2, we study the wrapper approach and the principal compo-
nent analysis, respectively. In Sect. 3.2.3, we describe the independent component
analysis as the popular approach to feature selection based on the signal processing
theory. In Sect. 3.2.4, we explain the singular value decomposition as another feature
selection scheme. Therefore, this section is intended to describe in detail the simple
and advanced schemes of selecting features from candidates.

3.2.1

Wrapper Approach
The wrapper approach, which is covered in this section, refers to the feature
selection scheme which depends on the results from classifying or clustering
entities. The reason of calling this kind of approach wrapper approach is that the
feature selection process is strongly coupled with the main task, classification or
clustering. Increment and decrement of features depend on the results from doing
a text mining task. In other words, the feature selection process is embedded in
the given task, instead of an independent task which is separated from the task.
Therefore, in this section, we present the two wrapper approaches, and analyze their
complexities.
The forward selection which is a wrapper approach refers to one where the
trial starts from one dimensional vector, and add more features, depending on the
performance improvement. One feature is selected among candidates, at random,
the classification or clustering is tried, and the performance is observed. One more
feature is added, and the performances of the two cases before and after the addition
are compared with each other. If the performance is improved, outstandingly,
more features will be added, but the current dimension is selected, otherwise. The
increment of features continues in the forward selection until the performance is
improved little.
The backward selection which is opposite to the forward selection is the approach
where classification or clustering is started with all candidates as features, and the
number of features is decremented depending on the performance change. In the
initial step, we use all feature candidates for carrying out classification or clustering.
One of the features is deleted and the performances of cases before and after the
deletion are compared with each other. If the two cases have very little performance
difference, the deletion is continued, but it stops, otherwise. Therefore, in this
approach, the feature is decremented continually until the outstanding degrade
happens.
Let us consider the complexity of applying the wrapper approaches to the text
classification or clustering. When denoting the final number of selected features and
the total number of feature candidates by d and N , the dimension becomes from
44
3
Text Encoding
one to d in the forward selection, and from N to d in the backward selection. The
summation over 1 , 2 , . . . , d or N, N − 1 ,, d takes the quadratic complexity,

O(d 2) to the number of selected features, d. In actual, the backward selection takes
more computation cost than the forward selection. Hence, it takes very much cost
for using the wrapper approach for selecting features [3].
Let us make some remarks on the wrapper approaches which are explained
above. The wrapper approaches are characterized as very heuristic ones; additions
and deletions of features are rules of thumbs. In this approach, the feature selection
module should be embedded in the main module, rather than putting it as a separated
one. Since it takes the quadratic cost to the dimension, it is not feasible to use it for
text mining tasks in which texts are represented into huge dimensional vectors. We
may consider the combination of the above two schemes where both increments and
decrements of features are carried out.

3.2.2

Principal Component Analysis
The PCA (Principal Component Analysis) which is mentioned in this section refers
to the scheme where features are selected based on their variances of input values.
In the first step, the covariance matrix is constructed from the sample examples.
Eigen vectors and values are computed from the covariance matrix. The features
which correspond to maximal Eigen values are selected. Therefore, in this section,
we describe the PCA as a feature selection scheme.
Let us explain the process of deriving the covariance matrix from the given
examples. Initially, examples are given as input vectors which represent raw data
with all of feature candidates,
X = {x1 , x2 , . . . , x
n}
where n is the number of examples. Each input vector is given as a numerical vector,
x
k = [xk 1 xk 2 . . . xkN] k = 1 , 2 , . . . , n
where N is the total number of feature candidates, and the average for each element
is computed by Eq. (3.1),

n
¯ xi = 1

xmi
(3.1)

n m=1
The covariance matrix is built as follows:
3.2 Feature Selection
45
⎡
⎤

Cov(x 1 , x 1) Cov(x 1 , x 2) . . . Cov(x 1 , xN)
⎢ Cov(x
⎥

= ⎢
2 , x 1) Cov(x 2 , x 2) . . . Cov(x 2 , xN)
⎢
⎥
⎣

.
⎥

.

.

.

.

.

..

. .

..
⎦

Cov(xN , x 1) Cov(xN , x 2) . . . Cov(xB , xN)
where Cov(x

n

i , xj) =

k=1 (xik − ¯

xi) 2 (xjk − ¯

xj) 2. The covariance matrix is given
as N by N matrix.
The Eigen vectors and values are computed from the above matrix. The relation
of the covariance matrix, and its Eigen vectors and values are expressed as Eq. (3.2).

v
T =

i

λiv
Ti
(3.2)
We compute Eigen values, λ 1 , λ 2 , . . . , λN by Eq. (3.2). The Eigen values are sorted
in their descending order as λ max , λ

, . . . , λ
and selected d maximal Eigen
1
max2
max N
values, λ max , λ

, . . . , λ
. Therefore, in the PCA, the N dimensional input
1
max2
max d
vector is projected into the d dimensional space based on the selected Eigen values.
Let us explain the process of mapping the N dimensional input vectors into the

d dimensional ones through the projection as the next step. The mean vector is
computed by averaging over input vectors in Eq. (3.3).

n
¯x = 1
xi
(3.3)

n i=1
The matrix W is built, using the Eigen vectors which are associated with the
maximal Eigen values which are computed above, vmax , v

, . . . , v
where
1
max2
max d
vmax i = v max
as follows:

i 1 v max i 2 . . . v max i N
⎡
⎤

v max
⎢
11 v max12 . . . v max1 N
⎢ v
⎥
max21 v max22 . . . v max2 N ⎥
W = ⎢
⎣ .
⎥

.

.

.

.

.

..

. .

..
⎦

v max d 1 v max d 2 . . . v max dN
The d dimensional input vectors Z = {z1 , z2 , . . . , z
n} are computed by Eq. (3.4).
z
i = W
(x
i − ¯x
)
(3.4)
Therefore, the N dimensional numerical vectors are reduced into d dimensional
ones by the above process.
Let us make some remarks on the PCA in applying it to the text mining tasks.
Using all the feature candidates as features, texts should be represented into N
dimensional numerical vectors, in order to use the PCA. In this case, the huge
covariance matrix which is a 10,000 by 10,000 one is built. It takes very much

46
3
Text Encoding
Fig. 3.2 Cocktail party: source and observed
time for computing ten thousands of Eigen values and vectors from the covariance
matrix. Therefore, the PCA is not feasible as the feature selection scheme in text
mining tasks.

3.2.3

Independent Component Analysis
This section is concerned with the ICA (Independent Component Analysis), and
it refers to the process of mapping the input vectors whose features correlated with
each other into ones whose features are independent of each other [22]. It is assumed
that each element in an original input vector is a linear combination of independent
components, as shown in Fig. 3.2. The original input vector is expressed as the
multiplication of a matrix and a vector which consists of independent components,
as shown in Eq. (3.5).
x = As
(3.5)
The independent components are computed by expressing the vector as the multi-
plication of its inverse matrix and the original input vector as shown in Eq. (3.6).
s = A−1x
(3.6)
Therefore, in this section, we provide both detail description and mathematical
expression of ICA as the dimension reduction scheme.
The two kinds of signals, source and observed signals, are illustrated in Fig. 3.3.
In Fig. 3.3, the left two signals which are given as source signals correspond the sine
function and the logarithmic one. The right two signals in Fig. 3.3 which are given
as observed signals are linear combinations of the left two signals. It is assumed
that the original data is given as the observed signals like the right side in Fig. 3.3,
so search for the source signals is the goal of ICA. It is also assumed that the number
of observed signals is greater than that of source signals.

3.2 Feature Selection
47
Fig. 3.3 Source signals: S 1 and S 2 vs observed signals: X 1 and X 2
Fig. 3.4 Application of ICA to text encoding
Let us explain the process of reducing the dimension by ICA as shown in Fig. 3.4.
The examples are given as the N dimensional input vectors as follows:
X = {x1 , x2 , . . . , x
n}
x
i = [xi 1 xi 2 . . . xiN] k = 1 , 2 , . . . , n
Each input vector is expressed as the multiplication of a matrix and the dimensional
vector which consists of independent components, as follows:
x
T =

i
As
Tj
48
3
Text Encoding
where s
i = [si 1 si 2 . . . sid] . If the matrix, A is decided initially, we find the vectors,
S = {s1 , s2 , . . . , s
n} by Eq. (3.6), as the reduced dimensional vectors. If the matrix, A is known, we can find its inverse matrix, using the Gaussian Jordan method.
Let us mention the process of applying the ICA to the dimension reduction,
in encoding texts into numerical vectors. The feature candidates are generated by
indexing the corpus, and texts are represented into numerical vectors, using all
candidates. The N dimensional input vectors are clustered into d clusters using
a clustering algorithm, and we find prototypes of clusters which are given as N
dimensional vectors, c
i = [ai 1 ai 2 . . . aiN] . The matrix, A is built by arranging the
cluster prototypes as column vectors, as follows:
⎡
⎤

a 11 a 12 . . . a 1 d
⎢
⎢ a
⎥
21 a 22 . . . a 2 d ⎥
A = ⎢
⎣ .
⎥

.

.

.

.

.

..

. . .. ⎦

aN 1 aN 2 . . . aNd
Afterward, its inverse matrix is computed using the Gaussian Jordan method, and
vectors of independent components are computed by Eq. (3.6). Since d << N is
usual, we need to use the pseudo inverse of the matrix, A, instead of its inverse, as
expressed in Eq. (3.7),
s
iT = A+x
Ti
(3.7)
We present the comparisons of the ICA with the PCA which was described
in Sect. 3.2.2, in Table 3.1. The idea of PCA is the project of the N dimensional
vector into the d dimensional space, whereas the idea of ICA is to find independent
components from original components each which is the linear combination of
independent ones. In the PCA, the covariance matrix is used as the mean of reducing
the dimension, whereas in the ICA, the clustering algorithm is used. In the PCA, the
matrix, W, is built by arranging Eigen vectors of covariance matrix as row vectors,
whereas in the ICA, the matrix, A is built by doing cluster prototypes as column
vectors. In the PCA, the d dimensional vectors are computed by multiplying the
matrix, W by each original input vector, whereas in the ICA, they are computed by
doing the inverse or pseudo inverse of the matrix, A by it.
Table 3.1 PCA vs ICA
Principal component analysis
Independent component analysis
Idea
Projection into smaller
Element as linear combination of
dimensional space
independent smaller factors
Mean
Covariance matrix
Clustering algorithm
Matrix components
Eigen vectors
Cluster prototypes
Equation
zi = Wxi
zi = A−1xi
3.2 Feature Selection
49

3.2.4

Singular Value Decomposition
The SVD (Singular Value Decomposition) which is described in this section refers
to the process of decomposing the n × N matrix into the three components: n × n
orthogonal matrix, n × N diagonal matrix, and N × N orthogonal matrix [77].
If the matrix, X is the n × N matrix, its singular values which are denoted as

σ 1 , σ 2 , . . . , σ n are the square roots of Eigen values of the matrix, X
T X. The n × n
orthogonal matrix as the first component consists of Eigen vectors of XX
T , and the

N × N orthogonal matrix as the last component consists of Eigen vectors of X
T X.
The middle component in the SVD is the diagonal matrix which consists of the
singular values. Therefore, in this section, we explain the process of applying it to
the dimension reduction, together with its mathematical expression.
Let us mention the process of building the data matrix from the input vectors
which are given as sample examples. The n input vectors are given as the N
dimensional numerical vectors, X = {x1 , x2 , . . . , x
n}. The data matrix is made as
the n × N matrix as follows:
⎡
⎤

x 11 x 12 . . . x 1 N
⎢
⎢ x
⎥
21 x 22 . . . x 2 N ⎥
X = ⎢
⎣ .
⎥

.

. .

.

.

.. ⎦

xn 1 xn 2 . . . xnN
where input vectors are given as row vectors. The Eigen vectors are computed from
the two square matrices: X
T X and XX
T . Since ten thousands of feature candidates
are extracted from indexing a corpus, the number of input vectors tends to much less
than the number of feature candidates in the text mining tasks as follows:

n << N
The above matrix, X is decomposed into the three components as expressed in
Eq. (3.8),
X = U W
(3.8)
We take the n Eigen vectors, u1 , u2 , . . . , u
n from the matrix, XX
T , and build the matrix, U, by arranging them as its column vectors. Next, we take the n singular
values, σ 1 , σ 2 , . . . , σ n by getting square roots of Eigen values of X
T X, and build
the matrix, , by arranging them as its diagonal elements. The third, we take the N
Eigen vectors, vmax , v

, . . . , v
from the matrix, X
T X, and build the matrix,
1
max2
max N
W, by arranging them as its row vectors. Some among the n singular values are
given as nonzero values as follows:

σ 1 ≥ σ 2 ≥ . . . ≥ σr > 0

σr = σr+1 = . . . = σn = 0
50
3
Text Encoding
As the next step, let us explain the process of deriving the reduced dimensional
vectors by the singular value decomposition. We select the d maximal singular
values denoted by σ 1 , σ 2 , . . . , σ d among them. We build the matrix, by filling
values, 11 = σ 1 , 22 = σ 2 , . . . , dd = σd as diagonal elements. The matrix, X
is computed by Eq. (3.9),
X = U W
(3.9)
We take nonzero d columns from the matrix, X, as the list of reduced dimensional
vectors.
We mention the three schemes of reducing features, PCA, ICA, and SVS,
as state-of-the-art schemes, in this section. They are feasible to case where, for
example, fifty dimensions reduced into ten dimensions. In the text mining tasks,
the number of feature candidates is at least several thousands, and the number
of selected features is several hundreds; the dimension should be reduced from
several thousands to several hundreds. It requires to represent each text into several
thousands of dimensional vectors, initially, in order to apply one of the three
schemes of reducing dimensions. Rather than using one of the three schemes in
implementing text mining systems in the subsequent chapters, we take features by
selecting some words depending on their coverages in the given corpus.
3.3
Feature Value Assignment
This section is concerned with the schemes of assigning values to the selected
features. The task which is covered in this section is simpler than that covered in
Sect. 3.2. In Sect. 3.3.1, we explain how to assign values to the selected features. In
Sect. 3.3.2, we cover how to compute the similarity between texts once representing
texts into numerical vectors. Hence, in this section, we describe the schemes of
assigning values to features in encoding texts into numerical vectors, and those of
computing similarities between texts or text groups.

3.3.1

Assignment Schemes
This section is concerned with the schemes of assigning values to features. Features
are selected among candidates by one of the schemes which are mentioned
in Sect. 3.2. The numerical values which are assigned to features in each text
indicate their importance degrees in its contents. The numerical vectors as text
representations are generated as the output from the process. In this section, we
explore the schemes of setting values to features.
Let us mention the simplest scheme of assigning values to features in encoding
texts into numerical vectors. Once some words are selected as features, binary values
3.3 Feature Value Assignment
51
may be assigned as feature ones in this scheme. The text and a list of words is given
as input, and if each word occurs at least one time in the text, one is assigned
to the word as the feature. For example, the words, “computer,” “information,”
“data,” and “retrieval,” are selected as the features, and if the given text includes
the two words, “computer,” and “information,” the text is represented into the four-
dimensional numerical vector, [0 0 1 1] . The demerit of this scheme is that there is
no discrimination among available words by their importance degree.
The occurrences of words corresponding to features in the given text are assigned
as feature values in another scheme. The features are denoted by f 1 , f 2 , . . . , fd , and
the values are assigned to them by Eq. (3.10),

fi = tfij
(3.10)
where tfij is the frequency of the word, ti, and in the text, dj . The overestimation
and underestimation by the text length may be caused by using the frequency
computed by Eq. (3.10) directly, so it is recommended to use the relative frequency
which is expressed by Eq. (3.11),

tfij

fi = rfij =
(3.11)

tf max j
where tf max j is the maximum frequency in the text, dj . For example, we select the
four words, as above, “computer,” “information,” “data,” and “retrieval,” and if the
maximum frequency is 10 in the given text and their occurrences are 4, 5, 0, and 0,
respectively, the text is represented into the numerical vector, [0 . 4 0 . 5 0 0] . Even
if the discrimination among words in the given text is available, unimportance from
occurrences in other texts is not considered in this scheme.
Instead of frequencies or relative frequencies, TF-IDF weights may be used
as features in encoding texts into numerical vectors as well as in indexing a
text or a corpus. The TF-IDF weight is computed to each word by Eq. (2.1) in
Sect. 2.2.4. Their derived equations, Eqs. (2.2)–(2.4), may be used for computing
TF-IDF weights. In the equations, two is used as the base of logarithmic. The higher
document frequencies, the lower TF-IDF weight, as shown in Eq. (2.1)–(2.4).
Let us consider other kinds of factors for computing word weights as feature
values. We may consider the grammatical properties such as subjective, objective,
verb, or nouns which are obtained by POS tagging, for calculating the weights.
As another factor, we may consider the posing information which indicates where
a word positions in the given text; higher weights are assigned to features which
position in the first or last paragraph. Feature values are adjusted by considering
contexts given as words around the given feature; the feature may have its different
meaning depending on context. We may consider the writing style and kinds of
articles such as technical texts, novels, and essays, for computing the feature values.
52
3
Text Encoding

3.3.2

Similarity Computation
This subsection is concerned with the process of computing the similarity between
texts. This computation is essentially necessary for doing the text classification
and the text clustering which are covered in the subsequent parts. Once texts
are represented into numerical vectors, we compute cosine similarity or other
similarities between vectors as the similarity between texts. Once we define the
scheme of computing the similarity between texts, we may consider how to compute
the similarity between text groups. Therefore, in this section, we describe the
scheme of computing the similarity between individual texts or between text groups.
The two texts are encoded into the numerical vectors denoted by d1 =
[f 11 f 12 . . . f 1 d] and d2 = [f 21 f 22 . . . f 2 d] . The cosine similarity between two vectors which is the most popular measure is computed by Eq. (3.12).

sim(d1 , d2) =
2d1 · d2
(3.12)
d12 + d22
We may consider the Euclidean distance which is computed by Eq. (3.13) as the
inverse similarity.

d
dist (d
1 , d2) =

(fik − f 2 k) 2
(3.13)

k=1
The Jaccard similarity exists as a variant of the cosine similarity and is computed
by Eq. (3.14),

sim(d1 , d2) =
2d1 · d2
(3.14)
d12 + d22 − d1 · d2
The value which is computed by the Euclidean distance is converted into
similarity, by Eq. (3.15) or (3.16).

sim(d1 , d2) =
1
(3.15)

d

k=1 (fik − f 2 k) 2

d

sim(d
1 , d2) = C −

(fik − f 2 k) 2
(3.16)

k=1
where C is an arbitrary constant.
Let us explain the process of computing the similarity between texts using one
of the above equations. The two texts are given as the input, and they are encoded
into numerical vectors as their representations. The similarity between the numerical
3.4 Issues of Text Encoding
53
vectors is computed using one of the above equations. The similarity is given as the
output. The value which is computed by Eq. (3.12) or (3.14) is always given as a
normalized value between zero and one.
Once we get the scheme of computing the similarity between individual texts,
we may consider the similarity between text groups. Mean vectors of groups are
computed, and the similarity between the two mean vectors is set as the similarity
between groups. In another scheme, we compute the similarities of all possible pairs
of texts between two groups, and average over them as the similarity between the
groups. We may set the maximum or the minimum among similarities among all
possible pairs as the similarity between groups as an alternative scheme. The first
scheme is used most popularly among them, so it is adopted for implementing text
mining systems in the subsequent parts.
The similarities among texts or text groups are very important measures for
doing text clustering. Text clustering refers to the process of segmenting a group of
texts into subgroups by their similarities. Clustering texts into subgroups of similar
ones depends strongly on their similarities. We also need the process of computing
similarities among texts for doing the text classification as well as the text clustering.
The word and text association will be covered in Chap. 4, and need the process of
computing similarities among texts.
3.4
Issues of Text Encoding
In this section, let us consider some issues in encoding texts into numerical vectors
and the solutions to them. In Sect. 3.4.1, we discuss the huge dimensionality of
numerical vectors representing texts as the first issue. In Sect. 3.4.2, we consider
the sparse distribution in each numerical vector as another issue. In Sect. 3.4.3, we
regard numerical vectors as non-symbolic representations of texts and point out the
difficulties in tracing the results from classifying and clustering texts. Therefore, this
section is intended to present some issues in encoding texts into numerical vectors
and discuss the solutions to them.

3.4.1

Huge Dimensionality
This section is concerned with the huge dimensionality as the issue of encoding
texts into numerical vectors. This issue means that too many features, at least
several hundreds, are required for maintaining the system robustness. More than
ten thousand feature candidates are generated from the given corpus through text
indexing, and several hundreds of ones among them are selected as features. Any
of schemes which are described in Sect. 3.2 is not feasible for reducing the feature
candidates, because of too much time for doing the computations involved in doing
so. In this section, we consider the huge dimensionality as one of the important
issues of text encoding, and present some solutions to it.
54
3
Text Encoding
A corpus is given as the source from which feature candidates are generated. In
previous literatures, Reuter21578, 20NewsGroups, and OSHUMED were used as
the typical corpus [36]. Each of them usually consists of 20,000 texts, and more
than 20,000 vocabularies are extracted as feature candidates. Even if the corpus,
NewsPage.com, was used as the smallest one which consists only one thousand
texts, for evaluating text categorization schemes, at least almost five thousands of
words are extracted [31]. If we use one of the schemes mentioned in Sect. 3.2 as the
state-of-the-art one, we must build a 20,000 by 20,000 matrix.
Let us explore the dimensions of numerical vectors which represent texts after the
feature selection, in previous literatures. In 2002, by Sebastiani, it was mentioned
that each text is represented into three hundred dimensional numerical vectors in
his survey article on text classification [85]. In implementing the text clustering
system which was called WEBSOM by Kaski et al., texts are encoded into about five
hundred dimensional vectors [50]. Jo et al. applied the KNN (K Nearest Neighbor)
and the SVM (Support Vector Machine) which are very popular classification
approaches to text classification tasks, but it resulted in very poor performance
[26, 27, 46]. Even if the text classification system where texts are encoded into one
hundred dimensional vectors works well to some domain, it works very poorly to
other domains; it was discovered that the system is very unstable [36].
Let’s see demerits which are caused by the huge dimensionality in encoding texts
into numerical vectors. Basically, it costs too much time for processing vectors.
It requires more sample examples for maintaining enough robustness of learning,
proportionally to the dimension. The huge dimension is also the cause of overfitting
in learning sample examples for doing the text classification. Hence, by the huge
dimensionality, it is not feasible to apply one of the three schemes to this case.
We need to consider the schemes of solving the problem in order to avoid the
above results. We use groups of semantically similar words as features instead
of individual words, but it requires much computation cost for clustering words
semantically, as its payment. In 2015, Jo proposed to use the semantic similarities
among features as well as those among feature values, but it costs very high
complexity for doing them [35, 37–39]. Texts were encoded into tables as more
compact representations than numerical vectors; it resulted into better performance
with the smaller sizes in both text classification and text clustering. It was proposed
to use the string kernel in applying the SVM to text classification by Lodhi; it was
successful in doing classifications in bioinformatics, but not in text classifications
[58, 61].

3.4.2

Sparse Distribution
In this section, let us point out another issue, sparse distribution, in encoding texts
into numerical vectors. Each word which is selected as a feature has very small
coverage; it is included in only couple of texts except stop words. So, it is not able to
avoid zero values which are dominant over nonzero ones in each numerical vector;
3.4 Issues of Text Encoding
55
zero values occupy more than 95% in it. Discrimination among numerical vectors is
lost as results of the sparse distribution. Therefore, in this section, we visualize the
effect from the sparse distribution, and present the solutions to it.
Let us consider the specific cases of sparse distribution in numerical vectors. Zero
vector is the typical example of sparse distribution where all elements are given as
zero values. It is most popular that only less 5% of elements are nonzero values
and the others are zero values in a numerical. Even if more than 5% of elements are
nonzero values, they are very tiny ones which are close to zeros. In order to avoid the
problem, increasing the number of features causes the huge dimensionality which
was mentioned in Sect. 3.4.1.
The sparse distribution in each numerical vector is very fragile to the process of
computing similarities by one of the equations which was described in Sect. 3.3.2.
When two vectors are zero ones, zero value is absolutely generated as their similarity
by any of cosine similarity, Euclidean distance, and Jaccard similarity. If two vectors
have nonzero values in their different features, the similarity between texts or text
groups is computed as a zero value by the cosine similarity or the Jaccard one.
In using one of them, the similarity between texts which are represented into sparse
vectors may be underestimated. Especially, short texts tend to be encoded into sparse
vectors; index expansion is needed before encoding them.
We need to consider results which are caused by zero values as results from
computing text similarities. Very few association rules may be generated in the case
of word and text association which will be covered in Chap. 4. Among sample texts,
contradiction of labels may happen; for example, some zero vectors belong to the
positive class and the others belong to the negative one, in a binary classification.
The sparse distribution of numerical vectors results into many small sized clusters,
almost like the singletons as many as individual items; it is very few chance that
very few couple of texts into cluster. Therefore, poor performance of any tasks of
text mining is caused by the sparse distribution.
Let us discuss some solutions to the sparse distribution. When zero vectors are
included in sample examples after encoding texts into numerical vectors, we need
to remove them in order avoid the contradiction of labels. When nonzero values are
given in different features of two vectors, we may use similarity between features
which was proposed by Jo in 2015, in order to avoid that similarity between texts
becomes zero [35, 37–39]. Word clusters, instead of individual words, may be used
as features for solving both the huge dimensionality and the spare distribution, at the
same time. In previous works, it was proposed that texts should be represented into
symbolic forms, in order to avoid the sparse distribution, completely, but it requires
to define similarity measures, correspondingly [36].

3.4.3

Poor Transparency
This subsection is concerned with the last issue which we need to consider in
encoding texts. Numerical vectors which are regarded as the popular representations

56
3
Text Encoding
Fig. 3.5 Poor transparency in encoding texts into numerical vectors
of texts are essentially characterized far from symbolic ones. Although texts are
regarded as symbolic data by themselves, numerical vectors which are encoded
from them characterized as numerical values. In other words, there is no way of
guessing contents only by their representations. Therefore, in this section, we point
out the poor transparency from encoding texts into numerical vectors, and mention
the symbolic representations of texts.
In Fig. 3.5, we illustrate numerical vectors which represent texts. In this example,
it is assumed that a text is encoded into a numerical vector where six words are used
as features. Once texts are mapped into their own numerical vectors, it is almost
impossible to guess their contents by their representations, hiding the features. Users
tend to want evidences for classifying or clustering texts by tracing them, as well as
results from doing so. Hence, it is unnatural to encode texts which are essentially
symbolic into numerical vectors.
We try to trace contents from numerical vectors, providing features. Features are
selected from candidates and a numerical vector is generated from text by assigning
values to the features. The elements of numerical vector are scanned, associating
their features. Nonzero elements are selected from the numerical vector, the list of
their corresponding features is made, and the content is guessed by them. The words
which correspond to nonzero features are discriminated by their importance degree
in case of assigning TF-IDF weights.
In previous works, it was proposed that texts should be encoded into symbolic
forms as shown in Fig. 3.6, in order to solve the problem. In 2008 and 2015, texts
were represented into tables each of which consists of entries of words and their
weights by Jo [36, 42]. Since 2005, Jo proposed that texts should be encoded into the
string vector which is a finite ordered set of words in text mining tasks [28, 30, 43].
By doing so, it is expected to be easier to trace results from doing both the tasks for
getting the evidences.
We need to modify correspondingly machine learning algorithms for processing
the symbolic structured forms. In 2015, the KNN was modified into its version

3.5 Summary
57
Fig. 3.6 Symbolic representations of text
where similarities among features are considered as well as feature values. In 2015, a
table matching algorithm was proposed as the approach to the text classification and
in 2016, the KNN and the AHC (Agglomerative Hierarchical Clustering) algorithms
into their table-based version to both the tasks: text classification and clustering.
The KNN and the SVM were modified into their string vector-based version,
and semantic operations on words are defined as the foundation for modifying
the subsequent machine learning algorithms, in 2015. We need more research on
operations on symbolic structured forms, in order to modify more advanced machine
learning algorithms.
3.5
Summary
In this chapter, we describe the process of encoding texts into numerical vectors,
and point out the issues of doing so. We mention the four schemes of reducing
dimensions in encoding raw data into numerical vectors. We present the schemes
of assigning values to features, once features are selected. We point out the huge
dimensionality, the sparse distribution, and the poor transparency, as the main issues
of encoding texts into numerical vectors. In this section, we summarized what is
covered in this chapter.
Text encoding refers to the process of mapping texts into numerical vectors as its
representation, in context of text mining. A list of words which is generated from
indexing a corpus is given as a collection of feature candidates. Some of them are
selected as features. Values are assigned to the selected features, and a numerical
vector is constructed as the representation of text. Therefore, from this process, a
numerical vector is generated as the representation of text.
58
3
Text Encoding
Let us mention the four schemes of selecting features or reducing the dimensions.
The wrapper approach is the scheme where features are added or deleted, observing
the performance change. The principal component analysis is the dimension
reduction scheme where the covariance matrix is made from the input vectors
where all feature candidates are used, some of Eigen values and their associated
Eigen vectors are selected, and the reduced dimensional vectors are generated by
product of the matrix which consists of the Eigen vectors and the input vector.
The independent component analysis is one where cluster vectors are made by
clustering input vectors, the matrix is made by them as column vector, and reduced
ones are generated by product of its inverse and input vector. The singular value
decomposition is one where data matrix is decomposed with the three components,
some singular values are selected, the middle component is replaced by one with
only selected singular values, and the data matrix for reduced vectors is computed
with the replaced one.
Once features are selected as the attributes of numerical vectors, we consider
some strategies of assigning values to them. Binary values are assigned to features,
depending on their occurrences in the given text. In another strategy, frequencies or
relative frequencies are assigned to features. We may use the TF-IDF weights which
are computed by one of the equations which were described in Chap. 2 as feature
values. We also mention the process of computing the similarity between texts and
text groups.
We point out some issues in encoding texts into numerical vectors. The huge
dimensionality is the issue where many features are required for encoding texts into
numerical vectors. The sparse distribution is the dominance of zero values more
than 95% in each numerical vector which represents a text. The poor transparency
is the difficulty in guessing contents by the numerical vector, hiding its features, and
tracing symbolically results from classifying or clustering texts. The solutions to the
issues were proposed in previous research.

Chapter 4
Text Association
This chapter is concerned with text association as the fundamental task of text
mining. In Sect. 4.1, we present the overview of text association, and in Sect. 4.2,
we describe the generic data association and the Apriori algorithm as the approach.
In Sect. 4.3, we mention the process of constructing the word text matrix from a
corpus and explain the word association using the Apriori algorithm, together with
its example. In Sect. 4.4, we explain the text association which is specific to texts
together with its example. Therefore, this chapter is intended to provide the detailed
description of text association as the elementary text mining task.
4.1
Overview of Text Association
Text association refers to the process of extracting association rules as the if-then
template from word sets or text sets. Text association is derived from the association
of data items from item sets as the fundamental data mining task. In this chapter,
the Apriori algorithm is decided as the approach to the text association, assuming
that word or text sets are given as the input. In this chapter, we restrict the scope of
text association to the two types: word association and document association, even
if other types are available. Therefore, in this section, we explore the overview of
text association, together with its approach, Apriori algorithm.
We mention the generic data association from which the text association is
derived, before discussing it. The data association is originally intended to discover
customer’s purchase patterns, such as, “if customers buy A, they tend to buy B.”
From each customer, his or her purchased items are collected through their payment
process; a set of items is obtained continually from each customer. Association
rules are extracted from item sets, using the association algorithm such as Apriori
© Springer International Publishing AG, part of Springer Nature 2019
59
T. Jo, Text Mining, Studies in Big Data 45,
https://doi.org/10.1007/978-3-319-91815-0_4
60
4
Text Association
algorithm as the form “A → B” which means the above sentence. Hence, results
from doing the data association become the important references for arranging items
in stores.
The Apriori algorithm is mentioned as the important tool of data association.
Item sets are given as the input, and the support and confidence thresholds are given
as the configurations for doing the tool. The support threshold is used for generating
frequent sets and the confidence threshold is used for generating association rules
from each frequent set. Each association rule consists of its conditional item and its
causal sets; it is interpreted into the statement, “if the conditional item is given, the
causal sets happen or are given.” The Apriori algorithm consists of the three steps:
frequent set generation, rule candidate generation, and rule selection.
Let us consider several types of text association, depending on the kinds of
textual units. Word association which is the typical type of text association is
one where association rules of words are generated from word sets. In the narrow
view, text association which is called document or article association is one where
association rules of articles or documents are generated from document sets. 1
Sentence or paragraph association which is called subtext association is one where
association rules of sentences or paragraphs are generated from sets. The scope of
type is set to word association and text association; they are covered in Sects. 4.3
and 4.4.
The association should be distinguished from the clustering, even if they look
similar as each other, so their differences are presented in Table 4.1. In the
association, item sets are given as input, whereas in the clustering, a group of items
is given as input. In the association, association rules each of which consists of
the conditional item and its causal sets are generated as the output, whereas in the
clustering, subgroups of similar items are generated as the output. The association
is intended to discover the causal relations among items, whereas the clustering is
intended to discover similarities among items. Each causal relation is characterized
as the unidirectional one, whereas the similarity between two items is characterized
as the bidirectional one.
Table 4.1 Association vs
Association
Clustering
clustering
Input
Multiple item sets
Single item set
Output
If-then rules
Clusters
Relation
Influence
Similarity
Direction
One direction
Two directions
1Text association which is mentioned in Sect. 4.4 is restricted to the association of documents or
articles.

4.2 Data Association
61
Fig. 4.1 Data association
4.2
Data Association
This section is concerned with the generic data association and it consists of the
three subsections. In Sect. 4.3.2, we explain the data association in the functional
view. In Sect. 4.2.2, we cover the support and the confidence as the measures for
performing the data association. In Sect. 4.2.3, we describe the Apriori algorithm
which is the approach to both word and text association, presenting its pseudocode.
Therefore, in this section, we cover the functional and conceptual view of data
association, the measures, support and confidence, and the Apriori algorithm.

4.2.1

Functional View
Data association is defined as the process of extracting the association rule as if-then
form from item sets as shown in Fig. 4.1. The data association is initially intended
to discover the purchasing patterns of customers in big shopping malls [91]. The
item sets which are collected from customers during their payments are given as the
input. From the data association, the association rule is extracted; it is interpreted
into the statement: if a customer buys a particular item, he or she tend to buy other
items. In this section, we explore the data association, conceptually and functionally.
Let us consider the process of collecting item sets which are given as the input
to the data association. We may define the matrix where each column corresponds
to an item and each row to a customer, as the frame. During payments, items which
are purchased by a customer are collected, and they are filled with the row which
corresponds to the customer. An item set is generated from each row in the matrix.
Depending on the application, it is possible to select items whose number is greater
than threshold for generating item sets.
62
4
Text Association
For example, items are initially selected as frequent ones as follows:

A, B, C, and D
Among all possible pairs of the above items, the frequent item subsets are selected
by the support as follows:
{ A, B}{ A, C} , { B, C} , and{ C, D}
For each subset, the association rule candidates are extracted as follows:
• { A, B} : A → B and B → A
• { A, C} : A → C and C → A
• { B, C} : B → C and C → B
• { C, D} : C → D and D → C
Only some among the eight rule candidates are selected by the confidence. The
support is used for finding the frequent item subsets, and the confidence is used for
selecting association rules among candidates; they will be covered in Sect. 4.2.2.
Unique three item subsets are generated by attaching each frequent item which
is not included in the original subset as follows:
{ A, B, C} , { A, B, D} , { A, C, D} , and { B, C, D}
Two of the above subsets are selected as the frequent subsets as follows:
{ A, B, C} and { B, C, D}
The six rule candidates are generated from the above frequent subsets as follows:
• { A, B, C} : A → { B, C} , B → { A, C} and C → { A, B}
• { B, C, D} : B → { C, D} , C → { B, D} and D → { B, C}
Some of them are also selected as the final association rules by the confidence. In
the association rule, A → { B, C}, A is the conditional item and { B, C} is the causal
set; it is interpreted as the statement, if A is given, then B and C are also given.

4.2.2

Support and Confidence
We need the two measures for proceeding the data association which was described
in Sect. 4.3.2. One measure is the support, and the other is the confidence. The
support and the confidence are used for selecting frequent item subsets and
association rules, respectively, as mentioned previously. Both measures are the
configurations for carrying out the data association. Therefore, in this section, we
describe the support and the confidence, with respect to their computations.
4.2 Data Association
63
The support refers to the ratio of item sets including all items of the given subset
to all item sets in the collection. For example, the support of item subset, { A}, is the
ratio of item sets including A to all item sets shown in Eq. (4.1).

sup(A) = #item_set_with A
(4.1)
#all_item_set
As another example, the support of item subset, { A, B}, the ratio of item sets
including A and B to all item sets, is shown in Eq. (4.2),

sup(A, B) = #item_set_with A and B
(4.2)
#all_item_set
As the general form, the support of the subset, { I 1 , I 2 , . . . , In} is expressed in
Eq. (4.3)

sup(I 1 , I 2 , . . . , In) = #item_set_with I 1 , I 2 , . . . , In
(4.3)
#all_item_set
The support of item subset is usually decreased, as the subset size increases as
follows:

sup(I 1) ≤ sup(I 1 , I 2) ≤ · · · ≤ sup(I 1 , I 2 , . . . , In)
The confidence refers to the ratio of item sets including all items in the frequent
subset to the item set which includes the item in the conditional part. The confidence
of the association rule, A → B, is expressed in Eq. (4.4).

con(A → B) = #item_set_with A and B
(4.4)
#item_set_with A
As another example, the confidence of the rule, A → { B, C}, is given as Eq. (4.5),

con(A → { B, C}) = #item_set_with A, B and C
(4.5)
#item_set_with A
As the general form, the confidence of rule, C → { I 1 , I 2 , . . . In}, is expressed as
Eq. (4.6),

con(C → { I 1 , I 2 , . . . In}) = #item_set_with C, I 1 , I 2 , . . . , In
(4.6)
#item_set_with C
The confidences of two rules, A → B and B → A, are expressed differently as
follows:

con(A → B) = #item_set_with A and B
#item_set_with A
64
4
Text Association

con(B → A) = #item_set_with A and B
#item_set_with B
In other words, the numerator is shared by the two rules, but the denominator is
different from each other.
For example, the six item sets are given as follows:
{ A, B, C, D} , { A, B, C} , { A, C, D} , { A, D} , { B, C, D} , and { C, D}
In computing, the support of subset { A, B}, since the two sets { A, B, C, D} and
{ A, B, C} have A and B among six sets, the support becomes 0.3333. In computing
the confidence of the rule, A → B, since the two sets have A and B, and the four sets
have A, the confidence becomes 0.5. In computing the confidence of rule B → A,
since the three sets have B, the confidence is 0.6777. From this example, we know
that the confidences of A → B and B → A are different from each other.
The supporting and confidence thresholds are given as the configurations of the
data association system. The subsets whose supports are greater than or equal to
the supporting threshold are as the frequent subsets. If the support threshold is set
closely to zero, it is more probable to select many frequent item subsets. From each
frequent subset, the association rule candidates whose confidences are greater than
or equal to the confidence threshold are selected as the final rules. If the confidence
is set closely to zero, it is more probable that almost all of candidates becomes
association rules.

4.2.3

Apriori Algorithm
This section is concerned with the Apriori algorithm which is the approach to the
data association. Apriori algorithm illustrated in its pseudocode in Fig. 4.2, and the
support and confidence thresholds are given as the external parameters. As shown
in Fig. 4.2, the Apriori algorithm consists of the three parts: extractAssociation-
RuleList, generateApriori, and generateAssociationRuleList. Each association rule
is given as an object whose properties are the conditional item and the causal item
set. In this section, we describe the Apriori algorithm based on the pseudocode
which is presented in Fig. 4.2.
Let us explain the main procedure of Apriori Algorithm, extractAssociation-
RuleList. In the procedure, it takes the two arguments: itemSetList which is the
collection of item sets as input and itemList which is the list of all items. In
the for loop, the frequent items are generated and the frequent item subsets are
initialized based on their supports. In the second loop of repeat, by calling the
procedure, generateApriori, the frequent item subsets are expanded and by calling
the procedure, generateAssociationRuleList, association rules are generated. The
main procedure, extractAssociationRuleList, returns the association rule list, and
the two procedures which are called inside this procedure will be explained in the
subsequent paragraphs.

4.2 Data Association
65
Fig. 4.2 Pseudocode of Apriori algorithm
The procedure, generateApriori, is for expanding the frequent item subsets by
checking their supports. As its arguments, the procedure takes iemSetList which is
the frequent item subsets which is named and itemList which is the list of items. In
the nested loop, for each of the existing frequent item subset and each item, if the
item is new to the frequent item subset and the support of all elements of the subset
and the item is higher than the threshold, the item is added to the given frequent item
subset. If the frequent item subset which is expanded by the above process is unique,
it is added to the frequent item subset list. Therefore, the new frequent item subset is
generated by adding an item to the existing frequent one, based on its support, and
it is added to the frequent item subset list, depending on its uniqueness.
For each frequent item subset, association rules are generated by calling the
procedure, generateAssociationRuleList. The condition for generating association
rules is that the cardinality of item subset should be greater than one. For each item
in the item subset, one item is set as the conditional part, and the others are set
as the casual set, in making each rule candidate. The confidence is computed for
each rule candidate, and if the confidence is higher than the threshold, it is added to
the association rule list. The association rules are generated for each frequent item
subset and they are integrated over all subsets by concatenating in the procedure,
extractAssociationRuleList.
66
4
Text Association
Let us consider the complexity of Apriori algorithm to the number of all item
sets and items, and they are denoted by N and n, respectively. It takes O(nN)
for selecting frequent items from item sets and O(N) for computing the support
of each item; it repeats this process n times. In the worst case, it takes O(nN)
for invoking the procedure, generateApriori, and it is invoked at most n time; it
takes O(n 2 N) for executing the statements in the second loop of the procedure,
extractAssociationRuleList. We need O(N 2) for executing statements of the for-
loop which is nested in the second loop, so we need O(n 2 N) + O(nN 2) as the total
computation complexity. If N is equal to n, it takes the cubic complexity, O(n 3) for
executing the Apriori algorithm.
4.3
Word Association
In this section, we specialize the data association into one of text mining tasks. Word
association is covered in this section, and the word-document matrix is mentioned
as the preprocessing step before executing the word association, in Sect. 4.3.1. In
Sect. 4.3.2, we describe the word association in its functional view. In Sect. 4.3.3,
we present the process of executing the word association with its simple example.
Therefore, this section is intended to describe in detail the word association as an
instance of data association.

4.3.1

Word Text Matrix
This section is concerned with the word-document matrix as the source from which
word sets are generated. Each text is associated with its included words by the text
indexing process which was described in Chap. 2, as shown in Fig. 4.3. From the
results from indexing texts in the collection, the word-document matrix is generated.
In indexing texts in real versions of systems, statistical, posting, and grammatical
information as well as words themselves may be included. In this section, we explain
the concept of word-document matrix, the process of building it, and the process of
generating word sets from the matrix.
Let us mention the text collection which was used for evaluating text mining
performances in previous works [85]. NewsPage.com was mentioned as the relative
small corpus which consists of 2000 texts [36]. The text collection, 20NewsGroups,
consists of 20 categories and 20,000 texts with their balanced distributions over
categories [79]. The collection, Reuter21578, consists of more than 100 categories
and approximately 20,000 texts with their unbalanced distribution over categories
[85]. In this book, it is assumed that the text collection is given as a directory where
individual texts are given as text files whose extension is “txt.”
The process of generating the word-document matrix is illustrated in Fig. 4.4. An
individual text is indexed by the process which was described in Chap. 2, into a list

4.3 Word Association
67
Fig. 4.3 Frame of
word-document matrix
Text 1
Word 1
Word 4
.....
Word 10
Text 2
Word 3
Word 4
.....
Word 15
.....
Text N
Word 6
Word 8
.....
Word 20
Fig. 4.4 Steps of building word-document matrix in corpus
of words. The weights of words are computed in each text by the weighting process
which was mentioned in Chap. 2. In the filtering process, the words with their
relative lower weights may be removed. As the output of the process, the word text
matrix is generated where each row corresponds to a text, each column corresponds
to a word, and each entry is given as the word weight in the corresponding text.
The simple word text matrix is illustrated in Fig. 4.5. In the given matrix, the rows
correspond to the eight texts which are identified by their file names and the columns
correspond to the four words. The weights may be given as binary values which
indicate the presence or absence of corresponding words; zero means that the word
is not available in the text. For example, text 1 is linked to the words: “business,”
“computer,” and “information,” and text 2 is linked to the words: “company” and
“computer.” Text by text, the word set is extracted by selecting words whose weights
are 1.0.
The item sets are extracted from the word text matrix by a simple process. Each
row in the word-document matrix is mapped into a set by selecting the columns
with nonzero values. The words and texts correspond to items and customers when
compared with the case in Sect. 4.2, respectively. Each text is represented into a
word for preparing word association. The word association will be described in
detail in Sect. 4.3.2.

68
4
Text Association
Fig. 4.5 Example of word-document matrix

4.3.2

Functional View
Word association is defined as the process of extracting the associations among
words as if-then rules. Word sets are extracted from the word-document matrix by
the process which was mentioned in Sect. 4.3.1. The association rules of words are
generated by the Apriori algorithm which was described in Sect. 4.2.3. The word
association rules may be utilized for generating associated queries automatically in
using search engines. In this section, we explain the task, word association, in the
functional view, assuming that the Apriori algorithm is applied to it.
We need to collect word sets which are given as item sets before applying the
Apriori algorithm. The word text matrix is constructed from a corpus by the process
which was mentioned in Sect. 4.3.1. The word sets are built row by row by taking
words whose weights are nonzeros. A collection of word sets and a list of words
which correspond to columns in the matrix are given as arguments for the Apriori
algorithm. The word sets may be adjusted depending on text lengths by index
expansion, index filtering, or index optimization which were mentioned in Chap. 2.
We prepare the collection of word sets and the word list as the input of Apriori
algorithm and configure the external parameters, support and confidence threshold.
Some among words are selected by their supports as the initial frequent item subsets
and the frequent item list. Each of the frequent item subsets is expanded by calling
the procedure, generateApriori, which is shown in Fig. 4.2. For each frequent item
subset, we generate association rules as the form if a word is given, its causal list of
words is reminded by it. In the word association, each association rule consists of
the conditional word and its causal set of words.
Let us consider the association rule which is extracted in the word association.
For example, the association rule, “computer” → “software,” is interpreted into
the statement that the word, “software,” is reminded from the word, “computer.”
There is no guarantee of rule, “software” → “computer,” since the association is a
4.3 Word Association
69
unidirectional relation; we need to distinguish the association from the similarity
between words. If the rule, “computer” → “software,” is extracted, and the
rule “software” → “computer” is not extracted by their confidences, the word,
“computer,” becomes the sufficient condition to the word, “software,” and the latter
becomes the necessary condition to the former. When both rules are extracted, both
words become the necessary and sufficient conditions to each other.
Let us consider the issues in executing word association which are distinguished
from that of the generic data association. Lexically, different words which have
different spellings may have the same meaning as the case of words, “vehicle”
and “automobile”; the association rule, “vehicle” → “truck,” is available but the
rule “automobile” → “truck” is not. The identical association rule has its different
confidence depending on the given corpus; for example, the rule, “vehicle” →
“truck” may be extracted in a particular corpus, but it is not in another corpus,
because different confidence values are computed in the two corpora. We need
to discriminate association rules depending on their confidences: association rules
whose confidences are close to one and ones whose confidences are slightly higher
than threshold. Because of very high computation cost of the Apriori algorithm, we
also need to consider the computation feasibility to a very large number of word sets.

4.3.3

Simple Example
This section is concerned with the demonstration of doing the word association
using the Apriori algorithm. The word text matrix is constructed from the process
which was mentioned in Sect. 4.3.1, and the word sets are extracted from the
matrix. The word association rules are extracted from the word sets by the Apriori
algorithm. Even if the example is far from the real case, it is used for understanding
the word association easily. Therefore, in this section, we present the demonstration
through the simple example.
The word text matrix is constructed from a corpus as illustrated in Fig. 4.5. The
word text matrix in the real case is a very big matrix; it is usually a ten thousands
and ten thousands matrix. In Fig. 4.5, the eight sets of words are extracted; each row
corresponds to a set. In each text, the words whose weights are 1.0s are selected as
elements of sets. The cardinality of each word set is in the range of two or three.
In Fig. 4.6, we illustrate the process of extracting the frequent word sets and
frequent words. The left table in Fig. 4.6 is the collection of word sets which are
extracted from the word text matrix which was given in Fig. 4.5, and the support
and confidence thresholds are set to 0.25s. In the right table, all possible pairs of the
four words as two item subsets and their supports are computed in the next column.
The two item subsets whose supports are higher than the threshold are marked with
circles in the right column in the table. Hence, the two item subsets marked with
circles are selected as the frequent ones, in this example.
The process of generating the association rules and expanding the frequent item
sets is illustrated in Fig. 4.7. The rule candidates are generated from each frequent

70
4
Text Association
Fig. 4.6 Two item sets
Fig. 4.7 Multiple item sets
word subset which is marked with a circle in the top left table. The confidence is
computed and filled in each rule candidate, and all candidates are selected as rules
because their confidences are greater than or equal to 0.25. The three item subsets
are made in the bottom table, by adding the frequent item to the existing frequent
item subsets. Because supports of all subsets are lower than 0.25, nothing is selected
and the word association proceeds no more.
Finally, the word association rules in the top right table of Fig. 4.6 are generated
as the output of this example, but we need to consider the adjustment of the support
and confidence thresholds. The current results are characterized as the two facts;
one is that the three frequent item subsets are not available, and the other is that all
4.4 Text Association
71
candidates are extracted as the association rules from the frequent two item subsets.
As the adjustment, we try to decrease the support threshold from 0.25 to 0.1 and
increase the confidence threshold from 0.25 to 0.55. In the adjusted configurations,
the three item subsets in the bottom table whose support is 0.125 are selected as
the frequent item subsets, and only two candidates, “computer” → “company” and
“company” → “computer,” are selected as association rules. From this example, we
know that the support and confidence thresholds are proportional inversely to the
number of extracted association rules.
4.4
Text Association
This section is concerned with text association which is another instance of data
association. Text association is also based on the word-document matrix which was
described in Sect. 4.3.1, like the case of word association. In Sect. 4.4.1, we explain
the text association in its functional view. In Sect. 4.4.1, we demonstrate that the
text association is executed using the Apriori algorithm through a simple example.
In this section, we explain and demonstrate the text association.

4.4.1

Functional View
Text association refers to the process of extracting the text association rules from a
corpus or text sets. The text association which is covered in this section is called
document association or article association, and is specialized for articles each
of which consists of more than one paragraph, in the specific view; it should be
distinguished from text association which was mentioned in Sect. 4.1 in the general
view. In the text association, a word is represented into a text set, and the association
rule is extracted as the form: text A → text B. The results from executing the
text association are used for displaying directional relations among texts in the
given corpus. Therefore, in this section, we provide the detailed description of text
association as one which is specific to articles.
The text association is a different kind of text mining task; it is different from the
word association. In word association, a text is represented into a word set, whereas
in the text association, a word is represented into a text set. In word association, the
text index where each text is linked with its included words is the basis, whereas in
the text association, the inverted index where each word is linked with texts which
include it is the basis. The results from executing word association are used for
getting the associated queries to the given query in implementing search engines,
whereas those from executing the text association are used for representing texts
into directed graph where vertices are texts and edges are their associations. As
alternative types, we may consider the subtext association which extracts association
rules of sentences or paragraphs with others.
72
4
Text Association
Once a collection of text sets is prepared, the Apriori algorithm is applied for
executing the text association, as well as the word association. Among texts, only
some are selected by their supports as the initial frequent item subsets and the
frequent items. The frequent item subsets are expanded by invoking the procedure,
generateApriori, where more frequent item subsets are generated by adding a text.
For each frequent item subset, association rules are generated as the statement, if a
text is given, other texts are reminded. Each association rule is composed with the
conditional text and its causal text set.
Let us analyze the association rules which are results from executing the text
association with the Apriori algorithm. In the case of rule, text A → text B, since
text A is less frequent than text B, it is more probable that text A is short and text

B is long. If text B includes the entire content of text A as its part, it is certain
to generate text A → text B as the association rule, since its confidence reaches
1.0. If the association rule, text A → text B, text C, and text D, text A may be a
summarized version to the others. The text association rule may be used for deciding
the representative text in a text group, based on the fact.
We need to consider some issues of text association as well as those of word
association. The number of association rules is very dependent on whether a corpus
is broad or specific; more association rules are usually extracted from a specific
corpus than from a broad one, since item sets are more similar as each other in the
specific one. Text length may become a bias for carrying out the text association; as
mentioned above, short texts become the conditional part, and long texts locate in
the causal set. Results from performing the text association depend on the scheme
of indexing texts; text sets are built differently depending on with or without the
index optimization. Like the case of word association, we need to consider the
discriminations among association rules by their confidences.

4.4.2

Simple Example
This section is concerned with the demonstration of executing the text association
using the Apriori algorithm. The word text matrix is constructed from a corpus by
the process which was mentioned in Sect. 4.3.1, and text sets are extracted from
the matrix. The text association rules are extracted from text sets by the Apriori
algorithm. Even if the word text matrix which is presented in Fig. 4.8 is far from
the real case, it needs to be used for understanding the process of extracting text
association rules easily. Therefore, in this section, we present the demonstration of
proceeding the text association by the Apriori algorithm, using the simple example.
As illustrated in Fig. 4.8, the transpose of word-document matrix is constructed.
In the matrix, the columns correspond to the four texts and the rows correspond to
the eight words. The matrix entries are given as binary values which indicate the
presence or the absence of words in the given text. We select texts whose weights
are 1.0s in each word as set elements. The cardinality of each text set is between
one and three in this example.

4.4 Text Association
73
Fig. 4.8 Example of document-word matrix
Fig. 4.9 Two item sets
The process of extracting the frequent two item subsets and association rules is
illustrated in Fig. 4.9. The left table in Fig. 4.9 is the collection of text sets which are
extracted from the matrix which is given in Fig. 4.8, and the support and confidence
thresholds are set to 0.25s. In the right table, all possible pairs of four texts as two
item sets and their supports which are computed from the left table are given. The
two item sets whose supports are greater than or equal to 0.25 are marked with
circles as shown in the right table. The two item sets which are marked with circles
are selected as the frequent item subsets.
The process of generating the association rules and expanding the frequent item
subsets is illustrated in Fig. 4.10. The rule candidates are generated from each
frequent word subset which are selected. In each rule candidate, its own confidence
is computed and given; all candidates are selected as association rules, because
their confidences are greater than or equal to 0.25. By expanding two item subsets

74
4
Text Association
Fig. 4.10 Multiple item sets
with each of frequent items, the three word subsets are made in the bottom table.
However, nothing is selected because all of three item subsets have their supports
which are less than 0.25, and the process is terminated.
In this example, results are similar as those in the example in Sect. 4.3.3, as shown
in Fig. 4.10. The current results shown in Fig. 4.10 are characterized identically to
those in Fig. 4.7. Let u try to decrease the support threshold from 0.25 to 0.1 and
increase the confidence threshold from 0.25 to 0.55. By adjusting the parameter, two
more three item subsets whose support is 0.125 in the bottom table may be selected
as the frequent item subsets and the three association rules from each of frequent
two item subsets, text 1 → text 4, text 3 → text 2, and text 2 → text 4, are selected
rather than all. We try to execute text associations with their different configurations
several times, and select the best one by subjectivity, in using the text association
systems.
4.5
Overall Summary
This section is concerned with the brief summary of the entire content of this
chapter. As the fundamental task of text mining, the text association is defined as
the process of getting association rules of textual units in the broad view. However,
4.5 Overall Summary
75
it should be distinguished from one which is covered in Sect. 4.4 in its specific view.
In this chapter, the Apriori algorithm is described as the approach to both word
association and text association as well as genetic data association. In this section,
we summarize what is studied in this chapter.
Depending on what kind of text unit is associated with others, the text association
is divided into the three types: word association, article association, and sentence
association. The article association among them is mentioned as text association in
its specific meaning in Sect. 4.4. Word association refers to the process of extracting
association rules of words and the article association refers to that of extracting
rules of texts. It is possible to generate association rules of texts with words and
vice versa. We may consider the subtext association where association rules of
sentences or paragraphs are extracted or the hybrid association where association
rules of entity with another type of entities are extracted, even if they are out of the
scope of this chapter.
The data association which is the fundamental task of the traditional data mining
is derived from the idea of discovering the purchase patterns of customers in big
stores. From each customer, a set of his or her purchased items is collected. From
each frequent item set, using the Apriori algorithm the association rule, item A →
item B, is extracted and interpreted into the statement: if a customer buys item A,
he or she tends to buy item B. The support and confidence are used for selecting
frequent item subsets and association rules, respectively, as the numeric metrics.
It takes the cubic complexity for using the Apriori algorithm for doing the data
association to the size of item sets and items.
We studied the word association which is specialized for words as items. The
word text matrix is constructed from a given corpus and word sets are extracted, text
by text. Association rules are generated from word sets using the Apriori algorithm.
Each word association consists of its conditional word and its causal word set.
Results from doing the word association are used for extracting the associated
queries in implementing search engines.
We studied the text association which is another task of text mining. Text sets
are extracted text by text from the transpose of word text matrix. Using the Apriori
algorithm, the association rules are generated from text sets; the Apriori algorithm
is applicable to both word association and text association. If no additional process
is applied, it is more probable that short texts are given as the conditional parts. The
results from executing the text association are used for displaying the directional
relationships among texts in the corpus.
Part II
Text Categorization
Part II is concerned with the four aspects of text categorization: concepts,
approaches, implementations, and evaluations. This part begins with the
specification of text categorization with respect to its functions. We mention the
supervised machine learning algorithms as the approaches to text categorization,
and present its implementation in Java. We consider the schemes of evaluating the
text categorization system, statistically. Therefore, Part II is intended to cover the
text categorization with the four aspects.
Chapter 5 is concerned with the functional view of text categorization. We
present the process of decomposing the text categorization into binary classifications
and provide the guide of applying the machine learning algorithms which will
be mentioned in Chap. 6 to the given task. The text categorization is classified
into the four types: hard text categorization, soft text categorization, hierarchical
text categorization, and multiple viewed text categorization, and each of them
and their differences are explained. We will explore the special instances of text
categorization, such as spam mail filtering, information personalization, and opinion
classification. Therefore, this chapter is intended for describing the tasks of text
categorization in the functional view.
Chapter 6 is concerned with the representative machine learning approaches to
the tasks of text categorization. The chapter begins by mentioning the k Nearest
Neighbor as the typical machine learning algorithm which is simple and practical.
Next, we explain the Naive Bayes as another popular approach to the tasks. The
SVM (Support Vector Machine) will be also described as the most recent approach
which has the best performance among the approaches. Therefore, Chap. 6 is
intended to describe briefly the three representative machine learning algorithms
as the text categorization tools.
Chapter 7 is concerned with implementing the text categorization system in Java.
We present the text categorization system specification and its class list, together
with the system roles. We will explain the Java source codes for implementing the
system, in detail. As an independent prototype system, we will demonstrate the text
categorization system in its execution phase. The K Nearest Neighbor (KNN) is
adopted as the approach.
78
II
Text Categorization
Chapter 8 is concerned with the schemes of evaluating the text categorization
systems. We describe the F1 measure which is the most popular evaluation metric
and is introduced from the information retrieval area. The statistical test is applied
to comparing the two text categorization approaches with each other. We also cover
the advanced statistical method for comparing more than two approaches, such as
ANOVA. Therefore, this chapter provides the statistical scheme for comparing text
categorization system with each other, based on the F1 measure.

Chapter 5
Text Categorization: Conceptual View
This chapter is concerned with the conceptual view of text categorization. We
cover the overview of text categorization in Sect. 5.1, and explain the classification
in its conceptual view in Sect. 5.2. In Sect. 5.3, we will explore the types of
text categorization by the different dichotomizations. We mention the typical real
tasks which are derived from the text categorization, in Sect. 5.4, and make the
summarization and further discussions on this chapter in Sect. 5.5. In this chapter,
we describe the text categorization tasks with respect to their types and real
examples.
5.1
Definition of Text Categorization
Text categorization is defined as the process of assigning one or some of the
predefined categories to each text, basically, through the three steps which are shown
in Fig. 5.1. The text categorization which is called text classification is an instance
of classification task, where a text is given as the classification target. Texts are
encoded into numerical vectors by the processes which were described in Chaps. 2
and 3. We use mainly the machine learning algorithms which are described in the
next chapter, as the approaches to the text categorization. In this section, we explore
the overview of text categorization, before covering it in detail.
The preliminary tasks are required for executing the text categorization system,
even in the simplest version which will be mentioned in Chap. 7. It is required to pre-
define a list or a tree of categories as the frame of classifying data items. Texts should
be allocated to each category, as sample ones. All sample texts are indexed into a
list of words which are called feature candidates, and some of them are selected.
As the additional preliminary task, we may decide the classification algorithm and
the type of classification such as exclusive or overlapping classification and flat or
hierarchical one.
© Springer International Publishing AG, part of Springer Nature 2019
79
T. Jo, Text Mining, Studies in Big Data 45,
https://doi.org/10.1007/978-3-319-91815-0_5

80
5
Text Categorization: Conceptual View
Fig. 5.1 Text categorization
steps
Once accomplishing the above preliminary tasks including the decision of which
classification algorithm is adopted, the classification capacity should be constructed
using sample texts. The sample texts which are allocated to categories in the
preliminary task are encoded into numerical vectors whose attributes are the selected
features. Using the training examples which are encoded from the sample texts, the
classification capacity which is given as one of various forms such as equations,
symbolic rules, or optimized parameters, depending on the classification algorithm,
is constructed; this is called learning process. Optionally, the results from the
learning process may be validated using a set of examples, called the validation set
which is separated from training examples. In this case, the set of sample texts may
be divided into two sets: the pure training set and the validation set; the validation
set is not involved in the learning process.
After the learning process, the texts which are given, separated from the
sample texts, are classified. The classification capacity is constructed through the
learning process which is mentioned above, including the validation process. The
classification performance is evaluated, using the test set which is initially left
separated from the training set. Depending on the classification performance, we
decide whether we adopt or not the classification algorithm. The set of texts which
is given in a real field after adopting the classification is called the real set.
Let us consider some issues from implementing the text categorization systems.
A list or tree of topics, what is called a classification frame, is predefined, depending
on subjectivity, before gathering sample texts. It is not easy to gather labeled sample
texts; it is very tedious to decide manually target categories of texts. Independencies
among categories are not guaranteed; some categories are correlated with others.
The classification frame for maintaining texts continually is usually fixed; it takes
very much cost for changing it in maintaining text categorization systems.

5.2 Data Classification
81
5.2
Data Classification
This section is concerned with the data classification in its conceptual view and
consists of the four sections. In Sect. 5.2.1, we describe binary classification
conceptually as the simplest classification task. In Sect. 5.2.2, we cover the multiple
classification which is expanded from the binary classification. In Sect. 5.2.3, we
explain the process of decomposing a single multiary-classification task into binary
classification tasks as many as the predefined categories. In Sect. 5.2.4, we describe
the regression to which the supervised learning algorithms which we mention in
Chap. 6.

5.2.1

Binary Classification
Binary classification is referred to the simplest classification task where each item
is classified into one of the two categories, as illustrated in Fig. 5.2. The assumption
underlying in the binary classification is that each item belongs to one of the two
classes, exclusively. We need to define criteria, in order to decide each item belongs
to which of the two classes. Some items may belong to both categories in real
classification tasks; such a classification task is called overlapping or fuzzy binary
classification. Therefore, in this section, we describe the binary classification task
as the entrance for understanding the classification task.
Let us present a simple example of binary classification. Points may be plotted in
the two-dimensional space; each point expressed as (x 1 , x 2). The points belonging
to the positive class are plotted in the area where x 1 ≥ 0 and x 2 ≥ 0. The points
belonging to the negative class are plotted in the area where x 1 < 0 and x 2 < 0.
The points of the two classes are plotted in the two-dimensional space, and let us
consider the dichotomy which separates the two classes from each other.
Let us define the symbolic classification rules for classifying the points into one
of the two classes. The rule for classifying a point into the positive class is defined
as if x 1 ≥ 0 and x 2 ≥ 0 then the point belongs to the positive class. The rule for
classifying a point into the negative class is defined as if x 1 < 0 and x 2 < 0 then the
Fig. 5.2 Binary classification

82
5
Text Categorization: Conceptual View
point belongs to the negative class. According to the above rules, the points, where

x 1 ≥ 0 and x 2 < 0, or x 1 < 0 and x 2 ≥ 0, are rejected; they are out of the above
rules. We may consider the alternative dichotomy to the above rules for classifying
a point into one of the two classes.
Machine learning algorithms are considered as the alternative kinds of classifica-
tion tools to the rule-based approaches. Instead of above rules, we gather examples
which are labeled with positive or negative class; they are called training examples.
By analyzing the training examples, the classification capacity is constructed and
given as various forms such as equations, symbolic rules, or neural network models.
The examples in the separated set, which is called the test set, are classified by the
classification capacity. In Chap. 6, we will describe the classification capacity which
is generated from the training examples, in detail.
Even if the binary classification looks a very simple toy task, it may exist as a real
task. Spam mail filtering where junk emails are automatically filtered from incoming
ones is the typical instance of binary classification. Detecting whether a report
about a traffic accident is true or false is a real example which is used in insurance
companies. The information retrieval task is viewed as a binary classification which
decides whether each text is relevant or irrelevant to a given query. The keyword
extraction and the text summarization are instances of binary classification.

5.2.2

Multiple Classification
Multiple classification is illustrated as a block diagram in Fig. 5.3. Each item is
classified into one of the two classes in binary classification, as illustrated in
Fig. 5.2. Multiple classification is referred to the classification task, where each
item is classified into one of at least three categories. The multiple classification
may be decomposed into binary classification tasks as many as categories; it will
be described in Sect. 5.2.3. Therefore, in this section, we describe the multiple
classification, in its conceptual view.
In order to understand it easily, we present a simple example of multiple
classification in the two-dimensional space. It is assumed that the four classes are
given, class 1, class 2, class 3, and class 4. The constraints for class 1 are given as

x 1 ≥ 0 and x 2 ≥ 0 and those of class 2 are given as x 1 < 0 and x 2 ≥ 0. The
constraints, x 1 ≥ 0 and x 2 < 0, are considered for class 3, and x 1 < 0 and x 2 < 0
are considered for class 4. A point, (x 1 , x 2) in the two dimensional space is classified
into one of the four classes by the above constraints.
Fig. 5.3 Multiple
classification
5.2 Data Classification
83
The if-then rules for classifying points in the two-dimensional space into one of
the four classes are defined as follows:
if x 1 ≥ 0 and x 2 ≥ 0 then class 1
if x 1 < 0 and x 2 ≥ 0 then class 2
if x 1 ≥ 0 and x 2 < 0 then class 3
if x 1 < 0 and x 2 < 0 then class 4
For example, the point, (5 , 4), is classified into class 1 by the first rule, because both

x 1 and x 2 are greater than or equal to zero. As another example, the point, (−7 , 2), is
classified into class 2, applying the second rule to it. The point, (6 , −3), is classified
into class 3, according to the third rule. It is possible that no rule is applicable to
an input in real tasks which are complicated much more than the current multiple
classification.
Let us consider the soft classification where an item is allowed to be classified
into more than one class. The classification which is mentioned above belongs to the
hard classification where no overlapping among the four classes is allowed from the
rules. The first rule is modified as follows: if x 1 ≥ −2 and x 2 ≥ −2 then class 1. For
example, the point, (−1 , −1 . 5), may be classified into class 1 and class 4, because
the first and the second are applied to the input. Therefore, the area, −2 ≤ x 1 < 0
and −2 ≤ x 2 < 0, is overlapping between class 1 and class 4.
Let us present some real multiple classification instances. The case of classifying
news articles into one or some of predefined sections may be mentioned as a
typical case. The optical character recognition which is referred to the process of
classifying a character image into one of ASCII codes is mentioned as another
case. The POS (Part of Speech) tagging which is the process of classifying a
word by its grammatical function is a multiple classification instance in the area
of natural language processing. Sentimental analysis which is a special type of text

classification is the process of classifying a text into one of the three categories:
positive, neutral, and negative.

5.2.3

Classification Decomposition
This section is concerned with the process of decomposing the multiple classifica-
tion task into binary classification ones, as illustrated in Fig. 5.4. It is very risky of
misclassifying items to apply a single classifier directly to the multiple classification
task where each item is classified into one of multiple categories. The multiple
classification is divided into binary classifications as many as categories; each item
is classified into positive as the corresponding category or negative; it is intended
to reduce the misclassification risk. The category or categories which correspond
to what the binary classifiers produce positives are assigned to each item. In this
section, we describe the process of decomposing the multiple classification into
binary classifications.
84
5
Text Categorization: Conceptual View
Category 1
Data Items
Category 1
Data Items
Category 2
Category 2
.....
.....
.....
Category M
Category M
Data Items
Category Predefinition
Sample Data Preparation
Yes
Positive
Data Items
Category 1
Yes
Positive
No
Negative
The others
Category 1
Binary Classification 1
No
Negative
Yes
Positive
Data Items
Category 2
Yes
Positive
No
Negative
Category 2
Binary Classification 2
.....
The others
No
Negative
.....
.....
Yes
Positive
Yes
Positive
Data Items
Binary Classification M
Category M
Category M
No
Negative
No
Negative
The others
Decomposition into Binary Classifications
Fig. 5.4 Decomposition of multiple classification into binary classifications
Let us mention the binary classification task which is derived from a multiple
classification task by the decomposition. The task which is initially defined is the
multiple classification where each item is classified into one of M categories. The

M binary classification tasks which correspond to the M categories are derived by
decomposing the initial task, and two labels are defined in each binary classification
as positive and negative. The positive class stands for the fact that the item belongs
to the corresponding category, while the negative class stands for the fact that
it does not. The multiple classification task is interpreted into a group of binary
classification tasks through the decomposition.
Let us mention the process of decomposing the multiple classification into the

M binary classification tasks. The M classifiers are allocated to the M categories
as the binary classifiers. The training examples which belong to the corresponding
category are labeled with the positive class, and some of the training examples
which do not belong to it are selected as many as the positive examples, and labeled
with the negative class. The classifiers which correspond to the category learn their
own positive examples and negative examples. If all of training examples which
do not belong to the corresponding category are used as the negative examples,
the classifier tend strongly to classify novice examples into negative class by the
unbalanced distribution which is biased toward it.
Let us explain the process of classifying a novice item after learning the sample
examples. A novice item is submitted to the classifiers which correspond to the
predefined categories as the classification target. It is classified by the classifiers
into a list of positive and negative classes. The categories which correspond to the
classifiers which classify the novice example into the positive class are assigned to
it. If the given classification is exclusive, the category with its maximum categorical
score among them is selected.

5.2 Data Classification
85
Note that much overhead is caused by decomposing the multiple classification
into binary classifications. The training examples which are initially labeled with
one or some of the predefined categories should be relabeled with the positive class
or the negative class, and they should be reassigned to each classifier as the payment
for doing the decomposition. The classifiers as many as the categories should learn
training examples, in parallel. We must wait until all of the classifiers make their
decisions, instead of taking an output of single classifier. Because the classifiers
are independent of each other with respect to their learning and classification, it is
possible to implement them as the parallel and distributed computing.

5.2.4

Regression
Regression is referred to the process of estimating an output value or output values
as continuous ones by analyzing input values. The supervised learning algorithm is
also applied to the task like the classification. In the classification, one of output
values is given as a discrete value, whereas, in the regression, it is given as a
continuous one. The regression may be mapped into the classification in some
areas by discretizing each continuous value into a finite number of intervals. In
this section, we describe the regression in its functional view and map it into the
classification.
As mentioned above, it is possible to map the regression into the classification.
An output value is discretized into a finite number of intervals; the intervals are given
as the predefined categories. The target output value is replaced by its corresponding
interval for each training example; they are learned by the given supervised machine
learning algorithm. A novice item is classified into one of the predefined intervals;
the classified one is the label which indicates the interval within which its continuous
value exists. The regression is mapped into a binary classification by discretizing the
output value into only two intervals; if the number of intervals is more than two, it
is mapped into a multiple classification.
Figure 5.5 illustrates the process of decomposing the regression into the binary
classification tasks. Regression is mapped into the multiple classification by dis-
cretizing the output continuous value into several intervals. The multiple classi-
fication is decomposed into the binary classifications by the process which was
described in Sect. 5.2.3. The classifiers are allocated to the corresponding intervals
Fig. 5.5 Decomposition of regression into binary classifications
86
5
Text Categorization: Conceptual View
and learn their corresponding training examples, but the process of preparing the
training examples will be mentioned in the next paragraph. The classification
mapped from the regression belongs to the exclusive one where each item is
classified into only one category; only one classifier is allowed to classify the item
into the positive class.
The training examples which are prepared for the regression task are labeled
with their own continuous value. The label which is given as a continuous value
is changed into its corresponding internal in mapping so. By changing one more
time the discrete label into the positive or the negative, the training examples are
prepared for each classifier in mapping the multiple classification into the binary
classifications. The classifiers are allocated to the intervals and trained with the
prepared examples. In Sect. 5.2.3, we already explained the meaning of the positive
and negative to the binary classifiers.
The classification and the regression are compared with each other in terms
of their differences and sharing points. The supervised learning algorithms are
applied to both kinds of tasks as their sharing point. The difference between
them is that the classification generates a discrete value or values as its output
whereas the regression does a continuous value or values, as mentioned above.
The classification instances are spam mail filtering, text categorization, and image
classification, and the regression instances are nonlinear function approximation and
time series prediction. The error rate which is called risk function is defined as the
rate of misclassified items to the total items in the classification and average over
differences between desired and computed values in the regression.
5.3
Classification Types
This section is concerned with the types of text categorization, depending on the
dichotomy criterion. In Sect. 5.3.1, we will explain the hard classification and the
soft classification depending on whether each item is allowed to belong to more
than one category, or not. In Sect. 5.3.2, we mention the flat classification and the
hierarchical classification, depending on whether any nested category in a particular
one is allowed or not. In Sect. 5.3.3, we describe the single viewed classification
and the multiple viewed one, depending on whether multiple classification frames
are accommodated or not. In Sect. 5.3.4, we consider the independent classification
and the dependent one, depending on whether a current classification is influenced
by the results from classifying items previously.

5.3.1

Hard vs Soft Classification
The hard classification and the soft one are illustrated in Fig. 5.6. The hard
classification is one where no overlapping exists among categories; all items belong

5.3 Classification Types
87
Fig. 5.6 Hard vs soft
classification
Fig. 5.7 Example of hard and soft classification
to only one category. The soft one is one where any overlapping exists; one item
belongs to two categories, at least. The criterion of deciding the hard classification
and the soft one is whether the overlapping is allowed or not. In this section, we
describe the two classification types in the conceptual view.
The hard classification is defined as the classification where every item is
classified into only one category, as shown in the left part of Fig. 5.6. In this
classification type, training examples which are labeled with only one category are
prepared. When a small number of categories are predefined, we may use a single
classification without decomposing the task into binary classifications. For each test
item, one of a fixed number of predefined categories is decided by the classifier. The
optical digit recognition and the spam mail filtering belong to the hard classification.
The soft classification is referred to one where, at least, one item is classified into
more than one category. Some or almost all of training examples are initially labeled
with more than one category. This type of classification should be decomposed into
binary classifications as the requirement for applying machine learning algorithms.
The F1 measure is used as the evaluation metric, rather than accuracy in this case.
The news article classification and the image classification become instances of this
classification type.
Both the classification types are demonstrated by a simple example in Fig. 5.7.
The eight items and the four categories are prepared in the example. In the hard
classification, the eight items are labeled on only one of the four categories, as shown
in the left part of Fig. 5.7. In the soft classification, the six items are labeled with
88
5
Text Categorization: Conceptual View
more than one category, as shown in the right part of Fig. 5.7. It is possible to assign
the category membership values to each item, instead of some categories.
Text categorization belongs to the soft classification, more frequently than to the
hard classification. The spam mail filtering in the email system is the typical case
of hard classification. Because each text tends to cover more than one topic, the text
categorization belongs to the soft classification. The text collection, Reuter21578,
where almost all of texts are labeled with more than one topic is the most standard
one which is used for evaluating text categorization systems. So we consider
segmenting a text into subtexts based on its topics which will be mentioned in
Chap. 14.

5.3.2

Flat vs Hierarchical Classification
Figure 5.8 illustrates the two kinds of classification: flat classification and hierar-
chical classification. The dichotomy criterion for dividing the classification into the
two types is whether any nested category is allowed in a particular one, or not. Flat
classification is one where the predefined categories are given as a list and no nested
category is allowed, whereas the hierarchical category is one where the predefined
categories are given as a tree and any nested category is allowed. In hierarchical
classification, we need to consider the case where a data item is classified correctly
at the abstract level, but incorrectly at the specific level. In this section, we describe
the two types of classification in detail.
Flat Classification
Hierarchical Classification
Topic 1
Topic 2
.... Topic M
Topic 1
Topic 2 Topic M
Topic 1-1 Topic 1-K
Topic 2-1 Topic 2-L
Topic 2-1-1
....
Topic 2-1-P
Fig. 5.8 Flat vs hierarchical classification
5.3 Classification Types
89
word
Topic A
Topic B
Classifier
A-1
A-2 B-1
B-2
Topic A
Topic B
Classifier
Classifier
A-1
A-2
B-1
B-2
Fig. 5.9 Process of applying classifiers to hierarchical Classification
Flat classification is illustrated in the left part of Fig. 5.8. It is one where no nested
category is available in any category. In this classification type, the categories are
predefined as a list. Among the predefined categories, one or some are assigned to
each item. The digit recognition, the optical character recognition, and spam mail
filtering are instances of flat classification.
Hierarchical classification is shown in the right part of Fig. 5.8. It is one where
any nested category is allowed in a particular category. In this classification type,
categories are predefined as a tree. An item is classified in the top-down direction
along the classification tree. The scheme of evaluating the performance is more
complicated in the hierarchical classification than in the flat one.
Figure 5.9 illustrates the process of applying the classifiers to the hierarchical
classification task. In the first level, there are two categories, A and B, category A has
the nested categories, A-1 and A-2, and category B has B-1 and B-2, as shown in the
left part of Fig. 5.9. The classifier is prepared in the first level, for classifying an item
into A or B. In the second level, two classifiers are needed: one that classifies the
items which are classified into A into A-1 or A-2 and the other that does ones which
are classified into B into B-1 or B-2. In the hierarchical classification, classifiers are
allocated in the root node and the interior nodes as the basic scheme of applying
them.
In implementing the classification systems, there is the trend of expanding the
flat classification into the hierarchical one. The optimal character recognition and
the spam mail filtering belong to the flat classification, typically. The classification
module in the digital library system and patent classification system tends to be
implemented as the complicated hierarchical classification system in the early 2000s
[15, 17]. Because we need to consider the case of classifying items correctly at the
higher level, but incorrectly at the lower level, the process of evaluating the results
becomes much more complicated. Various schemes of applying classifiers to the
hierarchical classification exist other than what is mentioned above.

90
5
Text Categorization: Conceptual View
Fig. 5.10 Different classification categories

5.3.3

Single vs Multiple Viewed Classification
Figure 5.10 illustrates several different classification categories which are defined
differently even within the same domain by subjective. A fixed single classification
frame is required for implementing classification systems; it takes too much cost for
deciding a single classification frame in the process of doing so. It very tedious to
update and maintain continually the current classification frame, dynamically. Even
if the classification frame is updated and changed, it does not guarantee that the
new one is more suitable to the current collection of texts than the previous one. In
this section, we propose the multiple viewed classification and compare it with the
traditional classification type.
The single viewed classification is referred to the classification type where
only one group of categories is predefined as a list or a tree. Until now, it has
been the classification paradigm which underlies inherently in existing classifica-
tion programs. Only one group of categories is predefined in the standard text
collections which have been used for evaluating text categorization systems, such
as Reuter21578, 20NewsGroups, and OSUMED. In the hard and single viewed
classification, only one category is assigned to each item. Coordinating different
opinions about the category predefinition is required for keeping this classification
type.
The multiple viewed classification is one where at least two groups of classi-
fication categories, each of which is called view, are allowed as trees or lists. The
training examples even in the hard classification are labeled with multiple categories
corresponding to groups of predefined categories. The classifiers are allocated to
the groups of predefined categories, assuming that the machine learning algorithms
applied to the classification tasks without any decomposition. Novice items are
classified independently of views. The multiple viewed classification is interpreted
as independent classifications as many as groups of predefined categories.
A simple example of the multiple viewed classification is illustrated in Fig. 5.11.
The two views are given in Fig. 5.11 as the two groups of predefined categories:
5.3 Classification Types
91
View 1
View 2
Class A
Class B
Class C
Class D
Text 1
Text 5
Text 1
Text 2
Text 2
Text 6
Text 3
Text 4
Text 3
Text 7
Text 5
Text 6
Text 4
Text 8
Text 7
Text 8
Class A
Class B
Class C
Class D
Text 1
O
X
O
X
Text 2
O
X
X
O
Text 3
O
X
O
X
Text 4
O
X
X
O
Text 5
X
O
O
X
Text 6
X
O
X
O
Text 7
X
O
O
X
Text 8
X
O
X
O
Fig. 5.11 Example of multiple viewed classification
Hierarchical Classification
Multiple Viewed Classification
Text
View 1
View 2
View 3
Topic A
Topic B
Topic C
A-1
A-2 B-1
B-2 C-1
C-2
A-1
A-2 B-1
B-2 C-1
C-2
Fig. 5.12 Hierarchical vs multiple viewed classification
view 1 where classes A and B are predefined, and view 2 where classes C and D are
predefined. Each of eight texts is labeled with exactly two categories; one is from
view 1 and the other is from view 2. We need the two binary classifiers: one is for
classifying an item into class A or B, and the other is for classifying it into class C
or D. The two binary classifiers correspond to the two views under a single set of
training examples.
The differences between the hierarchical classification and the multiple viewed
one are illustrated in Fig. 5.12. The hierarchical classification is shown in the left
part of Fig. 5.12; there are three categories in the first level and each of them has
its own two nested categories. The multiple viewed classification is presented in the

92
5
Text Categorization: Conceptual View
right part of Fig. 5.12; there are three different independent binary classifications. In
the hierarchical classification, for example, text is classified into the category, B-1,
by means of the category B, whereas in the multiple viewed category, it is classified
into the three independent categories, A-2, B-1, and C-2. The predefined category
structure is given as a tree in the hierarchical classification, whereas the structure
is given as a forest which consists of more than independent trees or lists, in the
multiple viewed classification.

5.3.4

Independent vs Dependent Classification
This section is concerned with the two types of classification, depending on whether
the results from classifying items before have influence on the current classification,
or not. The two types, the independent classification and the dependent one, are
illustrated in Fig. 5.13. The independent classification is one where the results
from previous and current classifications are independent of each other, whereas
the dependent classification is one where the current classification results depend
on the results of classifying data items previously. The three independent binary
classifications are presented in the left part of Fig. 5.13, whereas the two binary
classifications which depend on a binary classification are shown on the right side
of Fig. 5.13. In this section, we describe the two kinds of classification in detail and
compare them with each other.
The independent classification is one where there is no influence of classifying
an item into a particular category on decision into another category. The flat and
Fig. 5.13 Independent vs dependent classification

5.3 Classification Types
93
exclusive classification belongs strictly to the independent classification, whereas
the hierarchical classification belongs to the independent classification, in that the
scope of specific categories is dependent on their higher category. There are two
cases which are required for the independent classification: the prior classification
is not required for classifying the item, currently, and the category into which
the item was classified before does not influence the current classification. The
spam mail filtering, the optical character recognition, and the digital recognition
belong to the independent classification which are not influenced by the results from
classifying items, previously. The flat classification may belong to the independent
classification and the dependent one, by correlation among categories.
The dependent is one where a data item is classified into a category, influenced by
a prior classification or prior classifications. The hierarchical classification belongs
typically to the independent classification, as mentioned above. The dependent
classification may be applicable to the flat overlapping classification where if an
item is classified into a particular category; it may be classified into its related ones
with higher probabilities. For example, if a news article is classified into business, it
may be classified more easily into the topic, IT, compared with the topic, sports. The
text classification where texts tend to be classified into related categories becomes a
typical example of the independent classification.
Figure 5.14 presents the specific examples of two kinds of classification. The
example of independent classification where the four classifiers classify the given
text independently into the positive class or the negative class is presented in the
left part of Fig. 5.14. The right part of Fig. 5.14 presents the example of dependent
Fig. 5.14 Examples of independent and dependent classification
94
5
Text Categorization: Conceptual View
classification where the classifier which corresponds to the category, business,
is dependent on the classifier corresponding to the category, politics, and the
classifier corresponding to the category, IT, is dependent on the two classifiers which
correspond to the categories, politics and science, respectively. When the classifier
corresponding to the category, politics, classifies a text into the positive class, the
classifier corresponding to the category, business, is able to classify a text into one of
the two classes. When the classifier corresponding to the category, politics, classifies
it into the negative class and the classifier corresponding to the category, science,
does it into the positive, the classifier corresponding to the category, IT, is able to
classify it.
We need to consider the relations among categories in doing classification tasks.
The independent relations among classes have been assumed in the traditional
classification tasks, such as digit recognition, optical character recognition, spam
mail filtering, and other single binary classification tasks. More than ten categories
exist in the standard text collections such as Reuter21578 and 20NewsGroups which
are mentioned in Chap. 8. The structure of categories is hierarchical in the collection,
20NewsGroups, and more than 100 categories in the collection Reuter21578 are
related semantically to each other. So, the text classification usually belongs to the
dependent classification.
5.4
Variants of Text Categorization
This section is concerned with the tasks which are derived from the text categoriza-
tion, in their conceptual views. In Sect. 5.4.1, we cover the spam mail filtering which
decides whether each email is junk or sound. In Sect. 5.4.2, we study the sentimental
analysis which classifies an opinion into one of the three categories, negative,
positive, and neutral. In Sect. 5.4.3, we describe information filtering which decides
whether a text is interesting or not. In Sect. 5.4.4, we mention the topic routing
which is the reverse task to the text categorization.

5.4.1

Spam Mail Filtering
The spam mail filtering is an instance of binary classification where each email is
classified into ham (sound) or spam (junk), as shown in Fig. 5.15. Users of email
account tend to take very much time for removing their unnecessary emails. The
task may be automated by the spam mail filtering which is a special instance of text
categorization. An email is assumed to be a text and the categories, spam and ham,
are predefined. In this section, we describe the spam mail filtering as an instance of
text categorization, in detail.
It is necessary to clear junk emails in managing email accounts. Users usually
have more than one email account. Too many junk emails tend to arrive every day

5.4 Variants of Text Categorization
95
Fig. 5.15 Spam mail filtering
and it takes too much time for removing junk emails, scanning them individually.
They need to remove junk emails automatically before they arrive at users. So, the
spam mail filtering system should be installed in almost all of email accounts.
It is considered to apply the machine learning algorithms to the spam mail
filtering, viewing it into a binary classification task. The sample emails which are
labeled with spam or ham are prepared as training examples. The classifier learns
the sample labeled emails. An email which arrives subsequently is classified into
ham or spam. In the real version, it does by symbolic rules, rather than machine
learning algorithms.
Let us review some representative cases of applying the machine learning
algorithms to the spam mail filtering. In 2003, the Naive Bayes was applied to the
spam mail filtering by Schneider [84]. In 2003, the neural networks were proposed
as the approach to the email classification by Clark et al. [10]. In 2007, the four
main machine learning algorithms, the Naive Bayes, the K Nearest Neighbor, the
decision tree, and the support vector machine, are compared with each other by
Youn and McLeod [100]. In 2010, using the resampling, the KNN-based spam mail
filtering system was improved by Loredana et al. [62].
Let us consider some issues in implementing the spam mail filtering systems.
We need to discriminate the two types of misclassifications: misclassification of
spam into ham and vice versa. Emails are classified into spam or ham, depending on
sample emails which are previously gathered. Spam mails tend to be different from
previous ones; alien mails tend to be misclassified. An email is given as very short
and colloquial text, so it is not easy to analyze it.

5.4.2

Sentimental Analysis
Sentimental analysis is referred to the process of classifying an opinion into the
positive, the neutral, or negative, as shown in Fig. 5.16. An opinion is given a textual
input data, and one of the three attitudes is generated as the output. The sentimental

96
5
Text Categorization: Conceptual View
Fig. 5.16 Sentimental
analysis
analysis is used for classifying automatically opinions to commercial products or
political issues based on the attitudes. It should be distinguished from the topic
spotting where a text is classified by one or some of topics. In this section, we
describe the sentimental analysis as a specialized instance of text categorization.
Let us mention the three categories in the sentimental analysis. The posi-
tive means the opinion which described something or somebody with positive
expressions such as good, excellent, and great. The neutral means one which
describes something objectively without positive nor negative, or with the mixture
of both of them. The negative means one which describes something with negative
expressions, such as bad, terrible, and poor. The neutral may be divided into the two
types: one with no sentimental expression and one with a mixture of positive and
negative.
The machine learning algorithm could be applied to the sentimental analysis by
viewing the task into a classification task. The texts which are labeled with one of
the three categories are collected and encoded into numerical vectors. The machine
learning algorithm learns the numerical vectors which are encoded from the sample
labeled texts. If a novice text is given, it is encoded into a numerical vector, and
classified into one of the three classes. Even if the sentimental analysis is an instance
of text classification, its classification criteria differ from that of the topic-based one.
Let us introduce some previous approaches to the sentimental analysis. In 2004,
the support vector machine was applied to the sentimental analysis based on diverse
information sources by Mullen and Colier [71]. In 2008, Pang and Lee explained the
sentimental analysis and the feature extraction in detail [75]. In 2009, by Boiy and
Moens, both learning algorithms, the support vector machine and the Naive Bayes,
are applied to the sentimental analysis of web texts which are written in English,
Dutch, and French [6]. In 2011, words are defined as features and the support vector
machine was applied to the task by Maas et al. [64].
We need to consider some issues in the sentimental analysis which is distin-
guished from the topic-based text categorization. The sentimental analysis tends to
depend strongly on the positive and negative terms. Because an opinion is given
as a very short text, information is not sufficient for distinguishing positive and
negative opinions from each other. An opinion or a thread tends to include colloquial
expressions and slangs. Negative opinions which are expressed softly in neutral
words may be misclassified into the neutral one.

5.4 Variants of Text Categorization
97
Fig. 5.17 Information filtering

5.4.3

Information Filtering
Information filtering is referred to the process of providing interesting texts for users
among incoming ones, as shown in Fig. 5.17. It assumed that texts are incoming
continually to users. A classifier is allocated to each user, and learns sample texts
which are labeled interesting or not. Each incoming text is classified into one of
the two labels and the texts which are classified as interesting are transferred to
users. In this section, we describe the information filtering which is derived from
text categorization.
Let us mention the web crawling before describing the information filtering.
Web crawling means the process of collecting web documents which are interesting
to users based on their profiles, and the user profile means the historical records
of making queries and accessing web documents. The user profiles are gathered
and relevant documents are retrieved through the Internet. Information retrieval is
the process of retrieving relevant documents only in the given query, whereas web
crawling is the process of retrieving ones continually by collecting the user profiles.
The important issue is how to make the schedule of performing the web crawling.
The task of information filtering is viewed as a binary classification task. For each
user, sample texts which are labeled interesting or not are collected. The sample texts
are encoded into numerical vectors and the allocated machine learning algorithm
learns them. After learning, incoming web documents are classified as interesting
or not. The web documents which are labeled uninteresting are discarded and only
ones which are labeled interesting are delivered to the user.
Let us explore previous works on the information filtering system. In 1995, some
heuristic algorithms of information filtering were proposed by Shardanand and Maes
[87]. In 1996, the Rocchio algorithm which is an instance of the machine learning
algorithm was applied to the information filtering by Kroon and Kerckhoffs [56].
In 2001, schemes of extracting features and various kinds of approaches about the
98
5
Text Categorization: Conceptual View
information filtering were mentioned by Hanani et al. [20]. In 2010, the bag-of-
words matching algorithm was applied to the information filtering by Sriram et al.
[88].
Let us mention some issues in implementing the information filtering system.
We need to consider the scheme of gathering sample texts from each user before
deciding the approach. Depending on the user, even the same text should be labeled
differently. If a user changes his/her interest, some of sample texts should be
labeled differently. As well as texts, images may be considered for performing the
information filtering.

5.4.4

Topic Routing
This section is concerned with the topic routing which is derived from the text
categorization. The text classification which allows the soft classification is called
topic spotting, whereas the topic routing is the inverse task. Topic routing is defined
as the process of retrieving texts which belong to the given topic; a topic or topics
are given as the input and texts which belong to it or them are retrieved as the output.
Because a topic or topics are given as the query in the topic routing, it looks similar
as the information retrieval. So, in this section, we describe the topic routing in the
functional view.
The overlapping text categorization was called topic spotting as its nickname
where more than one category are allowed to be assigned to each text [95]. The
process of assigning more than one category is viewed as the process of spotting
topics on a text. In [95], the Perceptron and MLP (Multiple Layer Perceptron) were
proposed as the approach and the task was decomposed into binary classifications.
A single text is given as the input and its relevant topics are retrieved as the output, in
the topic spotting. The topic spotting has been mentioned in subsequent literatures
[45, 60, 72].
Let us consider the process of doing the topic routing. A list of categories is
predefined and texts should be tagged with their topic or topics. A topic is given as
a query and texts whose tags match with it are retrieved. If a topic is given out of the
predefined ones, texts whose contents match it are retrieved. The difference from the
information retrieval is to predefine the categories in advance and label texts with
one or some of them.
The topic routing may be evaluated likely as the information retrieval task. The
categories are predefined as mentioned above and the labeled texts are prepared. The
recall and the precision are computed from texts which are retrieved from the topic.
The two metrics are combined into the F1 measure. The process of computing the
F1 measure is described in detail, in Chap. 8.
We need to point out some issues in implementing the topic routing system.
If a topic is given out of the predefined ones as a query, the system ignores it or
converts into the information retrieval system. When the topics are predefined as
a hierarchical structure, we need to refine the abstract topic which is given as a
5.5 Summary and Further Discussions
99
query into its specific ones. We need to consider the data structures for string topic
associations to their relevant texts. If a text consists of paragraphs each of which
covers its own different topic, heterogeneously, it is considered to retrieve subtexts,
instead of full texts.
5.5
Summary and Further Discussions
This chapter is characterized as the functional description of text categorization.
The class task is defined as a text mining task, and the multiple classification
is decomposed into binary classifications. Depending on the dichotomy views,
we surveyed the various kinds of classification. We covered spam mail filtering,
sentimental analysis, information filtering, and the topic routing, as the variant tasks
which are derived from the text categorization. In this section, we make further
discussion about what we study in this chapter.
Clustering which is covered from Chap. 9 plays the role of automating the
preliminary tasks for the text categorization. The preliminary tasks are to predefine
categories as a list or a tree and to allocate sample texts. The results from doing the
preliminary tasks are accomplished by the clustering task. In 2006, Jo proposed the
combination of the text categorization and the text clustering with each other for
managing texts automatically, based on the idea [25]. It will be mentioned in detail
in Chap. 16.
Let us characterize the text categorization in the functional view. The manual
preliminary tasks which were mentioned above are required for executing the main
task. The results from doing the text categorization are evaluated by the accuracy or
the F1 measure. The supervised learning algorithms which are described in Chap. 6
are applied to the task. In the text categorization, it is assumed that the frame of
organizing texts is given as a list of a tree of predefined categories.
Text categorization is actually the semiautomated management of texts by itself.
It requires the preliminary manual tasks, category predefinition, and sample text
preparation. Learning of sample texts and classification of novice texts belong to
the automatic portion in the text categorization. As texts are added and deleted, we
need to update categories. The full automation of text management is implemented
by combining the text categorization with the text clustering, and it will be described
in detail in Chap. 16.
Machine learning algorithms are adopted as approaches to text categorization, in
this study. The K Nearest Neighbor and its variants are adopted as the simple and
practical approaches to the task. The probabilistic learning such as Bayes classifier,
Naive Bayes, and Bayesian learning are considered as typical approaches. The
support vector machine is the most popular tool of any kind of classification task, as
well as the text categorization. The machine learning algorithms will be described
in Chap. 6.

Chapter 6
Text Categorization: Approaches
This chapter is concerned with some machine learning algorithms which are used
as the typical approaches to text categorization. We explain the machine learning
algorithms, conceptually, in Sect. 6.1, and deal with the KNN (K Nearest Neighbor)
algorithm and its variants in Sect. 6.2. In Sect. 6.3, we cover another type of machine
learning algorithm which is called probabilistic learning. We describe the SVM
(Support Vector Machine), which is the most popular approach to classification
tasks, in Sect. 6.4, and make the summarization and further discussions on this
chapter, in Sect. 6.5. In this chapter, we describe the machine learning algorithms
which are the approaches to text categorization with respect to their learning and
classification process.
6.1
Machine Learning
Machine learning refers to the computation paradigm where the ability of clas-
sification, regression, or clustering is obtained by previous examples, as shown
in Fig. 6.1. The first step of executing the machine learning algorithms is to
prepare examples which are called training examples or sample data, depending on
literatures. The capacity of classification, regression, or clustering is given as various
forms depending on types of machine learning algorithms, and is constructed by
prepared examples; this is called the learning process. Novice examples which are
called test examples are classified in the classification task, and output values are
estimated in the regression task; this is called generalization. In this section, we
describe the machine learning algorithms in their general view.
The machine learning algorithms are mainly applied to the tasks: classification,
regression, and clustering. The classification refers to the task where one or some of
predefined categories are assigned to each object. The regression is defined as the
process of estimating an output value or output values which are related linear or
© Springer International Publishing AG, part of Springer Nature 2019
101
T. Jo, Text Mining, Studies in Big Data 45,
https://doi.org/10.1007/978-3-319-91815-0_6
102
6
Text Categorization: Approaches
New Examples
Previous Examples
Example 01
Symbolic Rules
Learning
Example 02
Mathematical Eqq
Machine Learning
.....
System Parameters
Example N
Probabilities
Final Decision
Fig. 6.1 Overview of machine learning
Error
Training Examples
Example 1
Intput
+
Target Output
Computed Output
Example 2
Intput
+
Target Output
Computed Output
....
Example N
Intput
+
Target Output
Computed Output
Machine
Learning
Algorithm
Fig. 6.2 Supervised learning
nonlinear to input values. The clustering means the process of partitioning a group
of objects into subgroups of similar ones. There are two kinds of machine learning
algorithms, supervised learning and unsupervised learning; the former is used for
the classification and the regression, and the latter is used for the clustering.
The supervised learning algorithm is illustrated in Fig. 6.2 as a diagram. It is
assumed that all of training examples are labeled with their own output values
which are called target labels. The parameters of the machine learning algorithm are
initialized at random, and the output values of training examples which are called
computed outputs are computed with the parameters. The difference between the
two kinds of outputs, target outputs and computed ones, is called error and becomes
the basis for correcting the parameters. The supervised learning refers to the process
of optimizing the machine learning parameters to minimize the error.
The unsupervised learning algorithm is represented in Fig. 6.3, as a diagram.
Training examples have no labels, different from the ones in the supervised learning,
6.2 Lazy Learning
103
Training Examples
Example 1
Intput
Cluster Prototype
Example 2
Intput
Cluster Prototype
Similaritis
....
....
Example N
Intput
Cluster Prototype
Machine
Learning
Algorithm
Fig. 6.3 Unsupervised learning
in comparing Fig. 6.2 with Fig. 6.3. Cluster prototypes are initialized at random,
and their similarities with training examples are computed. Cluster prototypes
are optimized to maximize their likelihoods to training examples; this is the
unsupervised learning process. The reinforced learning is one where input is given
as an action, and decision of penalty or reward is made to each input; this type of
learning algorithm is different from both supervised and unsupervised ones.
The machine learning approaches are preferred to the rule-based ones where
classification rules are given manually in the form of if-then. Preparing training
examples is less tedious than manually classifying them for building the classifica-
tion system. It is more flexible to classify items by machine learning algorithms
than to do them by the classification rules; it is able to classify slightly noisy
and alien items by the machine learning algorithms. We avoid completely the
contradiction among classification rules, if we use the machine learning algorithms
for the classification tasks, rather than the rule-based systems. It does not require
the knowledge about the given application domain, in using machine learning
algorithms.
6.2
Lazy Learning
This section is concerned with the K Nearest Neighbor and its variants which belong
to lazy learning and consists of the four sections. In Sect. 6.2.1, we describe the
initial version of the KNN as one of the main approaches to text categorization.
In Sect. 6.2.2, we mention the radius nearest neighbor which is an alternative lazy
learning to KNN. In Sect. 6.2.3, we cover the advanced version of KNN which
discriminates the nearest neighbors by their distances. In Sect. 6.2.4, we explain
another advanced version which computes distances with discriminations among
attributes.

104
6
Text Categorization: Approaches

6.2.1

K Nearest Neighbor
This section is concerned with the initial version of KNN, as illustrated in Fig. 6.4.
The assumption in using the KNN for classification tasks is that data items
are represented into numerical vectors. Similarities of each novice example with
training examples are computed and the most similar training examples are selected
as the nearest neighbors. The label of the novice example is decided by voting the
labels of the nearest neighbors. Therefore, in this section, we describe the original
version of KNN as a classification algorithm, in detail.
Computing a similarity between two examples is the core operation for executing
the KNN. If two vectors are expressed into x1 and x2, the cosine similarity between
them is expressed as Eq. (6.1)

sim(x1
, x2
) =
x1 · x2
(6.1)
||x1|| · ||x2||
The alternative similarity metrics between the two vectors are expressed by
Eqs. (6.2) and (6.3).

sim(x1
, x2
) =
x1 · x2
(6.2)
||x1|| · ||x2|| − x1 · x2

sim(x1
, x2
) =
2x1 · x2
(6.3)
||x1|| · ||x2||
Fig. 6.4 The K Nearest Neighbor

6.2 Lazy Learning
105
Fig. 6.5
K nearest neighbor algorithm
The inverse Euclidean distance which is a similarity metric is expressed by
Eq. (6.4).

sim(x1
, x2
) =
1
=
1
(6.4)
dist (x
1
, x2
)

d
− x 2)

i=1 (x 2
1 i
2 i
We may use one of the four Eqs. (6.1)–(6.4) as a similarity metric for classifying
items by the KNN.
The process of classifying the novice which is represented into a numerical vector
is illustrated in Fig. 6.5. The training examples, one test example, and the number
of nearest neighbor, K, are given as input to the KNN algorithm. The similarities of
the test example with the training examples are computed and the training examples
are sorted by their similarities with the test example. The most K similar training
examples are selected as the nearest neighbors, and the label of the text example is
decided by voting their labels. The number of the nearest neighbors, K, is usually
set as an odd number such as 1, 3, and 5, in order to avoid the balanced distribution
over labels in a binary classification.
Let us mention the scheme of applying the K Nearest Neighbor to the text
categorization as a tool. The sample texts are encoded into numerical vectors by
the process which was described in Chaps. 2 and 3. The novice text which we try to
classify is encoded into a numerical vector, and its similarities with the sample ones
are computed. Several most similar sample ones are selected as its nearest neighbors
and its label is decided by voting their labels. Encoding texts into numerical vectors
and defining a similarity metric are requirements for applying the KNN to the text
categorization.
The KNN algorithm which is described in this section belongs to lazy learning.
Lazy learning means the machine learning paradigm where the learning starts when
a test example is given. No learning of training examples happens in advance; before
a novice example is given, any training example is touched. The KNN algorithm
never touched any training example in advance, as an instance of lazy learning. Lazy
learning will be covered entirely in Sect. 6.2, and other instances will be studies in
subsequent subsections.

106
6
Text Categorization: Approaches

6.2.2

Radius Nearest Neighbor
The Radius Nearest Neighbor is mentioned as an alternative lazy learning algorithm
to the KNN in this section. In the KNN, the k training examples which are most
similar as the given test example are selected as its nearest neighbor. Instead of
the number of nearest neighbors, k, the radius is used as the external parameter
in the Radius Nearest Neighbor. As its nearest neighbors, the k training examples
whose similarities with the test example are greater than or equal to the critical
similarity which is called radius. In this section, we describe the RNN (Radius
Nearest Neighbor) as one of approaches to text categorization.
We point out some demerits in the KNN algorithm as the motivation for
switching it to the RNN, even if the KNN is a simple and practical approach. In
the KNN, the selected nearest neighbors are treated with their identical importance
for voting the labels of the selected ones, even if they are discriminated by their
distances. The number of neighbors should be variable to distribution over distances;
a variable number of neighbors is selected for voting their labels, in order to be more
reliable. It may be fragile to the small number of training examples with the large
value of k; it is more probable to misclassify items by the many nearest neighbors.
Sorting training examples by their similarities with the test example is required for
executing the KNN.
The RNN algorithm is expressed into the pseudo code which is illustrated in
Fig. 6.6. The training examples with their labels, a test example with no label, and
the threshold similarity are given as the input. For each test example, its similarities
with training examples are computed and ones with higher similarity than the
threshold are selected as the nearest neighbors. The label of the test example is
decided by voting the tables of the nearest neighbors. Therefore, the RNN algorithm
is the same as the KNN algorithm except its scheme of selecting the nearest
neighbors.
The demerit of the RNN is the possibility that no nearest neighbor or too many
nearest neighbors may be selected, so we mention its variants in order to solve
it. We mention the dynamic RNN where increasing or decreasing the radius is
allowed, depending on the number of selected nearest neighbors. The RNN where
multiple radii are given as its external parameters and the similarities with the
Fig. 6.6 Radius nearest neighbor algorithm
6.2 Lazy Learning
107
Table 6.1 KNN vs RNN
KNN
RNN
Selection
Based on rank
Based on threshold
Parameter
nearest neighbors
Distance or similarity threshold
Adv
Always nearest neighbor
Outlier detection
Dis
Outlier classification
No nearest neighbor
training examples are computed again by weighting differently to the radii may
exist as another version. Depending on the attribute importance, different lengths
of radius may be assigned. However, its merit over the KNN algorithm is the
faster processing, because it does not require sorting training examples by their
similarities.
In Table 6.1, we illustrate the comparison of the two lazy learning algorithms:
KNN and RNN. From the training examples, in the KNN, the nearest neighbors
are selected by ranking the training examples by their similarities, whereas in
the RNN, they are selected by comparing the similarities with the threshold. In
the KNN, the number of nearest neighbors is given as its parameter, whereas in
the RNN, the similarity or distance threshold is given. A fixed number of nearest
neighbors is guaranteed for any test example in the KNN, whereas any test example
without its nearest neighbor may be detected as an outlier in the RNN. In the KNN,
since a fixed number of nearest neighbors is taken absolutely, there is no way of
detecting outliers, whereas in the RNN, it not guaranteed to take nearest neighbors
for classifying novice examples.

6.2.3

Distance-Based Nearest Neighbor
This section is concerned with a KNN variant which provides discriminations
among nearest neighbors by their similarities or distances. The nearest neighbors
are treated as identical ones in voting their labels in the initial version of KNN. We
will mention another version of KNN where selected neighbors are discriminated
by their distances or similarities. The weights are assigned to nearest neighbors
proportionally to their similarities or distances in voting their labels. In this section,
we describe the schemes of assigning weights to the nearest neighbors as their
discriminations.
Let us mention some schemes of weighting the nearest neighbors proportionally
to their similarities for voting their labels. K notates the number of nearest
neighbors, and i does the index of i most similar training examples among nearest
neighbors with 1 ≤ i ≤ K. The i th nearest neighbor is weighted by Eq. (6.5),

wi = 2 (K − i + 1) ,
(6.5)

K(K − 1)
108
6
Text Categorization: Approaches
and the sum of the nearest neighbors is 1.0 as expressed by Eq. (6.6),

K

K
2 (K − i + 1)

wi =
= 1
(6.6)

K(K − 1)

i=1

i=1
The additional schemes of weighting the nearest neighbors for voting their labels
are expressed by Eqs. (6.7) and (6.8),

wi = ec(K− i) = exp (− ci)
(6.7)

ecK

wi = 2 (K − i + 1) + c
(6.8)

K(K − 1) + c
where c in both equations, (6.7) and (6.8), is a constant real value. This KNN version
is close to the initial version of the KNN or the 1 Nearest Neighbor, depending on
the value of c in both equations, (6.7) and (6.8).
Let us mention the process of classifying novice items by weighting labels of
nearest neighbors. The K nearest neighbors are selected based on the similarities
of novice items with the training examples. The selected nearest neighbors are
computed by one of equations, (6.5), (6.7), and (6.8). It is assumed that the given
task is a binary classification where the categories are given as positive and negative.
The categorical score is computed by Eqs. (6.9) and (6.10),

K

CS+ =

wi
(6.9)

i=1|+
where

K

i=1|+ (·) means the summation of K items which belong to the positive
class,

K

CS− =

wi
(6.10)

i=1|−
where

K

i=1|− (·) means the summation of K items which belong to the negative
class. The weighted voting is applicable to the RNN which was described in
Sect. 6.2.2, as well as the KNN which was covered in Sect. 6.2.1.
It is possible to derive the simplest version Bayes Classifier from this kind of the
KNN. A novice example is classified depending on its distance or similarity with the
mean vectors corresponding to the categories, in the Bayes classifier. The labeled
training examples are prepared and the mean vector of identically labeled examples
is computed category by category, as the learning process. The similarities with the
mean vectors are computed and the category where its corresponding mean is most
6.2 Lazy Learning
109
similar is decided as label of the given novice item. Therefore, the Bayes classifier
is viewed as the 1 Nearest Neighbor to the mean vectors rather than individual ones.
In this section, the local learning is introduced as a specialized learning paradigm
rather than a specific machine learning algorithm. The learning paradigm is appli-
cable to any type of machine learning algorithms. The local learning is referred to
the learning paradigm where the machine learning algorithm learns only neighbors
rather than learning all training examples in advance, whenever a novice example
is given. To the next novice example, the learning algorithm is initialized again and
learns its neighbors, again. It is expected to show better classification performance
than the traditional one, but because much time is required for learning neighbors
to each novice example, it is not suitable for implementing a real-time classification
system.

6.2.4

Attribute Discriminated Nearest Neighbor
Let us mention another KNN variant which discriminates the attributes which are
involved in classifying data items. Various correlations among attributes with output
values motivate for deriving the KNN variant. In computing a similarity between a
test example and a training example, different weights are assigned to the attributes,
depending on the correlations with the output value. In advance, we need to do
the attribute analysis in the training examples for computing attribute correlations.
In this section, we will describe the KNN variant which considers the correlations
between the attribute values and the output value.
We need to assign weights different to attributes, a 1 , a 2 , . . . , ad before using the
KNN. We compute the variances and the covariance from the attribute values and the
output values from the training examples; Sa , S

i ai

yy , and Sai y stand for the attribute
variance, the output variance, and the covariance of them, respectively. We compute
the correlation coefficient between the attribute and the output, by Eq. (6.11),

Sa

r

i y

a =
(6.11)

i

Sa S

i ai

yy
If the value of ra is close to −1 . 0 or 1.0, it means strong correlation, and if it

i
is around zero, it means week correlation. The weights which are assigned to the
attributes are computed by normalizing the correlation coefficients by Eq. (6.12),

wa =

rak
(6.12)

k

d

i=1 rai
The assumption underlying in the above weighting scheme is that output values are
given as continuous ones.
The similarity between numerical vectors is computed after defining the attribute
weights by the above process. The normalized attribute weights which are computed
110
6
Text Categorization: Approaches
by Eq. (6.12) are notated by wa , w , . . . , w
and are given as the dimensional
1

a 2

ad
vector, w, where ||w|| = 1. The similarity between two vectors which considering
the attributes is defined by modifying Eq. (6.1), as Eq. (6.13)

sim(x1
, x2
) = w · x1 · x2
(6.13)
||x1|| · ||x2||
The modified inverse Euclidean distance is also defined by modifying Eq. (6.4) as
Eq. (6.14),

sim(x1
, x2
) =
1
=
1
(6.14)
dist (x
1
, x2
)

d

(x 2 − x 2)

i=1 wai
1 i
2 i
It is possible to modify Eqs. (6.2) and (6.3) for computing the attribute weighted
similarity.
Let us consider the similarities among attributes, especially in the word cate-
gorization. The attributes of numerical vectors which represent words are given
as text identifiers. The attributes in the task never be independent of each other;
similarities among attributes exist. The similarity between attributes is called feature
similarity and the similarity between vectors such as the cosine similarity is called
feature value similarity; another version of K Nearest Neighbor which considers
both was proposed by Jo, in 2015 [35, 37]. By Jo, the proposed version was applied
to the tasks: word categorization, word clustering, keyword extraction, and index
optimization [38, 39].
Let us consider some points in adopting this version of KNN algorithm as the
approach to classification tasks. It is not ignorable to weights attributes by the
statistical analysis. The complexity for doing so is O(N d) where N stands for the
number of training examples and stands for the dimension of a numerical vector
which represents an example. This version of KNN is not feasible to the text
categorization where each text is represented into a several hundred-dimensional
numerical vector at least. The correlation coefficients may replace for weighting the
attributes by the information gain based on the entropy.
6.3
Probabilistic Learning
This section is concerned with another type of supervised learning algorithm which
is called probabilistic learning. In Sect. 6.3.1, we describe mathematically the Bayes
rule in order to provide the basis for deriving the probabilistic learning algorithms.
In Sect. 6.3.2, we explain the Bayes classifier as the simplest probabilistic learning
algorithm. In Sect. 6.3.3, we describe the Naive Bayes as one of the popular
classification algorithms. In Sect. 6.3.4, the Naive Bayes will be expanded into the
Bayesian learning.
6.3 Probabilistic Learning
111

6.3.1

Bayes Rule
The Bayes rule is defined as the theoretical rule which relates the two conditional
probabilities, P (A| B) and P (B| A), with each other. The probability of the category,

C, and the probability of the input vector, x are denoted by P (C) and P (x
),
respectively. The probability of the category, C given the input vector, x is notated
by P (C|x
), which is called posteriori probability, and the input vector, x, is classified
based on the posteriori probability, P (C|x
). In the learning process, the probability,

P (x| C), which is called likelihood of the input vector, x to the category, C, is
computed from the training examples. In this section, we study the Bayes rule which
represents the relation the probabilities, P (C|x
) and P (x| C), for the classification
task.
The conditional probability is defined as the probability of event under the
assumption that another event happens. We notate the probability of event A and
the probability of event B as P (A) and P (B), respectively. The probability of event

A under the assumption that the event B happens is denoted by P (A| B), and the
probability of event B under the assumption that event A happens is denoted by

P (B| A). The two conditional probabilities, P (A| B) and P (B| A), are expressed as
Eqs. (6.15) and (6.16).

P (A| B) = P (AB)
(6.15)

P (B)

P (B| A) = P (AB)
(6.16)

P (A)
When the two events, A and B, are independent of each other, the probabilities of the
two events are expressed by Eq. (6.17), by P (A) = P (A| B) and P (B) = P (B| A).

P (AB) = P (A)P (B)
(6.17)
The relation between the two conditional probabilities, P (A| B) and P (B| A), is
expressed as the Bayes rule which is given as Eq. (6.18),

P (A| B) = P (B| A)P (A))
(6.18)

P (B)
The probabilities, P (A| B) and P (B| A), were already expressed into Eqs. (6.15)
and (6.16), respectively. P (AB) is generally expressed into Eq. (6.19),

P (AB) = P (B| A)P (A))
(6.19)
Equation (6.18) is derived by substituting Eq. (6.19) for Eq. (6.15). Equation (6.17)
which expresses the Bayes rule consists of the posterior, P (A| B), the likelihood,

P (B| A), the prior, P (A),and the evidence, P (B).
112
6
Text Categorization: Approaches
Equation (6.18) is expanded into the general form where events are given as

A 1 , A 2 , . . . , An where B = ∪ n A

i=1 i B. The probability, P (B), is computed by
Eq. (6.20),

n

n

P (B) =

P (AiB) =

P (B| Ai)P (Ai)
(6.20)

i=1

i=1
The conditional probability, P (Ai| B), is computed by Eq. (6.21),

P (Ak| B) = P (B| Ak)P (Ak) =

P (B| Ak)P (Ak)
(6.21)

P (B)

n

i=1 P (B| Ai)P (Ai)
The evidence is given as the summation over the products of the likelihoods and the
priors, as shown in Eqs. (6.20) and (6.21). Equation (6.21) becomes the general form
of the Bayes rule which considers the mutual exclusive events, A 1 , A 2 , . . . , An.
We will use the Bayes rule which is expressed in Eqs. (6.18) and (6.21) for
the classification tasks. Given the input vector, x, we compute the conditional
probabilities of categories, C 1 , . . . , C| C|, P (C 1|x
), . . . , P (C| C||x
). The probability, P (Ci|x
), is expressed by the Bayes rule which is given in Eq. (6.18), into Eq. (6.22),

P (Ci|x
) = P (x| Ci)P (Ci))
(6.22)

P (x
)
Because the ultimate goal of classifying a data item is to find the maximum of
the conditional probabilities, P (C 1|x
), . . . , P (C| C||x
), rather than their values, we
do not need the constant, P (x
). So, Eq. (6.22) is transformed into Eq. (6.23), by
omitting the constant,

P (Ci|x
) ∝ P (x| Ci)P (Ci)
(6.23)
If the complete balanced distribution over categories is assumed as P (C 1) = · · · =

P (C| C|), Eq. (6.23) is further transformed into Eq. (6.24),

P (Ci|x
) ∝ P (x| Ci)
(6.24)

6.3.2

Bayes Classifier
This section is concerned with the Bayes classifier which is the simplest proba-
bilistic learning algorithm. The relation between the posteriori probability, P (Ci|x
),
and the likelihood, P (x| Ci), is proportional under the assumption of the balanced
distribution over the predefined categories. In the Bayes classifier, it is assumed that
the likelihood, P (x| Ci) follows a Gaussian distribution, given, the category, Ci. The
6.3 Probabilistic Learning
113
Gaussian distribution is defined for each category from the training examples, with
the parameters: mean vector and covariance matrix. In this section, we describe the
Bayes classifier with respect to its learning process.
It is assumed that the probability distribution over examples in each category
follows a Gaussian distribution. The parameters which represents the Gaussian
distribution, the mean and the variance, are notated by μ and σ . The Gaussian
distribution is expressed by Eq. (6.25),
− (x − μ) 2

p(x) =
1
√
exp
(6.25)

σ
2 π
2 σ 2
if a data item is given as a scalar value. If the data item is given as a dimensional
vector, it is expressed by Eq. (6.26),

p(x
) =
1
exp − 1 (x − μ)t Σ−1 (x − μ)
(6.26)

d

(2 π)
2
2 | Σ | 12
where μ is the mean vector and Σ−1 is the covariance matrix [5]. Because the
process of classifying data items focuses on finding the maximum likelihood,
Eq. (6.26) is converted into the discriminant function, Eq. (6.27), by omitting the
constant,
1
and putting the logarithm on it,

d

(2 π) 2

g(x
) = − 1 (x − μ)t Σ−1 (x − μ) − 1 ln| Σ|
(6.27)
2
2
Based on Eq. (6.27), the discriminant function of the category, Ci, is expressed
as Eq. (6.28)

gi(x
) = − 1 (x − μi)t Σ−1 (x − μi) − 1 ln| Σi|
(6.28)
2

i
2
where the vector μi is the mean vector of the category Ci and the matrix Σi is the
covariance matrix of the category Ci. Equation (6.28) is transformed into Eq. (6.29)
with the assumption that the covariance matrix Σi is absolutely the identity matrix,

gi(x
) = (x − μi)t (x − μi)
(6.29)
We compute the mean vectors, μ 1 , . . . , μ| C|, of the predefined categories,

C 1 , . . . , C| C|. The discriminant function values, g 1 (x
), . . . , g| C| (x
), to the data item, x by Eq. (6.29) are classified into the category whose discriminant function
value is minimum, as expressed in Eq. (6.30),
| C|

C max = argmin

g

i=1 i (x
)
(6.30)
We need the three cases, Σi = σ 2 I . Σi = Σ, and Σi = arbitrary for defining the
discriminant functions [14].
114
6
Text Categorization: Approaches
Let us mention the scheme of applying the Bayes classifier to the text catego-
rization task. The labeled sample texts are encoded into numerical vectors by the
process which was described in Chaps. 2 and 3. Category by category, mean vectors
are computed as the parameters for representing Gaussian distributions. Novice texts
are encoded into numerical vectors, have similarities with the mean vectors, and are
classified into the category whose similarity is maximum. In this scheme, only the
mean vector is considered for representing the Gaussian distribution; because texts
are usually encoded into several hundred-dimensional vectors, it very complicated
to consider the covariance matrix.
The Bayes classifier is a very simple one which is based on probabilities, but
we need to consider its limits. If the covariance matrices are considered together
with the mean vectors, it is very complicated to apply the Bayes classifier to the
text categorization. The fact that the distribution over data items in each category
follows absolutely the Gaussian distribution is only an assumption; it is not true in
the reality. If training examples which are labeled identically are scattered as small
clusters, the robustness becomes very poor. In computing the similarity between a
novice item and a mean vector, discriminations among attributes by their different
influences are not considered.

6.3.3

Naive Bayes
This section is concerned with another probabilistic learning which is called Naive
Bayes. The assumption which underlies inherently in the learning algorithm is
that the attributes of data items are independent of each other. Because the strong
semantic relations among words which are selected as features exist, the assumption
actually violates against the reality, especially in the text categorization. In spite of
that, the approach shown its feasible and good performance in applying it to the text
categorization in 1997 [70]. In this section, we describe the Naive Bayes in detail as
a typical approach to the text categorization.
The d attributes are notated by a 1 , . . . , ad under the assumption that a text is
encoded into a d dimensional numerical vector. The probability that the attribute

ai is the value, xi, given the category, Ck, P (ai = xi| Ck) is expressed as the
likelihood of the attribute value, xi, P (xi| Ck). The input vector is expressed as
x = [x 1 x 2 · · · xd] and the likelihood of the input vector to the category, Ck
expressed as the product of likelihoods of individual values by Eq. (6.31),

d

P (x| Ck) = P (x 1| Ck) · sP (xd | Ck) =

P (xi| Ck)
(6.31)

i=1
The learning process is to compute the likelihoods of individual values and is
explained in the next paragraph. If the two attributes, ai and aj , are not independent
6.3 Probabilistic Learning
115
of each other, the product of the two likelihoods does not work as expressed in
Eq. (6.32),

P (xi, xj | Ck) = P (xi| Ck)P (xj | Ck)
(6.32)
and this case will be considered in the next section.
The learning process of Naive Bayes is to compute likelihoods of individual
attribute values to the predefined categories from training examples. The number
of training examples which are labeled with the category, Ck, and the number of
training examples which are labeled with the category, Ck, and whose attribute ai
is xi are denoted by Nk and Nki, respectively. The likelihood of the attribute value,

ai = xi to the category, Ck is computed by Eq. (6.33),

P (ai = xi| Ck) = P (xi| Ck) = Nki
(6.33)

Nk
For example, if there are two categories, positive class and negative class, there are
four attributes, and each attribute has binary value, 0 or 1, the likelihoods are listed
as follows:

P (a 1 = 0|+), P (a 2 = 0|+), P (a 3 = 0|+), P (a 4 = 0|+)

P (a 1 = 1|+), P (a 2 = 1|+), P (a 3 = 1|+), P (a 4 = 1|+)

P (a 1 = 0|−), P (a 2 = 0|−), P (a 3 = 0|−), P (a 4 = 0|−)

P (a 1 = 1|−), P (a 2 = 1|−), P (a 3 = 1|−), P (a 4 = 1|−)
Learning process in the Naive Bayes results in the collection of likelihoods of
individual attributes to each category.
Let us classify a novice item which is separated from the training examples,
denoted by x = [x 1 x 2 · · · xd]. It is assumed that the posteriori probability depends
purely on likelihoods, as expressed in Eq. (6.34),

P (Ci|x
) ∝ P (x| Ci)
(6.34)
The corresponding likelihoods of individual attribute values are gathered from the
likelihood collection which is resulted from learning the Naive Bayes as follows:

P (x 1| C 1), . . . , P (xd | C 1)

...

P (x 1| Cd), . . . , P (xd | Cd)
116
6
Text Categorization: Approaches
The likelihoods of the input vector x
= [x 1 x 2 · · · xd] to the categories,

C 1 , . . . , C| C|, are computed by Eq. (6.35),

d

P (x| C 1) = P (x 1| C 1) · · · P (xd | Cd) =

P (xi| C 1)

i=1

...
(6.35)

d

P (x| C| C|) = P (x 1| C| C|) · · · P (xd| C| C|) =

P (xi| C| C|)

i=1
and the input vector is classified into the category with the maximum likelihood by
Eq. (6.30). If at least, one likelihood of individual attribute value is zero, the entire
likelihood of the input vector to the category is zero, according to Eq. (6.35).
Because zeros or tiny values of the likelihoods of individual attribute values given
a category are very frequent by Eq. (6.32), it is not feasible to use Eq. (6.35) for
finding the likelihoods. If at least, one likelihood of an attribute value is zero or a
tiny value, the entire vector likelihood becomes a tiny value or zero according to
Eq. (6.35). So, in the literature, the smooth version which is expressed as Eq. (6.36)
replaces Eq. (6.33),

P (xi| Ck) = B + Nki
(6.36)

B + Nk
where B is a constant. If replacing Eq. (6.33) by Eq. (6.36) for computing the input
vector likelihood by Eq. (6.35), its value avoids the zero value; if there is no example
whose attribute is such value, the likelihood is given as

B
which is the minimum

B+ Nk
value, instead of zero. In implementing the classification program by adopting the
Naive Bayes, Eq. (6.36) is actually used, rather than Eq. (6.33).

6.3.4

Bayesian Learning
This section is concerned with the advanced probabilistic learning which is called
Bayesian learning. The learning process of the Naive Bayes is to compute the
likelihoods of individual attribute values through training examples. The Bayesian
learning proceeds with the two steps: defining causal relations among attributes and
computing the likelihoods of individual attribute values. The assumption underlying
in the Bayesian learning is that not all attributes are independent of each other. In
this section, we describe the Bayesian learning in terms of the learning and the
classification, in detail, and compare the three probabilistic learning algorithms
which were covered in Sects. 6.3.2, 6.3.3, and this section.

6.3 Probabilistic Learning
117
Fig. 6.7 Causal relations
among attributes
Figure 6.7 illustrates the causal relation among attributes called causal diagram.
It is assumed that the causal relations exist among the five attributes: information,
business, IT, ebusiness, and data. The two attributes, information and data, are ones
which are independent and initial. The attribute, business, depends on the attribute,
information; the attribute, IT, depends on the two attributes, information and data;
and the attribute, ebusiness, depends on the two attributes, business and IT, as shown
in Fig. 6.7. The learning process is to compute the conditional probabilities among
the five attributes.
It is assumed that the two attributes, ai and aj , have the causal relation from ai
to aj , which is notated by ai → aj . If the two attributes are not independent of each
other, the likelihood of the two attributes to the category, Ck, is not applicable as
expressed in Eq. (6.37),

P (ai = xi, aj = xj | Ck) = P (ai = xi| Ck)P (aj = xj | Ck)
(6.37)
The likelihood is computed by Eq. (6.38),

P (ai = xi, aj = xj | Ck) = P (ai = xi| aj = xj , Ck)P (aj = xj | Ck)
(6.38)
The term, P (ai = xi| aj = xj , Ck), is computed by Eq. (6.39),

Nkij

P (ai = xi| aj = xj , Ck) =
(6.39)

Nki
where Nkij is the number of examples whose attributes ai and aj are assigned to
the values xi and xj , respectively, under the category Ck, and Nki is the number
of examples whose attribute ai is assigned to value xi under the category Ck.
Equation (6.39) may be modified into Eq. (6.40) for preventing the likelihood,

P (xj | xi, Ck), from being a zero or a tiny value.

B + Nkij

P (ai = xi| aj = xj , Ck) =
(6.40)

B + Nki
118
6
Text Categorization: Approaches
Table 6.2 KNN vs RNN
Bayes classifier
Naive Bayes
Bayesian
Attribute
Group
Independent relation
Conditionally independent
relation
Classification
Maximum likelihood
criteria
Learning
Distribution parameter
Likelihood estimation Causal relation likelihood
estimation
estimation
Complexity
Simple
Medium
Complexity
There are the two steps of learning process in the Bayesian learning; the first step
is to define the causal relations among attributes and the second step is to compute
their likelihoods. The second step was mentioned above and let us consider the first
step. All possible pairs of attributes are generated and the causal relation from ai
|
to

C|

aj is decided based on the following two factors: max

P (x

k=1

i , xj | Ck) which
|
is called the support in the area of data mining and max C| P (x

k=1

i | xj , Ck) which
is called the confidence in the area of data mining. As the external parameters,
the support threshold and the confidence threshold are needed; the causal relation
between the two attributes is decided when both its confidence and support are
equal to or greater than the thresholds. Because it takes the quadratic complexity
for defining the causal relations to the number of attributes, the Bayesian learning is
not feasible to the text categorization, where texts tend to be encoded into very high
dimensional numerical vectors.
Table 6.2 illustrates the comparisons of the three probability learning algorithms
which are covered in Sect. 10.3. The Bayes classifier starts with the likelihoods of
the input vector, the Naive Bayes does with those of individual attribute values,
and the Bayesian learning defines the causal relations among attributes before
computing their likelihoods. The three machine learning algorithms classify data
items based on their likelihoods; they are called commonly maximum likelihood
learning. In the learning process, the Bayes classifier defines the probability
distributions over the training examples, the Naive Bayes computes the likelihoods
of individual attribute values, and the Bayesian learning adds casual relations. To the
number of attributes, it takes constant complexity, linear complexity, and quadratic
complexity in the Bayes classifier, the Naive Bayes, and the Bayesian learning,
respectively.
6.4
Kernel Based Classifier
This section is concerned with the support vector machine which is the most popular
approach to the text categorization. In Sect. 6.4.1, we study the Perceptron which is
a linear model, in order to provide the background for understanding the support
vector machine. In Sect. 6.4.2, we describe and characterize mathematically the
kernel functions. In Sect. 6.4.3, we describe the process of classifying an item by

6.4 Kernel Based Classifier
119
the support vector machine. In Sect. 6.4.4, we explain the process of deriving the
constraints as the dual problem and optimizing them.

6.4.1

Perceptron
This section is concerned with the Perceptron as the early neural network. The
neural networks was invented in 1958 by Rosenblatt as the first learnable neural
networks [80]. Because it has no ability to solve even XOR problem, it was criticized
by Minsty and Papert in 1969 [69]. In 1988, the Perceptron was expanded into
the MLP (Multiple Layer Perceptron) by Rumelhart and McClelland, in order to
solve the limit [81]. In this section, we study the Perceptron as the background for
understanding the support vector machine.
The classification boundary which is defined by the Perceptron is presented in
Fig. 6.8. The training examples which are labeled with the positive class or the
negative class are represented into the two-dimensional vectors and are plotted into
the dimensional space as shown in Fig. 6.8. The classification boundary is expressed
as a line in the two- dimensional space; the classification boundary is given as a
hyperplane in more than three-dimensional spaces. The classification boundary is
expressed as Eq. (6.41),
w · (x) + b = 0
(6.41)
where w is the weight vector and b is the bias. If the data point in w · (x) + b ≥ 0, it
is classified into the positive class, otherwise it is done into the negative class. The
Fig. 6.8 Linear classification boundary
120
6
Text Categorization: Approaches
learning in the Perceptron is the process of finding the weight vector, w, and the
bias, b for classifying the training examples correctly as much as possible.
The training examples are denoted into (x1 , t 1), (x2 , t 2), . . . , (x
N , tN), x
i ∈
R
d , t ∈ {−1 , 1} and the linear equation is expressed as Eq. (6.42),
1 if w · (x)+ b ≥ 0

y =
(6.42)
−1 otherwises
The weight vector, w and the bias, b are initialized at random around zero. Each
training example is classified with the initialized ones; if it is classified correctly, it
proceeds to the next example, otherwise the weights are updated. The update rules
of the weight vector and the bias are expressed as Eqs. (6.43) and (6.44),
w
(t + 1) = w
(t) + η(ti − yi)xi
(6.43)

b(t + 1) = b(t) + η(ti − yi)xi
(6.44)
The algorithm iterates classifying each training example and updating the weight
vector and the bias until no misclassification, under the assumption of the linearly
separable distribution like that in Fig. 6.8.
It is assumed that the task is given as a binary classification which is decomposed
from a text classification, and the training examples which are prepared are labeled
with the positive class or the negative class. The training examples are encoded into
dimensional numerical vectors and they are labeled with −1 and +1. The Perceptron
learns the training example by the process which was mentioned above. A novice
text is encoded into a numerical vector and its output is computed by Eq. (6.42). The
output value, +1, indicates the positive class and −1 does the negative class.
In 1969, the Perceptron was criticized by Papert and Minsky by its own limits, as
mentioned above [69]. It is applicable to linearly separable classification problems;
the errors on training examples are allowed somewhat in case of nonlinear separable
problems. The reason of criticizing the Perceptron is no ability to solve even
the trivial problem, exclusive or problem. However, in 1988, Winter and Widrow
proposed the solution to the limit by combining multiple Perceptrons with each
other [96]. The Perceptron was expanded into the MLP (Multiple Layer Peceptron)
by Rumelhart in 1986 [81], and expanded into the Support Vector Machine by Corte
and Vapnik, in 1995 [12].

6.4.2

Kernel Functions
This section is concerned with the kernel functions which become the core
operations in performing the support vector machines. Their idea is to map a vector
space which is non-linearly separable into one which is linear separable. The inner
6.4 Kernel Based Classifier
121
product of two vectors in any dimension is always given as a scalar value. So,
the inner product of two vectors even in the mapped space may be computed by
a kernel function, without mapping the vectors in the original space. In this section,
we describe kernel functions in detail, before discussing the support vector machine.
As mentioned above, the inner product value of two vectors in any dimension
space is absolutely given as a scalar value. The two vectors, x and y, are mapped
into ones in another space, φ(x
) and φ(y
). The inner product of the two vectors,

φ (x
) and φ(y
), is given as φ(x
) · φ(y
) which is a scalar value. The inner product of the two mapped vectors is expressed as the kernel function of the two original
vectors, x and y, as expressed in Eq. (6.45),

φ (x
) · φ(y
) = K(x
, y
)
(6.45)
Therefore, we do not need to map the training examples explicitly into another
space, in executing the learning process of the support vector machine.
Let us mention some representative types of kernel functions. The inner product
of two vectors is mentioned as the basic kernel function as expressed in Eq. (6.46),

K(x
, y
) = x · y
(6.46)
Another type of kernel function which is called polynomial kernel function is
expressed in Eq. (6.47),

K(x
, y
) = (x · y + c)p
(6.47)
The type of kernel function, Radial Basis Function, is expressed based on the
Gaussian distribution as Eq. (6.48),
||x − y||

K(x
, y
) = exp −
(6.48)

σ 2
The kernel function which is sigmoidal function is expressed in Eq. (6.49),

K(x
, y
) = tanh (2x · y + c)
(6.49)
The kernel function begins with the inner production which is expressed in
Eq. (6.46), in defining it. The addition of two kernel functions which is expressed in
Eq. (6.50) and the multiplication of a kernel function by a scalar constant which is
expressed in Eq. (6.51) are also a kernel function.

K(x
, y
) = K 1 (x
, y
) + K 2 (x
, y
) (6.50)

K(x
, y
) = α 1 K 1 (x
, y
)
(6.51)
122
6
Text Categorization: Approaches
The product of two kernel functions or vector functions which is expressed in
Eqs. (6.52) and (6.53), respectively, is also a kernel function.

K(x
, y
) = K 1 (x
, y
)K 2 (x
, y
)
(6.52)

K(x
, y
) = f (x
)f (y
)
(6.53)
The kernel function of the two vectors which are mapped ones in another space,
instead of original vectors, which is expressed in Eq. (6.54) is also a kernel function.

K(x
, y
) = K 3 (φ(x
), φ(y
))
(6.54)
The product of a matrix between the two vectors which is expressed by Eq. (6.55) is
also a kernel function.

K(x
, y
) = xBy
(6.55)
The kernel functions which are covered in this section imply the similarity
between two. Refer to Eqs. (6.1)–(6.3) for computing the similarity. From the
equations, it is discovered that the inner product is the base kernel function which
is proportional to the similarity. The assumption underlying in defining it is that
the kernel function means the inner product between the two mapped vectors. By
computing the inner product of the mapped vectors, using the kernel function, we
can avoid mapping individual vectors, explicitly.

6.4.3

Support Vector Machine
The goal of learning in the support vector machine is to define the dual parallel
linear boundaries with their maximal margin in the mapped space. In the Perceptron,
there exist infinitely many boundaries for separating the training examples into the
two groups, according to their labels. In the support vector machine, it is assumed
that vectors are mapped into ones in the new space, and dual boundaries which
are parallel to each other are decided in the new space. The constraint for making
the decision boundaries in the support vector machine is to maximize the margin
which is the distance between the two parallel linear boundaries. In this section, we
describe the linear equations which are involved in the support vector machine, and
its classification process.
The linear equations which represent the dual parallel boundaries are defined
under the assumption of the base kernel function which is expressed in Eq. (6.46).
The two linear functions which are involved in modeling the support vector machine
are expressed as Eqs. (6.56) and (6.57),
1 = w · x + b
(6.56)
− 1 = w · x + b
(6.57)
6.4 Kernel Based Classifier
123
The positive class satisfies the inequation, x · w + b ≥ 1 and the negative class
satisfies the inequation, x · w + b ≤ −1. The area between the two parallel equations
which is the margin between the two hyperplanes is expressed in Eq. (6.58),
− 1 < w · x + b < 1
(6.58)
Equations (6.56) and (6.57) are combined into Eq. (6.59), as the equation for
modeling the support vector machine,

f (x
) = sign(w · x + b)
(6.59)
where sign(·) generates −1 as the numerical code of the negative class, or +1 as
the that of the positive class.
It is assumed that the training examples are given as x1 , x2 , . . . , x
N . Because the
weight vectors are determined by training examples, the weight vector in Eqs. (6.56)
and (6.57) is expressed as a linear combination of training examples which is
expressed in Eq. (6.60),

N
w =

αix
i
(6.60)

i=1
The coefficient in Eq. (6.60),
αi, is called Lagrange multiplier, and Eq. (6.61) which
is the equation of the support vector machine classifier is derived by substituting
Eqs. (6.60)–(6.59),

N

f (x
) = sign

αi(x
i · x
) + b
(6.61)

i=1
The Lagrange multipliers are optimized for making the dual linear boundaries with
the maximal margin, as the learning process. After optimizing so, the training
examples which correspond to nonzero optimized Lagrange multipliers are called
support vectors and influence on classifying novice examples.
Equation (6.61) expresses the support vector machine where any input vector
is not mapped into one in another space. The training examples, {x1 , x2 , . . . , x
N },
are mapped into { φ(x1), φ(x2), . . . , φ(x
N)}. Equation (6.61) is modified into
Eq. (6.62), expressing the support vector machine which deals with the mapped
input vectors,

N

f (x
) = sign

αi(φ(x
i) · φ(x
)) + b
(6.62)

i=1
124
6
Text Categorization: Approaches
If the inner product between the mapped vectors is replaced by the kernel function,
Eq. (6.62) is changed into Eq. (6.63), as the general form of the support vector
machine,

N

f (x
) = sign

αiK(x
i, x
) + b
(6.63)

i=1
where φ(x
i) · φ(x
) = K(x
i, x
). The strategy of optimizing the Lagrange multipliers based on Eq. (6.63) will be mentioned in Sect. 6.4.4.
Let us introduce the previous cases of applying the support vector machine to
the text categorization. In 1998, the support vector machine was initially applied
to the text categorization [47]. In 2001, Tong and Koller applied the support vector
machine to the text categorization, following the learning paradigm, active learning
[92]. In 2002, Joachims published his book on applying the support vector machine
to the text categorization [48]. Sebastiani mentioned the support vector machine as
the best approach to the text categorization, in his survey paper [85].

6.4.4

Optimization Constraints
This section is concerned with the constraints for optimizing the Lagrange multi-
pliers. The support vectors are expressed from the dual equations of the weights,
Eqs. (6.56) and (6.57), into the linear equations of the Lagrange multipliers,
Eq. (6.63). From Eqs. (6.56) and (6.57), we derive constraints before optimizing
the Lagrange multipliers. The constraints are transformed into another ones as
the optimization direction. In this section, we describe the process of deriving the
constraints and optimizing the Lagrange multipliers.
The constraints for optimizing weights are derived from Eqs. (6.56) and (6.57).
The constraint, Eq. (6.64), is derived for minimizing the weight scale in order to
maximize the margin between the dual hyperplanes,

Φ(x
) = 1 wT · w
(6.64)
2
From Eq. (6.58), we derive Eq. (6.65), as one more constraint,

di(wT
xi + b) ≥ 1
(6.65)
The two constraints, minimizing Eqs. (6.64) and (6.65), should be satisfied for
optimizing the weight vectors. However, in the learning process of the support
vector machine, not weight vectors but the Lagrange multipliers are optimized.
The two constraints which are mentioned above are mapped into Eq. (6.66) which
we minimize,
6.4 Kernel Based Classifier
125

N

J (w
, b, α) = 1 wT · w −

αi[di(wT · x
i + b)]
(6.66)
2

i=1
By the partial differentiation of Eq. (6.66) by the bias, b, we derive Eq. (6.67),

N

∂J (w
, b, α)
=

αidi
(6.67)

∂b

i=1
By the partial differentiation of Eq. (6.66) by the weight vector, w, Eq. (6.68) is
induced,

N

∂J (w
, b, α)
= w −

αidix
i
(6.68)

∂w

i=1
Equations (6.67) and (6.68) should become zero for minimizing Eq. (6.66), as
expressed in Eqs. (6.69) and (6.70),

N

αidi = 0
(6.69)

i=1

N
w −

αidix
i = 0
(6.70)

i=1
Therefore, Eqs. (6.69) and (6.70) are constraints for optimizing the weight vectors
and the bias; it is called primal problem.
Equation (6.64) is expanded into Eq. (6.71)

N

N

N

J (w
, b, α) = 1 wT · w −

αidiwTx
i − b

αidi +

αi
(6.71)
2

i=1

i=1

i=1
Equation (6.71) is expressed into Eq. (6.72) by Eq. (6.69),

N

N

J (w
, b, α) = 1 wT · w −

αidiwTx
i +

αi
(6.72)
2

i=1

i=1
We derive Eq. (6.73) by Eq. (6.70),

N

N

N
wT · w =

αidiwTx
i =

αiαj didj x
ix
j
(6.73)

i=1

i=1 j =1
126
6
Text Categorization: Approaches
Equation (6.72) is mapped into the function of the Lagrange multipliers which is
expressed in Eq. (6.74),

N

N

N

Q(α) =

αi − 1

αiαj didj x
ix
j
(6.74)
2

i=1

i=1 j =1
The Lagrange multipliers are optimized by maximizing Eq. (6.74), keeping the
constraints,

N

i=1 αi di = 0 and αi ≥ 0; this is called dual problem.
We may consider the SMO (Sequential Minimization Optimization) for opti-
mizing the Lagrange multipliers as the learning process of the support vector
machine. It was invented by Platt in 1998 [76]. The Lagrange multipliers range
between zero and positive constants which are given as external parameters. In the
SMO algorithm, until no violation of the KKT (Karush–Kuhn–Tucker) condition, it
iterates finding the first Lagrange multiplier which violates the KKT condition and
picking the second one to optimize the pair of the first and the second. Refer to the
literatures for detailed explanation about the SMO algorithm.
6.5
Summary and Further Discussions
This chapter is summarized as some typical machine learning algorithms which
are used as the approach to text categorization. We described the KNN algorithm
and its variants as the simple and practical approaches to any classification task,
as well as the text categorization. Based on the Bayes rule which was covered in
Sect. 6.3.1, we studied the three probabilistic learning algorithms, Bayes Classifier,
Naive Bayes, and Bayesian Learning. Together with the Perceptron, we explained
the support vector machine which is the most popular classification algorithm. In
this section, we make further discussion about what we studied in this chapter.
When applying the KNN algorithm to the real task, it should be customized into
its more suitable version. In Sect. 6.1, we mentioned some variants as well as its
initial version. The Radius Nearest Neighbor, the distance criminated version, and
the attribute discriminated version were described as the variants from Sects. 6.2.2–
6.2.4. Customizing the KNN algorithm to real applications means to modify it into
the discriminated version or to combine it with other machine learning algorithms.
Note that it costs no ignorable time for tuning the KNN algorithm to the real task by
customizing it.
In the Naive Bayes and the Bayesian learning, it is assumed that the attribute
values are given as discrete ones. When any attribute value is given as a continuous
one, the number of all possible values in the attribute becomes infinite. So, it is
required to discretize each continuous attribute into a finite number of values for
using one of them. Their performances depend strongly on how many intervals the
value is discretized with. We may try to apply fuzzy concepts to attribute values for
computing likelihoods in using one of them.
6.5 Summary and Further Discussions
127
In 2002, Lodhi et al. proposed the string kernel in applying the support vector
machine to the text categorization [61]. We may consider the issues in encoding
texts into numerical vectors: huge dimensionality where the dimension of numerical
vectors which represent texts is at least several hundreds and the sparse distribution
where more than 95% of elements are zero values. In using the string kernel, the
similarity between two raw texts is computed based on character sequences without
encoding texts into numerical vectors. However, using the string kernel takes much
more time for learning and improves very little performance. It was successful in
protein classification in bioinformatics.
The neural networks, MLP (multiple-layer Perceptron), was initially applied to
the text categorization by Winer in 1995 [95]. The neural networks showed better
results on the text collection, Reuter21578, compared with the KNN. Difficulties
in applying the neural networks to the task are too much time being taken for the
learning process and requirement of many features and many training examples. In
spite of its better performance, the decision tree, the Naive Bayes, and the KNN
are preferred to the neural networks. In 2002, Sebastiani recommended the support
vector machine as the approach, in his survey paper on the text categorization [85].

Chapter 7
Text Categorization: Implementation
This chapter is concerned with the implementation of the prototype version of
the text categorization system in Java. We present the system architecture in
Sect. 7.1, and define the classes which are involved in implementing the system, in
Sect. 7.2. We present the implementations of methods in the classes in Sect. 7.3. We
demonstrate the implemented text categorization system in terms of its execution in
Sect. 7.4, and make the summarization and further discussions in Sect. 7.5. In this
chapter, we implement the text categorization system in Java, and demonstrate it, in
order to provide a guide for implementing its real version.
7.1
System Architecture
The architecture of the text categorization system which we implement in this
chapter is illustrated in Fig. 7.1. The system gathers sample texts and generates
the features as the attributes of numerical vectors. Sample texts are encoded into
numerical vectors which are given as training examples. Test texts are also encoded
into numerical vectors and classified into one of the predefined categories. In this
section, we describe the system architecture which is illustrated in Fig. 7.1 with
respect to its module functions.
Let us explain the modules in Fig. 7.1, the feature generation and the text encoder.
The categories are predefined as a flat list and sample texts are allocated to each
category. In the module, feature generation, the sample texts are indexed into a list of
words called feature candidates, and the words with highest frequencies are selected
among them as the features. The sample texts are encoded into numerical vectors
each of which consists of frequencies of the selected words, in the module, text
encoding. The role of modules, feature generation and text encoding, is to represent
the sample texts which are allocated to the predefined categories, into the numerical
vectors.
© Springer International Publishing AG, part of Springer Nature 2019
129
T. Jo, Text Mining, Studies in Big Data 45,
https://doi.org/10.1007/978-3-319-91815-0_7

130
7
Text Categorization: Implementation
Fig. 7.1 Architecture of text categorization system
Let us explain the learning module below the text encoding module, in Fig. 7.1.
We adopt the 1 Nearest Neighbor as the approach for implementing the version
of the text categorization system. Once novice texts are given as inputs, they are
also encoded into numerical vectors based on the features which are defined by the
above process. For each test example, it is encoded into numerical vector, and its
similarities with the training examples are computed. Because the adopted approach
belongs to lazy learning, no learning happens in advance in this system.
The role of the classification module is to decide which category or categories
of the predefined ones are assigned to each text. The training examples are sorted
by their similarities with a given novice text. Most similarity training examples are
selected as its nearest neighbor by the 1 Nearest Neighbor algorithm. The given text
is classified by the label of its nearest neighbor. Although we adopt the 1 Nearest
Neighbor as the classification tool for implementing the system easily and fast, it
will be expanded into k Nearest neighbor in its next version.
We adopt Java as the tool of implementing the text classification system. Because
the program which is developed by Java is executed by the virtual machine; its
execution may be slow. In spite of that, the reason of adopting Java is that the
performance of CPU is increasing continually and debugging is very easy. In Java
programming which keeps the object oriented programming principle, it is very easy
to be reused the source code in other programs for implementing a program. In this
chapter, we present the implementations of the text categorization system in Java
source codes which are given in the Eclipse.
7.2 Class Definitions
131
7.2
Class Definitions
This section is concerned with the class definitions which are involved in imple-
menting the text categorization system in Java with their properties and methods.
In Sect. 7.2.1, we define the three classes and explain their properties and methods.
In Sect. 7.2.2, we define ‘Classifier’ as an interface and ‘KNearestNeighbor’ as a
class which is specific to the interface. In Sect. 7.2.3, we define the API (Application
Programming Interface) class, ‘TextClassificationAPI,’ whose methods are involved
in the main program. Therefore, in this section, we explain the class definitions
which are involved in developing the text categorization system, with respect to
their properties, methods, and relations with other classes.

7.2.1

Classes: Word, Text, and PlainText
This section is concerned with defining the three classes: Word, Text, and PlainText.
The class, ‘Word,’ is defined, assuming that a text consists of words. The class,
‘Text,’ which indicates the frame of individual data items, is defined as an abstract
class for supporting other types of texts such as XML documents and HTML ones,
as well as plain texts, in subsequent versions. We define the class, ‘PlainText,’ as
the class which is specific to the class, ‘Text’; the class, ‘Text,’ is a super class, and
the class, ‘PlainText,’ is a subclass. Therefore, in this section, we explain the three
class definitions with respect to their properties, methods, and relations with other
classes.
The class, ‘Word,’ is defined in Fig. 7.2. The properties of this class are
‘wordName’ which is the symbolic identifier and ‘wordFrequency’ which is its
occurrences in a given text. An object is created with its word name by the following
declaration:
Word wordItem = new Word(“computer”);
Its frequency is initialized to zero. The method ‘isPresent’ returns a Boolean
value depending on whether the word appears in the text which is given as
an argument. The methods, ‘computeWordFrequency’ and ‘computeWordWeight,’
return a numerical value which indicates a frequency or a weight of the word
in the given text, respectively. The method, ‘computeWordSimilarity,’ returns its
semantic similarity with another word. Among the methods in this class, the method,
‘isPresent,’ is called a predicate method which returns true or false depending on the
program status.
The class, ‘Text,’ is defined as an abstract class, as shown in Fig. 7.3. In this
class, the properties are ‘textFileName’ which is the text identifier given as a file
name together with its directory path, ‘wordList’ which is the list of words as
its indices, “fullText” which is the entire text content, ‘textLabel’ which is its

132
7
Text Categorization: Implementation
Fig. 7.2 The class: word
Fig. 7.3 The class: text

7.2 Class Definitions
133
Fig. 7.4 The class: PlainText
label, and ‘featureVector’ which is the numerical vector representing the text. The
methods are declared as abstract ones without any implementation as shown in
Fig. 7.3, and their implementations will be provided by its subclass. In this class,
methods are ‘loadFullText’ which loads a full text from a file and assigns it to
the property, ‘fullText,’ ‘indexFullText’ which indexes the full text into a list of
words, ‘encodeFullText’ which encodes the full text into a numerical vector, and
‘computeSimilarity’ which computes its similarity with another text. We may add
more text formats such as XML document, HTML one, and any other customized
texts as subclasses derived from this class, in developing subsequent versions of the
text categorization system.
The class, PlainText, is defined as a subclass which is inherited from the class,
Text, in Fig. 7.4. An object is created with its text file name which is its identifier.
Its properties are inherited from its superclass, Text. The method implementations
in the class, Text, are provided in this class. Even if the abstract class looks similar
as the interface, properties are defined as well as methods in the abstract class.
The category which indicates a label which is assigned to a text is defined as
a separated class in Fig. 7.5. An object of this class is created with its name and
its empty list of texts. The properties of this class are ‘categoryName’ which is
the symbolic category name and ‘sampleTextList’ which is the list of sample texts

134
7
Text Categorization: Implementation
Fig. 7.5 The class: category
which belong to the current category. The category manages a list of texts through
the methods which are defined in Fig. 7.5. The reason of defining a category as
a separated class is that the categories are predefined and sample texts should be
allocated to each of them, as preliminary tasks.

7.2.2

Interface and Class: Classifier and KNearestNeighbor
This section is concerned with the interface, Classifier, and its specific class,
‘KNearestNeighbor.’ The interface is similar as the abstract class which is men-
tioned in Sect. 7.2.1. Unlike the abstract class, in the interface, the methods are only
listed without their implementations. The relation between an abstract class and its
specific classes is based on their inheritance, whereas that between an interface and
its specific classes is based on the polymorphism which will described below. In this
section, we explain the polymorphism and describe the interface, Classifier, and the
class, ‘KNearestNeighbor.’
Defining the polymorphism as a concept of the object-oriented design and
programming is intended to allow the variety of objects under their same class with
respect their method implementations. The identical type of objects is required for
implementing an array of objects. The polymorphism is used for the case of identical
methods on objects but their different implementations. In the Java programming,
the methods which are applied identically to objects are declared in the interface,

7.2 Class Definitions
135
Fig. 7.6 The interface: classifier
and various classes which implement the methods differently are defined as its
specific ones. The KNN algorithm is implemented as an object of the specific class,
‘KNearestNeithbor,’ and the object is declared in Java as follows:
Classifier knn = new KNearestNeighbor(3);
In Fig. 7.6, the interface, ‘Classifier,’ is defined. In the interface, only methods
which are involved in executing the classifier are declared without their implemen-
tations. The interface definition is intended to expand the program easily by adding
more classification algorithms. Various kinds of classification algorithms are treated
as objects under the class, Classifier. Implementations of the declared methods are
provided in the specific class, ‘KNearestNeighbor.’
The class, ‘KNearestNeighbor,’ is defined as the class which is specific to the
interface, Classifier, by the reserved statement, “implements Classifier.” The object
is created by the above statement. The object, ‘knn,’ in the above statement is treated
as an instance of the class, Classifier. Its methods are actually implemented in the
class, ‘KNearestNeighbor.’ If adding more specific classes, ‘RadiusNearestNeith-
bor,’ one more object is created as another classification algorithm by the following
statement:
Classifier rnn = new RadiusNearestNeighbor(0.6);
Declaring the classifier ‘KNearestNeighbor’ as the interface and its specific
class is intended for easy addition of more machine learning algorithms and each
combination of different ones. The behaviors which are shared by any kind of
machine learning algorithm are to assign training and test examples, to learn
training examples, and to classify test ones. More machine learning algorithms
such as Radius Nearest Neighbor, Naive Bayes, and Support Vector Machine may
be added by defining more classes which are specific to the interface, ‘Classifier,’
subsequently. After adding the classes, the three machine learning algorithms are
declared as the three objects:
136
7
Text Categorization: Implementation
Classifier c1 = new KNearestNeighbor(3);
Classifier c2 = new RadiusNearestNeighbor(0.6);
Classifier c3 = new NaiveBayes();
and the three objects, c1, c2, and c3, are treated as identical objects of the class
Classifier. We may implement the multiple classifier combinations such as boosting,
voting, and expert gates by doing so, easily.

7.2.3

Class: TextClassificationAPI
This section is concerned with defining the class, ‘TextClassificationAPI,’ as
illustrated in Fig. 7.7. The class, ‘TextClassificationAPI,’ is called API (Application
Program Interface) class which is created in the main program, and whose methods
are called there. The text categorization system which is implemented in this chapter
belongs to the GUI (Graphic User Interface) program. We mention creation of
objects and invoking of methods in the GUI class in Sect. 7.4.4. In this section, we
explain the class definition which is presented in Fig. 7.7, in terms of its properties,
constructors, and methods.
The API class is explained as the scheme of implementing the program in Java.
The API class means the public class which is touched by the main program in the
console environment. In the API class, the API is attached to a class name as its
postfix, and its role is to interface with other classes directly and indirectly. The
API class is actually touched by the GUI class in this program with its graphical
user interface. Only one API class is usually defined in implementing an application
program.
Let us mention the properties which are defined in the class, ‘TextClassifica-
tionAPI.’ The property, ‘sampleTextList,’ means the list of sample texts which are
labeled and used for building the classification capacity. The property, ‘novice-
TextList,’ is the list of texts which are prepared as the classification targets.
The property, ‘featureList,’ means the list of attributes which are given as words
for encoding texts into numerical vectors, and the property, dimension, means
the number of features in encoding texts into numerical vectors. The property,
‘categoryList,’ is the list of categories which are predefined as the classification
frame.
We explain the methods which are defined in Fig. 7.7 in their functional view.
The contents of both sample and novice texts are loaded as a list of text objects
by the methods, ‘loadSampleTextList’ and ‘loadNoviceTextList.’ Text objects are
encoded into numerical vectors by the methods, ‘encodeSampleTextList’ and
‘encodeNoviceTextList.’ The novice texts in the list are classified by the KNN
through the method, ‘classifyNoviceTextList.’ The method, ‘generateFeatureList,’
extracts features as the attributes for implementing both the methods, ‘encodeSam-

7.3 Method Implementations
137
Fig. 7.7 The class: TextClassificationAPI
pleTextList’ and ‘encodeNoviceTextList,’ and the method, ‘flatSampleTextList,’
converts the group of categories into the list of sample texts which are labeled with
their own categories.
The GUI class is necessary for implementing the graphic user interface of this
program, separately from the API class. The object of the API class is created, and
its methods are invoked in the main program in the console running environment.
The GUI class is required for expanding the console program into the GUI program.
In the GUI class, the object of the class, TextClassificationAPI, is created and its
methods are called. The properties and methods in the GUI class will be explained
in detail, in Sect. 7.4.1.
7.3
Method Implementations
In this section, we present the method implementations which are involved in devel-
oping the text categorization system. In Sect. 7.3.1, we explain the implementations
of the methods which are defined in class, ‘Word.’ In Sect. 7.3.2, we cover those
methods which are included in class ‘PlainText.’ In Sect. 7.3.3, we describe the
methods in the class, ‘KNearestNeighbor,’ with respect to their implementations.
In Sect. 7.3.4, we mention the method implementations, concerned with the class,
‘TextClassificationAPI.’

138
7
Text Categorization: Implementation
Fig. 7.8 The method: isPresent
Fig. 7.9 The method: computeFrequency

7.3.1

Class: Word
This section is concerned with the method implementations in the class, ‘Word.’
The class, Word, was defined in Fig. 7.2 with its properties and methods. An object
of the class, Word, is created by its symbolic name. The property, ‘wordFrequency,’
is initialized to zero in creating the object. In this section, we explain the implemen-
tations of individual methods which are members of the class, ‘Word.’
Figure 7.8 illustrates the implementation of the method, ‘isPresent.’ The method
belongs to the predicate method which checks the program status and returns a
Boolean value, and ‘is’ used as the prefix of its name. This method checks whether
the current object appears in the full text which is given as its argument, or not; if
so, it returns true. The method, ‘indexOf,’ which is called in Fig. 7.9, is the method
of a string object which returns the position where the argument, substring, occurs
first time. If the substring does not appear in the string, it returns −1.
The implementation of the method, ‘computeFrequency,’ is illustrated in Fig. 7.9.
The full text is given as the argument, like the method, ‘isPresent,’ and the method,
‘computeFrequency,’ is implemented recursively; the method is invoked in itself. It
checks whether the property, ‘wordName,’ occurs in the current full text; if it is so,
it returns zero. Otherwise, it updates the argument, ‘fullText,’ by deleting its prefix
which ends with the word occurrence, and invokes the method with the updated full
text, recursively by incrementing one. This method counts the occurrences of the
word, which is given the property, ‘wordName,’ in the full text which is given the
argument, by the recursive call.
Figure 7.10 illustrates the implementation of the method, ‘computeWordWeight.’
The two arguments, ‘fullText’ and corpus, are given in the method, and the
method, ‘computeWordFrequency,’ whose implementation is presented in Fig. 7.9

7.3 Method Implementations
139
Fig. 7.10 The method: computeWordWeight
Fig. 7.11 The method: computeWordSimilarity
is involved. The frequency of the word in the full text is computed by invoking the
method, ‘computeWordFrequency,’ and the number of total texts and the number
of texts including the word are counted in the corpus. The word is weighted by the
TF-IDF (Term Frequency-Inverse Document Frequency).
Figure 7.11 illustrates the implementation of the method, ‘computeWordSimi-
larity.’ The method computes the semantic similarity with another word, and the
opposite word and corpus which is the reference for computing the similarity are
given as arguments. In the corpus, the number of documents which include either
of the two words and the number of documents which include both of them are
counted. The semantic similarity between the two words is computed as the ratio of
the documents including both words to the summation of ones including either of
them, as shown in the return statement in Fig. 7.11. The semantic similarity which
is returned from this method is given as a normalized value between zero and one.

7.3.2

Class: PlainText
This section is concerned with the method implementations which are involved in
the class, ‘PlainText.’ The class is the subclass which receives the inheritances from
the super class, ‘Text.’ The implementations of the methods which are defined in the

140
7
Text Categorization: Implementation
Fig. 7.12 The method: loadText
Fig. 7.13 The method: indexText
class, Text, are provided in this class. The methods are implemented differently in
other subclasses which will be added in the future. In this section, we explain the
method implementations in the class, ‘PlainText.’
Figure 7.12 illustrates the implementation of the method, ‘loadText.’ This method
loads a text as a string from a file. An object of the class, ‘FileString,’ is created
and the method, ‘loadFileString,’ is invoked. It takes the full text by invoking the
method, ‘getFileString.’ The exceptional handling for access to the file should be
embedded in the methods in the class, ‘FileString.’
The implementation of the method, ‘indexText,’ is illustrated in Fig. 7.13. This
method indexes a string which is the value of the property, ‘fullText,’ into a list of
words. In Chap. 2, we explained the basic three steps of text indexing, tokenization,
stemming, and stop word removal. A list of words is generated and for each word,
its frequency is counted. A list of objects of the class, ‘Word,’ is generated as the
output from this method.
Figure 7.14 illustrates of the method, ‘encodeText.’ It encodes a text into a
numerical vector with the two arguments, dimension and ‘featrueList.’ It checks
whether dimension and the actual number of features match with each other, and
if they do not, it terminates. If they match with each other, for each feature, its
frequency is counted in the given text. The numerical vector which represents a text
consists of integers which indicate the frequencies of features.
Figure 7.15 illustrates the implementation of the method, ‘computeSimilarity.’ It
computes the similarity between two texts under the assumption of encoding them
into numerical vectors. We adopt Eq. (6.3) which is a variant of the cosine similarity,
for doing so. The inner product and the norm of the two vectors are computed and
the similarity is generated by applying Eq. (6.3). The method returns a normalized
value between zero and one.

7.3 Method Implementations
141
Fig. 7.14 The method: encodeText
Fig. 7.15 The method: computeSimilarity

7.3.3

Class: KNearestNeighbor
This section is concerned with the method implementations in the class, ‘KNear-
estNeighbor.’ The methods which are defined in the interface, Classifier, are
implemented in this class which is a specific class. We adopt the KNN which
was described in Sect. 6.1, in implementing the text categorization system. More
classifiers such as Naive Bayes, Bayes Classifier, and its variants are added
in upgrading the system in the future. In this section, we explain the method
implementations and present the direction of upgrading the system.
Lazy learning is the learning paradigm where training examples had never been
learned in advance until novice examples were given. So, there is no implementation
in the method, ‘learnSampleTextList,’ in the class; that means that the adopted
learning algorithm learns no training example in advance. It learns training examples
interactively for each test example, so the interactive learning process is imple-
mented in the method, ‘classifyNoviceTextList.’ Eager learning is one where the
classification capacity is built by learning training examples in advance, as the
opposite one to the lazy learning. However, we need to implement the method,
‘learnSampleTextList,’ in the class of eager learning algorithms.
Figure 7.16 illustrates the method implementation, ‘classifyNoviceTextList.’
Because the KNN algorithm belongs to the lazy learning, the process of learning
the training examples and classifying a novice example is given in this method.
For each novice text, its similarities with the training examples are computed and

142
7
Text Categorization: Implementation
Fig. 7.16 The method: classifyNoviceTextList in class, K Nearest Neighbor
the most similar training example is selected as its nearest neighbor. The novice
example is classified into the label of the nearest neighbor. In implementing the
text categorization system which is the initial demonstration version, we adopt the
1 Nearest Neighbor, as the simplest classification algorithm.
The requirement for expanding the 1 Nearest Neighbor into the KNN is to
modify the implementation of the method, ‘classifyNoviceTextList.’ In order to
rank training examples by their similarities, we need a sorting algorithm. The linear
logarithmic complexity is the least one for sorting data items; the quick sort or
the heap sort is recommendable. If N and M are the number of training examples
and test examples, respectively, the complexity of the current version, O(MN), is
increased to O(MN logN), for expanding so. However, the complexity, O(MN), is
fixed in expanding the 1 Nearest Neighbor to the Radius Nearest Neighbor.
It is possible to combine multiple KNN algorithms with each other as an
approach to text categorization. We need to discriminate the KNN algorithm by
some factors. They may be discriminated by different numbers of nearest neighbors.
We may consider some variants of KNN which were described in Sect. 6.3. We may
consider schemes of combining discriminated KNN algorithms with each other in
upgrading the text categorization system in the future.

7.3.4

Class: TextClassificationAPI
This section is concerned with the methods which are involved in the class,
‘TextClassificationAPI.’ The API class is mentioned as the class whose objects and
methods are created and invoked in the main program in the console environment.

7.3 Method Implementations
143
Fig. 7.17 The method: flatSampleTextList
Fig. 7.18 The method: generateFeatureList
The object of this class created and its methods are invoked in the GUI class, in this
program. The definition of the API class was covered in Sect. 7.2.3. In this section,
we will explain the method implementations in detail.
Figure 7.17 illustrates the implementation of the method, ‘flatSampleTextList.’
A list of categories each of which contains texts is obtained from the GUI interface.
The list of categories is mapped into a list of texts which are labeled with their
own categories through this method. For each category, each text is labeled by its
own category name and inserted into the property, ‘sampleTextList.’ The property,
‘categoryList,’ is the list of categories which is obtained from the GUI interface, and
the property, ‘sampleTextList,’ is the list of labeled sample texts.
Figure 7.18 illustrates the implementation of the method, ‘generateFeatureList.’
The sample texts are concatenated into a single text. Because no file name is given
to the integrated text, its object is created by its dummy file name. The integrated
text is set as an object and the method, ‘generateFeatureList,’ is invoked by this
object. The number of features is fixed to the dimension as the size of property,
‘featureList.’

144
7
Text Categorization: Implementation
Fig. 7.19 The method: encodeSampleTextList and encodeNoviceTextList
Fig. 7.20 The method: classifyNoviceTextList in the Class, TextClassificationAPI
Figure 7.19 illustrates the implementations of the methods, ‘encodeSample-
TextList’ and ‘encodeNoviceTextList.’ If a list of texts is given as a null, the methods
do nothing as their exception handlings. The method, ‘encodeSampleTextList,’
encodes a list of sample texts into numerical vectors and the method, ‘encodeN-
oviceTextList,’ does a list of novice texts so. The method, ‘generateFeatureList,’
should be executed before executing the methods. The two methods need to be
merged into the method, ‘encodeTextList,’ by adding one more argument, a list of
texts.
Figure 7.20 illustrates the implementation of the final method, ‘classifyNovice-
TextList.’ It is required for executing the method to execute the above methods.
7.4 Graphic User Interface and Demonstration
145
A classifier is created as an object of the class, ‘KNearestNeighbor,’ sample texts
and novice texts are assigned to the object, and the method, ‘classifyNoviceText,’
is invoked. The reason of not invoking the method, ‘learnSampleText,’ is that the
KNN which is adopted in implementing the system does not learn training examples
in advance, as a lazy learning algorithm. The classifier, KNN, is implemented as a
1 Nearest Neighbor in this program.
7.4
Graphic User Interface and Demonstration
This section is concerned with the graphical user interface and demonstration of
the developed text categorization system. In Sect. 7.4.1, we explain the final class,
‘TextClassificationGUI,’ together with the graphic user interface. In Sect. 7.4.2,
we demonstrated the program in the process of doing preliminary tasks and
learning sample texts. In Sect. 7.4.3, we present the process of classifying texts
by the program. In Sect. 7.4.4, we mention the guides for upgrading the developed
program.

7.4.1

Class: TextClassificationGUI
Figure 7.21 illustrates the initial screen of the implemented text categorization
system. On top of the initial screen, the drop-down box contains predefined
categories, and the two buttons are for adding more categories and for deleting
some categories, respectively. In the middle of the initial screen, there are the three
buttons: one for adding sample texts under the category which is selected in the
above drop-down box, another for showing a list of sample texts in the area which
is labeled ‘sample texts,’ the other for encoding the sample texts into numerical
vectors. In the bottom of the initial screen, there are the two buttons: one for
providing texts to classify and the other for classifying them. In this section, we
study the properties and methods of class, ‘TextClassificationGUI,’ for activating
the initial screen in Fig. 7.22.
The properties in the class, ‘TextClassificationGUI,’ are presented in Fig. 7.22.
The objects of the class, ‘JButton,’ among the properties, correspond to buttons
in the interface which is shown in Fig. 7.21. The objects of the class, ‘JList,’
and those of the class, ‘JCombobox,’ correspond to the text areas and the drop-
down box, respectively. The objects of the class, ‘JLabel,’ are the labels which
are nearby the two text areas in the interfaces. The properties ‘categoryList,’
‘noviceTextListVector,’ and ‘textClassifier’ are the category list, the novice text list,
and the object of text classifier algorithm, respectively.
Figure 7.23 illustrates the implementation of the constructor of this class. The
components which are involved in the interface are created as objects. If necessary,
their options should be configured. The method, ‘addActionLister,’ is invoked for

146
7
Text Categorization: Implementation
Fig. 7.21 Initial screen of text categorization system
each object of the class, ‘JButton,’ for implementing the event-driven programming.
Refer to the literature, for the detailed contents about the event-driven programming.
Figure 7.24 shows the implementation of the method, ‘ActionPerformed.’ The
method is defined in the class, “ButtonHandler” which is specific to the interface,
‘ActionListener,’ and nested in the class, ‘TextClassificationGUI.’ The implemen-
tation consists of actions which are corresponding to buttons which are pressed in
the interface in Fig. 7.21. The statements within a block of if-statement indicates
that when pressing the corresponding button, the program runs, accordingly. The
method, ‘ActionPerformed,’ is used for implementing the event-driven program-
ming, in Java.

7.4 Graphic User Interface and Demonstration
147
Fig. 7.22 Class: TextClassificationGUI
The main program is illustrated in Fig. 7.25. The object of the class, ‘TextClas-
sificationGUI,’ is created and its methods are invoked. The configurations of
the GUI (Graphic User Interface) are made by invoking the methods, ‘setDe-
faulCloseOperation’ and ‘setSize,’ and a window is shown by invoking the method,
‘setVisible.’ The object of the class, ‘TextClassificationAPI,’ is created in the class,
‘TextClassificationGUI,’ and the involved methods are invoked in the method,
‘ActionPerformed.’ The class, ‘TextClassificationGUI,’ becomes the final one in this
program.

7.4.2

Preliminary Tasks and Encoding
This section is concerned with the process of demonstrating preliminary tasks and
the encoding process of the text categorization system. By adding categories to the
drop-down box, they are defined as a list. For each category in the drop-down box,
texts which are given as plain text files are added as sample ones. The added texts
are encoded into numerical vectors. In this section, we present the demonstration of
the system in doing the preliminary tasks and encoding into numerical vectors.

148
7
Text Categorization: Implementation
Fig. 7.23 Constructor implementation in TextClassificationGUI

7.4 Graphic User Interface and Demonstration
149
Fig. 7.24 ActionPerformed implementation in TextClassificationGUI

150
7
Text Categorization: Implementation
Fig. 7.25 Main program
Fig. 7.26 Adding categories in the developed text categorization system
Figure 7.26 illustrates the process of adding categories in the developed text
categorization system. The button, ‘Add Category,’ is pressed in the interface. The
category name is entered by the keyboard, and the left button, OK, is pressed.1
The category name is added to the drop-down box. By doing so, the category
predefinition which is a preliminary task is achieved.
1Because the program runs on the Korean version window, the buttons are labeled in Korean.

7.4 Graphic User Interface and Demonstration
151
Fig. 7.27 Allocating sample texts to category
Figure 7.27 illustrates the process of allocating sample texts to a particular
category. The category, business, is selected in the drop-down box. If the button,
‘add sample texts,’ is pressed, the pop-up dialog box is given in the left part of
Fig. 7.27. Through the browsing, the directory is located in the left dialog box, text
files are selected as sample texts. If the left button in the dialog box is pressed, the
selected files are added to the sample texts in the category, business.
Figure 7.28 illustrates the results from adding the sample texts to the category,
business. The category, business, is selected in the drop-down box, and the sample
texts are presented by pressing the button, ‘show sample texts.’ The list of words in
the area are attributes of numerical vectors which represent texts. The text indexing
and text encoding which were covered in Chaps. 2 and 3 are executed by pressing
the button, ‘Encode Sample Texts.’
In the current version of the text categorization system, there is no learning
of sample texts in advance. We adopted the 1 nearest neighbor which is the
simplest lazy learning algorithm as the approach to the text categorization in this
system. More learning algorithms are added in upgrading the system in Fig. 7.27.
Accordingly, one more button which is labeled with ‘learning’ should be added for
learning sample texts before classifying novice texts. In the interface, we need to
add the option for selecting a machine learning algorithm as a classification tool.

152
7
Text Categorization: Implementation
Fig. 7.28 Adding sample texts to category, ‘Business’

7.4.3

Classification Process
This section is concerned with the demonstration of classifying texts automatically
in the developed system. In the previous section, the categories are predefined,
sample texts are allocated to each category, and they are encoded into numerical
vectors. The tasks of demonstrating the developed system is to nominate novice
texts and to classify them into one of the predefined categories. The classified texts
are displayed in the message box as shown in Fig. 7.31. In this section, we describe
the process of demonstrating the classification process.

7.4 Graphic User Interface and Demonstration
153
Fig. 7.29 Preparing novice texts
Figure 7.29 illustrates the process of preparing novice texts as classification
targets. First, we press the button, ‘Add Novice Texts,’ in the interface. The dialog
box for opening files is popped up, and we select text files as novice texts. In the
dialog box, we press the left button and the selected text files are displayed in the
area which is labeled, ‘Novice Texts.’ The novice texts will be classified in the text
step.
Figure 7.30 illustrates the process of completing the preparation for classifying
texts. The list of categories is stored in the drop-down box, and the sample texts
are presented in the area which is labeled with ‘Sample Texts.’ The list of features
for encoding texts into numerical vectors is presented in the area which is labeled
with ‘Feature List,’ and novice texts which are selected by the above process in the
area which is labeled with ‘Novice Texts.’ By pressing the button, ‘Classify Novice
Texts,’ the novice texts are encoded into numerical vectors and are classified by the
1 Nearest Neighbor. The results from classifying the novice texts are displayed in
Fig. 7.31.
Figure 7.31 illustrates the results from classifying the texts which are given as
a message box. The ten files are selected as the classification targets, as shown
in Fig. 7.30. Each line consists of the file name with its path which identifies the
text and its classified category, in the message box. For example, the first line,
D:\bu0001.txt:Business, consists of ‘D:\bu0001.txt’ as the file name with its path
and ‘Business’ as its category. We may consider stamping its label on the text by
concatenating it to its contents.

154
7
Text Categorization: Implementation
Fig. 7.30 Completing preparation for classifying texts
The text categorization system was implemented as only a prototype program,
in this chapter. The first step of improving the system is to expand the 1 Nearest
Neighbor into the KNN. We may add the KNN variants such as the RNN, the
distance discriminated version, and the attribute discriminated one which are
mentioned from Sects. 6.2.2–6.2.4. Other kinds of machine learning algorithms,
Bayes Classifier, Naive Bayes, and Bayesian Classifier, which were mentioned
in Sect. 6.3, are also added. So, we need to add the option for selecting a text
categorization approach in the interface.

7.4 Graphic User Interface and Demonstration
155
Fig. 7.31 Classified texts in
message box

7.4.4

System Upgrading
This section is concerned with the direction of upgrading the text categorization
system which is implemented in this chapter. The text format which is covered by
this system is only the plain text file. In this system, only 1 Nearest Neighbor is
adopted as the approach to the text categorization. Only exclusive classification is
executed, and there is no module for decomposing the multiple classification into
binary classifications, in this version. So, in this section, we present the plans for
upgrading the text categorization system.
Let us consider some types of textual data as the direction of upgrading the
system. What is covered in the current version is the plain text which is given
as the file whose extension is ‘txt.’ The system will be upgraded into the version
which is able to process XML documents as the standard text format. The PDF
(Portable Document Format) file which is used most popularly is also considered for
upgrading the system. The web documents which are written in HTML are covered
together with the XML formation, in the next version.
Various kinds of machine learning algorithms are available as approaches to
the text categorization. The first step for upgrading the program is to expand
the 1 Nearest Neighbor into the KNN algorithm. After that, we add the KNN
variants such as Radius Nearest Neighbor, distance discriminant version, and
attribute discriminant version which are covered in Sect. 6.2. We may also add
the probabilistic learning algorithms, such as Bayes classifier, Naive Bayes, and
Bayesian learning, which were covered in Sect. 6.3. As a state-of-the-art approach,
we may consider the support vector machine which is the popular classification
algorithm in any application domain.
156
7
Text Categorization: Implementation
The overlapping or fuzzy classification may be considered as a direction of
upgrading the system. We need to implement the module of decomposing a
classification task into binary classification tasks as many as categories. The task
is decomposed into binary classifications by the process that were mentioned
in Sect. 5.2.3, and classifiers are created as objects as many as categories. The
categories which correspond to the classifiers which classify the text into the positive
class are assigned to it. However, the reallocation of training examples to the mapped
binary classifiers becomes the overhead for doing the decomposition.
As shown in Fig. 7.21, we designed the GUI interface of this program, very
simply. We will add the function of creating a text and editing an existing one. We
will represent graphically a list of predefined categories, rather than including them
in the drop-down box. Sample texts are displayed by clicking one of the predefined
ones. Novice texts are organized by their classified labels, as well as displaying them
as a list.
7.5
Summary and Further Discussions
This chapter is summarized as developing the text categorization system as an initial
prototype version in Java. We presented the classes which are defined by their
properties and their methods. We explained the implementations of methods which
are included as members in the classes. We explained the GUI class, demonstrated
the system, and presented the direction of upgrading the system in future. In this
section, we will make further discussion about what we studied in this chapter.
In this chapter, we adopted the 1 Nearest Neighbor as the approach to the text
categorization in implementing the system. We mentioned the addition of more
machine learning algorithms in upgrading the system as the classes which are
specific to the interface, ‘TextClassifier.’ After adding the complete KNN algorithm,
we add further the probabilistic learning, the Perceptron, and the support vector
machine. The objects of different machine learning algorithms are treated identically
as objects of the class, ‘TextClassifier.’
In upgrading the system, we considered XML documents as sample and novice
texts as well as plain texts. In the recent version of JDK (Java Development Kit),
the module of processing XML documents may be implemented by java library
classes. By utilizing the library classes, the system is upgraded into the version
which supports the XML documents as the standard format. The class, Text, is
set as the abstract class. Therefore, the system is expanded into the version which
categorizes the XML documents as well as plain texts.
Let us consider implementing the text categorization system as a web- based
application program. In this chapter, we implement the system as an independent
application program, in Java. The programming language, JavaScript, is used for
developing a web-based program. The graphic user interface which is shown in
Fig. 7.31 is activated in the web browser, and the results from classifying texts are
displayed in the HTML format. The development of the text categorization as the
web-based version is left in the next study.

Chapter 8
Text Categorization: Evaluation
This chapter is concerned with the schemes of evaluating text categorization
systems. We make general discussions on the process of evaluating the text
categorization systems, in Sect. 8.1, and mention the text collections which are used
for evaluating text categorization systems and approaches, in Sect. 8.2. In Sect. 8.3,
we describe the F1 measure which is introduced from the area of information
retrieval and used as the most popular evaluation metric, in detail. We explain the
statistical t test which is introduced from the statistics as the basis for comparing two
text classification systems and algorithms, in Sect. 8.4, and make the summarization
and further discussions on this chapter, in Sect. 8.5. In this chapter, we describe the
text collection for evaluating text categorization systems, evaluation measures, and
the schemes of comparing two approaches.
8.1
Evaluation Overview
It is necessary to evaluate text classification performances for adopting an approach
for implementing text categorization systems. We prepare the test collection and
partition it into the two sets: the training set for learning and the test set for
classification and evaluation. The participated approaches learn by examples in the
training set and classify those in the test set. We compute the F1 measures of the
approaches, and compare them with each other based on the t-test. In this section,
we describe briefly the process of evaluating text categorization systems.
Let us mention some test collections which are used for evaluating performances
of text categorization systems and approaches. The collection, NewsPage.com, is
the small collection of texts which was built by Jo in 2005. The Reuter21578 is
mentioned by Sebastiani as the most popular one in 2002 [85]. The 20NewsGroups
is one where 20 categories and totally 20,000 texts are composed in a two-level
© Springer International Publishing AG, part of Springer Nature 2019
157
T. Jo, Text Mining, Studies in Big Data 45,
https://doi.org/10.1007/978-3-319-91815-0_8

158
8
Text Categorization: Evaluation
Fig. 8.1 Division of test collection into three sets
Fig. 8.2
n cross-validation
hierarchical form and is another popular test collection. The OSHUMED which is
the collection of medical documents, each of which is classified by medical areas
used for evaluating approaches in the domain, medicine.
Once a test collection is adopted for evaluating text categorization systems and
approaches, as shown in Fig. 8.1, it should be divided into the three sets: the training
set, the validation set, and the test set. The training set is used for building the
classification capacity of the adopted approach. The validation set is separated from
the training set, and used for validating the classification capacity which is built
by the training set. The test set is used for evaluating finally the text categorization
systems and approaches. After installing the text categorization system, a set of real
inputs which is called the real set is given for executing it.
In Fig. 8.2 where the white portion indicates the training set and the black one
does the validation set, we illustrate the cross-validation which is different from the
above simple one. The cross-validation is intended to avoid the dependency and
the bias on the fixed validation set. The training set is divided into n portions and
we use n − 1 portions as the training set and one portion as the validation set. We
may use the different portions, rotating over the n portions as the validation set, in
each training phase, as shown in Fig. 8.2. By the cross-validation, we expect a more
reliable parameter turning in the learning process.
We need the hypothesis inference through the statistical test in comparing two
approaches to text categorization with each other. The better performance of the
proposed approach than the traditional one which is the results from the experiments
is not always such case in the entire population. We need to derive a better case
of the proposed approach in the entire population, in order to persuade the results
8.2 Text Collections
159
as the confirmed ones. Using the hypothesis inference for doing it is based on
the difference between the proposed and traditional ones. Because the number of
trials in the experiments is usually limited to less than 30, we had better using the
Student’s t- distribution, instead of the normal distribution.
8.2
Text Collections
This section is concerned with the text collections which are used for evaluating
text categorization systems and approaches. In Sect. 8.2.1, we describe the text
collection which is called NewsPage.com as a small collection. In Sect. 8.2.2, we
mention 20NewsGroups which has its hierarchical classification frame with the
two levels and is the standard collection for evaluating systems and approaches. In
Sect. 8.2.3, we explain Reuter21578 which is used for evaluating the overlapping
text categorization performances. In Sect. 8.2.4, we cover the text collection,
OSHUMED, which is specialized for the medical domain.

8.2.1

NewsPage.com
This section is concerned with the small text collection, NewsPage.com. This
collection has the five categories and totally 2000 texts which are news articles
copied from the website, www.newspage.com. This collection has been used for
comparing text categorization systems with each other in entering evaluation.
This collection is manually constructed by copying and pasting individual news
articles from newspage.com. Therefore, in this section, we describe the simple text
collection which is called, NewsPage.com.
The text collection, NewsPage.com, is specified in Table 8.1. The classification
frame is defined as a list of five categories: business, crime, health, Internet, and
sports. The set of totally 2500 texts is partitioned into 840 training texts and 360
test texts with the ratio, 7:3. In each category, as shown in Table 8.3, 1500 texts are
given; 350 texts are used as the sample texts, and the other are used as the test ones.
The texts in this collection are labeled exclusively; each text belongs to only one of
the five categories.
Table 8.1 The number of
Category
#Texts
#Training texts
#Test texts
texts in NewsPage.com
Business
500
300
75
Health
500
300
75
Internet
500
300
75
Sports
500
300
75
Total
2000
1200
300
160
8
Text Categorization: Evaluation
The text collection which consists of news articles between 2003 and 2005 is
constructed by Jo in 2005. In the website, www.newspage.com, the five sections
are selected as the categories, and news articles are gathered section by section.
Using a text editor, entire full texts of news articles are copied and pasted into
plain text files, individually. A single news article corresponds to a single plain
text file; a text file name is given as a text identifier. This collection is useful for
the preliminary evaluation of text categorization systems or approaches just after
implementing them.
Let us explore previous cases of using the text collection for evaluating the text
classification approaches. This collection was used as the source for evaluating
the keyword extraction algorithms by Jo in 2003 [23]. In 2008, this collection
was used for validating the better performance of the modified version of Support
Vector Machine in the text categorization tasks [26]. In 2010, Jo proposed the
NTC (Neural Text Categorizer) which is the neural network specialized for the text
categorization and used the collection for validating its performance [30]. In 2015,
Jo used the text collection for evaluating the table-based matching algorithm in the
text categorization [35].
This collection is used for evaluating the hard text categorization where all texts
are labeled with only one category. The spam mail filtering which is an instance
of text categorization belongs to both binary classification and hard classification.
Because each text tends to cover more than one topic, soft text categorization
which allows each text to be labeled with more than one topic is more desirable.
Nevertheless, the collection is needed for evaluating text categorization systems
as the entrance. Soft text categorization tends to be decomposed into hard binary
classification tasks.

8.2.2

20NewsGroups
Let us mention the text collection, 20NewsGroups, which is another collection for
evaluating text categorization performances. The text collection is published in the
website, http://qwone.com/~jason/20Newsgroups/. This collection consists of 20
categories; approximately 1000 texts in each class; there are totally 20,000 texts
in the collection. The 20 categories are grouped into the four groups; the collection
is organized as the two- level hierarchical structure. In this section, we describe
the text collection, 20NewsGroups, with respect to its categorical structure and its
evaluation process.
The partition of this collection into the training set and the test set is illustrated
in Table 8.2. The collection consists of the 20 categories, and each category consists
of 1000 texts. In each category, 700 texts belong to the training set and 300 ones
belong to the test one; totally, the training set consists of 14,000 texts and the test set
consists of 6000 ones. The text classification on the collection may be decomposed
into the 20 binary classification tasks, rather than a single multiple classification
task where each text is classified into one of the 20 categories. Based on the prefixes
8.2 Text Collections
161
Table 8.2 The number of
Category
#Texts
#Training Texts
#Test Texts
texts in 20NewsGroups
Comp
5000
3500
1500
Rec
4000
2800
1200
Sci
4000
2800
1200
Talk
4000
2800
1200
Others
3000
2100
900
Total
20,000
14,000
6000
of the category names which presented in the first column in Table 8.2, the 20
categories are organized into the five groups: comp, sci, rec, talk, and others.
Let us mention the process of evaluating text categorization systems and
algorithms on this text collection. The multiple classification task is decomposed
into 20 binary classification tasks, and some of them are selected by the planned
experiment scale. The training examples which correspond to the given category
and some of others are allocated as positive examples and negative examples,
respectively. The F1 measures are computed to the selected binary classification
tasks and are averaged into a single value. The process of doing so will be explained
in detail in Sect. 8.3.
Let us mention the previous cases of using the collection, 20NewsGroups, for
evaluating text categorization system. In 2005, the collection was used by Dong and
Han for evaluating the SVM (Support Vector Machine) Boost [13]. It was used in
2007 by Li et al. for evaluating the performances of hierarchical text categorizations
[59]. In 2011, it was used by Cai and He for designing text categorization systems
experimentally [9]. In 2015, it was used by Jo for comparing his proposed approach
to text categorization with the traditional ones [35].
The text collection may be used for evaluating the performances of hierarchical
text classifications. In the first level, we set the general multiple classification
where each item is classified into one of the four general categories. To each
general category, we allocate the specific multiple classification task where items
which correspond to their own general category are classified into one of its
specific categories. Both the general classification task and the specific ones may
be decomposed into binary classifications, and each of them is evaluated by the F1
measure. In integrating the classification results, we may assign higher weights to
the specific classification tasks, and a lower weight to the general classification task.

8.2.3

Reuter21578
This section is concerned with another standard text collection, Reuter21578. The
two collections, NewsPage.com and 20NewsGroups, are used for evaluating the
exclusive classifications, whereas the collection, Reuter21578, is used for evaluating
the overlapping classification. In the collection, more than 100 categories are given
162
8
Text Categorization: Evaluation
Table 8.3 The number of
Category
#Texts
#Training texts
#Test texts
texts in Reuter21578
Acq
2292
1596
696
Crude
374
253
121
Earn
3923
2840
1083
Grain
51
41
10
Interest
271
190
81
Money-FX
293
206
87
Ship
144
108
36
Trade
326
251
75
Total
7674
5485
2189
and a very variable number of texts is allocated to each category. The text may
belong to more than one category; the sparse categories with less than ten texts and
the dense categories with more than 1000 texts coexist. In this section, we describe
the collection, Reuter21578, as the typical standard text collection for evaluating the
classification results.
Table 8.3 illustrates the categories and the number of training and test examples
in Reuter21578. Even if more than 100 categories are available in the collection,
we list only some of them as the representative ones in Table 8.3. Only the two
categories have more than 1000 texts as the major ones, but the others have
much less than 1000. The number of texts has very unbalanced distribution over
categories; for example, the number of texts in the category, corn, has less than a
tenth of the number of texts in the category, earn. Texts which belong to more than
two categories exist in the collection.
This collection is used for evaluating the overlapping text classification per-
formance, as mentioned above. We select about ten categories as representative
categories as displayed in Table 8.3; note that empty categories without any text exist
in the collection. The overlapping multiple classification task is decomposed into
the ten binary classification tasks by the process which was described in Sect. 5.2.3.
The F1 measures are computed in each binary classification, and the micro- and
macro-averaged F1 is found, by the process which is described in Sect. 8.3. The
decomposition into binary classification tasks may be the option to the exclusive
multiple classifications, depending on a number of predefined categories, but is the
requirement to the overlapping ones.
Let us mention the typical previous cases of using the collection, Reuter21578,
for evaluating text mining systems. In 1999, the collection was used for evaluating
various approaches to text categorization by Yang and Liu [99]. In 2002, the
collection, Retuer21578, is mentioned as the most standard test collection for
evaluating text categorization systems by Sebastiani [85]. In 2006, the collection,
Retuer21578, was used for evaluating the text classification systems based on the
KNN by Tan [90]. This collection was used for evaluating text categorization
systems by Jo in 2015 [35].
8.2 Text Collections
163
The text collection, Reuter21578, is divided into R8, R16, and R52, depending
on the number of selected categories. There are actually 126 predefined categories
in the collection; 90 categories among them have at least one text. R8 is the version
where the top frequent 8 categories are used as the simple collection, and R52 is the
version where the top 52 categories are used as the advanced one. The categories are
unbalanced in this collection; some categories have no text. This collection is used
for evaluating the tolerances of text categorization systems to sparse categories as
well as the classification performances.

8.2.4

OSHUMED
Let us mention the text collection which is specialized to the medical domain; it
is called OSHUMED. The trials to converge the computer science with the biology
and the medicine motivate for processing information in this domain. The collection
is used for evaluating text categorization systems, specializing them in the medical
domain. The 22 categories about the medicine are given, and more than 20,000 text
are contained totally in the collection. In this section, we describe the collection of
medical documents with respect to its components and cases of using the collection
for evaluating text categorization systems.
The categories, the training set, and the test set of the collection are illustrated in
Table 8.4. The 22 medical categories and a various number of medical documents
in each category from 135 to 2560 are given in the collection. As shown in
Table 8.4, the test set is larger than the training set unlike the previous collection.
The collection is used for evaluating tolerances to sparse categories as well as
classification performance within the medical domain. The expert knowledge about
the medicine is required for building the collection by predefining the categories and
allocating sample texts.
The text collection, OSHUMED, is characterized as the one which is specialized
to the medical domain. The demand for process information in the domain is
increased by the necessity of implementing Ubiquitous Health Care Systems. The
text collection is used for evaluating text categorization systems, specializing for
the domain. Even if the classification in the collection belongs to the exclusive
classification, it is necessary to decompose the task into binary classifications,
because of the large number of categories. The specialization to the medical
domain makes the collection distinguished from the previous text collections:
20NewsGroups and Reuter21578.
Let us mention some previous cases of using the text collection for performance
evaluations. Use of this collection is traced even to 1996 [98]. In 1998, Joachims
initially proposed the SVM as an approach to the text categorization and used the
collection for evaluating it [47]. In 2011, the collection is also used for evaluating
the retrieval strategies by Kreuzthaler et al. [55]. In 2013, Jo used the collection
for evaluating his proposed approach to the text categorization and simulating the
semantic operations [33, 34].
164
8
Text Categorization: Evaluation
Table 8.4 Training and test set in the test bed: OSHUMED
Category name
Training set
Test set
Total
Bacterial infections and mycoses
423
506
929
Virus diseases
158
233
391
Parasitic diseases
65
70
135
Musculoskeletal diseases
1163
1467
2693
Digestive system diseases
283
429
712
Stomatognathic diseases
588
632
1220
Respiratory tract diseases
100
146
246
Otorhinolaryngologic diseases
473
600
1073
Nervous system diseases
125
129
254
Eye diseases
621
941
1562
Urologic and male genital diseases
162
202
264
Female genital diseases and and pregnancy complications
491
548
1039
Cardiovascular diseases
281
386
667
Hemic and lymphatic diseases
1259
1301
2560
Neonatal diseases and abnormalities
215
320
535
Skin and connective tissue diseases
200
228
428
Nutritional and metabolic diseases
295
348
643
Endocrine diseases
388
400
788
Immunologic diseases
191
191
382
Disorders of environmental origin
525
695
1220
Animal diseases
546
717
1263
Pathological conditions, signs and symptoms
92
91
183
Total
10,443
12,733
23,176
We need more considerations in specializing the text categorization system to
the medical domain. Additionally, we may need the external knowledge about the
medicine for building the classification capacity through the learning process. The
medical terms should be characterized in terms of their semantic ranges; some
medical terms may span over very wide categories and others may be specific to
a particular category. Because each medical term consists of more than one word,
in the tokenization process, bi-grams or n-grams should be generated rather than
only uni-grams. The words which appear frequently in the medical domains such as
patient, nurse, and doctor should be treated as stop words.
8.3
F1 Measure
In this section, we describe the process of evaluating the performances of text
categorization systems by computing the F1 measures. In Sect. 8.3.1, we mention
the process of building the contingency table from a binary classification and
8.3 F1 Measure
165
Table 8.5 Contingency table
#True positives
#True negatives
for binary classification
#Classified positives

A

B
#Classified negatives

C

D
computing the F1 measure. In Sect. 8.3.2, we explain the micro-averaged F1
measure which is built from merging the contingency tables. In Sect. 8.3.3, we
introduce the macro-averaged F1 as another evaluation measure. In Sect. 8.3.4, we
demonstrate the process of computing both, the micro-averaged F1 and the macro-
averaged F1, by a simple example.

8.3.1

Contingency Table
This section is concerned with the contingency table which is the results from a
binary classification. It was originally used for evaluating the information retrieval
systems, focusing on the number of retrieved relevant items; the columns stand for
true relevant and true irrelevant and the rows stand for retrieved and non-retrieved.
When the contingency table is introduced into the binary classification task, its
columns stand for true positive and true negative and its rows stand for classified
positive and classified negative, as shown in Table 8.5. The modified contingency
table is used for evaluating the binary classification performance, focusing on the
number of correctly classified positive items. In this section, we explain how to use
the contingency table for doing so.
Table 8.5 illustrates the contingency table which records the results from the
binary classification. It is assumed that the binary classification is to classify each
item in the test set into one of the two categories: positive class and negative class.
True positive indicates the number of test data items which are originally labeled
with positive class and classified positive indicates the number of test data items
which are classified into the positive class by the given classifier. The summation of
the entries in the contingency table which is shown in Table 8.5 is the total number
of test data items. In order to evaluate the binary classification performance, we need
to construct the contingency table after classifying the test data items.
We need to compute the evaluation metrics from the contingency table which is
presented in Table 8.5. The accuracy which is simple and popular is computed by
Eq. (8.1),
Accuracy =

A + D
(8.1)

A + B + C + D
We need to focus on the positive examples, if the given classification task is
decomposed into binary classifications. The precision and the recall are computed
by Eqs. (8.2) and (8.3), respectively,
166
8
Text Categorization: Evaluation
Precision =

A
(8.2)

A + B
Recall =

A
(8.3)

A + C
The precision is the rate of the number of correctly classified positive examples to
the number of examples which are classified into the positive class, and the recall
is the rate to the number of examples which are initially labeled with the positive
class.
Let us mention the F-alpha measure as the evaluation metric which integrated
the precision and the recall. They are anti-correlated with each other in evaluating
classification systems. The F-alpha measure is computed by Eq. (8.4),
precision · recall

Fα = (1 + α 2)
(8.4)

(α 2 · precision) + recall
If α > 1, the precision is weighted higher, whereas if α < 1, the recall is weighted
higher. If α = 1, both metrics are balanced; the F1 measure is computed by Eq. (8.5),

F 1 = 2 · precision · recall
(8.5)
precision + recall
As the alternative metric to the F1 measure, we consider the G measure which is
computed by Eq. (8.6),

G =
precision · recall
(8.6)
The text categorization and information retrieval systems are usually evaluated
with the balanced portion of the recall and the precision, but depending on
application area, we need to weight the two metrics differently. If we want to retrieve
technical documents from a limited source, we need to collect relevant technical
references as many as possible; in this case, the recall should be weighted higher
than the precision. In the case of spam mail filtering, we need to put more weight to
the precision, in order to avoid misclassifying ham mails into spam ones, as much
as possible. In the case of text summarization, the recall is more important than the
precision, because we avoid missing essential part as much as possible.

8.3.2

Micro-Averaged F1
This section is concerned with the scheme of averaging the F1 measures from con-
tingency tables corresponding to binary classification; it is called micro-averaged
F1. It is assumed that the classification task is decomposed into binary classification
8.3 F1 Measure
167
tasks as many as categories. A single contingency table is constructed by merging
ones which correspond to the binary classifications. By the process which is
described in Sect. 8.3.2, the precision, the recall, and the F1 measure are computed
from the integrated contingency table. In this section, we explain the micro-averaged
F1 and point out its characteristics.
It is assumed that the multiple classification is decomposed into the binary
classifications. The decomposition process was explained in Chap. 5. The categories
in the multiple classification are given as C 1 , . . . , C| C| and it is decomposed into the
binary classification tasks as BT 1 , . . . , BT| C|. There are the two classes in the binary
classification task, BTi: the positive class indicates that it belongs to the category,

Ci, and the negative class indicates that it does not. Relabeling and reallocating the
training examples become overhead for doing the decomposition.
After doing the decomposition, contingency tables are constructed as many
as categories. Ai, Bi, Ci, and Di are the number of correctly classified positive
examples, the number of negative examples which are misclassified into the positive
class, the number of positive examples which are misclassified into the negative
class, and the number of correctly classified negative examples, in the contingency
table which corresponds to the binary classification task, BTi. The integrated contin-
gency table is constructed by summing elements, category by category, as follows:
|

C|
| C|
| C|
| C|

A =

A

B

C

D

i=1

i , B =

i=1

i , C =

i=1

i , and D =

i=1

i . The precision and
recall are computed from the integrated contingency table by Eqs. (8.2) and (8.3),
and the micro-averaged F1 measure is computed by Eq. (8.5). The micro-averaged
F1 reflects the fact that the predefined categories are discriminated by their sizes.
Let us demonstrate the process of finding the micro-averaged F1 measure through
a simple example which is presented in Fig. 8.6. In the example, the total number of
correctly classified positive examples is counted by summing as follows:

A = 100 + 100 + 200 + 10 = 410
We count the total number of negative examples which are misclassified into the
positive class and the total number of positive examples which are misclassified
into the negative class as follows:

B = 150 + 150 + 200 + 10 = 510

C = 100 + 100 + 100 + 40 = 340
The precision and the recall are computed as follows:
recall =
410
= 0 . 5466
410 + 340
precision =
410
= 0 . 4456
410 + 510

168
8
Text Categorization: Evaluation
Fig. 8.3 Example of binary classifications
The F1 measure is computed by using the precision and the recall which are
computed above as follows:
F1 = 2 · 0 . 5466 · 0 . 4456 = 0 . 4909
0 . 5466 + 0 . 4456
Let us mention the scheme of averaging the F1 measures from the decomposed
binary classifications. In the example which is presented in Fig. 8.3, the category,
IT, is most sparse. The recall, the precision, and F1 measures are computed as 0.2,
0.5, and 0.2857, respectively. The category influences very weakly on computing
the micro-averaged F1. In the next section, we observe the differences between the
two averaging schemes.

8.3.3

Macro-Averaged F1
This section is concerned with another scheme of averaging F1 measures, called
macro-averaged F1 measure. Both the averaging schemes are used for evaluating
text categorization systems in previous literatures, altogether. F1 measures, which
correspond to binary classifications into which the text categorization is decom-
posed, are averaged regardless of category sizes in the macro-averaged F1. In this
averaging scheme, sparse categories have relatively higher influence, compared
with the micro-averaged F1. In this section, we explain the characteristics of this
averaging scheme and describe the process of computing it from F1 measures.
8.3 F1 Measure
169
Let us consider the distributions over categories, before describing the process of
computing the macro-averaged F1. If the distribution over categories is completely
balanced, both the micro-averaged F1 and the macro-averaged F1 are the same as
each other. A variable distribution over categories causes the gap between both the
averaging schemes. In the micro-averaged F1 which was covered in Sect. 8.3.2,
categories are weighted implicitly, proportionally to their sizes. However, in the
macro-averaged F1, categories are weighted identically regardless of their size.
The contingency tables corresponding to the predefined categories are con-
structed under the assumption that the given classification task is decomposed
into the binary classifications. The recall, the precision, and the F1 measure are
computed from each contingency table instead of merging them into the integrated
version. The macro-averaged recall and the macro-averaged precision are computed
by averaging those of contingency tables by Eqs. (8.7) and (8.8),
| C|
macro-recall = 1
recall
|

i
(8.7)

C| i=1
| C|
macro-precision = 1
precision
| C|

i
(8.8)

i=1
The macro-averaged F1 is computed by averaging over the F1 measures, by
Eq. (8.9),
| C|
macro-F1 = 1
F1
|

i
(8.9)

C| i=1
As shown in Eq. (8.9), identical weights are assigned to the categories, regardless of
their sizes.
Let us compute the macro-averaged F1 from the example which is illustrated
in Fig. 8.3. In Sect. 8.3.4, we already computed the micro-averaged F1 as 0.4909.
We may compute the four F1 measures which correspond to the contingency
tables: 0.4444, 0.4444, 0.5714, and 0.2857. By averaging them, we obtain the
macro-averaged F1, 0.4364. The fact that the macro-averaged F1 is less than the
micro-averaged F1 means weak tolerance to the sparse category, sports, in the
example which is presented in Fig. 8.3.
The micro-averaged F1 measure is used more frequently for evaluating the
performances of text categorization and information retrieval systems. The macro-
averaged F1 is usually used for evaluating the tolerances to sparse categories of
both kinds of systems, rather than performance. If the distribution over categories
completely balanced, the values of both F1 measures are the same as each other.
The macro-averaged F1 is less than the micro-averaged as shown in the example
in Sect. 8.3.3, it means the weak tolerance to the sparse category, compared to its
performance. In conclusion, we recommend that both kinds of F1 measures should
be used for evaluating text categorization systems.
170
8
Text Categorization: Evaluation
Fig. 8.4 Process of
decomposing into four binary
classifications

8.3.4

Example
This section is concerned with the demonstration of evaluating a text categorization
system by a simple example. The example was previously mentioned in Sects. 8.3.2
and 8.3.3, for explaining the computation of the micro-averaged F1 and the macro-
averaged F1. The task which is mentioned in this section is to classify each text
into one of the four categories: politics, economy, IT, and sports. The results are
illustrated from classifying texts by a particular algorithm in Fig. 8.3. In this section,
we present the process of computing both the kinds of F1 measure by an example.
Figure 8.4 illustrates the process of decomposing the task of classifying a text
into one of the four categories into the four binary classifications. The binary
classifiers as many as the categories are allocated; each text is classified into the
positive class or the negative class. The sample texts which belong to their own
categories are given as positive examples, and some sample texts which do not
belong to the category are given as negative examples. The positive class means that
the text belongs to the corresponding category, whereas the negative class means
that it does not belong to the category. The decomposition process is explained in
Sect. 5.2.3.
The results from the four binary classifications are presented as the four
contingency tables in Fig. 8.3. The contingency tables were mentioned in
Sects. 8.3.2 and 8.3.3, as the example of computing the micro-averaged F1 and
the macro-averaged F1. The explanation about the contingency table was provided
in Sect. 8.3.1. The category, IT, is the majority category which contains the largest
number of texts, and the category, sports, is the most sparse category which contains
the smallest number of texts. The F1 measure of a contingency table was already
mentioned in Sect. 8.3.3.
Table 8.4 presents the values from evaluating the classification results which are
illustrated in Fig. 8.3. The micro-averaged recall, precision, and F1 are computed by
merging the contingency tables into one table. The macro-averaged ones are com-
puted by averaging recalls, precisions, and F1 measures of the contingency tables.
The macro-averaged values are less than the micro-averaged ones in evaluating a
text classification system; that means that its tolerance to sparse categories is weak
compared with its own performance. In evaluating text categorization systems on
8.4 Statistical t-Test
171
the collection, 20NewsGroups, there is little difference between the two averaging
schemes, because of all most identical categorical sizes in the collection, whereas
in doing so on the collection, Reuter21578, there is outstanding difference between
them, because of very variable categorical sizes.
Let us interpret the micro-averaged F1 and the macro-averaged one in comparing
the two text categorization systems. They may be evaluated by either of the two
averaged schemes on the test collection with almost identical categorical sizes,
such as 20NewsGroups. When evaluating the systems on the collection, such as
Reuter21578, both of them are needed. It is assumed that as the results from
evaluating the two systems, text categorization system A has its better micro-
averaged F1 and text categorization system B has its better macro-averaged F1.
From the evaluation, it is concluded that system A has its better general performance
and system B has its better tolerance to the sparse category.
8.4
Statistical t-Test
This section is concerned with the Student’s t-test for comparing two approaches
to the text categorization with each other. In Sect. 8.4.1, we introduce and study the
Student’s t- distribution. In Sect. 8.4.2, we discuss the process of comparing the two
samples from their own populations based on the t-distribution. In Sect. 8.4.3, we
mention the process of comparing pairs each of which is measured in its unique
condition with each other. In Sect. 8.4.4, we demonstrate the process of comparing
the two approaches with each other and making the hypothesis by a simple example.

8.4.1

Student’s t-Distribution
This section is concerned with the Student’s t-distribution which is a continuous
probability distribution. The Gaussian distribution is also a continuous probability
distribution which is assumed to be the most popular distribution over data. The
Student’s t-distribution is the variant of the Gaussian distribution which allows more
spreading, depending on variable sample sizes. If the sample size reaches more
than 30, the two distributions will be the same as each other. In this section, we
describe the Student’s t-distribution which is used for comparing approaches to the
text categorization.
Both the Gaussian distribution and the t distribution are illustrated in Fig. 8.5,
which is taken from the website , http://tstudent.altervista.org/site/tstudentnormal.
Both the distributions form bell shapes; the t distribution is broader than the
Gaussian distribution. The means of both the distributions are zeros but the t-
distributions have their standard deviation which is greater than that of the Gaussian
distribution. The t-distribution was intended to reflect the higher fluctuation around
the population mean by the small-sized sample one. Therefore, the t-distribution
was derived from the Gaussian distribution by widening its shape.
172
8
Text Categorization: Evaluation
Standard normal
distribution (Z-distribution)

t-distribution
−3
−2
−1
0
1
2
3
Fig. 8.5 Gaussian
and
Student’s

t -distribution
from
http://tstudent.altervista.org/site/
tstudentnormal
The table of the t-distribution for finding the z values is illustrated in Fig. 8.6,
which is taken from the website, http://albertsblog.blogspot.kr/2010/08/student-t-
distribution-table.html. In Fig. 8.6, the columns indicate the error probability and rows indicate the degree of freedom which is sample size minus one. Each entry in
Fig. 8.6 which is determined by the error probability, α, and the degree of freedom
indicates the critical Z value. For example, if the sample size is ten and α = 0 . 05,
the z value becomes 1.833 which is crossed by 0.05 and 9 which is the degree of
freedom. The Z value which is shown as an entry in the table is the scaled difference
between two experiments.
The two purposes of using the Student’s t-distribution is to estimate population
values and to make the hypothesis test of sample means. Samples are gathered
from a population and sample mean and variance are computed from them. The
interval of the population mean is defined by the sample mean and variance. There
are two hypotheses in the test: one is the null hypothesis that the sample mean and
the population mean are little different and the other is the alternative hypothesis
that they are very different. The null hypothesis is initially assumed, the z value
is computed, and it is compared with the z-threshold which is gained from the
table which is shown in Fig. 8.6. If the z value is less than the z-threshold, the null
hypothesis is accepted, otherwise it is rejected.
Figure 8.7, which is from http://www.statsdirect.co.uk/help/content/distributions/
t.htm, presents the changes of Student’s t-distributions by the degree of freedom.
The three degrees of freedom, 5, 15, and 25, are given in the Student’s t-
distributions. The Student’s t-distribution with the degree of freedom 25 is most
concentrated, but the one with the degree of freedom 5 is most spread, as shown

8.4 Statistical t-Test
173
Fig. 8.6
Z values in Student’s t-distribution from http://albertsblog.blogspot.kr/2010/08/student-
t-distribution-table.html
in Fig. 8.7. In the small-sized sample which corresponds to df (degree of freedom)
= 5, the probability of mean is decreased but probabilities of extreme values
are increased. Therefore, the Student’s t- distribution is viewed as the Gaussian
distribution which is adjusted by the degree of freedom which indicates the sample
size.

174
8
Text Categorization: Evaluation
Fig. 8.7 Changes of
Student’s t-distributions by df
from http://www.statsdirect.
co.uk/help/content/
distributions/t.htm
Fig. 8.8 Values from two
populations for unpaired
difference inference

8.4.2

Unpaired Difference Inference
This section is concerned with the process of making the inferences from two
populations. The two groups of samples are made by selecting them at random from
their own populations. The means and the variances are computed from the two
groups of samples. By the Student’s t-distribution, based on the mean difference, it
is decided whether the two populations are different from each other, or not. In this
section, we describe the process of making the inferences about the two populations.
The values are derived from the two populations as samples, as illustrated in
Fig. 8.8. The values are selected from the two populations at random, to make the
two groups of samples: X 1 , X 2 , . . . , Xn and Y 1 , Y 2 . . . , Yn. It is assumed that the
condition under which the sample values are generated applied identically to the
both populations. The sample means are computed in Eq. (8.10),

n

n
¯ X =

Xi, ¯

Y =

Yi
(8.10)

i=1

i=1
8.4 Statistical t-Test
175
Generating the two groups of samples is tended to test the difference between the
two populations by observing the difference between the means.
The t value is computed as the important factor for making the hypothesis test
based on the t distribution. It is assumed that two sample sizes are identically
set to n. The standard deviation which spans the two populations is computed by
Eq. (8.11),

n

n

s =

i=1 (Xi − ¯

X) 2 +

i=1 (Yi − ¯

Y) 2
(8.11)
2 (n − 1)
The t value is computed by Eq. (8.12),
| ¯ X − ¯ Y |

t =
(8.12)

s
1
2 n
The t value is proportional to the difference between the two means, but anti-
proportional to the standard deviation as shown in Eq. (8.12).
After computing the t-value by the process which is mentioned above, we need to
make the hypothesis test, in order to decide whether the null hypothesis is accepted
or rejected. If the statement that there is no difference between the two populations
is set as the null hypothesis, the hypothesis test is made, based on the two-tailed
test. The t-value threshold is retrieved under the confidence 95%, α = 0 . 05 based
on the degree of freedom, 2 (n − 1), from the table which is illustrated in Fig. 8.6.
The t-value which is computed by Eq. (8.12) is compared with the threshold which
is from the table; if the t value is greater than the threshold, the null hypothesis is
rejected. The rejection indicates that the two populations should be distinguished
from each other with the confidence 95%.
Let us mention several cases of applying the unpaired difference inferences. It
is used for testing the difference of average incomes of labors in two cities. We
may consider the difference of academic achievements of students between two
universities as a case of using the unpaired difference inference. We may test the
difference of averaging living cost of an urban life and a rural life, using what
is described in this section. The difference of grain harvest amounts between two
regions is considered for using it.

8.4.3

Paired Difference Inference
This section is concerned with the hypothesis test for paired differences. The
samples from two populations are measured under an identical condition in the
unpaired case. In this case, difference conditions are applied to sample pairs, one
by one. What is covered in this section will be applied for evaluating two text
categorization systems on different test collections. In this section, we explain the
process of making the hypothesis test to paired differences, in detail.
176
8
Text Categorization: Evaluation
Fig. 8.9 Values from two populations for unpaired vs paired difference inference
Figure 8.9 illustrates the differences between the unpaired difference inference
which was covered in Sect. 8.4.2 and the paired one. In both inferences, the two
groups of samples are generated from their own populations at random. In the
unpaired difference inference, the same condition of generating samples is applied,
whereas in the paired one, the different conditions are applied. In each group, in the
unpaired difference inference, samples in each group are unordered, while in the
paired one, samples are ordered. The goal of both kinds of inference is to make the
hypothesis test with the two samples based on their difference.
Let us describe the process of computing the t-value from the two sample
sets, X 1 , X 2 , . . . , Xn and Y 1 , Y 2 · · · , Yn. It is assumed that different conditions are
applied for each pair of sample values, Xi and Yi. From the two sample sets, we
generate the difference samples, d 1 , d 2 , . . . , dn where di = Xi − Yi, and the mean
and the standard deviation are computed by Eqs. (8.13) and (8.14), respectively,

n
¯ d = 1

di
(8.13)

n i=1

n

s
1

d =

(di − ¯

d) 2
(8.14)

n i=1
The t value is computed by Eq. (8.15),
¯ d

t =
(8.15)

s
1

d

n
By the t value, it is decided whether the two populations are different from each
other, or not.
8.4 Statistical t-Test
177
We need to make the hypothesis about the difference between the two groups of
samples. The null hypothesis is set as the statement that the two populations are not
different from each other. The t value threshold is retrieved from the table which
is shown in Fig. 8.6, with the degree of freedom, n − 1 and α = 0 . 05. The t value
which is computed by the above process is compared with the t value threshold
which is taken from the table; if the computed t value is greater than or equal to the

t value threshold, the null hypothesis is rejected. It means that the two populations
are different from each other, with the confidence 95%.
Let us mention some cases to which the paired difference inference is applicable.
The hypothesis test is used for comparing the effectiveness of two medicines to
different patients. The performances of two vehicles in different kinds of roads
are compared using this kind of the hypothesis test. The better performance of the
proposed text categorization approach is confirmed through the hypothesis test. It
may be used for comparing the populations of two political candidates, distinct by
distinct.

8.4.4

Example
This section is concerned with the practice of evaluating two classifiers based on
the t-distribution. It is assumed that the two classifiers are evaluated on the different
test collections: different conditions. So, we adopt the paired different inference,
and make the inference about the results of the classifiers by the process which was
described in Sect. 8.4.3. The confidence level is set as 95%, the degree of freedom
is given as the number of conditions minus one, and the threshold value is taken
from the table in Fig. 8.3. In this section, we demonstrate the process of making the
inference on the comparison of two classifiers by the example which is shown in
Table 8.6.
The results from evaluating the two classifiers are presented in Table 8.6. The
second and third columns indicate the results of the two classifiers, and the last
column shows the differences between them. Each row indicates its own test
collection on which the two classifiers are evaluated. The values in Table 8.6 in
the second and third columns are F1 measures of classifiers. In Table 8.6, classifier
II has its better performance in three of the four test collections.
The t-value is computed from the example of paired difference inference. We
discover that the difference mean is 0.0837 by averaging values in the last column in
Table 8.6. The value, 0.0611, is obtained as the standard deviation of the differences.
Table 8.6 Accuracies of two
Case
Classifier I
Classifier II
Difference
classifiers
Case 1
0.732
0.843
0.111
Case 2
0.766
0.923
0.157
Case 3
0.822
0.812
−0.01
Case 4
0.834
0.911
0.077
178
8
Text Categorization: Evaluation
The t value is computed by Eq. (8.15) as 0.2847. Because the two classifiers are
evaluated on their different conditions, the unpaired difference inference which was
covered in Sect. 8.4.2 is not applicable to this case.
We need to make the hypothesis about the difference between the two groups of
samples. The null hypothesis is set as the statement that the two populations are not
different from each other. The t value threshold is retrieved from the table which
is shown in Fig. 8.6, with the degree of freedom, n − 1 and α = 0 . 05. The t value
which is computed by the above process is compared with the t value threshold
which is taken from the table; if the computed t value is greater than or equal to the

t value threshold, the null hypothesis is rejected. It means that the two populations
are different from each other, with the confidence 95%.
The hypothesis test is made by the t distribution about the experimental results
which are presented in Table 8.6. Classifier II shows actually better performances
than classifier I in three of the four test collections. In spite of that, by the hypothesis
test, it was concluded that the classifiers have almost the same performances on the
four tests. In order to reject the hypothesis, we must make experiments on the 100
test collections from Eq. (8.14). With only about 50%, we support that Classifier II
has its better performances, from the results in Table 8.6.
8.5
Summary and Further Discussions
This chapter is summarized as evaluating text categorization systems by the F1
measures and comparing two systems based on the t-distribution. We introduced
some text collections, such as 20NewsGroups and Reuter21578, for evaluating the
text categorization systems. The text categorization system was evaluated by the
F1 measure, assuming that the text categorization task is decomposed into binary
classification tasks as many as categories. The two systems are compared with each
other, based on the hypothesis test of the paired differences between them, by the t
distribution. In this section, we make the further discussion about what we studied
in this chapter.
Other text collections are available other than ones which were covered in
Sect. 8.1. Spambase data set which is the collection of emails was used for
evaluating the spam mail filtering systems. Amazon book reviews, which is the
collection of positive and negative reviews on books, are used for evaluating
sentimental analysis systems. The collection of sentences rather than articles is used
for classifying sentences by authors’ intentions. The test collections for evaluating
the machine learning algorithms as well as text collections are provided from the
website , https://archive.ics.uci.edu/ml/index.html.
The performance of text categorization may be dependent on the domain. Even
if a classifier has very excellent performance on a particular domain, it is not
guaranteed that it has such performance on another domain. The collections of
news articles, such as 20NewsGroup and Reuter21578, are used popularly for
validating empirically performances of text classifiers. Recently, Jo suggested the
8.5 Summary and Further Discussions
179

empirical validation on test collections specific domains such as medicine, law, and
engineering, after validating on ones on broad domains. Prior domain knowledge as
well as training examples are utilized for improving text classification performances,
especially in specific domains.
The ROC (Receiver Operating Characteristic) curve is considered as an alter-
native evaluation metric. It involves the true positive rate which is the rate of the
positive examples which are classified correctly to the total positive examples and
the false positive rate which is the rate of the positive examples which are classified
into negative class to the total positive examples. The curve is drawn in the two
dimensional coordination where the x-axis is the false positive rate and the y-axis is
the true positive rate. If the curve is drawn in the top-left direction, it indicates the
desirable performance. The top-left indicates the high true positive rate and the low
false positive rate.
The ANOVA (Analysis of Variance) is the statistical analysis for comparing more
than two groups with their means. The t-test of the paired difference inference is
used for comparing the two approaches with each other in different conditions.
The goal of ANOVA is to decide whether more than two groups are different from
each other, or almost sample. In other words, the ANOVA is used for comparing at
least three approaches with one another. However, it is not used for deciding which
approach is best.
Part III
Text Clustering
Part III is concerned with the concepts, the approaches, the implementation, and
the evaluation of the text clustering systems. We explore the text clustering types in
the functional view as the start of this part. We mention the typical text clustering
approaches and present implementations in Java. We describe the schemes of
evaluating the text clustering system. We cover the text categorization and the text
clustering in Parts II and III, respectively.
Chapter 9 is concerned with the text clustering in the functional and conceptual
view. We will mention the four types of text clustering by results: hard vs soft
text clustering, flat vs hierarchical text clustering, and single vs multiple viewed
text clustering. We present some directions of clustering texts, similarity-based
clustering, prototype-based clustering, and growth- based clustering. We also
mention fusion tasks of clustering and classification. In the subsequent chapters,
we specify the text clustering with respect to the approach and the implementation.
Chapter 10 is concerned with some representative approaches to the text cluster-
ing which are the unsupervised learning algorithms. This chapter begins with the
AHC algorithm which is a simple and popular approach. Afterward, we describe in
detail the k means algorithms and its variants. We present the SOM (Self-Organizing
Map), together with the WOBSOM which is the typical case of applying it to the
text clustering. In this book, the scope of text clustering approaches is restricted to
only machine learning algorithms.
Chapter 11 is concerned with implementing the text clustering system in Java.
In the beginning of this chapter, we present a class list, together with their roles in
implementing the system. We explain in detail the methods in the classes which are
involved in implementing it, together with the method implementations. We show
the demonstration of the implemented system, through a simple example. Note that
the AHC algorithm is adopted in implementing the system, in the chapter.
Chapter 12 is concerned with the schemes of evaluating results from clustering
texts. We mention schemes of evaluating clustering results and point out their
limits. Afterward, we describe the evaluation schemes which are specialized for the
clustering task, including the clustering index. We mention the modified version of
the existing clustering algorithm where the parameter tuning based on the clustering
index is installed. Therefore, the text clustering is covered from Chaps. 9–12, in
this book.

Chapter 9
Text Clustering: Conceptual View
This chapter is concerned with the conceptual view of text clustering tasks. We make
the general discussions concerned with text clustering in Sect. 9.1, and compare the
task of data clustering with other data mining tasks in Sect. 9.2. In Sect. 9.3, we
explore the mutually opposite types of text clustering depending on dichotomies.
We mention the real tasks which are derived from text clustering in Sect. 9.4, and
make the summary and the further discussions on what we study in this chapter in
Sect. 9.5. In this section, we describe the text clustering with its functional view.
9.1
Definition of Text Clustering
Text clustering refers to the process of segmenting a text group into subgroups
of content-based similar ones. It is possible to cluster texts by their character
combinations, called lexical clustering, but the kind of clustering is covered in this
chapter. It is called semantic clustering to cluster texts based on their contents or
meaning, and it will be covered in this study. It is assumed that texts are not labeled
at all and unsupervised learning algorithm which are mentioned in Chap. 10 are
adopted for this task. In this section, we describe briefly the text clustering before
discussing it in detail, together with the review of text categorization which was
covered in the previous part.
Let us review briefly the text categorization which was covered in the previous
part, in order to help to characterize the text clustering. The text categorization was
mentioned as the process of classifying texts into one or some of the predefined
categories. The supervised machine learning algorithms, such as K Nearest Neigh-
bor, Naive Bayes, or Support Vector Machine, are used as the main approaches.
The performances of text categorization systems and approaches are evaluated by
the accuracy or the F1 measure which were mentioned in Chap. 8. Both the text
© Springer International Publishing AG, part of Springer Nature 2019
183
T. Jo, Text Mining, Studies in Big Data 45,
https://doi.org/10.1007/978-3-319-91815-0_9
184
9
Text Clustering: Conceptual View
categorization and the text clustering may be integrated into a particular task, rather
than two independent tasks, as mentioned in Chap. 16.
The text clustering is characterized with several agenda differently from other
text mining tasks, such as the text categorization and the text association. A group
of texts is given as the input and anonymous groups of them are the results
from clustering the texts. The text clustering proceeds depending strongly on the
similarities among the texts; it is very important task how to define similarity
metrics. Cluster prototypes are initialized randomly or arbitrarily, and optimized into
to maximize item similarities within each cluster and minimize similarities between
clusters. The set of texts is never partitioned into the training set and the test set, in
evaluating text clustering systems.
The text clustering is coupled with the text categorization for automating the
preliminary tasks. Because manual labeling is very tedious job, it is not easy to
gather labeled examples, but it is easy to gather unlabeled ones. The labeled text
collection is able to be constructed by clustering unlabeled texts and naming the
clusters as the sample texts for implementing text categorization systems. The list
of cluster names becomes that of predefined categories and texts within each cluster
become the sample texts which are labeled with its cluster name. Coupling of both
the tasks is proposed and implemented by Jo in 2006 [25].
The text clustering is compared with the two tasks, the text categorization and the
text association in the previous parts. In comparing the text association and the text
clustering with each other, the former defines unidirectional relations among texts,
while the latter defines the bidirectional relations among them. The preliminary
tasks, such as category predefinition and sample text preparation, are required
for the text categorization. The text clustering tends to be coupled with the text
categorization into a single task, as mentioned above. Association rules among texts
which are generated from the text association become useful contexts for doing the
text clustering and the text categorization.
9.2
Data Clustering
This section is concerned with the generic data clustering in its functional and
conceptual view and consists of the four sections. The clustering itself is described
in its functional view in Sect. 9.2.1. In Sect. 9.2.2, the clustering is compared with
the association, in order to distinguish them from each other. In Sect. 9.2.3, the
clustering and the classification are compared with each other. In Sect. 9.2.4, the
constraint clustering is mentioned as the special clustering where some labeled
examples are provided.
9.2 Data Clustering
185
Fig. 9.1 Data clustering

9.2.1

SubSubsectionTitle
The data clustering is illustrated in Fig. 9.1. A single group of various data items is
given as the initial clustering status. The single group is segmented into the several
subgroups which are called clusters, depending on the similarities among data items.
The data items within their own subgroup should be similar as each other, ones in
different subgroups should be discriminated among each other. In this section, we
describe the data clustering, in its functional view.
Computing the similarities among examples and clusters is very important task
for clustering data items. The similarity metrics between two individual items which
are represented into numerical vectors are previously expressed in Eqs (6.1) and
(6.4). We set the similarity between an individual item and a cluster as the similarity
between its represented vector and the mean vector of the cluster. The similarity
between two clusters is computed by the similarity between mean vectors which
correspond to them. We may use the maximum or the minimum of similarities of all
possible pairs of items as the similarity between the two clusters.
Even if the clustering proceeds differently depending on clustering algorithm, the
general frame of doing it exists. We mentioned above the computation of similarities
among items or clusters as the core operation which is necessary for clustering
data items. The clusters are characterized by their prototypes or their representative
examples, and the data items are arranged by the likelihoods with the clusters. The
two steps, cluster characterization and data item arrangement, are iterated until the
cluster characteristics become stable; they change very little. The stable cluster
characteristics and the clusters of data items are the final results from the data
clustering.
Let us mention some clustering algorithms which are approaches to the text
clustering. The AHC algorithm is mentioned as a typical clustering algorithm, and it
is simplest but has highly time complexity. We may consider the k means algorithm
as the most popular clustering algorithm. The k means algorithm may be the fuzzy
version where memberships of data items in clusters are computed. It belongs to the
EM (Estimation and Maximization) algorithm where data items are clustered with
the two steps: the estimation step and the maximization step.
Let us compare the clustering task with other data mining tasks: association,
classification, regression, and outlier detection. The data association is referred to
the process of extracting association rules which are given as if–then ones from a
collection of item sets. The data classification is defined as the process of assigning
186
9
Text Clustering: Conceptual View
Table 9.1 Association vs
Association
Clustering
clustering
Input
Item sets
Item group
Output
If then rules
Clusters
Relation
Causal
Similar
Direction
One direction
Both directions
one or some of the predefined categories to each data item by analyzing the labeled
sample ones. The regression is the process of estimating a continuous output value or
values by analyzing input factors and previous output values. The outlier detection
which is an additional data mining task is the process of detecting and removing
alien data items and noisy ones for cleaning data items.

9.2.2

Association vs Clustering
This section is concerned with the comparison of the text clustering with the text
association. The text association means the process of extracting association rules
as if–then forms between texts; it was studied in Chap. 4. As the distinguished
characteristics of the two tasks, the text association pursues for casual relations
among texts, whereas the text clustering does for similarities among them. They
are distinguished from each other, but they may be combined with each other. In
this section, we investigate the differences between tasks and connect them with
each other.
We described the process of associating data items in Chap. 4. In the association,
item sets are given as the input, initially. All association rules each of which consists
of a single item which is the conditional part, and items which are its causal parts
are extracted. For each association rule, we compute its support and confidence and
select some with their higher supports and confidences than the given threshold
among them. The difference between the two tasks is that in the association, the
item sets are given as the input whereas in the clustering a single group of items is
given as the input.
Table 9.1 illustrates the comparison of the two tasks: clustering and association.
In the association, item sets are given as the input, whereas a single group of
items is given as the input in the clustering. In the association, if–then rules are
generated as the output, whereas in the clustering, clusters of similar items are
generated. In the association, its results indicate causal relations among items,
whereas in the clustering, its results indicate similarities. The causal relations are
unidirectional which does not guarantee its reverse equivalence, but the similarities
are bidirectional which does it.
The results from clustering data items may become the input for doing the data
association. The clusters which are generated as the output are viewed as item
sets. The association rules are extracted from the clusters, using the association
9.2 Data Clustering
187
algorithm, apriori algorithm. It becomes possible to find the association rules from
individual items by means of data clustering. However, note that this type of data
association is sensitive to the results from data clustering.
The word association rules are generated from texts by the above process. The list
of words which are given the conditional parts of association rules becomes the list
of taxonomies. In each association rule, texts which are relevant to the words in the
causal part are retrieved in each association rule. In generating taxonomies from the
association rules, each association rule is transformed into a topic and texts which
belong to it. Texts should be encoded into lists of words through text indexing for
doing the word association.

9.2.3

Classification vs Clustering
The classification was already covered in the previous part, by studying the text
categorization. We mention the classification in this section for distinguishing the
clustering from the classification. The classification task is referred to the process
of assigning one or some of the predefined categorization to each data item. The
clustering task looks similar as the classification in that each item is arranged into
one or some clusters. In this section, we explain briefly the classification task in the
functional view and compare it with the clustering task.
Let us review the process of classifying data items which was covered in Part III.
We predefined categories as a list or a tree, and gather training examples which
are labeled with one or some of the predefined ones. The classification capacity is
constructed by the process called supervised learning with the training examples.
Novice examples are classified with the constructed classification capacity. The
supervised learning is performed by minimizing differences between the true labels
and the classified ones of training examples.
The comparisons between the classification and the clustering are illustrated in
Table 9.2. The classification categories are defined automatically through clustering,
whereas they are defined manually in the classification. The supervised learning
algorithms are applied to the classification, whereas the unsupervised learning
algorithms are done to the clustering. In the clustering, a group of data items is
given as the input, whereas in the classification, a single data item is given as the
input. In the clustering, subgroups each of which contains similar data items are
generated as the output, whereas one or some among the predefined categories are
assigned to each item in the classification.
Table 9.2 Clustering vs classification
Clustering
Classification
Classification categories
Automatic definition
Manual definition
Machine learning type
Unsupervised learning
Supervised learning
Input
Group of data items
Single data item
Output
Subgroups of similar data items
Category or some categories
188
9
Text Clustering: Conceptual View
The results from clustering the data items are significant to doing the data
classification. The clustering results consist of the predefined categories and the
sample texts which belong to each of them. A list of clusters or a cluster hierarchy
becomes the predefined category structure and the texts which are contained in each
cluster are sample ones which are labeled with its corresponding cluster identifier.
The data clustering automates the preliminary tasks for the text categorization,
here. The results from clustering data items are used as sample texts for learning
a supervised learning algorithm for performing the text categorization.
The event detection and tracking was mentioned as a typical case of combining
the text categorization with the text clustering [2]. The event detection means the
process of deciding whether the current news article deals with a particular event, or
not, as the special instance of text clustering [8]. The event tracking is the process
of tracing events of other news articles using the detected ones as the special case of
text categorization. News articles about a particular event are grabbed by the event
detection and related news articles are retrieved by the event tracking. Detection and
tracking of topics as well as events exist.

9.2.4

Constraint Clustering
This section is concerned with the constraint clustering where some labeled
examples are provided. Figure 9.2 illustrates the constraint clustering as a diagram.
Both labeled examples and unlabeled ones are used for clustering both kinds of
them. Only small number of labeled examples is usually given as references for
clustering unlabeled ones. In this section, we explain the constraint clustering in
detail, and compare it with other tasks.
Fig. 9.2 Constraint
clustering
Labeled
Unlabeled
Examples
Examples
Initially
Clustered
Examples
Clustering
9.3 Clustering Types
189
Let us compare the constraint clustering with the clustering which was mainly
covered in this part. In the clustering, it is assumed that all examples are unlabeled,
whereas in the constraint clustering some examples may be labeled by the prior
knowledge or accidently. In the clustering, it proceeds depending on similarities or
distances among examples purely, and in the constraint clustering, it does depending
on similarities or distance and labels of some examples. In both the clustering and
the constraint clustering, their ultimate goal is to segment a group of items into
subgroups of similar ones. In the clustering, clustering prototypes are initialized at
random, and in the constraint clustering, they are initialized based on some labeled
examples.
The constraint clustering is similar as the pure clustering except the fact that some
labeled examples are given, additionally. In the constraint clustering, a small number
of labeled examples and a large number of unlabeled ones are given as the input;
unlabeled examples are given as the majority of data items. The labeled examples
are arranged into their clusters which correspond to their labels, in advance, and the
cluster prototypes are initialized based on the labeled ones. The unlabeled examples
are clustered by a clustering algorithm, afterward. The both kinds of examples are
used for learning like the semi-supervised learning.
Let us compare the constraint clustering with the semi-supervised learning. In
both the tasks, both labeled examples and unlabeled ones are used, as mentioned
above. However, they have their different goals; the semi-supervised learning is
intended for the classification and the regression, whereas the constraint clustering
is done for the clustering. The semi-supervised learning involves both the supervised
learning algorithm and the unsupervised ones, while the constraint clustering
involves only unsupervised one [73]. In the semi-supervised learning, unlabeled
examples are used as the additional ones, whereas in the constraint clustering, the
labeled ones are used as constraints for clustering data items.
Let us mention the alien cluster which consists of very sparse number of data
items. When plotting data points in the two- dimensional space, it may be discovered
that some points are far from main clusters. The groups of the points are called alien
clusters or outliers [91]. The sparse clusters are generated as some among a large
number of small sized clusters, or they may be generated as noises in the case of
a small number of large clusters. This kind of clusters should be removed by the
process which is called outlier detection [91].
9.3
Clustering Types
This section is concerned with the clustering types by various views. In Sect. 9.3.1,
we mention the offline vs the online clustering. In Sect. 9.3.2, we explain the two
clustering types, the crisp clustering and the fuzzy clustering. In Sect. 9.3.3, we
describe the flat clustering and the hierarchical clustering, depending on whether
any nested cluster is allowed, or not. In Sect. 9.3.4, we introduce the single viewed
and the multiple viewed clustering.
190
9
Text Clustering: Conceptual View

9.3.1

Static vs Dynamic Clustering
This section is concerned with the two types of data clustering: static clustering
and dynamic clustering. The dichotomy for dividing the clustering task into the
two types is whether data clusters as the clustering results are fixed or continually
variable. In the static clustering, results from clustering data items are fixed, whereas
in the dynamic clustering, results from doing so are updated, continually. In the
previous works on data clustering, the static clustering has been assumed for
explaining the clustering algorithm. In this section, we explain the two types of
clustering, individually, and compare them with each other.
The static clustering is one where it is assumed that the clustering results are
fixed, once data items are clustered. Until now, the clustering algorithms have been
explained under the assumption of the static clustering. A group of various data
items is given as input and clusters of similar ones which are results are fixed.
However, there is possibility of adding more data items and deleting some from the
results, so the data items should be reorganized, accordingly. In the static clustering,
the real situation is overlooked.
Let us consider the dynamic clustering which is opposite to the static clustering.
The dynamic clustering is one where as more data items are added or some items are
deleted, continually, the data items are reorganized, accordingly. There are two kinds
of reorganizations: the hard organization which organizes all of data items again by
a clustering algorithm and the soft organization which merges some clusters into
one or divides one into several clusters for reorganizing data items. We need to
measure the current organization quality, in order to decide whether items should be
reorganized, or not. The dynamic clustering will be explained in detail in Chap. 16.
The static clustering and the dynamic clustering are compared with each other.
The assumption in the static clustering is that all of data items are given at a
time, whereas in the dynamic clustering is that data items are added and deleted,
continually. In the static clustering, a single group of data items is clustered into
subgroups only one time, whereas in the dynamic clustering, data items are clustered
continually after clustering so. In the static clustering, the organization of data items
is fixed, whereas in the dynamic clustering, it is variable. In the static clustering, the
operations such as division and merging of existing clustering are not considered,
whereas in the dynamic clustering, they are considered as the soft organization.
The organization management in the dynamic clustering is to decide one of the
maintenances, the soft organization and the hard organization. The two metrics
which indicate the quality of clustering results are computed: the intra-cluster
similarity and the inter-cluster similarity. The direction of clustering data items is
to maximize the intra-cluster similarity and minimize the inter-cluster similarity, at
same time. The decision of one of the three actions is made by comparing values
of the two metrics after adding or deleting items with those after doing that. In
Chap. 12, we mention in detail the two measures for evaluating the results from
clustering data items.

9.3 Clustering Types
191
Fig. 9.3 Example of crisp clustering

9.3.2

Crisp vs Fuzzy Clustering
This section is concerned with the two types of clustering: crisp and fuzzy
clustering. The dichotomy criteria is whether each item is allowed to belong to more
than one cluster, or not. The crisp clustering is one where every item belongs to only
one cluster, whereas the fuzzy clustering is one where at least one item belongs to
more than one cluster. In the fuzzy clustering, rather than belonging to more than
one cluster, to each item, membership values of clusters are assigned. In this section,
we explain the two types of clustering and their differences.
We present an example of the crisp clustering in Fig. 9.3. The table in Fig. 9.3 is
given as a matrix of the eight items and the four clusters. All of eight items belong
to only one of the four clusters; no item belongs to more than one cluster. As results
from the exclusive clustering, cluster 1 contains item 1 and 6, cluster 2 does item
2, 4, 5, and 8, cluster 3 contains only item 7, and cluster 4 contains item 3. No
overlapping between clusters exists in the crisp clustering.
The simple example of the fuzzy clustering is illustrated in Fig. 9.4. The table in
Fig. 9.4 has the same frame to that in Fig. 9.3. The five of the eight items are labeled
with more than one category. Item 2 is labeled with the three categories and the four
items are labeled with two categories. If at least one item is labeled with more than
one category, it becomes the results from the fuzzy clustering.
Table 9.3 illustrates the differences between the crisp clustering and the fuzzy
clustering which are covered in this section. The crisp clustering does not allow the
overlapping between clusters at all, whereas the fuzzy one does it. The membership
values are given binary values in the crisp clustering whereas the membership values
are given as continuous values between zero and one. In the crisp clustering, each
data item is arranged into its most similar cluster, whereas in the fuzzy clustering,
it is arranged into more than one cluster whose similarity is more than the given
threshold. The crisp clustering is usually applied to the opinion clustering where
each data item is arranged into one of the positive cluster, the neutral one, and the
negative one, whereas the fuzzy clustering is applied to topic-based text clustering
where each data item is arranged into its relevant topic clusters.

192
9
Text Clustering: Conceptual View
Fig. 9.4 Example of fuzzy clustering
Table 9.3 Crisp vs fuzzy
Crisp clustering
Fuzzy clustering
clustering
Overlapping
No
Yes
Membership
0 or 1
Between 0 and 1
Arrangement
Highest similarity
Higher than threshold
Case
Opinion mining
Topic-based clustering
Fig. 9.5 Item–cluster matrix
In Fig. 9.5, the item–cluster matrix is illustrated as the results from the fuzzy
clustering. There are the two types of fuzzy clustering results: one are the clusters
of items in which some items belong to more than one cluster and the other is the
item–cluster matrix which is shown in Fig. 9.5. In the matrix frame, each column
corresponds to a cluster, and each row does to an item. The entry which is crossed
of a column and a row is a membership value of the item to the cluster. The item–
cluster matrix will be mentioned again for explaining the fuzzy k means algorithm
in Chap. 10.
9.3 Clustering Types
193
Flat Clustering
Hierarchical Clustering
Fig. 9.6 Flat vs hierarchical clustering

9.3.3

Flat vs Hierarchical Clustering
This section is concerned with the two opposite types of clustering: flat clustering
and hierarchical clustering. The dichotomy criteria of the two types is whether to
allow nested clusters in a particular cluster. The flat clustering is one where no nested
cluster is available, while the hierarchical one is one where at least, one nested
cluster is available. In the flat clustering, a list of clusters is given as its results, while
in the hierarchical clustering, a tree of clusters is given as ones. In this section, we
explain the two types of clustering and their comparisons.
Figure 9.6 illustrates the flat clustering and the hierarchical clustering. The flat
clustering is shown in the left side of Fig. 9.6. In the flat clustering, no cluster is
nested in any cluster and a list of clusters is given as the results. The k means
algorithm which were mentioned in Sect. 10.2.1 is usually used as the approach
to this kind of clustering. The flat clustering is used for dividing a group of data
items into several subgroups based on their similarities.
The hierarchical clustering is one where at least a nested cluster is allowed in a
particular cluster as shown in the right side of Fig. 9.6. The three clusters are given
in both the sides in Fig. 9.6; there is no nested cluster in the left side, while there
are nested clusters in the right side. A tree of clusters, where its root node is a group
of entire items, the lead nodes are individual data items, and the intermediate nodes
are subgroups, is generated as the results. The AHC algorithm which was covered
in Sect. 10.2.1, and the divisive algorithm which was covered in Sect. 10.2.2 are
typical approaches to this type of clustering. The hierarchical clustering is used for
constructing a hierarchical organization of data items for browsing them.
Table 9.4 illustrates the differences from the two types of clustering. As
mentioned above, in the flat clustering, no nested cluster is allowed whereas in
the hierarchical clustering, any nested cluster is allowed. Even if various clustering
algorithms are used for both the types of clustering, in the flat clustering, the k
194
9
Text Clustering: Conceptual View
Table 9.4 Flat vs hierarchical clustering
Flat clustering
Hierarchical clustering
Nested cluster
No
Yes
Typical algorithm

K means algorithm
AHC algorithm
Clustering proceed
Arrangement
Merging or division
Results
List
Tree
means algorithm is usually used, whereas in the hierarchical one, the AHC algorithm
is usually used. The flat clustering is characterized as the process of arranging data
items into one or some among clusters, whereas the hierarchical one is characterized
as the process of dividing in the top–down direction or merging in the bottom–
up direction. The flat clustering results are given as a list of clusters, whereas the
hierarchical clustering results are given as a tree of clusters.
Let us consider the process of evaluating the hierarchical clustering results.
By computing the intra-cluster similarity and the inter-cluster similarity, the flat
clustering results are evaluated, easily. The results from the hierarchical clustering
tend to be underestimated by the lower intra-cluster similarities of higher clusters
and the higher inter-cluster similarities among nested ones. Even if the adopted
clustering algorithm was really to the hierarchical clustering task, it tends to be
evaluated in the flat clustering tasks before applying it. In this study, the clustering
index is proposed as the metric of evaluating the clustering results, and the
evaluation process will be mentioned in Sect. 12.3.4.

9.3.4

Single vs Multiple Viewed Clustering
This section is concerned with the two types of clustering, single viewed clustering
and multiple viewed one. The dichotomy for dividing the clustering task into the
two types is whether multiple results are allowed to be accommodated, or not. Even
by the same clustering algorithm, different results may be produced depending on
its external parameter values. As the difference between the hierarchical clustering
and the multiple viewed clustering, a single tree of clusters is generated from the
former, whereas forests which consist of multiple trees are produced from the latter.
In this section, we explain the two types of clustering tasks and their comparisons.
The single viewed clustering is conceptually illustrated in Fig. 9.7. From a group
of items, several clusters are generated by a clustering algorithm. The clusters are
regarded as the entire results whether they are overlapping or exclusive. In the area
of machine learning and data mining, until now, it has been assumed that results
from clustering data items by a single algorithm are everything. However, afterward,
we need to accommodate other clustering results which are generated in other views.
As shown in Fig. 9.8, in the multiple viewed clusters, various results from
clustering data items are accommodated. The fact that data items are organized

9.3 Clustering Types
195
Fig. 9.7 Single viewed clustering
Clustering Algorithm
View 1
View 2
View 3
Fig. 9.8 Multiple viewed clustering
differently by different subjective even in the manual clustering is the motivation for
considering this type of data clustering. The results from clustering data items are
different depending on values of its external parameters, even by the same algorithm.
For examples, in the case of the k means algorithm, different results are caused by
changing the number of clusters. In this type of clustering, different multiple results
from clustering data items are allowed as their organizations.
We need to integrate multiple results from clustering data items into a single one.
Multiple different results which are called multiple organizations were mentioned
above and one of them may be selected by a user. By merging similar clusters,
they are integrated into one as the union of multiple organizations. The scheme of
integrating multiple organizations which are clustering results is described in detail
in [93].
The hierarchical clustering and the multiple viewed clustering are illustrated
in Fig. 9.9. More than one list of clusters exists in both clustering types, so they
look confusing for distinguishing them from each other. A single organization
of data items is given as the results in the hierarchical clustering. However, the
multiple organizations are given independently of each other in the multiple viewed
clustering. In other words, a single tree of clusters is given as the results in the
hierarchical clustering, whereas the forests are given as ones in the multiple viewed
clustering.
196
9
Text Clustering: Conceptual View
Fig. 9.9 Hierarchical clustering and multiple viewed clustering
9.4
Derived Tasks from Text Clustering
This section is concerned with the specific tasks of data clustering and other tasks
which derive from it and it consists of the four subsections. In Sect. 9.4.1, we
mention the cluster naming which is the subsequent task after the text clustering.
In Sect. 9.4.2, we describe the subtext clustering as the process of generating virtual
texts. In Sect. 9.4.3, we explain the process of using the text clustering results as
sample texts for performing the text categorization. In Sect. 9.4.4, we cover the
process of applying the text clustering for detecting redundant national projects.

9.4.1

Cluster Naming
Figure 9.10 illustrates the process of assigning names to clusters which are results
from clustering data items. The cluster naming is the process of identifying each
cluster, relevantly to its contents with the symbolic names. We will mention some
principles of naming clusters; identifying each cluster with a primary key value or
a numerical value, irrelevantly to its content, is out of cluster naming. Reflecting
text contents in each cluster in its name is the requirement of cluster naming. In this
section, we describe the cluster naming for enabling browsing of text clusters.
The principles of naming clusters symbolically were defined in 2006 in his PhD
dissertation [25]. The first principle of naming clusters is to reflect cluster contents
in their symbolic names. The second principle is that each cluster name should not
be too long; the cluster name consists of only couple of words. The third principle is
that each cluster name should be unique; there is no redundant name among clusters.
The cluster names are helpful for accessing texts by browsing.
In 2006, Jo described the process of naming clusters based on the above
principles, in his PhD dissertation [25]. In each cluster, its texts are indexed into
a list of words with the basic three steps which were mentioned in Chap. 2. For each
cluster, weights of indexed words are computed and the words with their highest
weights are selected as the cluster name candidates. If more than two clusters have
9.4 Derived Tasks from Text Clustering
197
Fig. 9.10 Cluster naming
the same name, the action is taken against it, by adopting one among schemes which
will be mentioned in the next paragraph. Other approaches are available than this
way and cluster naming is regarded as a text mining task which is separated from
the text clustering.
More than two clusters with the same name violates against the principle, so let
us mention the schemes of avoiding the redundancy. In this case, the word with
its highest weight is replaced by one with its second highest weight in naming the
cluster. The clusters with their redundant name are merged into one cluster, as the
alternative scheme. We use multiple schemes of weighting words and the word is
replaced by one which is weighted by another scheme. In spite of avoiding the
redundant cluster name, it is possible that the clusters which are named with their
different words have their identical meanings.
The taxonomy generation is achieved by combining the text clustering and the
cluster naming with each other. The taxonomy generation is referred to the process
of generating topics, their relations, and their associated texts, from a corpus. The
taxonomy generation process consists of clustering texts by a clustering algorithm
and naming clusters by the above process. The taxonomy generation may be
expanded to the process of constructing manually or semiautomatically ontologies.
The taxonomy generation will be mentioned in detail, in Chap. 15.

9.4.2

Subtext Clustering
This section is concerned with the subtext clustering which is illustrated in Fig. 9.11.
The subtext means a part of full text, such as paragraphs, sentences, and words,
in the broad meaning. The texts in the corpus are partitioned into paragraphs and
they are clustered into subgroups of content-based similar ones. The results from
clustering subtexts become the source of synthesizing subtexts into an artificial text.
In this section, we describe the process of clustering subtexts.

198
9
Text Clustering: Conceptual View
Fig. 9.11 Subtext clustering
A text may be viewed as a hierarchical form of its components. The texts in
the corpus are partitioned into paragraphs by the carriage return. Each paragraph
is partitioned into sentences by punctuation mark. Each sentence is partitioned
into words; paragraphs, sentences, and words belong to subtexts. Each full text is
expressed in a hierarchical form whose root node is the full text, intermediate nodes
are paragraphs or sentences, and the terminal nodes are words.
Even if a subtext is a part of the given full text, it belongs to textual data;
it could become a text clustering target. Subtexts are extracted from texts in the
given collection, and they are encoded into numerical vectors. They are clustered
into subgroups based on their similarities by a clustering algorithm. There is the
possibility that subtexts within a given text are scattered over different clusters.
Note that numerical vectors which represent subtexts may be sparser than those
which represent full texts.
Let us mention some similar tasks with subtext clustering which is covered in
this section. The summary-based clustering which is mentioned in Chap. 13 is the
process of clustering texts by encoding their summaries, instead of full texts. If
clustering paragraphs in a long text into subgroups, the paragraph subgroups are
also called subtexts. A full text is segmented into subtexts based on their contents
through the text segmentation, and each subtext is called topic-based subtext.
Let us point out some issues from subtext clustering. The numerical vectors
which represent subtexts tend to be sparser than ones representing full texts. The
summary-based clustering which is mentioned in Chap. 13 belongs to the kind of
subtext clustering for clustering texts fast. Clustering paragraphs within a text is
called unordered text segmentation which is mentioned in Chap. 14. It is the critical
factor how to select subtexts from a full text in this task.
9.4 Derived Tasks from Text Clustering
199

9.4.3

Automatic Sampling for Text Categorization
This section is concerned with the process of generating sample texts automatically
for the text categorization. The preliminary task for the text categorization is to
predefine categories as a list or a tree and to allocate texts to each category as
samples. The preliminary tasks is automated by the two tasks: the text clustering
and the cluster naming. A list or a tree of cluster names is given as the predefined
categories and texts which belong to the clusters become sample labeled texts. In this
section, we describe the text clustering which is viewed as the process of automating
the preliminary tasks.
The preliminary tasks for the text categorization, such as the category predefi-
nition and sample text allocation, become the tedious jobs. Topics or categories are
predefined as a list or a tree. Texts are collected from the external source and labeled
manually. The sample texts are encoded into numerical vectors by the process which
was described in Chap. 3. However, more reliable quality of sample texts is expected
for training text classifiers.
Let us explain the process of automating the above preliminary tasks for the
text categorization. In this case, unlabeled texts are gathered from external sources.
The collection of the gathered ones is segmented into subgroups of similar ones,
and each cluster is named symbolically. The cluster names are given as categories
and texts in each cluster are given as labeled ones. However, as the payment for
automating the preliminary tasks, we expect less reliable quality of sample texts
which are automatically generated by this process.
We need to customize the system in using the text clustering for automating
the preliminary tasks for the text categorization. We decide the classification types
such as crisp vs fuzzy classification and flat vs hierarchical classification. The
clustering should be executed following the classification type which we decide.
The identifiers are assigned to the clusters and they are named symbolically through
the cluster naming which was mentioned in Sect. 9.4.1. As an optional one, we may
add the process of redistributing cluster examples as sample examples for the binary
classifications, which are decomposed from the multiple classification.
We should remind the poor reliability of sample examples which are generated
automatically by the above process. So, we need to consider the learning type where
both labeled and unlabeled examples are used. The learning which combines the
supervised learning with the unsupervised one is called semi-supervised learning.
In Chap. 10, we mention the LVQ (Learning Vector Quantization) as the semi-
supervised learning algorithm. In clustering items by the k means algorithm or the
Kohonen Networks, it is required to decide the number of clusters in advance.
200
9
Text Clustering: Conceptual View

9.4.4

Redundant Project Detection
This section is concerned with the process of detecting redundant projects as a
derived task from the text clustering. The task which is discovered in this section is
defined as the process of building groups of content-based very similar proposals of
research projects. The research project proposals which are given as texts are entered
and project clusters are constructed by the text clustering. In 2003, Jo implemented
the system of doing that, using the single pass algorithm whose similarity threshold
is set closely to 1.0 [24]. In this section, we describe the process of detecting the
redundant research projects by clustering them.
The research project proposal consists of the three parts: project scope, project
contents, and project goals. The first part, project scope, is concerned with area or
coverage of the project which researcher tries to propose. The second part, project
contents, describes what is proposed, implemented, or researched in the project [24].
The last part, project goals, indicates what the project is intended. It is assumed
that the project proposal is given as an XML documents with the three components
which are given tags.
Let us mention the process of detecting the redundancy of research project
proposals through the text clustering. The research project proposals each of which
consists of the three parts are collected in the given system. The collection is
clustered into subgroups by a clustering algorithm; the single pass algorithm was
used as the clustering algorithm in [24]. The research project proposals within each
cluster are regarded as potential candidates of redundant proposals or associated
ones. Either of two actions should be taken to each cluster: selection of only one
proposal or integration of projects into a single project.
We need to customize the text clustering to be more suitable for detecting
redundant project proposals. The direction is to generate large number of clusters
each of which contains very small number of items. In this case, the similarity
threshold is set closely to one in using the single pass algorithm. Discriminant
weights are assigned to the three components of proposal; the higher weight is
assigned to the research content and research goal, and the lower weight is assigned
to the research scope. More than half of clusters in the results are skeletons each of
which has only one item.
The text association becomes the alternative way of detecting redundant research
projects to the text clustering. Words are represented as text sets from the corpus.
Association text rules are extracted from the text sets by the Apriori algorithm. Texts
are associated as redundant project candidates or associated ones. In this case, the
support threshold and the confidence threshold are set closely to 1.0.
9.5 Summary and Further Discussions
201
9.5
Summary and Further Discussions
In this chapter, we described the text clustering in the functional view. We defined
the clustering and compared it with other tasks. We surveyed the dichotomies of two
opposite text clustering types. We mentioned the tasks which are similar as the text
clustering and derived from it. In this section, we make some further discussions
from what we studied in this chapter.
Let us refer to the association mining to the process of extracting implicit
knowledge from a collection of association rules. They are extracted from a
collection or clusters of sets and become a kind of data, in this case. They are
classified or clustered; they become instances of association mining. We need to
define operations on association rules for implementing association mining system.
The association rules which are concerned with relation among association rules are
extracted from them; the task is called meta association rules.
Let us consider the online clustering which proceeds the clustering to the data
items which arrive continually. The assumption underlying in the offline clustering
which is opposite to the online clustering is that all clustering targets are given at
a time. No data is available initially and whenever data items arrive continually,
the data clustering proceeds by updating current clusters. The traditional clustering
algorithms which were mentioned in Chap. 10 were inherently designed for the
offline clustering, so we need to modify them into online clustering version. The
online clustering will be mentioned in Chap. 10.
The taxonomy generation is for creating a frame of organizing texts from a
corpus. It is defined as the process of generating a list, a tree, or a network of topics
which are called taxonomies. The word categorization, the word clustering, and
the keyword extraction are involved in executing the taxonomy generation. Each
taxonomy is linked to its own relevant texts and is associated to its scripts. It will be
described in detail in Chap. 15.
The organization evolution may be considered as the process of changing the text
organization, gradually to the better one. Reorganizing entire texts is the hard action,
whereas modifying some organization parts is the soft action. Typical operations for
maintaining the organization are to merge some clusters into a single cluster and
to divide a cluster into several ones. Outlier detection is considered as the process
of detecting whether a text is an alien or not, for creating one more cluster. The
schemes for evolving the organization will be described in detail in Chap. 16.

Chapter 10
Text Clustering: Approaches
This chapter is concerned with the unsupervised learning algorithms which
are approaches to text clustering. We explain briefly the unsupervised learning
in Sect. 10.1, and describe some simple clustering algorithms in Sect. 10.2. In
Sect. 10.3, we describe the k means algorithm and its variants which are the
most popular approaches to text clustering in detail. We cover the competitive
neural networks as advanced approaches to text clustering, in Sect. 10.4, and
make summarization and further discussions on this chapter in Sect. 10.5. In this
chapter, we describe unsupervised learning algorithms and neural networks as the
approaches to text clustering.
10.1
Unsupervised Learning
The learning process which depends on similarities of input data for the clustering
task is called unsupervised learning. In this chapter, we mention unsupervised
learning algorithms such as the k means algorithm and the Kohonen Networks,
as the approaches to text clustering. The clustering prototypes are initialized at
random, and the similarities between the cluster prototypes and the input vectors
are computed. The unsupervised learning process is the process of optimizing the
cluster prototypes in order maximize the similarities between examples and the
prototypes of their belonging clustering. In this section, we describe briefly the
unsupervised learning as the basis for performing the text clustering, together with
review of the supervised learning.
Let us review briefly the supervised learning which was described in Chap. 6 as
the approaches to text categorization, before mentioning the unsupervised learning.
It is assumed that labels of training examples are always available in the supervised
learning. In the learning process, the differences between target labels and classified
ones should be minimized. The supervised learning is applied to the classification
© Springer International Publishing AG, part of Springer Nature 2019
203
T. Jo, Text Mining, Studies in Big Data 45,
https://doi.org/10.1007/978-3-319-91815-0_10
204
10
Text Clustering: Approaches
where the outputs are given as discrete values and the regression where they are
given as continuous values. K Nearest Neighbor, Naive Bayes, Perceptron, and
Support Vector Machine are typical supervised learning algorithms, but they are
able to be modified into their unsupervised ones.
In spite of various learning processes depending on types of learning algorithms,
let us examine the frame of the unsupervised learning algorithms. It is assumed that
unlabeled examples are given as training examples; the collection is not partitioned
into the training set and the test set for evaluating unsupervised learning algorithms.
Each cluster is initially characterized by its own prototypes and given examples are
arranged, depending on their similarities with the cluster prototypes; each example
belongs to the cluster whose similarity is highest. Cluster prototypes are optimized
by iterating arranging examples into clusters and updating the cluster prototypes.
The optimized cluster prototypes and unnamed clusters of similar examples are
results from the unsupervised learning.
Even if it is possible to modify machine learning algorithms between the
supervised and the unsupervised, we need to mention some unsupervised learning
algorithms. The k means algorithm is the most representative unsupervised learning
algorithm and will be described in detail in Sect. 10.3.1. The k means algorithm
may be generalized into EM algorithm which is the frame of clustering algorithm
consisting of E(Estimation)-step and M(Maximization)-step, and its particular
version will be described in Sect. 10.3.3. The Kohonen Networks proposed by T.
Kohonen in 1972 are the typical neural networks of unsupervised learning, and
are described in detail in Sect. 10.4.1 [51]. The neural gas is the unsupervised
learning algorithm derived from the Kohonen Networks, and is described in detail
in Sect. 10.4.4.
The supervised and unsupervised learning are mentioned above. Now, let us
mention the semi-supervised learning as a mixture of both of them. The semi-
supervised learning is motivated by the fact that labeled training examples are
expensive but unlabeled ones are cheap in gathering them. Not only labeled
examples, but also labeled examples are used in the semi-supervised learning.
Because the semi-supervised is intended for the tasks, classification and regression;
it is closer to the supervised learning. If both kinds of examples are intended for
clustering, it is called constraint clustering.
10.2
Simple Clustering Algorithms
This section is concerned with some simple clustering algorithms as starting to study
the text clustering approaches. In Sect. 10.2.1, we study the AHC (Agglomerative
Hierarchical Clustering) algorithm which clusters data items in the bottom-up
direction. In Sect. 10.2.2, we will cover the alternative simple clustering algorithm
called divisive clustering algorithm which clusters data items in the top-down
direction. In Sect. 10.2.3, we mention the single pass algorithm which is known
as a fast algorithm. In Sect. 10.2.4, we mention the growing algorithm where the
radii around data items grow and merge with adjacent ones.
10.2 Simple Clustering Algorithms
205
Fig. 10.1 Initial stage in
using AHC algorithm
Fig. 10.2 Merging two
clusters into a cluster

10.2.1

AHC Algorithm
This section is concerned with the simple clustering algorithm, AHC algorithm.
It is required to define a similarity measure between data items and a scheme
of computing a similarity between clusters. Clusters are constructed by merging
smaller clusters by their similarities in the bottom-up direction. The number of
clusters or the critical similarity is set as the stopping criterion of this algorithm. In
this section, we describe the AHC algorithm with respect to its clustering process.
In Fig. 10.1, we illustrate the initial stage of clustering N data items with the
AHC algorithm. The N data items are given as the input. The N clusters are
created, and each cluster contains single item. The N clusters which are called single
skeletons are generated as the results from the initialization. After the initialization,
all possible pairs are generated from the list of clusters and similarity between
clusters in each pair is computed.
In the AHC algorithm, clustering data items proceeds by merging initial clusters.
All possible pairs of clusters are generated and their similarities are computed. The
cluster pair with its maximum similarity is selected and the clusters in the pair are
merged into a single cluster, as shown in Fig. 10.2. When merging the pair of clusters
into a cluster, the total number of clusters is decreased by one; the above process is
repeated until the number of clusters reaches the desired one. Instead of the number
of clusters, the similarity threshold may be given as the alternative parameter; they
are iterated until the maximum similarity of a pair is less than the threshold.
Various versions may be derived from the above AHC algorithm as its variants.
The similarities among clusters or individual data items may be computed, discrim-
inating the given attributes. As a fast version, the variant where the initial item of
each cluster is fixed as its representative one may be derived. More than one pair
whose similarities are higher than the threshold are merged in each iteration, rather
than merging only one pair with its maximum similarity. There are two directions
for deriving the variants: more reliable schemes of computing the similarities and
fast execution of data clustering.
Let us consider various criteria for stopping merging clusters to avoid reaching
a single cluster of all data items. The number of clusters may be considered as the
206
10
Text Clustering: Approaches
Fig. 10.3 Initial stage in
using divisive clustering
algorithm
stopping criterion, but there is no way of knowing the desired number of clusters,
in advance. If the maximum similarity is less than the threshold in an iteration, the
merge of clusters is stopped. When the maximum size of cluster is greater than the
given threshold, it may terminate. The intra-cluster similarity and the intercluster
similarity are considered as the stopping criterion, in addition.

10.2.2

Divisive Clustering Algorithm
This section is concerned with the clustering algorithm which proceeds the data
clustering in the top-down direction. The clustering algorithm is called divisive
clustering algorithm and is opposite to the AHC algorithm which was mentioned in
Sect. 10.2. It starts with a single cluster of all items and proceeds the clustering by
dividing one cluster into several clusters. Some variants may be derived, depending
on the scheme of partitioning clusters. So, in this section, we describe the divisive
clustering algorithm and its variants in detail.
Figure 10.3 illustrates the initial status of using the divisive clustering algorithm.
The individual items are given as the input, and they are initially grouped into
a single cluster. The single cluster in the initial state characterizes this clustering
algorithm, oppositely to the case in using the AHC algorithm. The main operation
for proceeding the clustering is to partition a single clustering into two or more
clusters. In the divisive clustering, a hierarchical structure is constructed in the top-
down direction.
Figure 10.4 illustrates the direction of proceeding the data clustering by the
divisive clustering algorithm. The clusters of similar data items are generated by
dividing the clustering in the top-down direction. From the cluster, the pair with its
least similarity is selected, the cluster is divided into two clusters by arranging the
other toward higher similarity to one in the pair. The two items in the selected pair
become the representative of the two divided clusters. Proceeding the clustering by
the divisive clustering algorithm is visualized like a binary tree.
Some variants may be derived from the divisive clustering algorithm which is
mentioned above. Its various versions are considered depending on how to define
the similarity metric between data items and the scheme of computing the similarity
between clusters. Multiple pairs with their smallest similarities are selected and a
cluster is partitioned into more than two clusters, in proceeding the data clustering.
Some variants are built by nominating medoids from clusters or computing cluster
10.2 Simple Clustering Algorithms
207
Fig. 10.4 Direction of
proceeding clustering in
divisive clustering algorithm
mean vectors as cluster representatives, and excluding some examples which are
weakly similar to the cluster representatives from given clusters. This type of data
clustering proceeds by applying a particular clustering algorithm such as k means
algorithm within each cluster.
Let us consider various criteria for stopping the cluster division, in order to avoid
reaching the results which are given as singletons. The number of clusters may be set
as the stopping criterion; when the current number of clusters reaches the threshold,
the division stops. When the least similarity of all possible pairs is greater than the
threshold, the division proceeds no more. When the minimum size of cluster is less
than the threshold, the execution is stopped. We may also consider the intra-cluster
similarity and the intercluster similarity as the additional criteria.

10.2.3

Single Pass Algorithm
This section is concerned with the clustering algorithm which is simple and fast,
called single pass algorithm. The clustering algorithm was adopted in 2003 by Jo
for detecting redundancy of national research and development projects proposals
[23]. It starts with a single cluster which has a single item, and the data clustering
proceeds by arranging next data items into one of existing clusters or creating a new
cluster. This algorithm costs almost linear complexity for clustering data items, in
the case of a small number of clusters compared with the number of data items.
In this section, we describe the single pass algorithm as one of simple clustering
algorithms.
The process of clustering the data items by the clustering algorithm is explained
through Figs. 10.5, 10.6, and 10.7. The initial status consists of a single cluster
and an item as shown in Fig. 10.5; the item becomes the initial prototype of the
cluster. The similarity between the first item and the second item is computed and
one of the two cases is selected depending on it. If the similarity is greater than
the threshold, the second item joins to the exiting cluster, and otherwise, one more
cluster is created and it is the initial item of the cluster. The threshold is given as the
external parameter in the single pass algorithm.
208
10
Text Clustering: Approaches
Fig. 10.5 First text in using single pass algorithm
Fig. 10.6 Second text in using single pass algorithm
Max Similarity > = threshold
Max Similarity < threshold
Fig. 10.7
n th text in using single pass algorithm
10.2 Simple Clustering Algorithms
209
Let us consider the case to the n th data item after constructing some clusters as
shown in Fig. 10.7. Currently, it is assumed that the n − 1 data items were already
presented, and k clusters are constructed less than n − 1. When the n th data item
is presented, its similarities with the k clusters are computed and the maximum
similarity is selected among them. If the maximum similarity is greater than or equal
to the threshold, it joins to the corresponding cluster. Otherwise, one more cluster
is created and the data item joints to the cluster as its initial one. If the number
of clusters is much smaller than the number of data items, it takes almost linear
complexity for clustering data items.
Some variants are derived from the version which is illustrated in Figs. 10.5, 10.6,
and 10.7. In the initial version, the initial item is given as the representative one in
each cluster, whereas the mean vector or the medoid is set as the representative one
in the variant. Instead of the maximum similarity, the intra-cluster similarity and
the intercluster similarity are used for deciding whether the item joins to one of
existing clusters or creates one more cluster. The distribution over similarities of the
item with existing clusters may be used for building the fuzzy version of single pass
algorithm where at least one item is allowed to join into more than one cluster. The
variants are characterized as the fact that clustering starts with a single skeleton,
altogether with the initial version.
The single pass algorithm is characterized as the fast clustering algorithm with
almost linear complexity [23]. The clustering algorithm was adopted in implement-
ing the Korean national R&D project system before inventing the evaluation metric
of clustering results, called clustering index. In 2006, when the clustering index was
invented, it was discovered that the quality of clustering data items by the single
pass algorithm is very poor compared with that of doing so by other clustering
algorithms. In the clustering algorithm, subsequent items are arranged depending on
the initial items of clusters without optimizing the cluster prototypes. There is trade-
off between the clustering speed and the clustering quality in adopting clustering
algorithms [25].

10.2.4

Growing Algorithm
This section is concerned with another simple clustering algorithm which is called
growing algorithm. Like the AHC algorithm, it starts with the skeletons as many as
individual items. Each cluster increases its radius from its own example from zero,
gradually. When the two clusters face with each other by their growths, they are
merged with each other into a cluster, and the center is updated into their facing
point. In this section, we describe the growing clustering algorithm with respect to
the initial stage, the clustering stage, and the variants.
A group of data items is given as the input like any other clustering algorithms.
The skeletons are created as many as data items and they match with data items,
one to one. Each of the initial clusters has its zero radius and its center is its
own data item. The radius and the center of the cluster, Ck, is notated by rk and
Ck = Ck 1 Ck 2 · · · Ckd . After initializing the clusters so, they grow parallel and
independently.
210
10
Text Clustering: Approaches
As the clustering proceeds, the clusters grow continually and two clusters are
merged into one cluster; each cluster is modeled as a hypersphere. The clusters
are initialized as Eqs. (10.1) and (10.2) which initialize the center and the radius,
respectively,
Ck = x 1 x 2 · · · xd
(10.1)

rk = 0
(10.2)
and the cluster grows by updating the radius by Eq. (10.3),

rk(t + 1) = rk(t) + θ
(10.3)
where θ ≥ 0 is a constant. The two clusters, Ck and Cm, with the parameters,
Ck = Ck 1 Ck 2 · · · Ckd , rk, and Cm = Cm 1 Cm 2 · · · Cmd , rm, respectively, start to overlap with each other, when the distance is less than the addition of their
radii shown in Eq. (10.4),

d
dist (C
k
, Cm
) =

(Cki − Cmi) 2 ≤ rk + rm
(10.4)

i=1
The two clusters, Ck and Cm, are merged into a new cluster, Cn by updating the
involved parameters by Eqs. (10.5) and (10.6),
C
1
n =

(C

(C

(C
(10.5)
2

k 1 + Cm 1) 1
2

k 2 + Cm 2) · · · 1
2

kd + Cmd)

rn = 1 (rk + rm)
(10.6)
2
This process is iterated until reaching the desired number of clusters.
Some variants are considered, depending on the scheme of modeling clusters,
the condition of merging two clusters, and the similarity metric between clusters.
Each cluster may be modeled as a Gaussian distribution whose parameters are the
mean vector and the covariance matrix, instead of the hypersphere. The intercluster
similarity and the intra-cluster similarity are defined as the condition for merging
two clusters. Instead of the Euclidean distance, we use the similarity metrics, such
as the cosine similarity or other variants as the condition of merging two clusters.
Instead of a number of clusters, the similarity threshold is set as the termination
condition.
Let us make some remarks on the growing algorithm as its characterization.
In our reality, it is not feasible to cluster a very large number of data items by a
single algorithm. However, because each cluster grows independently of others, it
is possible to implement the clustering by the parallel and distributed computing. It
starts with the distributed agents as many as data items and it merges with others.
The complexity is reduced from the quadratic one to linear one by implementing it
as the parallel and distributed system.
10.3 K Means Algorithm
211
10.3

K Means Algorithm
This section is concerned with the k means algorithm which is the most popular
clustering algorithm in any application domain. In Sect. 10.3.1, we explain the crisp

k means algorithm which is the initial version. In Sect. 10.3.2, we expand the initial
version into the fuzzy version. In Sect. 10.3.3, we cover the complicated version of
the k means algorithm where each cluster is interpreted as a Gaussian distribution.
In Sect. 10.3.4, we mention the variant which is called k medoid algorithm.

10.3.1

Crisp K Means Algorithm
This section is concerned with the initial version of k means algorithm. The version
is called crisp k means algorithm, in order to distinguish it from the version which
is mentioned in Sect. 10.3.2. The clustering task which is performed by the initial
version corresponds to the crisp clustering where each item is allowed to belong to
only one cluster. The clustering proceeds by iterating arranging data items into their
own clusters and updating mean vectors of clusters. In this section, we describe in
detail the initial version of k means algorithm as an approach to the text clustering.
A group of data items is initially given as the input. The number of clusters
is decided in advance, and data items as many as clusters are selected from the
input, at random. The selected data items are the initial mean vectors of clusters,
and the others are arranged into clusters, depending on their similarities with the
initially selected ones. The mean vectors are updated by averaging data items in
each cluster, and the data items are arranged again by the updated ones. Different
results are expected in the k means algorithm, depending on the selected data items
and the number of clusters which is given as an external parameter.
The k means clustering algorithm is illustrated as the pseudocode in Fig. 10.8.
The number of clusters is given as the external parameter, data items as many
as clusters are selected at random, and the cluster mean vectors are initialized by
the examples. The following two steps are iterated until the cluster mean vectors
converge. The first step is to arrange examples based on their similarities with the
cluster mean vectors and the second step is to update the cluster mean vectors by
computing mean vectors in each cluster. When the cluster mean vectors change very
little, the iteration may be terminated.
It is important to decide the termination condition, in using the k means algo-
rithm. The simplest scheme is to give the iteration number as the external parameter.
Another termination condition is whether the difference between previous members
and current members in each cluster is less than the threshold, or not. The difference
between the previous mean vector and the current mean vector decides whether the
iteration terminates, or not. We may consider that different termination conditions
are assigned to the clusters.
212
10
Text Clustering: Approaches
Fig. 10.8
K means algorithm
Other schemes of initializing the cluster mean vectors are available as the
alternatives to one where they are initialized by randomly selected ones. The cluster
mean vectors may be initialized by the prior knowledge about the application
domain. They may be initialized by selecting data items at random, avoiding similar
items as previous ones. In the process of initializing them, we may define constraints
about similarities among the cluster mean vectors. After selecting data items at
random, the cluster mean vectors may be adjusted.

10.3.2

Fuzzy K Means Algorithm
This section is concerned with the fuzzy version of k means algorithm. It is assumed
that the given task is the fuzzy clustering where each item has its own membership
values of clusters. Instead of arranging an item into its most similar cluster, its
membership values of clusters are computed. By the linear combination of data
items weighted by their membership values, the cluster mean vectors are computed.
In this section, we describe the fuzzy k means algorithm as the approach to the fuzzy
clustering.
Memberships of items to the clusters are viewed as the item by cluster matrix
in Fig. 10.9. The rows correspond to items and the columns do to clusters in the
matrix. The entry of the j row and the i column, which is notated as μC (x

j
i
), is the
membership of the item, xi to the cluster, Cj . If it is the crisp clustering, only one
membership becomes one and the others are zero in each row. The membership is
given as a continuous value between zero and one, in the fuzzy clustering.
Figure 10.10 illustrates the update of rows and columns of item–cluster matrix.
The mean vectors are initialized by selecting items as many as clusters at random.
By dividing their similarities by the maximum one, for each item, its membership
values of clusters are computed. For each cluster, the mean vectors are updated by
the linear combination of items which are weighted by their membership values.
In Fig. 10.10, the rows are updated, corresponding to membership values, and the
columns are updated, corresponding to the mean vectors.
Let us consider the relation between the two versions of k means algorithm:
the crisp one and the fuzzy one. In the crisp version, 1.0 is assigned to only one
cluster and zeros are assigned to the others in the matrix, whereas in the fuzzy k
10.3 K Means Algorithm
213
Fig. 10.9 Item by cluster matrix for fuzzy clustering
Fig. 10.10 Update of rows and columns of the item by cluster matrix
means clustering, various continuous values are given any cluster. In both versions,
columns are scanned for computing mean vectors of clusters and rows are scanned
for arranging items into clusters. In the crisp one, each data item is arranged into
only one cluster whose membership is 1.0, whereas it is arranged into more than
one cluster by the alpha-cut. From both versions, we derive the variant, the k medoid
algorithm, which is mentioned in Sect. 10.4.

10.3.3

Gaussian Mixture
This section is concerned with the state-of-the-art version of k means algorithm.
The assumption underlying in this version is that each cluster is represented into
a Gaussian distribution which is called the normal distribution in Chap. 6. Each
cluster is expressed as its own mean vector and its own covariance matrix which are
the Gaussian distribution parameters. The initial version of the k means algorithm
is expanded by considering additionally the covariance matrix as well as the mean
vector. In this section, we describe the version of the k means algorithm which is
called Gaussian mixture.
Let us explain the Gaussian distribution on vectors before describing the process
of clustering data items by this version. The Gaussian distribution is expressed
214
10
Text Clustering: Approaches
as Eq. (6.25) which involves the two parameters. The mean vector is computed
by averaging individual vectors in a given group. The entry of covariance matrix
is computed averaging over products of absolute differences corresponding to
elements. Considering the covariance matrix additionally is the difference from the
initial version.
The process of clustering data items by the Gaussian mixture is identical to that
of doing them by the k means algorithm except considering the covariance matrix.
In the initial stage, some data items are selected at random as the initial mean
vectors and the determinant of covariance matrix is initialized to one. The mean
vectors and the covariance matrices of clusters are computed by the process which
was mentioned above. The likelihoods of data items to clusters are computed by
Eq. (6.25), and each data item is arranged to cluster whose likelihood is maximum.
This process is iterated until the mean vectors and covariance matrices of clusters
are converged.
The Gaussian mixtures algorithm may be modified into the version for the
fuzzy clustering. The process of initializing the mean vectors and the covariance
matrices is identical to that in the crisp version. The likelihoods are computed by
Eq. (6.25) as the membership of each item to the clusters. The mean vectors and the
covariance matrices are updated by summing data items and differences which are
weighted by memberships. The versions of k means algorithm which were covered
in Sects. 10.3.1 and 10.3.2 are mixtures of Gaussian in case of fixing the covariance
matrix determinants to one.
In using the k means algorithm, it is assumed that the clusters may be given
as various distributions other than the Gaussian distribution. The clusters may
be defined as the uniform distribution whose parameters are given as the start
vector and the end vector; the uniform distribution was not adopted. It is able to
define the clusters as fuzzy distributions such as triangle distribution and trapezoid
distribution. We may consider other statistical distributions such as Poisson dis-
tribution, hypergeometric distribution, and exponential distribution, and the hybrid
distribution which is the mixture of multiple distributions. However, the Gaussian
distribution is usually used for representing the clusters because of the central limit
theorem which asserts that any distribution is converged to the Gaussian distribution
as trials are made, infinitely.

10.3.4

K Medoid Algorithm
This section is concerned with a variant of k means algorithm, which is called

k medoid algorithm. The mean vector has been representative to each cluster in
applying the k means algorithm. In the k medoid algorithm, the representative one
which is called medoid is one among cluster members. The process of clustering
data items by the k medoid algorithm is to iterate arranging data items into clusters
and nominating a medoid for each cluster, until the cluster medoids are converged.
In this section, we omit the detailed clustering process, because it is redundant
with the k means algorithm, and explain only the scheme of nominating the cluster
medoids.
10.3 K Means Algorithm
215
Closest to Mean Vector
Mean Vector
X
Medoid
Fig. 10.11 Medoid: closet to mean vector
Let us mention the scheme of selecting a medoid among vectors, called closet
to mean vectors, as shown in Fig. 10.11. The cluster, Ci is expressed as a set of
vectors, Ci = {x
i 1 , x
i 2 , . . . , x
im}, and the mean vector of cluster, Ci is computed by Eq. (10.7),

m
¯x
i = 1
x
ik
(10.7)

m i=1
The vector which is least distant from the mean vector is selected as the method of
this cluster, by Eq. (10.8),
xmed = argmin ||

k x
ik − ¯
x
i||
(10.8)
The vector with maximum cosine similarity with the mean vector, which is
expressed by Eq. (10.9), is selected as the medoid,
x
ik · ¯
x
i
xmed = argmax k
(10.9)
||x
ik|| · || ¯x
i
This scheme may be used for selecting representative members from the final cluster
rather for proceeding the clustering.
Let us mention another scheme which is called minimum distance variance, as
shown in Fig. 10.12. For each vector, x
ik, its distances from others are computed
and averaged by Eq. (10.10),

m
mean_dist ik =
1
||x
ij − x
ik||
(10.10)

m − 1 j= k
216
10
Text Clustering: Approaches
Fig. 10.12 Minimum
variance of distances
Minimum Variance of Distances from the Rest
from rest
Medoid
The distance variances are computed by Eq. (10.11),

m
dist_var ik =
1

(mean_dist ik − ||x
ij − x
ik||) 2
(10.11)

m − 1 j= k
The vector with its minimum distance variance is selected as the medoid as
expressed in Eq. (10.12),
xmed = argmin k(dist_var k)
(10.12)
The cluster medoids which are selected by this scheme look like the cluster medians.
Let us consider another scheme of selecting methods which is called the smallest
maximum distance, as shown in Fig. 10.13. For each vector, its maximum distance
with other vectors is computed by Eq. (10.13),
max_dist ik = argmax
|

j = k
x
ij − x
ik||
(10.13)
The vector with its smallest maximum distance is selected by Eq. (10.14),
xmed = argmin k(max_dist k)
(10.14)
If the cosine similarity is applied for selecting the medoids, this scheme is called
the largest minimum similarity. To the number of data items in the cluster, m, it
takes the linear complexity, O(m), in the closet to the mean vector, while it takes
the quadratic complexity, O(m 2), in the others.
It makes the remarks on the k medoid algorithms which are variants of k means
algorithm. One which represents a cluster is selected among cluster members. In the

k medoid algorithm, earlier convergence is expected than in the k means algorithm.
10.4 Competitive Learning
217
Fig. 10.13 Smallest
Smallest Maximum Distance
maximum distance
Medoid
If the minimum distance variance or the smallest maximum distance is adopted as
the scheme of selecting the medoid, it takes much cost for updating it. The k medoid
algorithm is applicable to other types of data where it is possible to measure their
similarities, as well as numerical vectors.
10.4
Competitive Learning
This section is concerned with the Kohonen Networks and its variants and consists
of the four subsections. In Sect. 10.4.1, we explain the initial version of Kohonen
Networks and its competitive learning process. In Sect. 10.4.2, we describe the
LVQ (Learning Vector Quantization) which is the supervised version of Kohonen
Networks. In Sect. 10.4.3, we mention the expansion of Kohonen Networks into the
SOM (Self-Organizing Map). In Sect. 10.4.4, we cover the Neural Gas which is a
Kohonen Networks variant.

10.4.1

Kohonen Networks
This section is concerned with the initial version of Kohonen Networks which
is an unsupervised neural network. The neural networks were initially invented
by Kohonen in 1972 [51]. Since then, the neural networks have been used for
clustering data items as the unsupervised learning algorithm. It was modified into
the supervised version, called LVQ, and was expanded into the biological version
called SOM. In this section, we describe the unsupervised learning algorithm of
Kohonen Networks.
218
10
Text Clustering: Approaches
Fig. 10.14 Kohonen networks architecture
The Kohonen Networks architecture is illustrated in Fig. 10.14. There are two
layers in the neural networks: one is the input layer and the other is the output layer
which is called the competitive layer. The weight vectors between the two layers
play their roles of prototype vectors which characterize clusters. The number of
input nodes indicates the dimension of input vectors and the number of competitive
nodes does the number of clusters. The dimension of input vectors and the number
of clusters should be decided in advance, in order to use the Kohonen Networks for
real problems.
Let us explain the learning process of Kohonen Networks which is the process
of optimizing weight vectors. Here, we notate the number of input nodes, the
number of competitive nodes, the weight vector, and the input vector, by d, C,
w
i =

wi 1 wi 2 · · · wid , 1 ≤ i ≤ | C|, and x =

x 1 x 2 · · · xd , respectively.
The net input is computed by Eq. (10.15), as the inner product of the weight vector
which corresponds to the cluster, i, and the input vector, x,
net i = x · w
i
(10.15)
The index of weight vector whose inner product with the input vector is maximum
is selected by Eq. (10.16),
max = argmax i net i
(10.16)
The corresponding weight vector is updated by Eq. (10.17),
wmax (t + 1) = wmax (t) + η(x − wmax (t))
(10.17)
10.4 Competitive Learning
219
The competitive node from which the weight vector was updated is called winner,
and the process of optimizing weights by this algorithm is called competitive
learning.
Let us consider the design of Kohonen Networks for applying it to the text
clustering task. The number of nodes in the input layer is the dimension of numerical
vectors and the number of nodes in the competitive layer is the number of clusters
which is decided in advance. The weights between the two layers are initialized at
random, and they are optimized by the above process. The optimized weight vectors
become the final prototype vectors which characterize their own clusters and texts
are arranged into clusters, depending on their similarities with the prototype vectors,
subsequently. The Kohonen Networks are expanded into SOM (Self-Organizing
Map) which is mentioned in Sect. 10.4.3, and it is applied to the text clustering,
by Kohonen et al. in 2000 [52].
The two clustering algorithms, the Kohonen Networks and the k means algo-
rithms, are compared with each other. In advance, the number of clusters is decided
in both the algorithms. The mean vector of each cluster is its representative one
in the k means algorithm and the prototype vectors which are given as the weight
vectors are updated by the learning algorithm, gradually as their representative ones
in the Kohonen Networks. In the k means algorithm, the mean vectors of clusters
are initialized by selecting data items as many as clusters at random, and the weight
vectors are selected at random in the Kohonen Networks. In the k means algorithm,
the learning process is to update the mean vectors by averaging items in the clusters
and in the Kohonen Networks, the weight vectors whose inner product with the
input vector is maximum are updated.

10.4.2

Learning Vector Quantization
This section is concerned with the supervised version of Kohonen Networks which
is called Learning Vector Quantization. The initial version of Kohonen Networks is
intended for the unsupervised learning which is used for clustering data items. In
the LVQ, the training examples are labeled with their targets, and the weights which
are connected to the competitive nodes which correspond to the target labels are
updated. This version of Kohonen Networks is usually used for the classification
tasks. In this section, formally, we describe the supervised version of Kohonen
Networks with respect to its learning process.
The LVQ architecture is the same to that of the initial version of Kohonen
Networks. There are two layers in LVQ like the initial version of Kohonen
Networks: the input layer and the competitive layer. The number of input nodes
is the dimension of the input vector and the number of competitive nodes is the
number of categories. Each competitive node corresponds to a cluster in the initial
version and it does to a category in the LVQ. The architectures of both versions are
the same to each other and the learning process proceeds in the competitive style.
220
10
Text Clustering: Approaches
Let us explain briefly the learning process of LVQ as a supervised learning algo-
rithm. The training examples which are labeled with their own categories are given,
and the input vector dimension and the number of predefined categories are notated
by d and C, respectively. The weight vector is notated by w
i = wi 1 wi 2 · · · wid ,
1 ≤ i ≤ | C| and the input vector is notated by x = x 1 x 2 · · · xd . If the input
vector is labeled with the category, Ck the weight vector is updated by Eq. (10.18),
w
j (t + 1) = w
j (t) + η(x − w
j (t))
(10.18)
The competitive nodes indicate clusters in the Kohonen Networks, whereas they do
predefined categories in the LVQ.
We use the LVQ for the text categorization, rather than the text clustering, as a
supervised learning algorithm. The sample labeled texts are given and encoded into
numerical vectors. By the above process, the weights are optimized between the two
layers. A novice text is encoded and its inner products with the weight vectors are
computed. It is classified into the category which corresponds to the competitive
node from which the inner product is maximal.
The LVQ may be modified into the semi-supervised version and the constraint
clustering version by the mixture of the supervised and the unsupervised. In both
kinds of learning, we use the labeled and unlabeled examples. The semi-supervised
learning is intended for the classification and the regression by adding unlabeled
examples, and the constraint clustering is intended for the clustering, by adding
labeled examples as the constraints. To the labeled examples, the weights which
are connected to the competitive node corresponding to the target label, and to the
unlabeled ones, the weights which are connected to one corresponding to the winner,
in the modified version. The number of competitive nodes is decided by the number
of the predefined categories in this case.

10.4.3

Two-Dimensional Self-Organizing Map
This section is concerned with the expanded version of the Kohonen Networks
which is called SOM (Self-Organizing Map). In Sect. 10.4.2, we studied the
Kohonen Networks, where the competitive nodes correspond to the clusters. The
competitive nodes are conceptually arranged as a two-dimensional grid in the SOM.
The weights which are connected from the winner and its neighbors are updated
in this version. In this section, we describe the SOM in detail with respect to its
architecture and its learning process.
The SOM architecture is illustrated in Fig. 10.15. The input layer is identical to
that in the Kohonen Networks; the number of nodes is given as the input vector
dimension. The difference from the previous version is that the competitive layer is
given as a two- dimensional grid; the number of nodes is given by multiplying the
number of rows, SizeX, by the number of columns, SizeY . The number of weights

10.4 Competitive Learning
221
Fig. 10.15 Self Organizing Map Architecture from https://codesachin.wordpress.com/2015/11/
28/self-organizing-maps-with-googles-tensorflow/
Fig. 10.16 Visualizing learning process of SOM
is computed by Eq. (10.19),

SizeX × SizeY × d
(10.19)
where d is the number of input nodes, and d dimensional weight vectors charac-
terizes the individual nodes in the competitive layer. Another difference from the
initial version is to update weights which connect with the winner and its neighbors.
In Fig. 10.16, the learning process of SOM is visualized and the learning
algorithm is presented in the pseudocode, in Fig. 10.17. The two kinds of nodes
are scattered over the grid in the initial stage, as shown in the left part of Fig. 10.16,
and they are separated from each other in the final stage as shown in the right part.
In the learning process, for each input vector, its cosine similarity with the weight
vectors is computed, the weight vector with its maximal similarity nominated, and
the competitive node which corresponds to the weight vector is selected as the
winner. The weight vectors of the winner and its neighborhoods are updated with
the degree which is defined by the theta function. The total number of competitive
nodes is given arbitrary.
222
10
Text Clustering: Approaches
Fig. 10.17 Learning process of SOM in Pseudocode
The text clustering system which is called WEBSOM was implemented by
adopting the SOM as the approach by Kaski et al. in 1998. It used the 315 nodes
in the input layer as 315 dimensional input vector which represents a text. The
two versions of competitive nodes, called word category map, which correspond
to words defined: 18 × 45 in the smaller version and 204 × 512 in the larger version.
The values which are close to one are generated from competitive nodes which
correspond to relevant words. The WEBSOM was intended for displaying relevant
words as the fingerprint of the given text.
Let us compare the initial version of Kohonen Networks and the SOM with each
other. The number of clusters in the initial version should be decided in advance,
whereas it is not necessary in the SOM. The competitive nodes are given as clusters
in the initial version, whereas they are given as a two-dimensional grid which
represents a map in the SOM. In the initial version, the weights which are connected
to the winner are updated, whereas in the SOM, the weights which are done to its
neighbors as well as the winner, itself. The initial version of Kohonen Networks is
intended for clustering data items, whereas the SOM is intended for visualizing data
items by a map.

10.4.4

Neural Gas
This section is concerned with the Kohonen Networks variant, which is called
Neural Gas. It was invented by Matinetz and Schulten in 1991 [67], based on
the SOM which was covered in Section. In this version, the all weight vectors
are updated, proportionally to the similarity with the input vector; the Neural
Gas becomes a very smooth version of Kohonen Networks. As learning proceeds,
the degree of updating weight vectors is decreased. In this section, we describe
the Neural Gas as another variant of Kohonen Networks, with respect to its
characteristics and learning process.
10.5 Summary and Further Discussions
223
Let us explore some characteristics of Neural Gas as the differences from the
Kohonen Networks. The weight vectors are adapted like the gas which is distributed
from the input vector; that is the reason of calling the neural networks Neural Gas. In
the initial version of Kohonen Networks, the only weight vector which is connected
to the winner is updated, whereas in the Neural Gas, all weight vectors are updated
anti-proportionally to the distance from the input vector. In the initial version of
Kohonen Networks, as learning proceeds, the weight vectors are updated constantly,
whereas in the Neural Gas, the degree of updating the weight vectors is decreased.
The initial version of Kohohen Networks is characterized as a crisp clustering tool,
whereas the neural gas is done as a fuzzy clustering tool.
Let us explain briefly the unsupervised learning process in the neural gas. We
notate the number of input nodes, the number of competitive nodes, the weight
vector, and the input vectors, by d, c, w
i = wi 1 wi 2 · · · wid 1 ≤ i ≤ c, and
x = x 1 x 2 · · · xd , respectively. All the weight vectors are updated by Eq. (10.20),

κ
w
i = w
i + ηe λ (x − w
i), 1 ≤ i ≤ c
(10.20)
where κ is the range or distance from the winner, and λ is the temperature. The
degree of updating the weight vectors is decreased exponentially by the stance from

κ
the input vector by the term, e λ in Eq. (10.20). As the learning proceeds, the degree
of updating weight vectors is reduced as the temperature decreases, λ.
Let us mention the ART (Adaptive Resonance Theory) as the unsupervised
neural networks which are alternative to the Kohonen Networks and their variants
which were covered in this section. In 1987, Grossberg invented the ART which was
intended to simulate the information process in the human brain [19]. Its architecture
consists of the two layers, the input layer and the competitive layer, and the vigilance
parameter is added between the layers. In the competitive layer, the winner is
selected by the learning process which is identical to that of the Kohonen Networks,
but it is validated by the vigilance parameter, unlike the Kohonen Networks. When
the winner is refused by the validation, it is not participated in the next competition,
and another node is selected as the winner.
10.5
Summary and Further Discussions
In this chapter, we described the clustering algorithms and the unsupervised neural
networks such as the Kohonen Networks as the text clustering approaches. We
mentioned the AHC algorithm, the single pass algorithm, the divisive algorithm, and
the growing algorithm as the simple clustering algorithms. The k means algorithm
and its variants are known as the most popular clustering algorithms based on the
EM algorithm. The unsupervised neural networks, the Kohonen Networks and their
variants were described as state-of-the-art approaches to the text clustering. In this
section, we make some further discussions from what we study in this chapter.
224
10
Text Clustering: Approaches
The reinforced learning is mentioned as another type of learning which is
separated from the supervised and the unsupervised. We used the supervised
learning and the unsupervised learning for the text categorization and the text
clustering as the approaches to them, respectively. The reinforced learning is the
learning type where the reward or the penalty is given as the output and the action
or the environment is given as the input. The action is decided to the reward in this
type of learning. It is used for implementing an autonomous robot or a game agent.
We need to discriminate attributes in computing the similarity between data
items. The KNN variant where different weights are assigned to attributes was
mentioned in Chap. 6. When using the k means algorithm for clustering data items,
the similarity between the two input vectors is computed by the weighted attributes.
Another k means algorithm variant may be given as the discriminated weighted
version in this case. The discriminations among attributes are applicable to other
machine learning algorithms.
The k means algorithm and its variants which were mentioned in Sect. 10.3
belong to the EM algorithm class. The EM algorithm consists of the two steps:
E-step and M-step, and each cluster is viewed as a popular statistical distribution.
The E-step is the process of estimating memberships of each item to the clusters,
and the M-step is the process of estimating parameters which are involved in the
distribution. The above two steps are iterated until the parameters of distributions
which represent clusters converge to fixed values. A specific version of EM
algorithm is decided by the statistical distribution and the scheme of estimating
memberships of each example.
Recently, deep learning becomes hot trends in the area of machine learning.
The learning algorithms which were mentioned as the approaches to the text
categorization and the text clustering in Chaps. 6 and 10 belong to the swallow
learning. Deep learning is the machine learning paradigm where several steps are
required for doing the classification, the regression, and the clustering; each step gets
the input from its previous step and generates its output which becomes the input of
the next step. Because each example is associated with only its final output in the
supervised learning, the unsupervised learning is mainly applied in intermediate
steps. In order to get the detailed explanation about deep learning, refer to the
literature.

Chapter 11
Text Clustering: Implementation
This chapter is concerned with the implementation of text clustering system which
is its prototype version. We present the architecture of text clustering system
which we implement in this chapter, in Sect. 11.1, and define the classes which
are involved in the system, in Sect. 11.2. In Sect. 11.3, we illustrate and explain the
implementations of methods in the involved classes. We demonstrate the process
of executing text clustering system in Sect. 11.4, and make the summarization and
further discussions on this chapter, in Sect. 11.5. In this chapter, we implement and
demonstrate the prototype version of text clustering system in order to provide the
guide for implementing its real version.
11.1
System Architecture
In Fig. 11.1, we illustrate the text clustering system architecture which we imple-
ment in this chapter. The first step is to gather texts as clustering targets. The features
are generated from the texts and they are encoded into numerical vectors in the next
step. The numerical vectors which represent texts are clustered into subgroups by
the AHC algorithm which is adopted for implementing the system. In this section,
we describe modules which are involved in implementing the text clustering system
in the functional view.
The text encoding module plays its role of encoding given texts into numerical
vectors. The first step of executing the text clustering system is to gather texts to
be clustered. The gathered texts are indexed into a list of words which are feature
candidates and some among them are selected as features. Each text is encoded into
a numerical vector whose attributes correspond to the selected features. The text
encoding module was already developed in Chap. 7, and it is attached to the text
clustering system in this chapter.
© Springer International Publishing AG, part of Springer Nature 2019
225
T. Jo, Text Mining, Studies in Big Data 45,
https://doi.org/10.1007/978-3-319-91815-0_11

226
11
Text Clustering: Implementation
Fig. 11.1 Architecture of text clustering system
In text clustering module, the similarities between numerical vectors are com-
puted after encoding texts into numerical vectors. A cluster pair is given as the
input in the similarity computation module, a normalized value between zero and
one is generated as the output. In this system, we adopted the cosine similarity as
the similarity metric between examples, in implementing the text clustering system.
Even if the process of computing the similarities is not displayed in the system
architecture which is illustrated in Fig. 11.1, it exists in the text clustering module
as the core operation. More similarity metrics will be added in implementing the
subsequent version of this system.
The text clustering is executed in the text clustering module, depending on
its tested similarity computation module. The AHC algorithm is adopted as the
approach in implementing this text clustering system. It starts with skeletons with
one item and builds clusters by merging pairs of their highest similarity. The
similarity between clusters is computed by averaging over similarities of all possible
pairs of elements. Merging of these clusters from individual items is continued until
reaching number of clusters which is set as an external parameter.
Let us explain the process of executing the text clustering system which is
developed in this chapter. Texts are collected as text files which are clustering
targets. The collected texts are clustered into subgroups of content based similar
11.2 Class Definitions
227
ones. Clustered texts are displayed as a list of file names together with cluster
boundary lines. The number of clusters is fixed to two in this system as the prototype
and demo version.
11.2
Class Definitions
In this section, we present and explain the class definitions which are involved
in implementing the text clustering system in Java. In Sect. 11.2.1, we review the
classes which were defined in Chap. 7, and reused for implementing the system.
In Sect. 11.2.2, we describe the class, “Cluster,” with respect to its properties and
methods. In Sect. 11.2.3, the interface, “ClusterAnalyzer,” which is the frame for
implementing various clustering algorithms. In Sect. 11.2.4, we explain the class,
“AHCAlgorithm,” which is the class specific to the interface, “ClusterAnalyzer.”

11.2.1

Classes in Text Categorization System
This section is concerned with the four classes which are involved implementing the
text clustering system as well as the text categorization system. In the previous chap-
ters, we already defined and explained the classes. The four classes, “FileString,”
“Word,” “Text,” and “PlainText,” are used for implementing the basic operations on
texts which are necessary for the both systems. The class, “Text,” was defined as an
abstract class which inherits its properties and methods to its subclass, “PlainText.”
In this section, we review the four cases which were previously covered.
The class, “FileString,” is defined in Fig. 11.2 for loading and saving a string
from and to file. The properties are “fileName” which is the name of file which we
try to access, and “fileString” which is the content of file which is given as a string.
A file is created for loading a string with only its file name but it is created for saving
it with not only its name but also the string which is the saving target. The methods
are “saveFileString” which saves the string into the file, and “loadFileString” which
loads the string from the file. This class is needed for implementing any application
program, because any program requires file accesses.
The class, Word, is defined in Fig. 11.3. The properties of this class are
“wordName” which indicates a word itself, and “wordFrequency” which indicates
its frequency in a given text. An object of the class, Word, is created by initializing
the property, “wordName,” which is the symbolic identifier. The methods, “setWord-
Frequency,’ “getWordName,” and “getWordFrequency,” are ones for accessing and
mutating the properties. The class, Word, is needed for implementing individual
words as objects. In Fig. 11.4, the class, Text, is defined as an abstract class.
The abstract class was defined for implementing the text categorization system in
Chap. 7, and is reused for implementing the text clustering system. The properties of
this class are “textFileName,” “wordList,” “fullText,” “textLabel,” and “featureVec-

228
11
Text Clustering: Implementation
Fig. 11.2 The class: FileClass
Fig. 11.3 The class: word

11.2 Class Definitions
229
Fig. 11.4 The class: text
tor.” The methods are “loadFullText,” “indexFullText,” “encodeFullText,” and
“computeSimilarity.” The differences of the abstract class from the interface are that
the properties may be included and the methods may have their implementations.
In Fig. 11.4, the class, Text, is defined as an abstract class. The abstract class was
defined for implementing the text categorization system in Chap. 7, and is reused for
implementing the text clustering system. The properties of this class are “textFile-
Name,” “wordList,” “fullText,” “textLabel,” and “featureVector.” The methods are
“loadFullText,” “indexFullText,” “encodeFullText,” and “computeSimilarity.” The
differences of the abstract class from the interface are that the properties may be
included and the methods may have their implementations.
The class, “PlainText,” is defined in Fig. 11.5. The two classes, Text and
“PlainText,” have the inheritance relation. The class, Text, becomes the super class
which provides the inheritance, and the class, “PlainText,” becomes the subclass
which receives it. By defining more classes which receive the inheritance from
the abstract class, Text, it is possible to expand the version which supports more
types of text, such as XML document, HTML one, and other types of documents.
Implementations of method which are defined in the class, Text, are provided in its
subclasses.

230
11
Text Clustering: Implementation
Fig. 11.5 The class:
PlainText

11.2.2

Class: Cluster
This section is concerned with defining the class, Cluster, which is illustrated in
Fig. 11.6. The class is intended to define a group of texts as an object. An object of
this class is created with its cluster identifier as an initially empty cluster. As texts
are added, the cluster grows, and an individual text is accessed by its own index. So,
in this section, we explain the class, Cluster, which is defined in Fig. 11.6.
The properties of this class are “clusterID” and “textList.” The former stands
for the cluster identifier which is given as a primary key value. The latter which
is declared as a dynamic array of objects of the class, “Text,” stands for the list of
texts which belong to the current cluster. The class, “Text,” is the super class of the
current one. In the next version, the property, “clusterName,” which stands for its
symbolic cluster name which reflects its contents, will be added.
The methods which are involved in the class, Cluster, were already displayed in
Fig. 11.6. An object of class, Cluster is viewed as a list of texts and an individual text
is added to the property, “textList,” by the method, “addTextItem.” The information
about the cluster is accessed by the methods, “getClusterID,” “getTextItem” and

11.2 Class Definitions
231
Fig. 11.6 The class: cluster
“getSize.” The method, “mergeCluster,” which takes an object of class, Cluster, as
the argument, and adds the texts in the cluster to the property, “textList.” The method
which deletes a text item from the property, “textList,” is not included because it is
not used in this program.
Let us consider some potential methods which we add for upgrading the text
clustering system in future. We add the method, “splitCluster” for splitting a
cluster into several clusters. The method, “computeIntraClusterSimialrity,” may be
considered for computing the intra-cluster similarity which measures how much
data items are coupled within a cluster. Accordingly we may add the method,
“computeInterClusterSimilarity,” for computing the inter-cluster similarity which

232
11
Text Clustering: Implementation
Fig. 11.7 The interface:
ClusterAnalyzer
measure how much data items between different clusters are discriminated. In
upgrading the system, we consider the property, “clusterPrototype,” and the method,
“optimizeClusterPrototype,” for optimizing the cluster characteristics.
Let us consider integrating the text clustering system with the text categorization
system which was previously implemented in Chap. 7. It is the requirement for using
the text categorization system to predefine the categories and allocate the sample
texts, manually. The text clusters which are automatically generated by the text
clustering system are given as a list of categories and allocated sample texts. A
list of the cluster identifiers becomes a list of categories and the texts in each cluster
become sample texts which are labeled with the cluster identifier. The integration of
the two systems with each other is left as the subsequent task in future.

11.2.3

Interface: ClusterAnalyzer
The class, “ClusterAnalyzer” is defined as an interface, as shown in Fig. 11.7. The
interface in Java programming is defined as list of methods without their implemen-
tations. The three methods, “setTextList,” “getClusterList,” and “clusterTextList,”
are defined in the interface. Their implementations are given in its specific class,
“AHCAlgorithm,” and more clustering algorithm may be added as specific classes
in upgrading the system in future. In this section, we describe the interface as the
programming concept, explain the methods which are defined in the interface, and
compare the interface and the abstract class with each other.
Defining the class “ClusterAnalyzer” as an interface aims to add more clustering
algorithm easily. The methods which are defined in the interface are implemented
differently according to clustering algorithms. In the current version, we use only the
AHC algorithm as the clustering algorithm. In subsequent versions, more clustering
algorithms such as k means algorithm, k medoid algorithm, single pass algorithm,
and Kohonen Networks will be added as the classes which are specific to the
interface. The clustering algorithms will be treated as objects which are typed
identically by the class, “ClusterAnalyzer,” for implementing the combined model
of multiple clustering algorithms.
The methods which are contained in the interface which is shown in Fig. 11.7
are defined as operations of individual objects of the class specific to the inter-
face. The method, “setTextList,” assigns a list of texts as clustering targets. The
method, “getClusterList,” gets a list of clusters of content based similar texts. The
method, “clusterTextList,” clusters a list of texts which is assigned by the method,
“setTextList,” by a clustering algorithm. The methods will be implemented in the
classes which are specific to the interface.
11.2 Class Definitions
233
Let us mention the abstract class as the alternative to the interface, with respect
to the specification. In the relation between the interface and its specific classes,
the methods are listed in the interface and their implementations are provided in
the specific classes. The abstract class may have the both roles of the interface
for making a list of methods and the super class for inheriting its properties and
method to its subclasses. It is possible to define both properties and methods with
and without their implementations in the abstract class. The implementations of the
methods are given in defining a super class.
Let us mention some classes which we will add in upgrading the text clustering
system in figure as ones specific to the interface, “ClusterAnalyzer.” In the current
version, we defined and implemented the class, “AHCAlgorithm.” We add the
class “KMeansAlgorithm” which indicates the k means algorithm which is covered
in Sect. 10.3, as a specific class to the interface. It is possible to add the class,
“KohonenNetworks,” which corresponds to the unsupervised neural networks,
Kohonen Networks, as such a kind of class. We upgrade the system continually
by adding more different clustering algorithms as the classes which are specific to
the interface.

11.2.4

Class: AHCAlgorithm
The class, “AHCAlgorithm,” is defined as one which is specific to the interface,
“ClusterAnalyzer,” in Fig. 11.8. The methods which are defined in the interface are
implemented in this class. Objects of this class are treated as ones which belong to
the interface, “ClusterAnalyzer.” The implementations of the involved methods are
explained in Sect. 3.3. In this section, we explain the defined class with respect to
its object creation and properties.
Let us consider the process of creating the AHC Algorithm as an object. The
declaration of creating the object is stated as follows:
ClusterAnalyzer clusteringAlgorithm = new AHCAlgorithm(2);
The object which is created by the above statement is given as an object of the
interface, “ClusterAnalyzer,” rather than the specific class, “AHCAlgorithm.” Its
methods are executed following the implementations in the specific class. The
above statement shows that the method implementations are separated from the
object type.
In the class which is shown in Fig. 11.8, the properties, “clusterListSize,”
“textList,” and “clusterList,” are declared. The property, “clusterListSize,” indicates
the desired number of clusters as the condition for terminating the iterations. The
property, “textList,” is the list of texts which is a group of data items. The property,
“clusterList,” is the list of clusters which is resulted from clustering data items. The

two properties, “clusterListSize” and ’textList, are initialized before proceeding the
data clustering.

234
11
Text Clustering: Implementation
Fig. 11.8 The class: AHCAlgorithm
The methods which are defined in the interface, “TextClusterAnalyzer” in
Fig. 11.7, are defined also in the class, “AHCAlgorithm” in Fig. 11.8. The imple-
mentation of the method, “setTextList,” is identical to any of specific class. The
implementation of the method, “initializeClusterList,” is different, depending on
the clustering algorithm; clusters as many as data items are constructed in the AHC
algorithm. The implementation of the method, “clusterTextList,” is also different,
depending on the clustering algorithm; it is explained in detail in Sect. 11.3. The
three methods which are defined in the interface are used externally as the operations
for proceeding the clustering, and the method, “initialClusterList,” should be
invoked in the method, “clusterTextList.”
Let us consider the relations of the class, “AHCAlgorithm,” with others. In
this class, the methods which are defined in the interface, “TextClusterAnalyzer,”
are implemented. An object is created with the class, “TextClusterAnalyzer,” and
methods which are implemented in the class, “AHCAlgorithm,” are invoked. The
class, “AHCAlgorithm,” provides the specific implementations of the methods
for the interface, “TextClusterAnalyzer.” We add more clustering algorithms as
alternative clustering approaches to the AHC algorithm, by adding more classes
which are specific to the interface, “TextClusterAnalyzer.”
11.3 Method Implementations
235
11.3
Method Implementations
This section is concerned with the method implementations which are involved
in the classes. In Sect. 11.3.1, we review the methods in the previous classes. In
Sect. 11.3.2, we explain the implementations of the methods which are defined in the
class, Cluster. In Sect. 11.3.3, we describe the method implementations in the class,
AHCAlgorithm. In this section, we explain the method implementations which are
involved in implementing the text clustering system.

11.3.1

Methods in Previous Classes
This section is concerned with method implementation in the classes which were
mentioned in the previous parts. The methods which are defined in the class,
“FileString,” are reviewed for accessing to secondary storages. The methods which
are defined in the classes, “Text” and “Word,” are mentioned. We explain the process
of generating features by the method, “generateFeatureList.” Therefore, in this
section, we review the methods which are defined in the previous classes.
The implementations of the methods, “loadFileString” and “saveFileString,” are
illustrated in Fig. 11.9. The method, “loadFileString,” loads contents from a file as a
string, whereas the method, “saveFileString,” saves a string into a file as its contents.
For doing the both tasks, an object of the class, “RandomAccessFile,” should be
created in the both method implementations. The exceptional handling should be
included for dealing with the failure in opening the file. One of the two methods
is executed by creating an object of the class, “FileString,” and invoking either of
them.
Figure 11.10 illustrates the implementation of the method, “computeWordFre-
quency.” If the argument is given as an empty string, the method does nothing. The
first occurrence of the word which is given as the property of this class is positioned
by invoking the method, “indexOf.” If there is no occurrence of the argument, the
method returns 0, and otherwise, it adds one to the value which is returned by the
recursive call of this method with the updated one, the substring which starts after
the first occurrence. The style of implementing the method by the recursive call is
called recursive programming.
Figure 11.11 illustrates the implementation of the method, “encodeFullText.” The
list of features which are attributes of numerical vectors and the dimension are given
as the arguments, and if the dimension and the number of features do not match,
it terminates. The features are given as words and the frequencies of words are
computed by the method, “computeWordFrequency.” The numerical vector whose
elements are frequencies of words is generated from this method. It represents the
full text and is given as the property of this class.

236
11
Text Clustering: Implementation
Fig. 11.9 The methods: saveFileString and loadFileString
Fig. 11.10 The methods: computeWordWeight
Fig. 11.11 The methods: encodeFullText

11.3 Method Implementations
237
Fig. 11.12 The methods: generateFeatureList
Figure 11.12 illustrates the implementation of the method, generateFeatureList.
Externally, an object of class, Text, is created with the full text which is concatenated
from texts in the corpus. The concatenated text is indexed into a list of words, and
some words among them are selected as features. The criteria for selecting them
is total frequency of each word in the concatenated text. This method returns the
features which are attributes of numerical vector which represents a text.

11.3.2

Class: Cluster
This section is concerned with the implementations of methods which are defined
in the class, “Cluster.” The class, “Cluster,” was defined in Fig. 11.6 with its
properties, constructor, and methods. This section covers the methods, “com-
puteSimilarity”, “computeIntraClusterSimilarity,” “computeInterClusterSimilarity,”
and “mergeCluster.” The properties and the constructor were already explained in
Sect. 11.2.2. In this section, we explain the method implementations, in detail.
In Fig. 11.13, we illustrate the implementation of the method, “computeWord-
Similarity” which computes the similarity of the current cluster with another.
Another object of the class, Cluster, is given as an argument. The similarities of
all possible pairs between two clusters are computed as shown in the tested for
loop. The average over the similarities is the similarity between the two clusters
and returned from this method. Because the similarity between individual items is
given as a normalized value, the similarity between the two clusters is also given as
normalized value.

238
11
Text Clustering: Implementation
Fig. 11.13 The methods: computeSimilarity
Fig. 11.14 The methods: computeClusterSimilarity
Figure 11.14 presents the method implementation, computeClusterSimilarity.
The similarities of all possible pairs of item are computed. They are summed
through the for-loop with the nested one. The average over the similarities computed
by dividing the sum by half of product of the cluster size and cluster size minus one,
and the average is returned as the intra-cluster similarity of the clustering results. If
individual similarities are given as normalized values, the intra-cluster similarity is
also given as a normalized value.
Figure 11.15 illustrates the implementation of the method, “computeInterClus-
terSimilarity.” Another object of the class, Cluster, is the opposite one which is
given as the method argument. The similarities between the current cluster elements
and the opposite cluster ones are computed and summed. It is averaged by dividing
the sum by the product of the two cluster sizes and returned as the inter cluster
similarity between the two clusters. The inter-cluster similarity becomes the reverse
of discriminations between them.
Figure 11.16 illustrates the implementation of the method, “mergeCluster.” An
object of class, Cluster, is given as an argument. Elements in the opposite cluster are
added to this cluster. The results from executing the method is the cluster which
consists of its exiting elements and the added ones from the opposite one. The
method is needed for proceeding clustering by the AHC algorithm.

11.3 Method Implementations
239
Fig. 11.15 The methods: computeInterClusterSimilarity
Fig. 11.16 The methods:
mergeCluster
Fig. 11.17 The methods: mergeCluster

11.3.3

Class: AHC Algorithm
This section is concerned with method implementations which are involved in the
class, “AHCAlgorithm.” In implementing the text clustering system, we adopted
the AHC algorithm which was covered in Sect. 10.2.1, as the approach. As shown
in Fig. 11.7, the class, “ClusterAnalyzer,” is defined as an interface, and the class,
“AHCAlgorithm” is defined as a specific class to the interface. The methods in
the interface, “ClusterAnalyzer,” are implemented in this class. In this section, we
explain the method implementations.
Figure 11.17 presents the implementation of the method, “initializeClusterList.”
This method initializes a list of clusters for executing the AHC algorithm. Objects
of class, Cluster, as many as data items are created as skeletons. The list of clusters
each of which has only one data item is the results from executing the method. This
method is invoked in implementing the method, “clusterTextList.”

240
11
Text Clustering: Implementation
Fig. 11.18 The methods: clusterTextList
Figure 11.18 shows the implementation of the method, “clusterTextList.” The
clusters are initialized by invoking the method, “initializeClusterList.” The similar-
ities of all possible pairs of clusters are computed within the nested for-loop in the
implementation. The two clusters whose similarity is maximum are merged into one
cluster. The process is iterated until the number of clusters is decremented to two;
the binary clustering is implemented as the demonstration version.
11.4
Class: ClusterAnalysisAPI
This section is concerned with the two final classes and the demonstrations and
consists of four subsections. In Sect. 11.4.1, we explain the definition of class,
“ClusterAnalysisAPI” and the involved method implementations. In Sect. 11.4.2,
we explore the class, “ClusterAnalysisGUI,” which is involved directly in imple-
menting the system interface. In Sect. 11.4.3, we demonstrate the process of
clustering texts by the developed system. In Sect. 11.4.4, we mention some points
of upgrading the text clustering system.

11.4 Class: ClusterAnalysisAPI
241
Fig. 11.19 Class: ClusterAnalysisAPI

11.4.1

Class: ClusterAnalysisAPI
Figure 11.19 illustrates the class definition, “ClusterAnalysisAPI,” in Fig. 11.19. A
text list, a cluster list, and a feature list are given as the properties. An object of
this class is created by taking dimension of numerical vectors which represent texts
as the argument. The method implementations which are involved in executing the
clustering are presented in Fig. 11.19. In this section, we explain the properties and
the methods of this class.
Let us mention the properties of defining in the class, “textList,” “clusterList,”
and “featureList.” The property, “textList,” is the list of texts which are given
as the input. The property, “clusterList,” means the list of clusters which are the
results from clustering texts in the property, “textList.” The property, “featureList,”
indicates the list of words which are selected as the features from the texts in
the property, “textList.” We use the property, “featureList,” for encoding texts into
numerical vectors.
Let us explain methods which are involved in executing text clustering. The
method, “loadTextList,” loads full texts from text files, and stores them as a list in the
property, “textList.” The method, “encodeTextList,” encodes texts which are stored
in the property, “textList,” into numerical vectors. The method, “clusterTextList,”

242
11
Text Clustering: Implementation
Fig. 11.20 Class: ClusterAnalysisGUI
clusters texts in the property, “textList,” into subgroups, and stores them in the
property, “clusterList.” The method, “generateFeatureList,” indexes the list of texts
in the property, “textList,” into the list of words and selects some among them as
features.
Let us consider relations of this class, “ClusterAnalysisAPI,” with other classes.
The API class whose objects are created and methods are invoked in the main
program is final to a console program. Objects of other classes are created and meth-
ods of other classes are invoked in this class. In the GUI (Graphic User Interface)
programming, the objects of this class are created and methods are involved in the
class, “ClusterAnalysisGUI.” In Sect. 11.4.2, we mention the definition, properties,
and methods of the class, “ClusterAnalysisGUI.”

11.4.2

Class: ClusterAnalyzerGUI
This section is concerned with the class, “ClusterAnalysisGUI,” for displaying and
manipulating the graphic user interface, as defined in Fig. 11.20. The properties
correspond to the components in the interface which is illustrated in Fig. 11.21.
The constructor in the class, “ClusterAnalysisGUI,” displays the graphic user
interface. The class which is nested in “ClusterAnalysisGUI,” “ButtonHandler,” is
for manipulating components in the interface. In this section, we explain the class
which is defined in Fig. 11.21, with respect to the properties, methods, and the nested
class.
The four components of interface and the object of the class, “TextCluster-
AnalysisAPI,” are given in the class, as the properties. In Fig. 11.21, the property,

11.4 Class: ClusterAnalysisAPI
243
Fig. 11.21 Class: interface
of text clustering system
“textList,” is the area for displaying a list of texts which is given as the input,
and the property, “textLabel,” is the label which is written following, “Texts:”.
The property, “addTextListButton,” is given for initiating adding texts to the list as
clustering targets. The property, “clusterTextListButton,” is for initiating clustering
texts into subgroups. The property, “textClusterAnalyser,” is an object of the class,
“TextClusterAnalysisAPI,” for executing the text clustering.
The method in the class, “TextClusterAnalysisGUI,” is the only constructor, so
we explain its implementation. The memory is allocated to objects of the classes,
“clusterList” and “textFileNameList.” The object of the class, ‘TextClusterAnalyz-
erAPI, is created for executing the text clustering. The components which are shown
in Fig. 11.21, are configured. In order to implement the event driven programming,
the two buttons of adding texts and executing the text clustering are added to the
action listener, by invoking the method, “addActionListener.”
The class, “ButtonHandler,” is nested in the class, “TextClusterAnalyzerGUI,”
and it has the implementation of the method, actionPerformed’. The objects of the
class, “JButton,” are created with the component names in the constructor of class,
“TextClusterAnalyzerGUI,” as follows:
this.addTextListButton = new JButton(“Add Texts”);
this.clusterTextListButton = new JButton(“Cluster Texts”);
The two conditional statements in the implementation exist for responding to
pushing one of the two buttons. If the button, “AddTexts,” is pushed, the window
is opened for choosing files and the files which we select are stored as clustering
targets. If the button, “Cluser” Texts, is pushed, the selected texts are clustered and
the text clusters are displayed as a message box. We need to register the two buttons
as a listener by invoking “addActionListener,” in order to execute the corresponding
actions in pushing the button.

244
11
Text Clustering: Implementation
Let us consider the relation of the class, “TextClusterAnalyzerGUI,” with other
classes. This class is intended for activating the graphic user interface for performing
the text clustering. In the main program, the object of this class is created and
methods which are implemented in this class. In this class, the object of the class,
“TextClusterAnalyzerAPI,” is created and the methods in it are invoked. In this
class, as a GUI class, the graphic user interface which is related with the API class
is implemented.

11.4.3

Demonstration
This section is concerned with the process of demonstrating the text clustering
system which is developed in this chapter. The left in the interface is intended for
adding texts through the file chooser window. The file names which are selected
by a user are displayed in the area whose label is “Text:”. Texts are encoded into
numerical vectors and the text clustering is executed by pressing the right button. In
this section, we demonstrate the text clustering system, explaining the detail process.
In Fig. 11.22, the process of gathering texts is demonstrated. The system has
no text in the initial stage. The button, “add-text” is pressed and the file chooser
is popped up. The files are selected through the file chooser and the left button is
pressed in it. The files are displayed in the text area, as shown in Fig. 11.23.
The text clustering is executed by pressing the button, “Cluster-Texts.” The
features are generated from texts which are selected by the above process. Texts
are encoded into numerical vectors. They are clustered into subgroups by the AHC
algorithm. The clusters which are most similar with each other are merged until the
number of clusters reaches two.
Fig. 11.22 Gathering texts

11.4 Class: ClusterAnalysisAPI
245
Fig. 11.23 Selecting files
The results from demonstrating the text clustering system are illustrated in
Fig. 11.23. In the text area, texts which are selected in Fig. 11.22 are displayed.
The results from clustering the selected texts are displayed in a message box in the
right part in Fig. 11.23. The dashed line which is shown in the message box between
text identifiers means the boundary between clusters. The ten texts are selected and
they are clustered into two clusters: one has 8 texts and the other has 2 texts in this
demonstration.
Let us point out some limits in the current version of text clustering system as
the directions for upgrading it. The system deals with only plain texts which are
given as text files whose extension is “txt.” Only AHC algorithm is used as the text
clustering approach, so we need to install more approaches in the system. The results
from clustering texts are displayed in the message box as a textual form as shown in
Fig. 11.23. The scope of clustering types is restricted to crisp and flat clustering in
this system.

11.4.4

System Upgrading
This section is concerned with the directions for upgrading the current version
of the text clustering system. In Sect. 11.4.3, we demonstrated the text clustering
system which is a prototype but not a real version. In the current version, only AHC
algorithm is adopted as the approach, in spite that other approaches are available,
and it supports only the plain texts. We need to upgrade the text clustering system by
adding more clustering algorithms and supporting more kinds of texts such as XML
documents. In this section, we point out limits of the current version and present
directions for upgrading the system.
246
11
Text Clustering: Implementation
The number of clusters is set as the termination condition of executing the
AHC algorithm. In the AHC algorithm, two clusters with their maximum similarity
is merges into a cluster and the number of clusters is decreased by one. The
maximum similarity threshold may be used as the alternative termination condition,
in proceeding the clustering. If the maximum similarity is less than the threshold, the
merging process is terminated. It allows the variable number of clusters by giving
the similarity threshold as the hyper parameter, instead of the number of clusters.
The direction of upgrading the text clustering system is to allow users to select
one or some of clustering algorithms by the menu. The AHC algorithm whose
argument is the number of clusters is used as the text clustering approach in
the current version. We add more cluster algorithms as the classes which are
specific to the class, “TextClusterAnalyzer,” which is defined as an interface.
Objects of different clustering algorithms are treated as ones in the same class,
“TextClusterAnalyzer,” by the polymorphism. The multiple clustering algorithms
may be combined for clustering texts and clustering results are integrated with each
other; this may be considered as the direction of upgrading the system.
Another direction of upgrading the system is to allow it to process various
formats of texts. In the current version, only plain texts are processed for clustering
them. In the next version, the system is allowed to cluster web documents whose
formats are HTML or XML, as well as plain texts. More text formats are added as
the subclasses which are derived from the class, Text, defined as abstract class. The
XML is the standard document format where tags are defined based on the DTD
(Document Type Definition) file, and the classes for processing them are available
as Java Class Library.
The text clustering may be developed as a module which is attached to another
system, as well as an independent program. Even if this program is only a prototype
version, the text clustering system was implemented as an independent program,
in this chapter. In 2006, Jo combined the text categorization and the text clustering
into the automatic management tool [25]. The text clustering may be attached to the
information retrieval system for displaying texts which are relevant to the query as
clusters. We consider the two destinations of upgrading the prototype program: an
independent commercial program and a module to another program.
11.5
Summary and Further Discussions
In this chapter, we presented the Java source code in implementing the text
clustering system. We defined the classes and the interface which are involved in
implementing the program. We explained the method implementations which are
included in the classes. We demonstrated the process of clustering texts by the
system and mentioned the directions for upgrading the system. In this section, we
make some further discussions from what we studied in this chapter.
11.5 Summary and Further Discussions
247
There is the possibility of adding other programs as modules to the system.
Cluster naming for identifying clusters symbolically may be added to the system.
The text categorization system which was developed in Chap. 7 may be modified
into a module and added to the system for arranging texts which are added
subsequently. The text summarization which will be covered in Chap. 13 is added
to the program for clustering texts by their summaries, rather than their full texts for
improving the clustering speed. The text segmentation may be added to the program
for clustering subtexts like independent full texts.
We need to add more clustering algorithms as the approaches to the system in
upgrading the system. The single pass algorithm, the divisive algorithm, and the
growing algorithm which were covered in Sect. 6.1 may be added by defining the
classes which are specific to the interface, “TextClusterAnalyzer.” The k means
algorithm and its variants are added as the most popular approaches. The Kohonen
Networks and SOM are considered as neural based approaches. In implementing
the text clustering system, we consider the combination schemes of multiple
approaches, such as voting, gate mixture, and adaboost.
The class, “TextClusterAnalyzer,” may be defined as an abstract class, instead
of the interface. In this chapter, the class, “TextClusterAnalyzer,” is defined as
the interface, and the cluster algorithms will be defined as the classes which
are specific to the interface. The class, “TextClusterAnalyzer,” is defined as an
abstract class, and the classes which indicate clustering algorithms are defined as
the subclasses which inherit properties and methods from the abstract class. The
construct implementation is the difference of the abstract class from the interface.
The case where methods implemented in the abstract class, but not implemented in
its subclasses may be possible.
The results from clustering texts are displayed as the textual forms in the message
box, in the current version. We need to customize the graphic user interface for
visualizing text clusters more graphically to enable the browsing. The text clustering
is displayed initially, and when a user clicks a cluster, it displays a list of texts
which belong to the cluster, together with their titles. If clicking a particular text, its
information and full text are displayed. Therefore, we may consider the advanced
interface in upgrading the current version.

Chapter 12
Text Clustering: Evaluation
This chapter is concerned with the schemes of evaluating text clustering systems
or approaches. We introduce the basis for evaluating the clustering performances,
in Sect. 12.1, and mention the three types of evaluation schemes in Sect. 12.2. In
Sect. 12.3, we describe the clustering index which was proposed by Jo and the
process of evaluating results from the fuzzy and hierarchical clustering as well as
the simple clustering. We cover how to install the parameter tuning in the clustering
algorithms in Sect. 12.4, and make the summary and further discussions on this
chapter, in Sect. 12.5. In this chapter, we explain the schemes of evaluating text
clustering systems and mention the clustering algorithms with the parameter tuning.
12.1
Introduction
Before mentioning the specific evaluation schemes, we consider the directions, the
outlines, and the policies of evaluating clustering results. Because the target labels
of examples are not available, it is not easy to evaluate clustering results. Even if
using the labeled examples for evaluating them, there are many cases of matching
clusters with the target categories. The direction of evaluating clustering results is
to maximize the similarities of examples within each cluster and to minimize the
ones of examples between different clusters. In this section, we present the outline
of evaluating clustering results distinguished from doing classification results.
It is more difficult and complicated to evaluate the text clustering performance
than the text categorization performance. The F1 measure or the accuracy depends
on how to match the target labels with clusters in using the labeled texts in the
test collection. The results from evaluating the text clustering depend on schemes of
computing similarities among texts, when using unlabeled texts. Various schemes of
© Springer International Publishing AG, part of Springer Nature 2019
249
T. Jo, Text Mining, Studies in Big Data 45,
https://doi.org/10.1007/978-3-319-91815-0_12
250
12
Text Clustering: Evaluation
evaluating results from clustering texts were previously proposed, but no standard
scheme is not available. No desired number of clusters is usually available in
evaluating the clustering results.
Even if no standard evaluation measure is available, the direction of implement-
ing the text clustering systems is available. The similarities among items within each
cluster which are called cohesions or intra-cluster similarities should be maximized.
The similarities among clusters which are called discriminations or inter-cluster
similarities should be minimized. In other words, we must avoid both the wrong
partition which means that a desirable cluster is partitioned into several clusters and
the wrong merge which means that really discriminated clustering is merged into a
cluster. In previous literatures, various evaluation metrics of clustering systems have
been proposed [7].
Let us mention the three views of evaluating clustering results. The external
view is mentioned as the view where labeled examples are used for evaluating
the clustering results. The internal view may be considered as the view where
unlabeled examples are used for evaluating the results depending on similarities of
individual items. The relative view exists as the view where alternative approaches
are evaluated based on results from a particular one. The views of evaluating
clustering results will be described in Sect. 12.2.2, in detail.
Let us explain briefly the process of evaluating results from clustering data items.
It is assumed that labeled examples are prepared as a test collection. The examples
are clustered into subgroups as many as the number of predefined categories.
We compute the intra-cluster similarities as many as clusters and the inter-cluster
similarities of all possible pairs of clusters and average over them. As a single
metric integrating the both metrics, in 2006, Jo proposed the clustering index, and
we describe it in detail, in Sect. 12.2.3, [25].
12.2
Cluster Validations
This section is concerned with the measures and the frames of evaluating clustering
results. In Sect. 12.2.1, we mention the measures which are involved in the clustering
evaluation, and present the desired clustering results. In Sect. 12.2.2, we describe
the internal evaluation process where unlabeled examples are used for the clustering
evaluation. In Sect. 12.2.3, we mention the relative one where clustering results
are evaluated based on the pivoted ones. In Sect. 12.2.4, we explain the external
evaluation process which is opposite to the internal one.

12.2.1

Intra-Cluster and Inter-Cluster Similarities
This section is concerned with the basic measures which are involved in evaluating
clustering results. It is assumed that the data items are encoded into numerical
vectors, and the similarity metric between them is defined. There are two kinds of
12.2 Cluster Validations
251
similarities for evaluating clustering results: intra-cluster similarity and inter-cluster
similarity. The direction of clustering data items is to maximize the intra-cluster
similarity and minimize the inter-cluster similarity. In this section, we describe the
scheme of computing the both similarities and the evaluation policy.
The first step of evaluating clustering results is to prepare a text collection which
is the clustering target. When labels of texts are not available in the test collection,
we use the evaluation measures which are defined based on the internal validation
and the relative one. If the labels are available, the evaluation of clustering results
follows the external validation. The labels are hidden during clustering items, but
are presented in the evaluation step. The number of clusters is set by the number of
target categories in the external validation, arbitrary in the internal validation, and
by the number of clusters resulted from the pivot approach in the relative one.
Let us mention the process of computing the intra-cluster similarity for each
cluster. It is assumed that a list of individual items within the cluster, Ci, is given as
a set of numerical vectors, {x
i 1 , x
i 2 , . . . , x
i| Ci|}, and the similarity between the two vectors, x
ik and x
im is notated by sim(x
ik, x
im). The intra-cluster similarity to the cluster, Ci is computed by Eq. (12.1),
| Ci|
| Ci|

int rasim(Ci) =
2

sim(x
|

ik , x
im)
(12.1)

Ci| (| Ci| − 1) k=1 m= k
where | Ci| is the cardinality of the cluster, Ci. The intra-cluster similarity to the
entire clusters, C = { C 1 , C 2 , . . . , C| C|} is computed by averaging the intra-cluster
similarities of the clusters, as expressed in Eq. (12.2),
| C|

int rasim(C) = 1
| intrasim(C
|

i)
(12.2)

C| i=1
where | C| is the number of the entire clusters. When a too large number of
small sized clusters is given as results, they are overestimated by the intra-cluster
similarity.
We need one more measure which is called inter-cluster similarity for evaluating
clustering results. The results from clustering data items given as a set of clusters,

C = { C 1 , C 2 , . . . , C| C|}, and notate the two clusters, Ci and Cj , as follows:

Ci = {x
i 1 , x
i 2 , . . . , x
i| Ci|}

Cj = {x
j 1 , x
j 2 , . . . , x
j| Cj |}
The inter-cluster similarity between the two clusters, Ci and Cj is computed by
Eq. (12.3),
| C |

i |

Cj|

int ersim(Ci, Cj) =
1

sim(x
|

ik , x
im)
(12.3)

Ci| × | Cj | k=1 m=1

252
12
Text Clustering: Evaluation
The inter-cluster similarity which reflects the entire results is computed by Eq. (12.4)
| C|
| C|

int ersim(C) =
2

int ersim(C
|

i , Cj)
(12.4)

C| (| C| − 1) i=1 j= i
The intra-cluster similarity and the inter-cluster similarity are computed, avoiding
the two extreme cases: a single group of all data items and single skeletons as many
as data items.
Let us consider the ideal clustering results. Each cluster is composed with items
which are as similar as possible with each other, toward maximizing the intra-
cluster similarity. The items in a cluster should be discriminated with the ones in the
other clusters as strong as possible, toward minimizing the inter-cluster similarity.
Texts of each target label should be same to ones in its corresponding cluster as
the most desirable clustering results in using labeled examples for evaluating the
clustering results. In the subsequent subsection, we explore the types of evaluating
them, and describe the clustering index which is based on the above metrics in detail
in Sect. 12.3.

12.2.2

Internal Validation
This section is concerned with the paradigm of evaluating clustering results, which
is called internal validation. It is referred to the style of evaluating clustering results
depending on the similarities among texts. Unlabeled texts are prepared and a
similarity metric between texts is defined. The evaluation metric may be defined
based on the intra-cluster similarity and the inter-cluster similarity without any
external information. In this section, we explain and demonstrate the paradigm with
a simple example.
Figure 12.1 illustrates the raw texts and their representations as what are prepared
for the clustering evaluation. The assumption underlying in this kind of evaluation
is that no external information such as target labels of texts is added. The raw texts
are encoded into numerical vectors by the process which were described in Chaps. 2
and 3. The similarity metric between raw texts or their representations is defined as
the preliminary task. The clustering results may be evaluated differently depending
on how to define the similarity metric.
Fig. 12.1 Raw texts and text
representations
12.2 Cluster Validations
253
Fig. 12.2 Example for
computing intra-cluster
similarity and inter-cluster
similarity
The process of evaluating the clustering results, following the paradigm, was
described in [7]. The clusters are generated by a clustering algorithm. The intra-
cluster similarities and the inter-cluster similarities are computed, corresponding
to clusters and cluster pairs, respectively. By averaging them, the intra-cluster
similarity and the inter-cluster similarity which represent the entire results are
computed. The evaluation results are different, depending on whether we use the
similarity between text representations or between raw texts.
The intra-cluster similarity and the inter-cluster similarity are computed in the
example which is illustrated in Fig. 12.2. The intra-cluster similarities of the three
clusters are computed as 0.9819, 0.8140, and 0.7963, respectively, and they are
averaged as 0.8640 as the intra-cluster similarity to the entire results. The inter-
cluster similarities of the three pairs are computed as 0.8910, 0.8561, and 0.8519,
and they are averaged over 0.8693. If both measures are close to 1.0, the cluster
cohesions are very good but the discriminations among clusters are poor. If two
clusters have their high both measures, they should be merged with each other.
Let us mention some existing evaluation measures based on the internal valida-
tion and refer to [7] for its detail description. The simplest evaluation measure is
Dunn’s index which is based on the ratio of minimum distance between clusters to
the largest cluster size. The silhouette index is the average over instances of clusters.
The Hubert’s correlation is computed from the similarity matrix where each column
corresponds to a cluster, each row corresponds to an input vector, and each entry
indicates the similarity between a cluster and an input vector. The evaluation results
depend on the schemes of computing the similarity between clusters in the three
evaluation metrics.

12.2.3

Relative Validation
In this section, we mention another paradigm for evaluating the clustering results,
which is called relative validation. In advance, we decide most desirable clustering
results. Cluster algorithms are evaluated by comparing their results with the most
desirable one. Instead of absolute values, the clustering algorithms are evaluated by
how much results from clustering data items are close to the desirable one. In this
section, we describe the type of clustering evaluation in detail.
254
12
Text Clustering: Evaluation
Fig. 12.3 Preparation for
relative evaluation
Figure 12.3 illustrates the preparation of data items for doing the relative
validation. The desirable clusters of data items are constructed by subjective under
the assumption that they are unlabeled. We gather results from clustering data items
by clustering algorithms. By comparing the desirable results and generated ones
with each other, the clustering algorithms are evaluated. In reality, no completely
desirable clustering results do not exist and strong subjective bias always exist in
constructing the desirable results.
Let us mention the frame of evaluating clustering results based on the relative
validation, rather than a specific process. In the evaluation paradigm, it is assumed
that the number of clusters is fixed in both the desired results and the generated
ones. We construct the contingency table where each column corresponds to a
cluster in the desired results and each row does to one in the generated results.
We make the summation over values in the diagonal positions in the table, and the
ratio of summation of diagonal elements to the summation of all entries becomes
the evaluation metric. This type of evaluation scheme is characterized as the strong
dependency on subjectivity of building the desired clustering results.
Figure 12.4 illustrates a simple example for calculating the evaluation measure
which was mentioned above. The three clusters of the left part of Fig. 12.4 are given
as the actual results from clustering data items and those of the right part of Fig. 12.4
are given as the desired ones which are defined in advance. The actual results and the
desired ones are compared with each other; for example, the two items, and, belong
to the both groups, and the two clusters in the both parts have one shared items. The
total number of items is nine as shown in Fig. 12.4, and four items among them are
shared by both sides. The evaluation metric is computed as 0.4444, by the relative
validation.
In 2006, the relative validity was mentioned as the evaluation paradigm which is
the comparative evaluation of clustering algorithms with the base one, by Brun et
al. [7]. A new clustering evaluation measure which is based on the relative validity
was proposed by Vendramin et al. in 2009 [94]. However, Halkidi et al. did not
mention the relative validity among the three kinds of evaluation paradigms [21].
12.2 Cluster Validations
255
Fig. 12.4 Example of relative evaluation
The evaluation metrics which are based on the internal validity and the external
validity are used more frequently than this type. In 2007, Jo and Lee proposed the
evaluation measure which is based on the external validity, called clustering index
[44].

12.2.4

External Validation
This section is concerned with the third evaluation paradigm which is called
external validation. It is the style of evaluating clustering results by adding external
information. The labeled examples are prepared as the test collection, their labels are
hidden during clustering, and the similarity between items is based on their label
consistencies during the evaluation. The external validation should be understood
for studying the clustering index which is covered in Sect. 12.3. In this section, we
describe the external validation as the frame of evaluating the clustering results.
Figure 12.5 illustrates that the labeled texts are prepared for evaluating the
clustering results based on the external validation. The group of labeled texts is
almost identical what is prepared for the relative validation which was shown in
Fig. 12.3. The difference between the external validation and the relative validation
is that in the relative validation, no label is initially given in the text collection,
whereas the labels are given explicitly in the external validation. We use the standard
text collections which were mentioned in Sect. 8.2 for evaluating the clustering
results. However, there are two conditions for the relative validation: the collection
which consists of unlabeled text and the desirable clusters which are made by
subjectivity.
The labeled examples are used for evaluating the clustering results under this
evaluation paradigm. The labels are hidden while data items are clustered and
clusters are generated independently from their labels by a clustering algorithm. We
compute the intra-cluster similarity and the inter-cluster similarity based on their

256
12
Text Clustering: Evaluation
Fig. 12.5 Preparation for
external evaluation
Fig. 12.6 Example of external evaluation
target labels; the similarity between data items is given as a binary value: zero as
a similarity between differently labeled items and one as one between identically
labeled ones. The final evaluation measure is computed by combining the two
measures with each other. The difference from the internal validation is to use target
label or other external information about data items for the evaluations.
A simple example is presented in Fig. 12.6, in order to demonstrate the external
validation. Each text is labeled independently of its own cluster. The inter-cluster
similarity and the intra-cluster similarity are computed by their labels from the
clustering results, instead of their cosine similarities. The intra-cluster similarity
of the left cluster is 0.3333, and the inter-cluster similarity between the left one and
the middle one is 0.3333. The labels of texts are initially given as the external in
formation in this type of evaluation paradigm.
Let us mention some evaluation metrics which are based on the external
validation in [7]. As a metric, we may mention Hubert’s correlation which computes
the correlation between labels and clusters. As another metric, the Rand statistics is
the position of vector pairs which agree in both labels and clusters to the total vector
pairs. The Jaccard coefficient is the porition of vectors which belong to same clusters
and labels to identically labeled ones, as one more evaluation metric. The Folks and
Mallow index is the geometric version of the rand statistics.
12.3 Clustering Index
257
12.3
Clustering Index
This section is concerned with the clustering index which was initially proposed
in 2006 [25]. In Sect. 12.3.1, we describe the process of computing the clustering
index. In Sect. 12.3.2, we explain the process of evaluating the crisp clustering
results using the clustering index. In Sect. 12.3.3, we cover the scheme of evaluating
the fuzzy clustering results. In Sect. 12.3.4, we consider the case of evaluating the
hierarchical clustering results using the clustering index.

12.3.1

Computation Process
This section is concerned with the process of computing the clustering index which
was initially proposed in 2007 [44]. The metric is based on the external validity
which is mentioned in Sect. 12.2.4 and where labeled texts should be used. The
intra-cluster similarity and the inter-cluster similarity are computed based on target
labels of data items. The two measures are combined into a single metric which is
called clustering index, like the case in F1 measure. In this section, we describe the
process of computing the clustering index from clustering results.
The intra-cluster similarity is computed from the clustering results, and it
is assumed that the labeled texts are used, following the external validity. The
similarity between two texts is computed by their target labels, as expressed, in
Eq. (12.5),
1 if their labels are same

sim(x
ik, x
ik) =
(12.5)
0
otherwise
The intra-cluster similarity of the cluster, Ci, is computed by Eq. (12.1) which is
mentioned in Sect. 12.1. The intra-cluster similarity of the entire clustering results,

C = { C 1 , C 2 , . . . , C| C|}, is computed by Eq. (12.2), by averaging the intra-cluster
similarities. The intra-cluster similarity is one of the two metrics for evaluating the
clustering results.
Let us consider the alternative measure, the inter-cluster similarity, to the intra-
cluster similarity. The data clustering has two requirements: maximization of
intra-cluster similarity and minimization of inter-cluster similarity. The similarity
between two data items is computed based on their target labels by Eq. (12.5), and
inter-cluster similarity between two clusters is computed by Eq. (12.3). The inter-
cluster similarity to the entire clustering results is computed by Eq. (12.4). The
maximal discrimination among clusters means the minimized inter-cluster similarity
to the clusters.
The two measures which are computed by the above process, the intra-cluster
similarity and the inter-cluster similarity, are integrated into a single metric.
The inter-cluster similarity is reversed as 1 . 0 − inter_cluster similarity. They are
258
12
Text Clustering: Evaluation
integrated into Eq. (12.6), called clustering index, following the style of integrating
the precision and the recall into the F1 measure,

CI = 2 · intra_cluster similarity · (1 . 0 − inter_cluster similarity)
(12.6)
intra_cluster similarity + (1 . 0 − inter_cluster similarity)
The clustering index which is shown in Eq. (12.6) is proportional to the intra-cluster
similarity, but anti-proportional to the inter-cluster similarity. The inverse of the
inter-cluster similarity is called discrimination among clusters.
The clustering index was defined in Eq. (12.6) as the metric for evaluating
clustering results. Because the clustering index is defined so, following the external
validity, the preparation of labeled examples is required for evaluating any text
clustering algorithm. The inter-cluster similarity is replaced by the discriminality,
so Eq. (12.6) is modified into Eq. (12.7),

CI = 2 · intra_cluster similarity · discriminality
(12.7)
intra_cluster similarity + discriminality
The two measures, the intra-cluster similarity and the discriminality, correspond to
the recall and the precision which are involved in the F1 measure. By computing the
two metrics based on the cosine similarity, instead of target labels, we may use the
clustering index for tuning the clustering results.

12.3.2

Evaluation of Crisp Clustering
This section is concerned with the process of evaluating the crisp clustering results
by the clustering index. In Sect. 12.3.1, we studied the process of computing the
clustering index. The simple clustering results which were illustrated in Fig. 12.7
were evaluated by the clustering index. In the subsequent sections, we use the
clustering index for evaluating more complicated clustering results. In this section,
we demonstrate the process of evaluating the crisp clustering results using the
clustering index.
Fig. 12.7 Results from crisp
clustering
12.3 Clustering Index
259
Figure 12.7 presents a simple example of clustering results. A, B, and C which
are associated by texts are target labels which are initially given in the test collection.
The intra-cluster similarities of the three clusters are computed as 0.2667, 0.3333,
and 0.3333, respectively. The inter-cluster similarities of cluster pairs: cluster 1 and
2, cluster 1 and 3, and cluster 2 and 3 are computed as 0.2777, 0.2777, and 0.5556,
respectively. The clustering index is computed as 0.4163, from the both values, the
averaged intra-cluster similarity, 0.3111, and the averaged inter-cluster similarity,
0.3703, by Eq. (12.6).
Let us consider the case of binary clustering where a group of data items is
divided into two clusters. For each cluster, we compute the intra-cluster similarity,
and by averaging the two intra-cluster similarities, we compute one to the two
clusters. The inter-cluster similarity between the two clusters is computed as the
final one. The clustering index to the results from the binary clustering is computed
by Eq. (12.6). At least, the fact that two clusters are available is the condition for
computing the clustering index.
Let us consider the multiple clustering results which are given more than two
clusters. The intra-cluster similarity is computed for each cluster by the same
process in the case of the binary clustering, and the inter-cluster similarity over
clustering results is computed by averaging the inter-cluster similarities of cluster
pairs. From the m clusters m(m−1) all possible pairs are generated and for each
2
pair, and an inter-cluster similarity is computed. The average over the inter-cluster
similarities of all possible pairs of clusters is one over clustering results and the
clustering metric, clustering index, is computed by Eq. (12.7). The process of
evaluating results from the multiple clustering results is identical to the case of
binary clustering except generating all possible pairs of clusters for computing the
inter-cluster similarities.
Let us mention the labeled text collections for evaluating text clustering systems.
NewsPage.com which was mentioned in Sect. 8.2.1 was used for evaluating both
text categorization systems and text clustering systems by Jo [27, 28]. Reuter21578
which was mentioned in Sect. 8.2.3 has been standard test collection for evalu-
ating text categorization systems [85]. The above collections of labeled texts are
applicable for evaluating text clustering systems by the clustering index which was
mentioned in this section.

12.3.3

Evaluation of Fuzzy Clustering
This section is concerned with the process of evaluating results from fuzzy
clustering, using the clustering index. In Sect. 12.3.2, we already mentioned the
process of evaluating the crisp binary and multiple clustering. In Sect. 9.3.2, we
mentioned the fuzzy clustering where each item is allowed to belong to more than
one cluster. The fuzzy clustering results are evaluated by decomposing it into binary
crisp clustering results and removing overlapping. In this section, we describe the
process of computing the clustering index to the results from the fuzzy clustering.
260
12
Text Clustering: Evaluation
Fig. 12.8 Decomposing fuzzy clustering into binary clusterings
Figure 12.8 illustrates the process of decomposing the fuzzy clustering results
into binary clustering ones. A particular cluster is caught and its data items which
span over the current cluster and others are removed. Two exclusive clusters are
given as results from this decomposition after removing the overlapping ones. The

n binary clustering results are derived from the n overlapping clusters for evaluating
them, using the clustering index. Items which belong to the current and another
cluster are given into the current one, in the decomposition process.
Let us mention the process of computing the clustering index of binary clustering
which is decomposed from the fuzzy clustering. Because the given problem is
reduced to exclusive binary clustering problems, the clustering index is computed
by the process which was mentioned in Sect. 12.3.3. The inter-cluster similarity
between two clusters and the intra-cluster similarities of the two clusters are
computed and the intra-cluster similarity to the binary clustering is computed by
averaging them. The clustering index is computed by Eq. (12.7). In the fuzzy
clustering, the clustering indices as many as clusters are computed as many as
clusters.
We need to integrate the clustering indices of the decomposed binary clusters into
one to the entire fuzzy clustering. The way of integrating them is to average over
the clustering indices as many as clusters. The mean clustering index becomes as
the metric for evaluating the fuzzy clustering results. We use the data items which
are labeled with only one category for evaluating the crisp clustering system. If
using the data items which are labeled exclusively with one, the results may be
underestimated.
12.3 Clustering Index
261
Let us mention the alternative metric of evaluating the fuzzy clustering results.
It is assumed that the fuzzy clustering results are given as the item-cluster matrix
which consists of membership values of data items to the clusters, as follows:
⎡
⎤

μC (x

(x
1
1) μC 2
1) . . . μC| C| (x 1)
⎢
⎢ μ
⎥

C (x 2) μC (x 2) . . . μC
⎢ 1
2
| C| (x 2)⎥
⎣

.
⎥

.

.

.

.

.

..

. .

..
⎦

μC (x

(x
1

n) μC 2

n) . . . μC| C| (xn)
The desired item-cluster matrix is constructed by target labels of data items which
is given in the test collection, as follows:
⎡
⎤

d 11 d 12 . . . d 1| C|
⎢
⎢ d
⎥
21 d 22 . . . d 2| C|
⎢
⎥
⎣ .
⎥

.

. .

.

.

.. ⎦

dn 1 dn 2 . . . dn| C|
The differences between individual entries are computed by Eq. (12.8),

n
| C|

(dij − μC (x

j

i)) 2
(12.8)

i=1 j =1
The desired item-cluster matrix is hidden during the clustering process.

12.3.4

Evaluation of Hierarchical Clustering
This section is concerned with the scheme of evaluating the hierarchical clustering
results, using the clustering index. In Sect. 12.3.3, we mentioned the scheme of
evaluating the fuzzy clustering results. The issue in evaluating the hierarchical
clustering results is that the results are underestimated by the lower intra-cluster
similarities in the higher clusters and the higher inter-cluster similarities among
nested ones. The two measures should be adjusted, depending on the cluster levels.
In this section, we explain the process of computing the clustering index, cluster by
cluster, and adjusting it depending on the cluster levels.
Figure 12.9 illustrates simple results from doing the hierarchical clustering. The
labeled examples are used for evaluating the clustering algorithm following the
external validity. The categories are category A under which A-1 and A-2 exist
and category B. Category A corresponds to the cluster with its nested clusters,
and category B corresponds to one without any nested one. It is not each to the
hierarchical clustering results.
262
12
Text Clustering: Evaluation
Fig. 12.9 Results from doing
hierarchical clustering
The clustering index is calculated from the example which is shown in Fig. 12.9
with the two separated views: the view of the two clusters in the higher level and the
view of the three clusters as ones without nested ones. In the former view, the inter-
cluster similarity and the intra-cluster similarity are 0.5 and 0.7736, respectively;
the clustering index is 0.6074. In the latter view, the inter-cluster similarity and
the intra-cluster similarity are 0.3165 and 0.1667, respectively, so the clustering
index becomes 0.2683. The difference between the two clustering index values
is outstanding; the reason is that the intra-cluster similarities of nested ones are
underestimated. Even if the clustering algorithm is really applied to the hierarchical
clustering task, it is more desirable to validate its performance to the flat clustering
task.
Let us consider the process of evaluating the hierarchical fuzzy clustering by the
clustering index. The results from this clustering type are decomposed into the flat
clustering ones, level by level. For each flat fuzzy clustering which corresponds to
its own level, it is decomposed into several binary clustering, by the process which
was mentioned in Sect. 12.3.4. The clustering indices of the binary clustering results
are computed and they are averaged as the clustering to the flat fuzzy clustering
to each level. The average over clustering indices of the flat fuzzy clustering in all
levels as the general clustering index to the entire results from the hierarchical fuzzy
clustering.
If the results from the hierarchical clustering are decomposed into the flat
clustering results by level, we need to consider various schemes of assigning weights
to clustering indices of results from each flat clustering. In the above scheme,
equal weights are identically assigned to clustering indices of levels; the clustering
indices of levels are averaged as the clustering index of the entire results from the
hierarchical clustering, as mentioned above. In order to prevent the results from
being underestimated in the specific levels, higher weights are assigned to clustering
index of general level, while lower weights are assigned to clustering indices of
specific levels. Weights may be assigned to clustering index in the next level with
only constant portion to weight to the current level. As an alternative way, to the
next level, the weight is assigned with a negative exponential power to the weight to
the current level.
12.4 Parameter Tuning
263
12.4
Parameter Tuning
This section is concerned with the process of computing the clustering index, using
unlabeled data items. In Sect. 12.4.1, we explain the process of computing the
clustering index, based on unlabeled data items. In Sect. 12.4.2, we mention the
scheme of modifying the simple clustering algorithm into the versions with the
parameter tuning. In Sect. 12.4.3, we describe the k means algorithm where the
parameter tuning is installed. In Sect. 12.4.4, we mention the process of applying
the evolutionary computation to the clustering based on the clustering index.

12.4.1

Clustering Index for Unlabeled Documents
This section is concerned with the process of computing the clustering index
using unlabeled data items. We described previously the process of computing
the clustering index for evaluating data clustering results based on target labels in
Sect. 12.3.1. It is assumed that data items are unlabeled and computing similarities
between data items depend on their input vectors. We use the clustering index which
is computed from unlabeled data items for not evaluating results, but proceed the
data clustering. In this section, we explain the process of computing the clustering
index from current clusters of unlabeled data items.
The intra-cluster similarities are computed from the clusters of unlabeled items.
It is assumed that items are represented into numerical vectors, and the similarity
between two numerical vectors is computed by the cosine similarity which is given
in Eq. (6.1). The intra-cluster similarity is computed by Eq. (12.1). The average
over intra-cluster similarities of clusters becomes one over entire results from data
clustering. The process of computing the intra-cluster similarity is same to that
which was mentioned in Sect. 12.3.1, except using Eq. (6.1), instead of Eq. (12.5).
The inter-cluster similarities are computed among clusters of unlabeled items. It
is assumed that items are encoded into numerical vectors and the cosine similarity
which is expressed in Eq. (6.1) is given as the similarity metric. All possible pairs
of clusters are generated and the inter-cluster similarity is computed for each pair.
The average over the inter-cluster similarities of pairs becomes the inter-cluster
similarity over the entire results. We consider the similarity measure which is
computed by Eqs. (6.2)–(6.4).
Let us mention the process of computing the clustering index from the clusters
of unlabeled texts. The intra-cluster similarity over entire results is computed by
process which is described in the second paragraph. The inter-cluster similarity
is computed by the process which was described in the above paragraph. The
clustering index is computed by Eq. (12.6) involving the intra-cluster similarity and
the inter-cluster similarity. The process of computing the clustering index based
on the unlabeled texts is same to that based on labeled ones, except using the
similarities among input vectors.
264
12
Text Clustering: Evaluation
The clustering index which is computed by the process is used for tuning
the hyper parameters of clusters, rather than for executing the clustering results.
The hyper parameters mean those which are decided externally and arbitrarily for
executing the algorithm. The number of clusters becomes a hyper parameter of
clustering algorithm: the k means algorithm and the Kohonen Networks. The hyper
parameter of the single pass algorithm is the similarity threshold, rather than number
of clusters. The hyper parameters may be automatically decided by computing the
clustering index from the current results from clustering data items.

12.4.2

Simple Clustering Algorithm with Parameter Tuning
This section is concerned with the parameter tuning for the simple clustering
algorithms. In Sect. 12.4.1, we studied the process of computing the clustering
index by unlabeled items. We use the clustering index for evaluating current quality
of clustering results, in order to decide continuing or terminating. The clustering
results is optimized by tuning parameters using the clustering index, but it takes
more time for proceeding the clustering as the payment. In this section, we describe
some clustering algorithms which is installed with the parameter tuning based on
the clustering index.
Let us mention the trials of parameter tuning in the AHC algorithm in
Sect. 10.2.1. Because every cluster has one item, computing the intra-cluster
similarity may be omitted, initially. The clustering index is computed by the process
which is described in Sect. 12.4.1, just after comparing both of them with each
other. If the results after merging clusters are better than those before doing them,
the iteration continues, and otherwise, the results move back to the previous one,
terminating the iteration.
The parameter tuning is considered for the divisive algorithm which is mentioned
in Sect. 10.2.2. The process of computing the inter-cluster similarity is omitted in the
initial status where one group of all items is given. The clustering index is computed
after dividing the cluster into two clusters. The results before and after the division
are compared with each other, and if the results become better afterward, the division
will be continued. When some clusters have only one item in the late stage, the
process of computing the intra-cluster similarity is omitted.
A single pass algorithm is mentioned as the fast clustering algorithm in
Sect. 10.2.3, and the parameters are tuned by the clustering index. The similarity
threshold is given as its hyper parameter, and the value is fixed while proceeding
clustering. The similarity threshold is updated automatically during execution. The
clustering indices of the both cases are computed: the case of creating one more
cluster and the case of arranging an item into one of existing clusters; the similarity
threshold is incremented in the latter case, and decremented in the former case.
When installing the process of parameter tuning in this algorithm, its execution
becomes very slow as the payment for the better clustering quality.
12.4 Parameter Tuning
265
It is actually popular to use the clustering algorithms without the parameter
tuning for real tasks. It is more reliable to cluster data items, tuning the parameter,
based on the clustering index. The speed of clustering data items is degraded as the
payment. If the clustering performance is improved not much, the parameter turning
is not recommendable for clustering data items. The parameter turning effect is very
variable depending on the application domain.

12.4.3

K Means Algorithm with Parameter Tuning
This section is concerned with the modified version of the k means algorithm
which is installed with the parameter turning. Deciding the number of clusters and
initializing the mean vectors are requirements for using the k means algorithm. What
is decided in advance is automatically optimized by installing the parameter tuning
in the current version. The parameter tuning which is based on the clustering index
is applied for optimizing the initial vectors and representative ones. In this section,
we describe the process of clustering data items by the modified version.
The quality of results from clustering data items depends on the initial mean
vectors. The mean vectors are initialized by selecting data items as many as clusters
in the initial version. We may evaluate the selected data items as the initial vectors
by computing the inter-cluster similarity. If the inter-cluster similarity is higher than
the threshold, we select another vectors as the initial mean vectors. Otherwise, we
proceed the clustering.
By increasing the clustering index based on the hill climbing, instead of
averaging over numerical vectors, we may update the representative vector in each
cluster. The mean vectors are initialized by the above process, the data items
are arranged by their similarities with the mean vectors, and the cluster index is
computed to the current results. The mean vectors are updated by adding a random
value between −
 and , the data items are arranged by those with updated ones, and
the clustering index is computed to the results. The two clustering indices before and
after updating are compared with each other, and if the clustering index is better, the
updated one is taken. Otherwise, it moves back to the previous results, and it makes
another trials.
Let us mention the process of computing the clustering index from the clusters
of unlabeled texts. The intra-cluster similarity over entire results is computed by
process which is described in the second paragraph. The inter-cluster similarity
is computed by the process which was described in the above paragraph. The
clustering index is computed by Eq. (12.6) involving the intra-cluster similarity and
the inter-cluster similarity. The process of computing the clustering index based
on the unlabeled texts is same to that based on labeled ones, except using the
similarities among input vectors.
The clustering index which is computed by the process is used for tuning
the hyper parameters of clusters, rather than for executing the clustering results.
The hyper parameters mean those which are decided externally and arbitrarily for
266
12
Text Clustering: Evaluation
executing the algorithm. The number of clusters becomes a hyper parameter of
clustering algorithm: the k means algorithm and the Kohonen Networks. The hyper
parameter of the single pass algorithm is the similarity threshold, rather than number
of clusters. The hyper parameters may be automatically decided by computing the
clustering index from the current results from clustering data items.

12.4.4

Evolutionary Clustering Algorithm
This section is concerned with the process of applying the evolutionary computation
to the text clustering. The evolutionary computation is the optimization scheme of
constructing and evolving the solution populations based on the Darwin’s theory,
and the genetic algorithm where each solution is represented into a bit string
is adopted among the evolutionary computations. In the genetic algorithm, the
population of solution candidates is constructed at random, and the population
evolves by the first evaluation, crossover, and mutation, into better solutions. It is
assumed that the given problem is the binary clustering which is the process of
clustering a group of data items into two subgroups; the clustering index is set the
fitness value, a bit, zero or one, indicates a cluster identifier, and each bit string
position means an item identifier, in applying the genetic algorithm to the data
clustering. In this section, we describe the scheme of applying the evolutionary
computation to the data clustering.
The two clusters of items are encoded into a bit string as a solution candidate.
The position of each bit string indicates an item identifier and a bit value means
a cluster identifier to which the item belongs to. The length of bit string becomes
the number of data items; zero means that the item belongs to cluster 1 and one
means that it belongs to cluster 2. The bit string is given as a genotype and the
two clusters which correspond to a bit string are given as the phenotype. In the
multiple or hierarchical clustering, we may another representation of clusters; we
adopt the genetic programming, instead of the genetic algorithm, in the hierarchical
clustering.
We need to evaluate the fitness of each solution candidate for evolving the current
population. A bit string is decoded into two clusters; 0 and 1 in the bit string is
interpreted into an item in cluster 1 and one in cluster 2, respectively. The intra-
cluster similarities of cluster 1 and 2, and the inter-cluster similarity between two
clusters are computed. By averaging the intra-cluster similarities, the intra-cluster
similarity to the results and the clustering index are computed. The clustering index
is used as the fitness value of the given solution candidate.
Let us explain the process of optimizing the binary clustering results by the
genetic algorithm. The initial population which consists of bit string as the solution
candidates is constructed at random. Two selection candidates are selected at
random, other solution candidates which are called off-springs are generated from
the selected ones by recombinant operators such as cross-over, some of them are
mutated with a small probability. The current population is evolved into the next
12.5 Summary and Further Discussions
267
population which consists of better solution candidates; the solution candidates are
evaluated by the fitness value and low fitness valued ones are removed. It reaches
the population which consists of solution candidates with their high fitness values
by iterating the above process.
The genetic algorithm was mentioned as an instance of the evolutionary computa-
tion, and let us mention other instances. The evolutionary strategy is the evolutionary
computation instance where solution candidates are given as numerical vectors. The
genetic programming is one where solution candidates are represented into trees.
The evolutionary programming allows solution candidates to be represented into
any structured data. The differential evolution, the cultural algorithm, and the co-
evolution are additional evolutionary computation instances.
12.5
Summary and Further Discussions
We described the schemes of evaluating clustering results and modifications of
existing clustering algorithms using them, in this chapter. We mentioned the three
types of evaluating clustering results: the internal evaluation, the relative one, and
the external one. We asserted that clustering index is the integration of the inter-
cluster similarity and the intra-cluster similarity in the style of F1 measure, and
describe the process of computing it from the clustering results. We mentioned how
to use the clustering index for tuning parameters as well as evaluating results, and
modified some clustering algorithms by installing it. In this section, we make some
further discussions from what we study from this chapter.
Let us consider the process of evaluating results from cluster naming, separated
from the data clustering. It is assumed that each cluster is identified with its symbolic
name which reflects its contents. The cluster naming is intended for browsing,
inherently, so easiness in browsing texts depending on cluster names becomes the
direction for evaluating the cluster naming. The relevancy of cluster name to texts
becomes another direction. The cluster naming evaluation is left as the next research
topic in future.
Many metrics are defined for evaluating the clustering results in the literature.
Performances of clustering algorithms cannot be confirmed by only one evaluation
metric. We need to use several metrics for validating the approaches to data clus-
tering. In displaying the empirical validations of clustering algorithms, evaluation
metric values are presented as a set or they are integrated into one value by summing
weighted measures. The clustering index which is mentioned in Sect. 12.3 becomes
the integration of the inter-cluster similarity and the intra-cluster similarity.
It is difficult and complicated to evaluate the results from the multiple viewed
clustering. In this clustering type, we should accommodate multiple versions of
results from clustering texts. Each version is evaluated by the clustering index,
and clustering indices of all versions are averaged into a single clustering index.
The maximum or minimum clustering index may be selected alternatively as the
evaluation metric. It is left to define schemes of evaluating the clustering results as
a remaining task.
268
12
Text Clustering: Evaluation
There are two ways of computing the clustering index. One way is to compute
similarity by target labels of items and the other is to compute the similarity by
the cosine similarity. The attributes of the input vector need to be discriminated
among each other and the similarity may be computed, depending on the weighted
attributes. The clustering index is computed by this process and used for tuning
parameters. The way of parameter turning is also left as a remaining task.
Part IV
Advanced Topics
Part IV is concerned with the advanced topics on text mining. This part covers the
text summarization and the text segmentation as the additional tasks of text mining.
We mention the automatic predefinition of topics from a corpus, which is called
taxonomy generation. In the last chapter, we describe the process of managing texts
by combining the two text mining tasks with each other. Therefore, this part is
intended to explore the additional two text mining tasks: the taxonomy generation
and the automatic text management.
Chapter 13 is concerned with the text summarization which is the alternative task
to the text categorization and the text clustering. This chapter begins with describing
functionally the text summarization with its view into a binary classification.
Afterward, we describe the schemes of applying the machine learning algorithms
to the text summarization which is viewed into a classification task. We also present
hybrid tasks where the text summarization is combined with other text mining tasks.
Even if the text summarization is described as a classification task, it should be
distinguished from the topic-based text categorization which was covered in Part II.
Chapter 14 is concerned with the text segmentation as another text mining task.
This chapter begins with interpreting the task into a binary classification like the
case of the text summarization. We explain the scheme of applying the machine
learning algorithms to the text segmentation which is mapped into a classification
task. Like the case in the text summarization, we also mention the hybrid tasks
where the text segmentation is combined with other text mining tasks. Even if the
text segmentation is mapped into a classification task, it is necessary to distinguish
it from the topic-based text categorization.
Chapter 15 is concerned with taxonomy generation which is a composite text
mining task. The taxonomy generation consists of the text clustering and the cluster
naming, so cluster naming is explained in the functional view and the policies are
defined for doing the task. Afterward, we describe in detail the schemes of naming
clusters symbolically. We also mention ontology which is the expanded taxonomy
organization and distinguish them from each other with respect to their goals. In this
chapter, we cover the taxonomy generation for defining an organization frame.
270
IV
Advanced Topics
Chapter 16 is concerned with the process of managing texts automatically
by combining the text categorization and the text clustering with each other.
The automatic text management has its two modes: the creation mode and the
maintenance mode; each of them is explained in detail. We describe the scheme
of implementing the automatic text management system, using the two text mining
tasks. We also mention the system expansion, by adding additional tasks, such as the
text summarization and text segmentation. This chapter focuses on the integration
of the text mining tasks for the automatic text management.

Chapter 13
Text Summarization
This chapter is concerned with the text summarization task in terms of its func-
tion, methods, and implementation. We define the text summarization which is
an instance of text mining task, in Sect. 13.1, and explore the types of text
summarization, in Sect. 13.2. In Sect. 13.3, we describe the simple and state-of-
the-art approaches to text summarization. We cover the hybrid tasks which are
the combinations of text summarization with other tasks, in Sect. 13.4, and make
the summarization and the further discussions on this chapter, in Sect. 13.5. In
this section, we describe the text summarization as the additional task to text
classification and clustering which are covered in the previous parts.
13.1
Definition of Text Summarization
Text summarization refers to the process of extracting a summary automatically
from a given full text or full texts. The manual summarization means the process of
rewriting or restating the full text into its brief version. Automatic summarization
actually means to select automatically important portions which are paragraphs
or sentences from a full text or full texts. In this chapter, we view the text
summarization into a binary classification where each paragraph or sentence is
classified into “summary” or “non-summary.” In this section, we describe briefly
the both kinds of text summarization in the general view.
Summarization is referred to the process of rewriting or restating a particular
content into its brief version by understanding it. The summary which is generated
by human reflects its entire content, accurately. It costs much and variable time
depending on the understanding and intelligence level for generating a summary
from a text. It is very tedious or almost impossible to summarize more than 100
texts, manually and individually. In spite of more accuracy in generating summary
© Springer International Publishing AG, part of Springer Nature 2019
271
T. Jo, Text Mining, Studies in Big Data 45,
https://doi.org/10.1007/978-3-319-91815-0_13
272
13
Text Summarization
by human being, we need to introduce the automatic summarization, in order to
solve the above problem.
It is not easy to implement an application program which summarizes texts
automatically, like human being. The automatic text summarization should be
defined differently from the manual text summarization which is mentioned above.
It means the process of selecting essential parts of full text as some sentences or
paragraphs. The automatic text summarization is interpreted into a classification
task where each paragraph or sentence is classified into summary or non-summary,
in this chapter. The paragraphs or sentences which are classified into summary are
generated as the output of this task.
Similar or more advanced tasks are derived from the automatic text summariza-
tion. The text summarization may be expanded into the multiple text summarization
which summarizes several texts into a single summary. The text summarization is
modified into query-based one which summarizes a given text, biased toward the
given query. By integrating summaries of texts in a cluster, its prototype text which
represents the cluster may be generated. The summaries which are generated from
texts may be used for improving the performance of the information retrieval and
other text mining tasks.
The text summarization is interpreted into a binary classification task, in this
study. A given text is segmented into paragraphs by the special character, carriage
return, as the preprocessing, and the paragraphs are encoded into numerical vectors
by the process which is described in Chaps. 2 and 3. In advance, we gather sample
paragraphs which are manually labeled with summary or non-summary, and the
adopted machine learning algorithm learns them for building its classification
capacity. The novice text is partitioned into paragraphs and they are classified into
one of the two labels. Therefore, the text summarization is mapped into the binary
classification where each paragraph is classified into summary or non-summary.
13.2
Text Summarization Types
In this section, we explore the types of text summarization depending the dichotomy
criteria. In Sect. 13.2.1, we examine the differences between the manual sum-
marization and the automatic one. In Sect. 13.2.2, we mention the type of text
summarization depending on the given input: a single text or multiple texts. In
Sect. 13.2.3, we introduce the hierarchical text summarization which provides
potentially the functions: zoom in and out. In Sect. 13.2.4, we consider the query-
based text summarization which requires the query as well as the full text.

13.2 Text Summarization Types
273
Fig. 13.1 Manual text summarization

13.2.1

Manual vs Automatic Text Summarization
This section is concerned with the type of text summarization executed by a
human or a computer program. The text summarization is regarded as an important
task in the area of literature science, as well as computer science. The manual
text summarization is defined as the process of rewriting the content of full text
into its brief version, and the automatic text summarization is defined as the
process of selecting essential parts of full text as its brief version. Because the
computer program is not able to summarize a text like a human, both kinds of text
summarization are defined differently. In this section, we examine the two types of
text summarization tasks with respect to their differences.
The manual text summarization is illustrated in Fig. 13.1. A full text is initially
given as the input. The full text is scanned and understood by the human being. Its
contents are rewritten into its brief version. The summary which is the results from
the manual text summarization consists of several sentences which are not given in
the original full text.
The automatic text summarization is illustrated in Fig. 13.2. The full text is
given as the input like the case in the manual text summarization. The full text
is partitioned into sentences or paragraphs by the punctuation mark or the carriage
return. Some paragraphs or sentences among them are selected as the essential part.
Selecting some paragraphs as the summary is preferred to doing sentences.
The comparisons of the two kinds of text summarizations are illustrated in
Table 13.1. The manual summarization is defined as the process of understanding
and rewriting the full text into its brief form, while the automatic one is defined
as that of selecting some paragraphs or sentences as the essential part. As the
preliminary task, in the manual summarization, understanding the full text is
required, whereas in the automatic one, partitioning the full text into paragraphs
or sentences is required. The automatic text summarization is necessary for summa-
rizing individually a large number of texts. It is not able to expect better qualities of
summaries from the automatic summarization.
Let us consider the mixture of two types of text summarization as well as the
two independent ones. As shown in Table 13.1, there is trade-off between the
two types of text summarization; this motivates for proposing the mixture. In a

274
13
Text Summarization
Fig. 13.2 Automatic text summarization
Table 13.1 Manual vs automatic summarization
Manual
Automatic
Definition
Rewriting briefly
Paragraph or sentence selection
Preliminary task
Understanding
Partition
Mass summarization
Difficult
Possible
Writing quality
Good
Plain
particular mixture of them, the essential paragraphs are generated by the automatic
summarization as the draft, and it is edited into a complete summary, manually. In
another mixture, multiple versions of summary which are automatically generated
by several algorithms are presented for users, and they select one among the
candidates. Only the automatic summarization is actually useful than the hybrid
one, when a lot of text should be summarized, individually.

13.2.2

Single vs Multiple Text Summarization
This section is concerned with the types of text summarization in another view.
In the real world, several texts may be summarized as well as a single text. The

13.2 Text Summarization Types
275
Fig. 13.3 Single text
summarization
Fig. 13.4 Multiple text
summarization
summarization of multiple texts is called multiple text summarization, whereas that
of a single text is called single text summarization. The criteria for deciding one of
the two types is whether the input is a single text or a group of texts. In this section,
we explain the two types of text summarization, and compare them with each other,
and combine them into a hybrid one.
The single text summarization is illustrated in Fig. 13.3. Only single article is
initially given as the input. Essential paragraphs or sentences are selected as its
summary. The first or last paragraph usually summarizes the entire content in the
case of summarizing a single text. Because the single text summarization is simple,
it is feasible to use a heuristic approach to the task.
The multiple text summarization is referred to the process of summarizing more
than one text into a summary, as illustrated in Fig. 13.4. A group of articles which
have their different contents is given as the input, instead of a single article. The
articles are integrated into a single text by concatenating them and essential para-
graphs or sentences are selected as the summary. The multiple text summarization
is further divided into the homogeneous multiple text summarization where texts in
the same or similar topics are given as the input, and the heterogeneous multiple
text summarization where texts in different topics are given. The multiple text
summarization is used for constructing a prototype text which represents the group,
artificially.
Table 13.2 presents the differences between the two kinds of text summarization.
A singe text is given as the summarization target in the single text summarization,
whereas a group of texts is given in the multiple text summarization. In the single
text summarization, the summary of a single text indicates its abstract, whereas
in the multiple text summarization, the summary indicates the script of the texts.
The cohesion of texts in the group becomes the important issue in the multiple text
summarization. There are two ways of summarizing multiple texts; one way is to
276
13
Text Summarization
Table 13.2 Single vs multiple summarization
Single
Multiple
Input
Single text
Text group
Output
Abstract
Group script
Cohesion
Not issue
Important issue
Steps
Partition + selection
Partition + selection + integration
extract summaries from individual texts and integrate them with each other and the
other is to integrate the individual texts into a large single text and summarize it at
a time.
Let us consider the combination of the two types as a hybrid one. A group of
texts is initially given as the input. The individual texts are summarized; each text is
associated with its own summary. Among the summaries, some are selected as the
summary of the text group. Therefore, this is the hybrid case where the multiple text
summarization is performed by means of single text summarizations.

13.2.3

Flat vs Hierarchical Text Summarization
This section is concerned with the flat text summarization and the hierarchical one.
The former is one where any intermediate summary is not allowed, whereas the
latter is one where it is allowed. For example, in summarizing a research paper, we
consider the two kinds of summary: its abstract and its extended summary. Based
on the contents, zooming in and out is possible for viewing a text in the hierarchical
text summarization. In this section, we compare the two kinds of text summarization
with each other and describe the hierarchical text summarization in detail.
The flat text summarization is illustrated in Fig. 13.5. The top of Fig. 13.5
shows the single text summarization, and the bottom shows the multiple text
summarization. There are only two kinds of versions of text or texts in the flat
summarization: full text version and summarized version. No intermediate version
between them exists in this type of text summarization. There are only two levels of
zooming in and out of a text or texts into the summary or the full text.
Figure 13.6 illustrates the three types of hierarchical text summarization. A
single text is segmented into subtexts based on their contents and each subtext is
summarized into its own summaries, and they are integrated into the brief form
as shown in the top of Fig. 13.6. In the middle of Fig. 13.6 is shown a text group
clustered into subgroups, each subgroup is summarized into their own summary,
and they are integrated into the general summary. The bottom of Fig. 13.6 shows the
gradual summarization of a single text. The top and the bottom of Fig. 13.6 show the
hierarchical and single text summarizations, and the middle shows the hierarchical
and multiple text summarization.

13.2 Text Summarization Types
277
Fig. 13.5 Flat text
summarization
Fig. 13.6 Hierarchical text summarization
278
13
Text Summarization
Table 13.3 Flat vs
Flat
Hierarchical
hierarchical summarization
Suitable input
Single text
Text group or long text
Multiple summary
Less suitable
More suitable
Zooming
Limited
Possible
Output
Summary
Summary tree
Table 13.3 illustrates the comparisons of the two types of text summarization
which was mentioned in this section. The flat text summarization is applicable
to the text with its medium length, whereas the hierarchical text summarization
applicable to a long text or a text group. In the flat summarization, only a single
version of summary is expected whereas multiple versions of summary are expected
in the hierarchical summarization. In the flat summarization, only two zooming
levels, summary and full text, are available whereas much more zooming levels
are available in the hierarchical summarization. The goal of the flat summarization
is to generate only a summary, whereas the goal of the hierarchical summarization
is to zoom in and out a text or some texts.
It is possible to interpret the text summarization into a regression task rather than
a classification one. The text summarization is viewed into a classification task in
both the flat one and the hierarchical one. The text summarization is mapped into a
regression where a continuous normalized value between zero and one is assigned
to each paragraph. The value which is close to zero indicates a nonessential part,
whereas one which is close to one is an essential one. Zooming in and out is given
to a text by increasing and decreasing the threshold.

13.2.4

Abstraction vs Query-Based Summarization
This section is concerned with the two types of text summarization by another
dichotomy criteria. One is the abstraction which summarizes a text in the general
view and the other is the query- based summarization which does it, focusing on
the given query. The abstraction is viewed as the process of selecting paragraphs as
the essential parts which reflect the entire content. The query-based summarization
which selects paragraphs relevant to the query is regarded as the task which is close
to the information retrieval. In this section, we explain and compare the two types
of text summarization.
Figure 13.7 illustrates the abstraction as a type of text summarization. The
abstraction is the process of generating some paragraphs or some sentences as the
abstract of the given full text; it is identical to the general definition of automatic
text summarization. A single text or multiple texts are given as the initial input,
they are partitioned into paragraphs, and essential paragraphs are selected as the
abstract. The abstraction is characterized by the flat, automatic, and written text
summarization. The assumption underlying in this type is that the same part is
always generated from the same full text or full texts.

13.3 Approaches to Text Summarization
279
Fig. 13.7 Abstraction
Figure 13.8 illustrates the query-based text summarization. Depending on the
given query, a different portion of the given full text is generated as its summary.
The query and the full text are given as the input, the relevancies of paragraph to
the query are computed within a full text, and highly relevant ones are selected as
the summary. A fixed number of paragraphs to any query or a variable number of
them may be generated, depending on the policy. The query-based summarization
is viewed as an instance of information retrieval within a given text.
Table 13.4 shows the comparison of the two types of text summarization.
In the abstraction, only text is given as the input, whereas in the query-based
summarization, a text and a query are given as the input. The fixed essential part is
generated as the output in the abstraction, whereas the most relevant part to the query
is generated in the query-based text summarization. The abstraction is intended
for previewing a full text, whereas the query-based text summarization is intended
for retrieving interesting parts. In the abstraction, its performance is evaluated by
matching the desired summary and the actual one, whereas in the query-based text
summarization, its performance is evaluated by the precision and the recall.
Let us consider the hybrid text summarization into which the two types of text
summarization are combined with each other. It is not guaranteed that the queries are
provided by all users and express their information need, exactly; user may expect
the summary from a full text without providing their queries. The system needs to
provide both the abstract in the case of no query and the query-based summary in the
case of a query. If no query is provided, it is more desirable to provide the abstract
instantly rather than waiting for a query. In order to avoid computing matching
value between a query and portions during the summarization process, each query
is associated with its relevant portions of full texts and its abstract is prepared, in
advance.
13.3
Approaches to Text Summarization
This section is concerned with the representative approaches to the text summa-
rization. In Sect. 13.3.1, we mention some heuristic approaches. In Sect. 13.3.2,
we interpret the text summarization into a classification task. In Sect. 13.3.3, we
describe the scheme of gathering sample paragraphs. In Sect. 13.3.4, we explain the
scheme of applying the machine learning algorithms to the task.

280
13
Text Summarization
Fig. 13.8 Query-based text
summarization
Table 13.4 Abstract vs query-based summarization
Abstraction
Query-based summarization
Input
Text
Text + query
Summary
Essential part
Query focused part
Goal
Preview
Relevancy improvement
Evaluation
Summary matching
Recall + precision

13.3.1

Heuristic Approaches
This section is concerned with the simple and heuristic approaches to the text
summarization. The approaches in this kind are used without mapping the task into
a classification one. A text is partitioned into paragraphs and each of them is decided
by keywords or phrases. However, the approaches are weak to text manipulations
which are behaviors of changing text contents, intentionally. In this section, we
mention some heuristic approaches before discussing state-of-the-art ones.
13.3 Approaches to Text Summarization
281
Let us mention the simplest scheme of summarizing a text, automatically. A
text is partitioned into paragraphs by the carriage return. The first or the last
paragraph may be extracted as the summary, absolutely. The scheme is simple but
very fragile to artificial text manipulations. Sometimes, there is possibility that a
medium paragraph may be an essential part.
Let us mention another heuristic scheme of summarizing a text. In advance, we
define the key phrases which indicates a summary, such as “in conclusion,” “in
summarization,” and “finally.” The paragraph or the sentence which includes one of
the above phrases is selected as the summary. However, it is not guaranteed that all
texts have one of the above phrases; this scheme is not applicable to the texts which
have no key phrase. If a text has no phrases, we need to consider another scheme.
Let us mention one more scheme of summarizing a text based on its keywords.
It is assumed that the text is initially associated with a list of keywords whether
they are generated automatically or manually. In this scheme, the paragraphs where
keywords are concentrated are extracted as the summary. It is more probable to
generate intermediate paragraphs as the summary rather than the first or the last,
in this scheme. If a text is not associated with its keywords, this scheme is not
applicable.
Let us mention the heuristic schemes of text summarization which are applicable
to the query-based one. It was covered in Sect. 13.2.4. In this scheme, query is
given as the input, paragraphs or sentences are selected by the query concentrations,
and the selected ones are generated as the summary. In the advanced version, the
similarity between a paragraph and a query may be computed. If there is no relevant
paragraph, nothing is extracted.

13.3.2

Mapping into Classification Task
Figure 13.9 illustrates the process of mapping the text summarization into the binary
classification task. A text is partitioned into paragraphs by the carriage return. Each
paragraph is classified into summary or non-summary. As the summary, paragraphs
which are classified into summary are extracted. In this section, we explain the
classification which is mapped from the text summarization and its comparison with
the topic-based text categorization.
The text summarization is interpreted into a classification task to which the
machine learning algorithms are applicable, as shown in Fig. 13.9. We gather
sample paragraphs which are labeled with one of the two categories: summary or
non-summary. The sample paragraphs are encoded into numerical vectors and the
machine learning algorithms learn them for building its classification capacity. A
novice text is given as a list of novice paragraphs, and each of them is classified into
one of the two categories. The binary paragraph classification becomes the core task
of the text summarization.
Let us explain the process of extracting the summary from a full text, using
the above binary classification. A full text is given as the input and is partitioned
282
13
Text Summarization
1
2
Summary
Binary
or
Classifier
......
Remaining
N
Text
Paragraphs
Fig. 13.9 Process of mapping text summarization into binary classification
into paragraphs by the carriage return. The paragraphs are encoded into numerical
vectors, and classified into summary or non-summary. The paragraphs which are
classified with summary are extracted as the output. Results from classifying the
paragraphs may be different, depending on the selected features and the adopted
machine learning algorithm.
Even if both the tasks belong to the classification tasks, we need to distinguish
the text summarization from the topic-based text classification. In the text sum-
marization, an individual paragraph is classified, whereas in the topic-based text
classification, an individual article which consists of more than one paragraph is
classified. The classification task which is mapped from the text summarization is
an instance of binary classification where each paragraph is classified into summary
or non-summary, whereas the topic-based text classification is usually an instance
of multiple classification where more than two topics are predefined as categories.
The classification which is derived from the text summarization is always a flat
classification, whereas the topic- based text classification is sometimes given as a
hierarchical classification task. In the text summarization, we need to consider the
domain for gathering sample examples, whereas we do not need to consider the
domain for doing so in the text categorization.
As shown in Fig. 13.10, it is possible to map the text summarization into a
regression task as well as a classification one. Each paragraph is estimated with
its essence score which is the importance degree in the given text. In this case,
sample paragraphs are labeled with their essence scores, instead of one of the two
categories, summary and non-summary. The process of assigning essence scores
to sample ones is very dependent on subjectivity. The text summarization which is
mapped into a regression rather than a classification may be more useful for zooming
a text in or out.
13.3 Approaches to Text Summarization
283
1
0.7
Machine
2
0.2
Learning
Regression
......
Module
N
0.9
Text
Paragraphs
1
Machine
2
Learning
Essence Score
Regression
0.0 ~ 1.0
Module
......
M
Text
Paragraphs
Fig. 13.10 Process of mapping text summarization into regression

13.3.3

Sampling Schemes
This section is concerned with the scheme of gathering sample labeled paragraphs
for performing the text summarization. In Sect. 13.3.2, we interpreted the task into
the binary classification to which the machine learning algorithms are applicable.
The text summarization was mentioned as a domain specific task where each
paragraph is classified into summary or non-summary, depending on the domain.
Sample labeled paragraphs are gathered within a domain, in order to do so. In this
section, we describe the scheme of sampling paragraphs for learning the machine
learning algorithms.
Figure 13.11 illustrates the process of gathering sample paragraphs domain by
domain, called domain-specific sampling. It is assumed that the text collection is
partitioned into domains based on their contents, initially. In each domain, each text
is partitioned into paragraphs and each paragraph is labeled with summary or non-
summary, by scanning them, manually. Keeping the balanced distribution over two
classes, we select labeled paragraphs and encode them into numerical vectors by
the process which was mentioned in Chap. 3. In each domain, labeling manually
individual paragraphs is a very tedious job for implementing the text summarization
system.

284
13
Text Summarization
Fig. 13.11 Process of sample paragraphs domain by domain
In order to gather sample paragraphs domain by domain, we need to accompany
the text categorization system in the scheme, called topic- based sampling as shown
in Fig. 13.12. In advance, the text categorization system is constructed by doing
the preliminary tasks and learning the sample texts, in advance. Texts in the corpus
are classified into one of the predefined topics. Topic by topic, we gather manually
the sample paragraphs which are labeled with summary or non-summary. The text
summarization is carried out by the two classifications: classifying entire text into
one of the predefined topics and classifying paragraphs into summary or non-
summary.
The text summarization by clustering-based sampling is illustrated in Fig. 13.13.
The entire texts in the corpus are clustered into subgroups of content-based similar
ones by a cluster analyzer. In each cluster, individual texts are portioned into
paragraphs and they are labeled manually into summary or non-summary. In the
process of text summarization, a text is arranged into a cluster by its similarity with
the cluster prototypes. This scheme is characterized as the text summarization which
is supported by the text clustering.

13.3 Approaches to Text Summarization
285
Fig. 13.12 Topic-based sampling
Fig. 13.13 Cluster-based sampling
The degree how much the domain is specific is called granularity and we mention
the trade-off between the broad domain and specific domain. In the broad domain
as the large granularity, it is easy to gather sample paragraph, but the reliability
of classifying them is not good. In the specific domain where the granularity is
small, the reliability is better, but it becomes difficult to gather sample paragraphs.
Currently, it is impossible to measure the domain granularity which is the scope
of gathering sample paragraphs as a quantitative value. However, the granularity
is optimized by results from classifying validation paragraphs which are separated
from the sample one.

13.3.4

Application of Machine Learning Algorithms
This section is concerned with the scheme of applying the machine learning
algorithms to the text summarization task. Previously, we interpreted the text
summarization into a classification task and mentioned the scheme of gathering
sample paragraphs. The text collection is divided into sub-collection by topics
or domains, and a machine learning-based classifier is allocated to each topic

286
13
Text Summarization
Fig. 13.14 Encoding paragraphs into numerical vectors
or domain. Novice texts are arranged into its relevant domain or topic and its
paragraphs are classified into summary or non-summary. In this section, we explain
how to apply machine learning algorithms to the text summarization task.
Figure 13.14 illustrates the process of encoding paragraphs into numerical
vectors. The text collection is divided into sub-collections which correspond to
domains and each sub-collection is mapped into paragraph sub-collections. The
feature candidates are extracted by indexing the paragraphs and some among them
are selected as features. Each paragraph is represented into a numerical vector by
assigning values to features. The process of encoding paragraphs into numerical
vectors is same to that of encoding texts so.
Figure 13.15 illustrates the process of training the machine learning algorithms
with the sample paragraphs. A machine learning algorithm is allocated as a classifier
to each domain. The numerical vectors which are generated by the process which
is shown in Fig. 13.14 and associated with paragraphs are labeled manually, by
summary or non-summary. A set of training paragraph in each domain is divided
into two groups: the summary group and the non-summary group. The machine
learning algorithm which corresponds to its own domain builds its own classification
capacity by learning the sample paragraphs.
Figure 13.16 illustrates the process of classifying the paragraphs into summary
or non-summary. The text is tagged with its own domain and it is partitioned into
the paragraphs. Each paragraph is classified by the classifier which correspond to
the domain into one of the two categories. The paragraphs which are classified
with summary are extracted as the essential part. In the process in Fig. 13.16, it
is assumed that the domain is known.
A long single text which spans over more than one domain may be summarized. It
may be segmented into subtexts by the text segmentation process which is covered in

13.4 Combination with Other Text Mining Tasks
287
Fig. 13.15 Training machine
learning algorithms with the
sample paragraphs
Fig. 13.16 Classifying paragraph into summary or non-summary
Chap. 14. Each subtext tends to span over one domain; each subtext is tagged with its
own domain by the text categorization or the text clustering. The individual subtexts
are summarized by extracting the essential paragraphs one by one. However, in this
case, the summaries are ones to the subtexts, but not ones to the entire full texts.
13.4
Combination with Other Text Mining Tasks
This section is concerned with the combination of the text summarization with
other tasks and consists of four sections. In Sect. 13.4.1, we mention the summary-
based classification which is the combination of the text summarization and the

288
13
Text Summarization
Fig. 13.17 Summary-based classification
text categorization with each other. In Sect. 13.4.2, we explain the task which is
called summary- based clustering which is the hybrid task of the text summarization
and the text clustering. In Sect. 13.4.3, we cover the topic-based summarization as
another type of combined task. In Sect. 13.4.4, we describe the text expansion which
is the opposite task to the text summarization.

13.4.1

Summary-Based Classification
This section is concerned with the hybrid task of the text categorization and the
text summarization which is called summary- based classification, as presented in
Fig. 13.17. The summary is extracted as a paragraph or some paragraphs from a
full text and encoded into a numerical vector, instead of the full text. The summary
is classified into one or some of the predefined topics. Because the parts which
deal with other topics are removed, we may expect the better performance of text
categorization by the summary than by the full text. In this section, we describe the
hybrid task which combines the text summarization and the text categorization, with
each other.
Let us consider the preliminary tasks for executing the text classification based
on the summary. The categories are predefined as a list or a tree, and corresponding
sample labeled texts are gathered for doing the text categorization. Texts are
clustered by a clustering algorithm into subgroups, independently of the predefined
categories. For each cluster, each text is partitioned into paragraphs and sample
paragraphs which are labeled with summary or non-summary are gathered. Under
the assumption of not decomposing the text classification into binary classifications,
we prepare a single classifier for executing the text classification and classifiers as
many as clusters for executing the text summarization; each cluster indicates the
domain within which each paragraph is decided to be the summary, or not.
Let us mention the process of classifying a text based on its summary, after
preparing the classifiers. Each text is arranged into its nearest cluster and it is
partitioned into paragraphs. They are encoded into numerical vectors, and each
of them is classified into summary or non-summary. The paragraphs which are
13.4 Combination with Other Text Mining Tasks
289

classified into summary are extracted as the text summary, and it is encoded into
a numerical vector, and it is classified into one or some among the predefined
categories. Only summary is used for assigning a topic to the text, instead of the
full text.
The typical example of summary-based classification is the spam mail filtering
which depends on email titles. The spam mail filtering was mentioned in Sect. 5.4.1,
as the process of removing spam mails among the arriving ones. The email consists
of its title and contents and tends to be decided whether it is a spam or a ham by
its title. The email whose title consist of special characters and punctuation marks
tend to be classified into spam. The spam mail filtering by titles is more risky of
misclassification than that by full texts.
Let us consider some issues in classifying texts by their summaries. If nonessen-
tial paragraphs are selected as the summary, there is more possibility of classifying
a text into its wrong topic. A topic should be assigned to text before doing the
text summarization in case of applying the machine learning algorithms. The
features should be set for encoding paragraphs into numerical vectors for text
summarization, separately from the feature set for classifying the summary. If the
text classification is decomposed into binary classifications, we need classifiers
as many as topics for text categorization and ones as many as domains for text
summarization.

13.4.2

Summary-Based Clustering
This section is concerned with the summary-based clustering which is illustrated in
Fig. 13.18. The summary-based clustering is viewed as the hybrid task of the text
clustering and the text summarization. The summary is extracted from each text in
the group as a surrogate, and it is encoded into numerical vector. A group of texts is
clustered into subgroups based on their summaries. In this section, we describe this
hybrid task where texts are clustered by their summaries in detail.
Let us consider some benefits from doing the text clustering by summaries,
instead of full texts. It takes less time for encoding summaries into numerical vectors
than for doing full texts, so the higher clustering speed is expected. Because the
summary is regarded as the essential text part, we expect the clustering quality to
be improved by avoiding noises from nonessential parts. A corpus is characterized
with both results: text summaries and text clusters. The summaries in each cluster
become its potential scripts as a guide for browsing data items.
Let us explain the process of clustering texts by their summaries. A group of
texts is given as the input and each text is mapped into its summary. The summaries
are encoded into numerical vectors and they are clustered into subgroups by a
clustering algorithm. It is assumed that the heuristic scheme which was mentioned
in Sect. 13.3.1 is used. The issue in the summary-based clustering is that numerical
vectors which are encoded from summaries are sparser than those done from the full
texts.

290
13
Text Summarization
Fig. 13.18 Summary-based clustering
Let us mention the title-based clustering which is a variant of the summary-based
clustering. It is assumed that entries of texts and their titles are given as associated
forms. The titles are encoded into numerical vectors and they are clustered into
subgroups by a clustering algorithm. However, because each title is given as a very
short text, we need to expand the word list with their relevant ones in encoding titles
into numerical vectors. The title-based clustering is used for making the preview
of clustering texts, before executing the main clustering which is the process of
clustering texts by their full texts.
If a short text or a title consists of very few words, we need to expand the text
by adding its associated text. For each text, its similarity with other texts in the
external corpus and most similar ones are taken as its associated ones. Titles and
summaries of the similar texts are added to the original text. Texts each of which is
added by the associated ones are encoded numerical vectors, and they are clustered
into subgroups. By paying the degraded clustering speed, it is expected that the
numerical vectors become less sparse.

13.4.3

Topic-Based Summarization
This section is concerned with another hybrid task of the text categorization and
the text summarization, shown in Fig. 13.19. The hybrid task which is mentioned in
Sect. 13.4.2 is the text categorization in which the text summarization is used as the
mean. However, the task which is covered in this section is the text summarization
type in which the text categorization is used as the mean. The two hybrid tasks of the
text categorization and the text summarization are different from each other. In this
section, we describe the hybrid task which is the special type of text summarization.
Let us point out the differences from the hybrid task of the text categorization
and the text summarization which was covered in Sect. 13.4.2. Both the tasks in

13.4 Combination with Other Text Mining Tasks
291
Fig. 13.19 Topic-Based Summarization
Sect. 13.4.2 and this section are the hybrid ones of the both tasks. The hybrid
task in Sect. 13.4.2 is intended for the text categorization whereas one in this
section is intended for the text summarization. The task in Sect. 13.4.2 is the text
categorization which is reinforced by the text summarization, whereas one in this
section is the text summarization which considers involved topics. In both the tasks,
a single text is given as the input, but the outputs are different from each other.
The process of summarizing a text with the mixture of the text categorization is
illustrated in Fig. 13.19. When a single text is given as the input, it is encoded into
a numerical vector for the text classifier and it is partitioned into paragraphs for the
text summarization. The text is classified into one or some of the predefined topics
and the classified labels are transferred to the summarization module. The summary
of the given text is decided based on the classified labels as well as paragraph
contents by the summarization module. The process of summarizing a text which
is presented in Fig. 13.12 is a particular instance of the topic-based summarization
which is shown in Fig. 13.19.
A topic is given as a single word or two words, so we need to add more
words which are associated with the topic. Word association rules are extracted
from a corpus by the process which is described in Chap. 4. If a word which hits
the association rule list is given as topic, its associated words are added to the
summarization model which is presented in Fig. 13.19. The words which indicate
a topic directly and their associated ones guide us for selecting paragraphs as
summary. If topic and its associated words are included in the paragraph, it is
selected as the summary.

292
13
Text Summarization
Fig. 13.20 Text expansion
The text classification results may influence on summarizing texts strongly in
this scheme. If a given text is misclassified, there is possibility of generating
wrong summaries by the wrong category. Wrong associated words are retrieved
by the misclassification. The wrong topic and its associated words guide wrongly
for deciding whether the current paragraph is a summary, or not. Therefore, this
scheme is proposed under the assumption that the current text classification system
is strongly reliable.

13.4.4

Text Expansion
This section is concerned with the text expansion which is the opposite task to the
text summarization, as shown in Fig. 13.20. The text expansion is defined as the
process of expanding a text with its relevant texts, and it is usually applicable to a
short text. A text is indexed into a word list and among the words, some are selected
as a query. The texts which are relevant to the query are retrieved as the associated
texts, and some among them are added to the given texts. In this section, we describe
the text expansion which is the opposite task to the text summarization.
The associated texts mean the ones which are strongly relevant to the given text
with respect to its contents. Even if the text expansion and the text summarization
are opposite to each other, they are intended to optimize the text length. The text
summarization becomes the tool of cutting down the text length, and the text
expansion becomes that of increasing the text length. The assumption underlying in
applying the text expansion is that a text consists of only title or only one paragraph.
The text summarization is not applicable to such texts.
13.5 Summary and Further Discussions
293
Let us explain the process of expanding a text with its associate ones as its
additional part. It is assumed that a text is given as its title, its single paragraph,
and it short text. The original text is indexed into a list of words, and the words are
used as the query for retrieving relevant texts. The texts which are relevant to the
query are retrieved and most relevant ones are selected among them as associated
ones. Their full texts or some parts are added to the original ones.
There are two ways of accessing texts: search and browsing. Search is to retrieve
relevant texts by the query, and browsing is to access texts in the top–down direction,
from the general cluster to its specific ones. Texts are accessed automatically
through pass from the general cluster and to the specific cluster based on similarity
of the original text with clusters. Most similar text is selected within the most
specific cluster as the associated one. It requires the hierarchical organization of
texts in the corpus for accessing texts by browsing.
Let us consider some schemes of getting the associated texts for doing the text
expansion. The similarities of the original text with texts are computed and most
similar ones are retrieved as associated texts. The entire corpus is clustered into
a large number of small groups and texts in each groups are associated with each
other. Words are represented into text sets and text association rules are extracted
from them. We may use commercial search engines for retrieving associated texts,
giving an original text as a query.
13.5
Summary and Further Discussions
In this chapter, we mentioned the types and the schemes of the text summarization,
and hybrid tasks. We presented the four dichotomies of dividing the text summa-
rization into the two opposite types. We mentioned some heuristic schemes of the
text summarization and explained the scheme of applying the machine learning
algorithms by interpreting the task into a classification task. We mentioned the
hybrid tasks in which the text summarization is combined with other tasks. In this
section, we make some further discussions from what we study in this chapter.
The text summarization may be interpreted into the regression rather than the
classification. In this chapter, we viewed the text summarization into a binary
classification where each paragraph is classified into summary or non-summary.
The regression which is mapped from the text summarization is the task which
estimates a continuous value of each paragraph as its essential degree. In this case,
we construct the sample paragraphs which are labeled with a continuous value,
instead of one of the two categories, in order to apply a machine learning algorithm.
Because the final output of text summarization is actually some paragraphs as the
text summary, it is recommended to view it as a classification.
The multiple viewed text summarization may be considered as one more type
of this task. Different summaries in the manual text summarization are generated
differently, depending on subjective; the text summaries are characterized as subjec-
tive answers. The multiple viewed text summarization is one which accommodates
294
13
Text Summarization
different versions of summary which are generated from the text by a particular
approach with its different parameters or multiple different approaches. Different
levels are assigned to each paragraph among ones which are generated in this
type of text summarization. However, a single version of summary is expected in
summarizing a relatively short text.
We need to customize the summary based on user’s interests, rather than
providing an abstract. We mentioned the query-based summarization where the
summary is generated differently from the identical text, depending on the query.
Because the query is not the exact expression of users’ information need, the
summary is generated based on users’ profiles as well as the query. The different
summary versions are generated, depending on users’ interests from the same text as
the results. It is applicable to only long texts; the same summary version is generated
in a short text, whatever query is given.
A single text, multiple texts, and a corpus may be visualized into a tree or a
network. A text may be viewed as a hierarchical structure where the root node is
given as a text and terminal nodes are given as words. Paragraphs and sentences are
given as intermediate nodes in the hierarchical structure. The network where nodes
are given as words and edges are given semantic relationships visualizes a text or a
text group. Its visualization shows the hierarchical relations among words.

Chapter 14
Text Segmentation
This chapter is concerned with text segmentation which is another text mining task.
We define the text segmentation conceptually in Sect. 14.1 and explore the types
of text segmentation in Sect. 14.2. In Sect. 14.3, we describe the simple and state-
of-the-art approaches to text segmentation, in detail. We cover the tasks which are
derived from the text segmentation, in Sect. 14.4, and make the summarization and
the further discussions on this chapter, in Sect. 14.5. In this chapter, we describe the
text segmentation with respect to its functions, methods, and derivations.
14.1
Definition of Text Segmentation
Text segmentation refers to the process of segmenting a text based on its content
or topics into several independent texts. This task is usually applied to a long text
which deals with more than a topic. A text is segmented into paragraphs in the case
of a spoken text, and it is segmented into topic-based subtexts in the case of a written
text. In this chapter, the latter is focused on, and it is interpreted into a classification
task, where each paragraph pair is classified into boundary or continuance. In this
section, we describe briefly the text segmentation in its general view.
Let us consider the case of segmenting a spoken text into its paragraphs. The
speech which is given as a sound signal is transformed into a text which consists
of characters, by speech recognition techniques. Boundaries of paragraphs and
sentences are not available in the text which is generated from the speech by a
speech recognizer. We need to segment the text into paragraphs or sentences as the
additional step, in implementing the speech recognition system. This kind of text
segmentation which partitions a text that is mapped from the speech into paragraphs
is out of scope of this chapter.
Let us consider another case of segmenting a written text into its subtexts based
on its topics and contents. It is assumed that a full text may be partitioned into
© Springer International Publishing AG, part of Springer Nature 2019
295
T. Jo, Text Mining, Studies in Big Data 45,
https://doi.org/10.1007/978-3-319-91815-0_14
296
14
Text Segmentation
paragraphs by the carriage return. We need to analyze two adjacent paragraphs, in
order know how much the paragraphs are different from each other. We make the
decision on the boundary or the continuance between the two paragraphs, depending
on their content-based difference. The text segmentation may be interpreted into a
binary classification where each adjacent paragraph pair is classified into one of the
two cases.
We mention the two kinds of text segmentation and compare them with each
other. The text which is generated by the speech recognition is not segmented into
paragraphs, initially, whereas the written text is segmented into paragraphs initially.
Segmenting a text into paragraphs is the primary role in the spoken text, whereas
segmenting a text into topic or content-based subtexts is the role to the written
text. Noises in the speech text come from wrong speech recognitions, whereas
noises in the written text are caused by omitting periods or carriage returns between
paragraphs. This comparison is concluded that approaches to both kinds of text
segmentation should be developed differently.
We may use the results from segmenting a text based on its contents for
reinforcing the information retrieval systems. Because a long text contains many
words which are matching with the given query, potentially, it tends to be retrieved
more frequently, for users. It is inconvenient to access long texts which are given as
relevant ones, it is tedious to find relevant parts of each long text. If a long text is
segmented into independent subtexts, only relevant subtexts are retrieved depending
on the given query. Therefore, the text segmentation may provide the convenience
for users of information retrieval systems by providing only their interesting parts.
14.2
Text Segmentation Type
In this section, we explore the types of text segmentation, depending on the
dichotomy criteria. In Sect. 14.2.1, we examine the differences between the spoken
text segmentation and the written one which were mentioned briefly in Sect. 14.1.
In Sect. 14.2.2, we mention the ordered text segmentation and the unordered one,
depending on which the paragraphs are ordered, or not. In Sect. 14.2.3, we describe
the exclusive text segmentation and the overlapping one, depending on whether each
paragraph is allowed to belong to two adjacent subtexts, or not. In Sect. 14.2.4, we
introduce the hierarchical text segmentation which builds a hierarchical structure of
a given text, and compare it with the flat text segmentation.

14.2.1

Spoken vs Written Text Segmentation
This section is concerned with the types of text segmentations depending on spoken
and written texts. The text segmentation is generally referred to the process of
partitioning a text into several independent ones. It contains both partitioning a text

14.2 Text Segmentation Type
297
Unparagraphed
Paragraphed
Text
Text
Speech
Text
Recognition
Segmentation
Fig. 14.1 Spoken text segmentation
Fig. 14.2 Written text segmentation
into paragraphs or sentences and doing a text into subtexts based on its contents. In
this chapter, we focus on the latter in context of text mining tasks. Before doing that,
in this section, we compare the two types of text segmentations with each other.
The spoken text segmentation is illustrated in Fig. 14.1. The spoken text is given
as the input which is a sound signal. The sound signal is transformed into a text
which consists of characters by the speech recognition. The text which is generated
by the speech recognition is segmented into paragraphs. Process of segmenting a
written text into subtexts based on its contents will be covered subsequently.
Figure 14.2 illustrated the written text segmentation which segments a full text
into content-based subtexts. A single full text is given in its written form. A full
text is partitioned into paragraphs, and boundary or continuance is decided between
adjacent paragraphs. A text is divided into subtexts by the positions which is decided
as boundary. This kind of text segmentation is applicable to a long text which covers
multiple topics.
The comparisons of the two types of text segmentation which are mentioned
in this section are illustrated in Table 14.1. No paragraph mark exists in the
text which is generated by the speech recognition, whereas in any written text,
paragraph marks are initially given. We need to divide the text from the spoken
298
14
Text Segmentation
Table 14.1 Spoken vs
Speech
Written
written text segmentation
Paragraph mark
Not available
Available
Results
Paragraph list
Subtext list
Noise
Much
Less
Initial input
Sound signal
Text
one into paragraphs, before generating topic or content-based subtexts. In the
speech recognition process, very much noise is anticipated, depending on voices
and pronunciations. In segmenting the spoken text, the sound signals are given as
the initial input, whereas in doing the written one, the written full text is initially
given.
The text segmentation may be applied one more time in dealing with the spoken
texts. A text which is not partitioned into paragraphs is generated from the spoken
one which is initially given as a sound signal through the speech recognition. The
text is partitioned into paragraphs by the spoken text segmentation. The paragraphed
one is divided into subtexts based on their topics by one more text segmentation.
The two kinds of text segmentation may be applied to the optical recognition of
texts which are given as images as well as the spoken texts.

14.2.2

Ordered vs Unordered Text Segmentation
This section is concerned with the two types of text segmentation in another
view. There exists the possibility of partitioning a text or texts into paragraphs
and clustering them; this case is called the unordered text segmentation. Placing
topic-based boundaries between adjacent paragraphs belongs to the ordered text
segmentation. Paragraph clusters become results from the unordered text segmen-
tation, and ordered subtexts become those from the ordered one. So in this section,
we explain the two types of text segmentation, compare them with each other, and
combine them into one.
Figure 14.3 illustrates an example of the ordered text segmentation. The text
which consists of eight paragraphs is given as the initial input in this example. The
boundaries are placed, between paragraph 2 and 3, between paragraph 5 and 6, and
between paragraph 7 and 8, as shown in Fig. 14.3. The four subtexts are generated,
keeping the order, as follows:
• Subtext 1: Paragraph 1 and Paragraph 2
• Subtext 2: Paragraph 3, Paragraph 4, and Paragraph 5
• Subtext 3: Paragraph 6 and Paragraph 7
• Subtext 4: Paragraph 8
The paragraph order is maintained in the subtexts as shown in Fig. 14.3.

14.2 Text Segmentation Type
299
Fig. 14.3 Example of ordered text segmentation
Table 14.2 Ordered vs
Ordered
Unordered
unordered text segmentation
Output
Temporal subtexts
Subtext clusters
Paragraph pair
Adjacent
Not
Virtual text
X
O
Complexity
Linear
Quadratic
The unordered text segmentation is referred to the process of segmenting a text
into subgroups which are paragraph clusters regardless of the order. A text is mapped
into a group of paragraphs. The paragraphs are organized into subgroups based on
their content similarities. Each cluster of paragraphs is given as subtext, ignoring the
order of paragraphs. The unordered text segmentation is viewed as the paragraph
clustering to a long text.
Table 14.2 illustrates the difference between the two types of text segmentation.
In the ordered text segmentation, the subtexts which are ordered temporally are gen-
erated, whereas in the unordered one, clusters of content-based similar paragraphs
300
14
Text Segmentation
are generated. In the ordered text segmentation, each subtext consists of adjacent
paragraphs, whereas in the unordered one, each subtext consists of temporally
independent paragraphs. In the former, each subtext becomes an actual text which
consists of ordered paragraphs, whereas in the latter, each subtext is given as a
virtual text which consists of independent paragraphs. To the number of paragraphs,
it takes the linear complexity for executing the ordered text segmentation because
two adjacent paragraphs are classified sequentially by sliding two-sized window on
the full text, whereas it takes the quadratic complexity for executing the unordered
text segmentation because the clustering task takes such complexity.
The task of text ordering is considered as the process of ordering independent
texts logically into a text. An unordered list of independent texts is given as the
input and a single text which consists of them in the logical order is built as the
output. All possible pairs of given texts are generated, it is decided whether the texts
in the pair should be ordered or reversed, and they are ordered based on the labels
of pairs. The text which is generated from the text ordering becomes a virtual text
which does not exist actually. The text ordering is viewed as the reverse task to the
text segmentation which is covered in this chapter.

14.2.3

Exclusive vs Overlapping Segmentation
This section is concerned with the exclusive text segmentation and the overlapping
one. The former is one where no overlapping between subtexts is allowed, and the
latter is one where any overlapping is allowed. In the overlapping text segmentation,
a paragraph spans over two adjacent subtexts in the ordered text segmentation, and it
belongs to more than one cluster in the unordered one. The exclusive segmentation
is used in the technical domain where each paragraph focuses on topic, clearly,
while the overlapping one is used in informal domain where each paragraph may
span over more than one topic. In this section, we describe the two types of text
segmentation and compare them with each other.
Figure 14.4 illustrates the process of segmenting a text exclusively into subtexts.
The full text is initially partitioned into eight paragraphs. As the results from
the text segmentation, the system generates the four subtexts: paragraph 1 and
2, paragraph 3, 4, and 5, paragraph 6 and 7, and paragraph 8. No paragraph
spans over two subtexts, in observing the subtexts which are shown in Fig. 14.4.
The text segmentation which is presented in Fig. 14.4 belongs to the ordered text
segmentation.
Figure 14.5 demonstrates the overlapping text segmentation by a simple example.
The full text is partitioned into eight paragraphs like the case in Fig. 14.4. The
process generates the four subtexts as follows:
• Subtext 1: Paragraph 1, Paragraph 2, and Paragraph 3
• Subtext 2: Paragraph 3, Paragraph 4, and Paragraph 5
• Subtext 3: Paragraph 5, Paragraph 6, and Paragraph 7
• Subtext 4: Paragraph 7 and Paragraph 8

14.2 Text Segmentation Type
301
Fig. 14.4 Exclusive text segmentation
The overlapping paragraphs are available as follows: paragraph 3 between subtext
1 and 2, paragraph 5 between subtext 2 and 3, and paragraph 7 between subtext 3
and 4. The condition of the overlapping segmentation is that at least one paragraph
spans over two adjacent subtexts.
Table 14.3 illustrates the comparisons of the two types of text segmentation.
The status between two adjacent paragraphs is continuance or boundary in the
exclusive text segmentation, whereas the status may be given as a continuous value
between zero and one in the overlapping text segmentation. In the exclusive text
segmentation, a paragraph belongs to only one subtext, whether it is the ordered
text segmentation or the unordered one. In the overlapping one, a paragraph may
belong to two adjacent subtexts in the ordered text segmentation, and to more than
two subtexts in the unordered one. The exclusive text segmentation is simpler than
the overlapping one because of its less complexity.
Let us consider the overlapping text segmentation where a paragraph is allowed
to belong to two subtexts. The principle of writing article is that a paragraph deals
with a topic consistently. In the technical articles in the domains such as science,
medicine, and engineering, a paragraph deals with its own topic frequently so it
spans over more than two topics rarely. Because an essay is an article which is writ-
ten very freely with considering the organization very little, many paragraphs span

302
14
Text Segmentation
Fig. 14.5 Overlapping text segmentation
Table 14.3 Exclusive vs overlapping text segmentation
Exclusive
Overlapping
Inter-paragraph status
Binary
Continuous
Ordered segmentation
Only one subtext
Two adjacent subtext
Unordered segmentation
More than two subtexts
Complexity
Linear
Quadratic
over more than one topic. Therefore, the exclusive text segmentation is practical for
dealing with technical articles, whereas the overlapping text segmentation is so for
doing with essays.

14.2.4

Flat vs Hierarchical Text Segmentation
This section is concerned with the two types of text segmentation by one more
dichotomy criteria. The text segmentation is divided into the flat segmentation and
the hierarchical one, depending on whether nested segmentation is allowed or not.
Only one time, a text is segmented into subtexts in the flat segmentation, while a
subtext is segmented into its nested ones in the hierarchical one. The list of subtexts

14.2 Text Segmentation Type
303
Fig. 14.6 Flat text segmentation
Fig. 14.7 Hierarchical text segmentation
is given as result in the flat segmentation, while a tree of subtexts is given as result
in the hierarchical one. In this section, we explain and compare the two types of text
segmentation.
The flat text segmentation is illustrated in Fig. 14.6. It is one where any nested
subtext in a subtext is not allowed. In this type, a list of subtexts is given as output.
The exclusive and flat clustering of paragraphs correspond to the flat and unordered
text segmentation. No nested subtext in any subtext is the condition of the flat
segmentation.
The hierarchical text segmentation is illustrated in Fig. 14.7. The full text is
segmented into two subtexts in the first level, and each subtext is segmented into
two nested subtexts in the second level, as shown in Fig. 14.7. The hierarchical
segmentation can be implemented by setting boundary condition strictly in the
304
14
Text Segmentation
Table 14.4 Flat vs
Flat
Hierarchical
hierarchical text segmentation
Results
Subtext list
Subtext tree
Boundary level
Single
Multiple
Subtext zooming
Limited
Possible
Nested subtext
Not available
Available
general level, and loosely in the specific level. The classifiers may be allocated
level by level, by viewing the text segmentation into classification as mentioned
in Sect. 14.3.2. A tree structure of subtexts rather than a list of ones is generated as
the output in this type of text segmentation.
Table 14.4 illustrates the comparisons of the two types of text segmentation. In
the flat text segmentation, a list of subtexts is generated as the output, whereas in
the hierarchical text segmentation, a tree of subtexts is generated. In the flat text
segmentation, the boundary and the continuance are given as the paragraph pair
status, whereas in the hierarchical text segmentation, multiple degrees of boundary
between paragraphs are given as the status. Zooming in and out in the flat text
segmentation is limited because multiple boundary degrees are not allowed. In the
flat text segmentation, no nested subtext exists, whereas in the hierarchical one, any
nested subtext does.
The hierarchical text segmentation may be used for implementing the text
browsing within a long text. As mentioned above, a tree of subtexts is generated.
The root of subtext tree stands for the entire text and the leaf stands for individual
paragraphs. A text is divided for finding wanted portions within a text in the top–
down direction. This kind of text segmentation belongs to topic-based or semantic
one which is distinguished from partitioning a text into paragraphs directly.
14.3
Machine Learning-Based Approaches
This section is concerned with some approaches to the text segmentation. In
Sect. 14.3.1, we mention some heuristic approaches to the task. In Sect. 14.3.2,
we interpret the text segmentation into the classification of paragraph pairs. In
Sect. 14.3.3, we describe the process of encoding paragraph pairs into numerical
vectors. In Sect. 14.3.4, we explain the scheme of applying the machine learning
algorithms to the text segmentation.

14.3.1

Heuristic Approaches
This section is concerned with the simple and heuristic approaches to the text
segmentation. The approaches in this kind are used without mapping the text
segmentation task into a classification one. A text is partitioned into paragraphs
14.3 Machine Learning-Based Approaches
305
and the boundary or the continuance between adjacent paragraphs is decided by
the difference of words between them. Because the approaches in this kind depend
strongly on lexical analysis of words, the semantic relations among words are not
considered. In this section, we mention some heuristic schemes of text segmentation
before covering the state-of-the-art approaches.
Let us mention the simplest approach to the text segmentation. An entire text is
partitioned into paragraphs, and each one is mapped into a set of characters. The
two sets of characters which represent paragraphs are compared with each other and
the boundary between them is decided by the difference between the two character
sets. In a variant of this method, each paragraph is mapped into an ordered list of
characters and two paragraphs are compared by character frequencies. However,
there is possibility of covering identical topic from different expressions.
Let us mention another heuristic scheme of segmenting a text. Each paragraph
is indexed into a set of words. The two sets of words which represent the adjacent
paragraphs are compared with each other; when their difference is more than the
threshold, the boundary is put between them. This scheme belongs to the lexical
comparison, together with the previous scheme. In both schemes, a case of the same
meaning of different words is not considered.
Let us mention one more scheme of segmenting a text, based on the numerical
vectors which are representing its paragraphs. The features which are attributes
of numerical vectors are defined and the paragraphs in the text are encoded
into numerical vectors. The similarity or distance between two numerical vectors
which represent adjacent paragraphs is computed. When the similarity is less than
threshold or the distance is greater than one, the boundary is put between the
paragraphs. Important issues of using this method are how to define the features
and how to assign values to them.
Let us mention the scheme of segmenting a text by classifying paragraphs based
on their topics. As the requirement for using this scheme, the text categorization
system should implemented and installed. Paragraphs are classified into one of the
predefined topics, and the boundary is put between two adjacent paragraphs which
are classified differently from each other. We need the preliminary tasks such as
predefining categories and allocating sample labeled paragraphs. The domain of
texts each of which we try to segment and the scope of predefined categories should
match with each other.

14.3.2

Mapping into Classification
This section is concerned with the process of mapping the text segmentation into the
binary classification, as shown in Fig. 14.8. A text is partitioned into paragraphs and
adjacent paragraph pairs are generated by sliding window on the ordered paragraph
list. Each adjacent paragraph pair is classified into boundary or continuance. The
topic-based boundary is set between paragraphs in the pair which is labeled with
boundary. In this section, we explain the classification which is mapped from the
text segmentation and its comparison with other tasks.
306
14
Text Segmentation
1
2
......
N
Text
Paragraphs
1,2
Boundary
2,3
Binary
or
Classifier
Continuance
......
N-1,N
Pairs of Adjacent Paragraphs
Fig. 14.8 Process of mapping text segmentation into binary classification
We illustrate the binary classification of two adjacent paragraphs which is
mapped from the text segmentation in Fig. 14.8. As sample examples, we gather the
adjacent paragraph pairs which are labeled with one of the two categories: boundary
and continuance. The paragraph pairs are encoded into numerical vectors, and the
classification capacity is built by learning the sample examples. A novice text is
given as a list of adjacent paragraph pairs, each pair is encoded into a numerical
vector and it is classified into boundary or continuance. The binary classification of
paragraph pair becomes the core part in implementing the text segmentation system.
Let us explain the process of segmenting a text into subtexts based on their topics,
using the above binary classification. A text is given as the input, text is partitioned
into paragraphs, and a list of two adjacent paragraphs is generated by sliding the
two-sized window. The adjacent paragraph pairs are encoded into numerical vectors,
and each of them is classified into boundary or continuance. The boundary is put
between the adjacent paragraph pairs which are classified with boundary, and text
is segmented by the boundary into subtexts. The adjacent paragraph pair which is
classified into continuance becomes a subtext which deals with an identical topic.
Table 14.5 illustrates the comparisons among the three tasks: the topic-based
classification, the text summarization, and the text segmentation. In the text catego-
rization, more than two topics are predefined, whereas in the text summarization
14.3 Machine Learning-Based Approaches
307
Table 14.5 Text classification vs summarization vs segmentation
Classification
Summarization
Segmentation
Label
Topic
Summary or not
Boundary or continuance
Task
Multiple classification
Binary classification
Domain
Independent
Dependent
Entity
Article
Paragraph
Paragraph pair
and the text segmentation, only two categories are predefined. The topic- based
text classification is usually given as a multiple classification, whereas the text
summarization and the text segmentation are given as a binary classification. In
the text categorization, an entity is labeled with topics independently of domain,
whereas in the text summarization and the text segmentation, an entity is labeled
with one of the two categories, depending on a domain. In the text categorization, an
article which consists of more than one paragraph is a classification target, whereas
in the text summarization and the text segmentation, a single paragraph and an
adjacent paragraph pair is a classification target, respectively.
It is possible to map the text segmentation into a regression task as well as a
classification task. The regression which is mapped from the text segmentation is
the process estimating a boundary score to each adjacent paragraph pair. In order to
gather sample paragraph pairs, assigning manually the boundary scores to sample
ones is very dependent on subjectivity. By mapping the task into a regression, the
granularity of segmenting a text into subjects should be controlled. In the regression,
it is more difficult to gather sample paragraph pairs which are labeled with boundary
scores than in the classification.

14.3.3

Encoding Adjacent Paragraph Pairs
Figure 14.9 illustrates the overall process of encoding paragraph pairs into numeri-
cal vectors. The adjacent paragraph pairs are generated by sliding a window on the
paragraph list. In the collection, the texts are indexed into a list of words as feature
candidates, and only some are selected among them as features. Adjacent paragraph
pairs are encoded into numerical vectors whose attributes are the selected features.
In this section, we review the feature extraction and selection and explain the two
schemes of encoding them.
Let us review the process of extracting and selecting features in encoding
paragraphs. The text collection is given as the source and the texts in the collection
are indexed into a list of words. Only some words are selected by the criteria
which is mentioned in Chap. 2, as features. We may consider other factors such
as grammatical and posting attributes as well as words, themselves, as features.
However, in this section, the scope of features is restricted to only words.

308
14
Text Segmentation
Fig. 14.9 Process of encoding paragraph pairs
Fig. 14.10 Single encoding scheme
Figure 14.10 illustrates the first scheme of encoding adjacent paragraphs into
numerical vectors. The adjacent paragraph pair is given as a text in this scheme, and
it is assumed that features were already selected. A text is encoded into a numerical
vector by the process which was mentioned in Chap. 3. If elements in the numerical
vector are distributed with balance, this case is classified with more probability into
boundary. The machine learning algorithms are applied as the binary classifier of
paragraph pairs to the text segmentation.
The alternative scheme of encoding paragraph pairs is presented in Fig. 14.11.
In this scheme, it is assumed that an adjacent paragraph pair is given as two
texts. The two paragraphs in each pair are encoded into two independent numerical
vectors as shown in Fig. 14.11. In this encoding scheme, we may consider some
heuristic approaches to the text categorization based on Euclidean distance or cosine
similarity between two vectors. We need to modify machine learning algorithms to
this task to accommodate dual numerical vectors.
We need to introduce some features from other domains as well as the current
domain. The features from the current domain are called internal features, whereas

14.3 Machine Learning-Based Approaches
309
Fig. 14.11 Pair encoding scheme
ones from other domains are called external features. External features may become
important factors for deciding boundary or the continuance between paragraphs;
nonzero values of external features imply the higher possibility of deciding the
boundary, and zero values do that of deciding the continuance. Note that more topics
or domains may be nested in the current domain; two types of boundaries may be
put between paragraphs: the transition between specific topics and the transition
from the topic in the current domain to one in another domain. Sometimes, a topic
or topics which are out of the current domain are mentioned in a text.

14.3.4

Application of Machine Learning
This section is concerned with the scheme of applying the machine learning
algorithms to the text segmentation. In the previous sections, we mentioned the
process of mapping the text segmentation to a classification task and encoding
paragraph pairs into numerical vectors. A text collection is divided into sub-
collections by domains and machine learning-based classifier is allocated to each
domain. The classifier is learned from the representations of sample paragraph pairs,
and novice paragraph pairs are represented into numerical vectors and classified
into boundary and continuance. In this section, we describe in detail the process of
applying the machine learning algorithm to the classification task which is mapped
from the text segmentation.
Figure 14.12 illustrates the process of encoding paragraph pairs into numerical
vectors. The text collection is divided into sub-collections which correspond to their
own domains, and adjacent paragraph pairs are generated by sliding a window on the
paragraph list. The feature candidates are extracted from the collection of paragraph
pairs and some among them are selected as features. Each paragraph pair is encoded
into a numerical vector by assigning values to features and it is labeled into boundary
or continuance, manually. The process of encoding paragraph pairs into numerical
vectors is the same to that of encoding texts or paragraphs so.

310
14
Text Segmentation
Fig. 14.12 Encoding paragraph pairs into numerical vectors
Fig. 14.13 Training machine
Boundary
Continuance
learning algorithm
Domain 1
ML 1
Domain 2
ML 2
Domain K
ML K
Figure 14.13 illustrates the process of training the machine learning algorithm by
training examples which are generated by the process which is shown in Fig. 14.12.
A machine learning algorithm is allocated to its own domain, and labeled numerical
vectors which represent paragraph pairs are prepared as training examples. A set
of training examples is divided into the two groups: the boundary group and the
continuance group, as shown in Fig. 14.13. The classification capacity is constructed
by learning the prepared training examples to domain by domain. Tagging a domain
to texts or classifying them into one of domains is necessary for doing the text
segmentation.
Figure 14.14 illustrates the process of classifying the paragraph pairs into
boundary or continuance. The text which is given as input and tagged with its
own domain is partitioned into paragraphs and a classifier which corresponds to the
domain is nominated. Adjacent paragraph pairs are extracted by sliding the two-
sized window on the paragraphs, and encoded into numerical vector. Individual
paragraph pairs are classified into one of the two categories and boundaries are
marked between paragraphs in the pair which is classified into boundary. Subtexts
are generated by the marked boundaries from the full text and they are treated as
independent texts.
14.4 Derived Tasks
311
Domain.2
Domain.1
Domain.2
Domain.3
Domain.4
Paragraph
Boundary
Boundary
Boundary
Boundary
Pairs
Continuance
Continuance
Continuance
Continuance
Numerical
Numerical
Numerical
Numerical
Numerical
Vectors
Vectors
Vectors
Vectors
Vectors
Boundary
Classifier
Continuance
Fig. 14.14 Classifying paragraph pairs into boundary or continuance
14.4
Derived Tasks
This section is concerned with tasks which are derived from the taxonomy gener-
ation and consists of the four subsections. In Sect. 14.4.1, we mention the process
of analyzing the full text, paragraph by paragraph, based on its involved topics.
In Sect. 14.4.2, we explain the information retrieval where subtexts relevant to the
query are retrieved, instead of full texts. In Sect. 14.4.3, we consider the subtext
synthesization which assembles subtexts into a full text, as the opposite to the text
segmentation. In Sect. 14.4.4, we mention virtual texts which is the output from the
subtext synthesization.

14.4.1

Temporal Topic Analysis
This section is concerned with the process of spotting ordered topics, as shown in
Fig. 14.15. A text is partitioned into ordered paragraphs, and one of the predefined
topics is assigned to each paragraph. A list of topics which are assigned to
paragraphs becomes the ordered topic list to the given full text. We adopt the HMM
(Hidden Markov Model) for considering topics of previous paragraphs, as well as
properties of current one. In this section, we describe the HMM as the learning
algorithm, briefly and explain its application to the topic analysis.

312
14
Text Segmentation
Fig. 14.15 Spotting ordered topics
The HMM (Hidden Markov Model) is the probabilistic model for defining a
state sequence using the observation sequence, based on the conditional prob-
abilities which are given previous states. We define the two sets: the state set,

S = S 1 , S 2 , . . . , S| S|, and the observation set, O = O 1 , O 2 , . . . , O| O|. The state transition probabilities are defined as the matrix where rows correspond to the list
of current states and the columns correspond to the list of next states,
⎡
⎤

P (S 1| S 1) P (S 2| S 1) . . . P (S| S|| S 1)
⎢
⎢ P (S
⎥
1| S 2)

P (S 2| S 2) . . . P (S| S|| S 2) ⎥
A = ⎢
⎣

.
⎥

.

.

.

.

.

..

. .

..
⎦

P (S 1| S| S|) P (S 2| S| S|) . . . P (S| S|| S| S|)
The probabilities that observations are given are defined as the matrix where the
rows correspond to the list of states and the columns correspond to the list of
observations,
⎡
⎤

P (O 1| S 1) P (O 2| S 1) . . . P (O| O|| S 1)
⎢
⎢ P (O
⎥
1| S 2)

P (O 2| S 2) . . . P (O| O|| S 2) ⎥
B = ⎢
⎣

.
⎥

.

.

.

.

.

..

. .

..
⎦

P (O 1| S| S|) P (O 2| S| S|) . . . P (O| O|| S| S|)
The initial probabilities are defined as a vector: Π = P (S 1) P (S 2) . . . P (S| S|) .
Let us consider the tasks to which the HMM is applied. The probability of the
observation sequence, OiOi+1 · · · Oi+ j , is evaluated based on the above definitions.
The observation sequence is given as the input and the state sequence with its
maximum likelihood to the observation sequence is found. The set of observation
sequences is given as training examples and the matrices, A and B, and Π are
estimated by learning them. The process of generating the topic sequence from the
text corresponds to the second task.
If applying the HMM to the ordered topic spotting, the topic sequence is given
as the state sequence, according to the paragraph order, and the word sequence is
given as the observation sequence. Representative words are extracted from each
paragraph, and the word sequence becomes the observation sequence. By analyzing

14.4 Derived Tasks
313
the corpus statistically, we define the parameters: A, B, and Π . We find the state
sequence as the ordered topic sequence, by computing the maximum likelihood of
given observed sequence to all possible state ones. The second and the third task of
HMM may be also involved in the ordered topic spotting.
We need to compare the ordered topic spotting and the unordered one with each
other. The list of topics which are assigned to a text is interpreted into a topic list
which is covered in the text in the unordered one, while it is interpreted as the
temporal sequence of topics in the ordered one. The supervised learning algorithms
are used as the approaches in the unordered one, while the HMM is used as the
approach in the ordered one. The unordered topic spotting belongs to the fuzzy
classification, while the ordered one belongs to the temporal sequence analysis. The
unordered one is used for organizing texts based on their topics, while the ordered
one is used for analyzing contents within a text.

14.4.2

Subtext Retrieval
This section is concerned with the subtext retrieval as shown in Fig. 14.16. The full
texts which are relevant to a given query are retrieved in the traditional information
retrieval. Even if the subtext is referred to a text part such as a paragraph, a sentence,
and a word, it means here that the text part which deals with the consistent topic as
results from text segmentation. The process of retrieving relevant subtexts instead
of full texts is called subtext retrieval. In this section, we describe the task of subtext
retrieval.
The information retrieval is referred to the process of retrieving texts which are
relevant to the query. The query is given by a user which expresses his or her
information needs and we need the query processing by refining and expanding
the query to its more specific ones. We compute relevancy between a query and a
text and texts are ranked by their relevancy. The texts which are relevant to a query
are retrieved and presented for users. Long texts tend to be overestimated of their
relevancy because of many words.
Fig. 14.16 Process of retrieving subtexts

314
14
Text Segmentation
Let us explain the information retrieval which is specialized for retrieving
subtexts. Each text in the corpus which is the source is segmented into paragraphs
which are subtext instances. The paragraphs are indexed and encoded into structured
forms. The paragraphs which are relevant to the query are retrieved as independent
texts. It is expected to prevent from overestimating the relevance of long texts by
doing so.
Instead of paragraphs, a text is partitioned into topic-based subtexts. The
text collection is divided into sub-collections by domains or topics. In each
sub-collection, paragraph pairs are gathered and classified into continuance and
boundary by the corresponding classifier. Between each paragraph pair which is
classified with boundary, a mark is put as the boundary; a text is divided by the
boundary into subtexts. These subtexts are treated as independent ones, in executing
the information retrieval.
We need the subtext classification and the subtext clustering, in order to reinforce
the subtext retrieval. The subtexts are extracted based on topics from the full text by
the text segmentation. The subtexts are treated as the independent data items, and
the information retrieval is applied to them. There is possibility of executing the
clustering and the classification to the subtexts as well as the full texts. Subtexts
which are partitioned from a long text and short full texts become the information
retrieval source.

14.4.3

Subtext Synthesization
This section is concerned with the subtext synthesization which is shown in
Fig. 14.17. It is the process of making the full text artificially by assembling subtexts.
The full text fragments are actually concentrated on a particular topic. The texts are
assembled as shown in the right part of Fig. 14.17, within each cluster into a single
text after clustering them. In this section, we describe the process of synthesizing
subtexts into a full text.
Fig. 14.17 Subtext synthesization
14.4 Derived Tasks
315
In this section, it is assumed that a subtext is given as a paragraph. A text group is
mapped into a paragraph group by partitioning each text into paragraphs. Paragraphs
are encoded into numerical vectors like independent texts and they are clustered
into subgroups of similar ones by a clustering algorithm. Because many paragraph
permutations may exist in each cluster, a paragraph cluster never become a single
full text. We should find the optimal paragraph permutation for synthesizing a text.
It is assumed that a text domain is a technical area and each full text consists of
the three parts: introduction, body, and conclusion. We need to classify paragraphs
into one of the three parts, before synthesizing them into a full text. In the sampling
process, the first and the last paragraph in each full text are labeled with introduction
and conclusion, respectively, and intermediate ones are labeled with body. The
labeled paragraphs are encoded into numerical vectors and the supervised learning
is trained by the sample paragraphs. If assuming that paragraphs from known full
texts and ones whose sources are not known exist together, the former becomes
sample paragraphs and the latter becomes novice ones.
The subtexts are classified into one of the above three categories and they are
assembled into a full text. In the given cluster, the subtexts which are classified
into introduction are taken as the first full text part. Subtexts which are classified
into body are attached to the first part. The subtext synthesization is finalized by
attaching subtexts which are classified into conclusion. There are many cases of
permutations of subtexts which are classified into body, in the full text medium.
Let us consider some issues in assembling subtexts into an article. We must
decide whether subtexts which are classified into body are put after one which is
classified into introduction, after one which is done into body, or before one which
is done into conclusion. We must decide the number and the order of subtexts which
are classified into body for building the logical full text. We need to decide the
relevancies of subtexts which are classified into conclusion before attaching it. The
distribution over the three categories of subtexts is never balanced in any cluster.

14.4.4

Virtual Text
This section is concerned with virtual texts which are the ones synthesized
automatically by subtexts. It is assumed that there are two kinds of texts: actual texts
which are manually written by human being and virtual texts which are assembled
by subtexts from different sources. Users tend to have interests spanning over several
texts, rather than concentrating on a particular text, so they need to synthesize his or
her interesting parts into a single text. We may consider various schemes of making
the virtual texts: replacing a particular paragraph by another from external sources,
and synthesizing subtexts from difference sources into a text. In this section, we
compare the two kinds of texts with each other and describe the scheme of making
virtual texts.
Let us compare the actual text and the virtual texts with each other. The actual
texts are ones which are written or edited manually and entirely by a human being,
316
14
Text Segmentation
and the virtual texts are ones which are automatically by a computer. The virtual text
consists of subtexts from different actual texts. If a sentence or a paragraph may be
replaced by one from a different text, the text becomes a virtual text which satisfies
the minimum requirement. The process of making a virtual text by assembling only
interesting subtexts for users is called text customization.
Let us mention some schemes of generating virtual texts. A paragraph or a
sentence may be replaced by one from another text. A group of texts is partitioned
into one of paragraphs and they are clustered into subgroups, as mentioned in
Sect. 14.4.3. A short text is expanded by adding its associated texts as mentioned in
Sect. 13.4.4. A long text is divided into subtexts based on their topics as independent
texts.
The virtual texts which are customized to users are built after retrieving relevant
texts. User never scans entirely individual texts which are relevant to the query.
The scanned parts of relevant texts are assembled into one text as more desirable
text. Subtexts are gathered from relevant text which were clicked by a user, they are
partitioned into paragraphs, and they are assembled into a single text. The important
issue is to determine which is the introduction, the body, or the conclusion, in
building a virtual text.
Let us consider the automatic text editing for making and modifying virtual texts.
Editing a text is a manual task, requiring scanning and understanding texts. Deletion
of irrelevant sentences and addition of associated sentences from other texts are
operations for editing texts, automatically. Virtual texts are usually not logical, so
they need to be edited, manually or automatically. Much more research is needed
for editing automatically the virtual texts to be more logical.
14.5
Summary and Further Discussions
In this chapter, we described the text segmentation with respect to the types,
the approaches, and the derived tasks. We presented the dichotomies for dividing
the text segmentation into the two opposite types. We mentioned some heuristic
schemes of text segmentation and the applications of machine learning algorithms
to it by viewing it into a classification task. We covered the tasks which are derived
from the text segmentation and related with it. In this section, we make some further
discussions from what we studied in this chapter.
In this chapter, we covered the text segmentation and mentioned the text
expansion which is opposite to it in Sect. 14.4.4. Textual data is always given with
very variable lengths in a collection; in the collection of news articles, only title is
given as a very short text and a series of news is given as long text. We may use the
tasks for normalizing the text length; the text segmentation is applicable to a long
text and the text expansion is applicable to a short text. The long text may be divided
into subtexts which are treated as independent texts by the text segmentation and the
short text is expanded by adding its associated text by the text expansion. We need
to define the criteria for deciding one of the two tasks to each text.
14.5 Summary and Further Discussions
317
The text segmentation system may be implemented by the text classification
system. A text is partitioned into paragraphs and they are encoded into numerical
vectors. The paragraphs are classified into one or some of the predefined categories.
Two adjacent paragraphs which are labeled with the same category or nonempty
intersection of two sets of labeled categories are treated as continuous; otherwise,
they are treated as boundary. In the crisp classification, a text may be segmented
into small-sized subtexts and in the fuzzy classification, a text may be segmented
into large- sized ones.
We may consider the text segmentation based on the word clustering results.
The words which are collected from a corpus are clustered into subgroups by their
meaning. Two paragraphs are indexed into their own lists of words and the similarity
of the word list with word clusters is computed. Each paragraph is associated
with the word cluster whose similarity is maximum, and if two lists of words
are associated with different word clusters, the boundary is put between the two
paragraphs. The semantic word organization is used for segmenting a text based on
the paragraph meaning, in this case.
We need to trim virtual texts for improving its readability. The virtual text which
is made by replacing a paragraph with another is relatively more readable. The
paragraphs in the virtual text are made by synthesizing them from their different
sources that should be trimmed. Trimming such as removing unnatural sentences
and adding some phrases will improve the readability. The criteria or the metric
should be defined for evaluating the quality of virtual texts before proposing the
schemes of doing that.

Chapter 15
Taxonomy Generation
This chapter is concerned with the taxonomy generation which is corresponding
to the automatic category predefinition. We define the taxonomy generation in its
general view, in Sect. 15.1, and mention some of its relevant tasks in Sect. 15.2. In
Sect. 15.3, we describe the schemes of taxonomy generation in detail. We cover the
process of maintaining taxonomies in Sect. 15.4, and make the summarization and
further discussions on this chapter in Sect. 15.5. In this chapter, we describe the
taxonomy generation which especially supports the text categorization.
15.1
Definition of Taxonomy Generation
Taxonomy generation refers to the process of generating topics or concepts and their
relations from a given corpus. The task of taxonomy generation consists basically
of listing topics or categories from the corpus and linking each of them to its
relevant texts. A hierarchical structure or network of topics or categories is built
as an advanced form of taxonomy generation. The taxonomy generation is used
for defining the classification frame automatically and it may be used by itself
as a knowledge base. In this section, the taxonomy generation is described in its
functional view before discussing its process in detail.
Let us consider reasons of generating taxonomies from a given corpus. In order
to perform text categorization tasks, we must define and update categories as a list or
tree. For the semantic processing, an ontology as a kind of knowledge representation
is constructed manually or semiautomatically. A single text, several texts, or a
corpus many be visualized graphically based on their contents. By building the
semantic structures among words, we may analyze contents of texts or corpus, in
order to organize them.
Let us consider some schemes of generating taxonomies from a given corpus. An
entire corpus is indexed into a list of words and some among them are selected as
© Springer International Publishing AG, part of Springer Nature 2019
319
T. Jo, Text Mining, Studies in Big Data 45,
https://doi.org/10.1007/978-3-319-91815-0_15
320
15
Taxonomy Generation
taxonomies. The texts in the corpus are clustered into subgroups, and each subgroup
is named with its most relevant words. Association rules are extracted from viewing
a text as a word set and construct taxonomies based on them. Taxonomies are
organized as a graph where each node indicates a word, and each edge indicates
a semantic relation between words.
We may express taxonomies as various graphical configurations from a simple
list to a complicated graph. A list of concepts and categories is the simplest form of
taxonomy organization for predefining categories automatically as the preliminary
task of text categorization. A hierarchical structure of concepts or categories from
the abstract level to the specific level is suitable for predefining them for the
hierarchical text categorization. A network of concepts or categories together with
their semantic relations is a typical form of taxonomy organization. The information
about relation, properties and methods of each concept, and axioms which are
constraints may be added to the above network of taxonomies.
Even if other goals are available, it is assumed that the taxonomy generation
is mainly intended to define the classification frames automatically. Only a list of
unnamed clusters which result from clustering texts is not sufficient for automating
the preliminary tasks for the text categorization. Prior knowledge about the given
domain is required for doing the preliminary tasks manually. The list of important
concepts which is generated from corpus by the taxonomy generation is the
classification frame which should be defined for doing the text categorization. The
relations among them as well as the important concepts are also generated as the
output of the taxonomy generation.
15.2
Relevant Tasks to Taxonomy Generation
This section is concerned with the text mining tasks which are relevant to the
taxonomy generation, in order to provide the background for understanding it.
In Sect. 15.2.1, we describe the keyword extraction and its relevancy to the text
generation. In Sect. 15.2.2, we mention the task where a single word or a bigram is
classified into one or some of predefined topics, instead of text. In Sect. 15.2.3, we
explain the word clustering which is associated with the word classification, where
words are clustered semantically into clusters. In Sect. 15.2.4, we cover the topic
routing which is the reverse task to the text categorization where a topic is given as
an input and a list of texts belonging to the topic is generated as the output.

15.2.1

Keyword Extraction
Keyword extraction is referred to the process of extracting important words which
represent the entire contents of the given full text, as illustrated in Fig. 15.1. The
full text is given as the input, and a list of words which are included in the text

15.2 Relevant Tasks to Taxonomy Generation
321
Fig. 15.1 Keyword extraction
is generated as the output. The full text is indexed into a list of words by the text
indexer, and some among the words are selected as the keywords. The keyword
extraction is viewed as the decision of whether each word which is indexed from
text is a keyword or not. In this section, we describe the keyword extraction with its
connection with the taxonomy generation.
Let us explain the keyword extraction in its functional view. A single full text is
externally given as the input. The text is viewed as a list of words; a full text consists
of a paragraph, a paragraph consists of sentences, and a sentence consists of words.
Some words which reflect the entire full text content are generated in the keyword
extraction as the results. Multiple texts or a corpus may be given as the input to the
keyword extraction in some cases.
Let us describe the process of extracting keywords from a full text. A full text
is given as the input, and it is indexed into a list of words. Each word which is
extracted by the indexing process is decided into an important or an unimportant
one. The words which are judged as important ones are generated as keywords. The
decision which is mentioned above belongs to a binary classification task.
The mapping from the keyword extraction into a classification task is illustrated
in Fig. 15.2. A text which is given as the initial input is indexed into a list of words,
and the process of doing so was already mentioned in Chap. 2. Each word which is
indexed from the text is classified into a keyword or a non-keyword, by the classifier.
The words which are classified into keywords are selected and generated externally
as the output. We need to consider the domain for collecting the sample labeled
words.
Figure 15.3 illustrates the relevancy of the keyword extraction to the taxonomy
generation. Individual texts in the collection are indexed into their own lists
of words. In each text, among its indexed words, some words are selected as
its keywords. The list of keywords which are gathered from the texts become
taxonomies which are given as a flat list. Additional filtering steps may be needed
for selecting further keywords.

322
15
Taxonomy Generation
Word 1
Key word
Word 2
Binary
Classifier
Word N
Not
Fig. 15.2 Mapping keyword extraction into classification task
Fig. 15.3 Relevancy of keyword extraction to taxonomy generation

15.2.2

Word Categorization
Word categorization is referred to the process of assigning one or some among the
predefined categories to each word. The text categorization means the process of
classifying a text which is an article, whereas the word categorization is that of
classifying a word. The POS (Part of Speech) tagging which is a typical instance
of word categorization is to classify a word into one of the grammatical categories,
such as noun, verb, adjective, and so on. The word categorization which is covered
in this section is the task which is distinguished from the POS tagging and is to
classify each word based on its topic or meaning. In this section, we explain the
word categorization and mention its connection to the taxonomy generation.
Let us explain the process of encoding words into numerical vectors. A corpus
is needed for doing it and text identifiers become features. Texts are selected from
the corpus by their lengths as the features, and its frequencies in the selected texts
are assigned to them as the feature values. The corpus may be represented into a
15.2 Relevant Tasks to Taxonomy Generation
323
Table 15.1 Ordered vs unordered text segmentation
Word categorization
Keyword extraction
Categories
Topics
Keyword or not
Type
Multiple classification
Binary classification
Entity
Word
Word
Classification criteria
Semantic
Importance
Word
Topic 1
Set
Word 1
Word
Topic 1
Topic 2
Topic K
Word 2
Topic 2
Set
Selected
Selected
Selected
Word N Classification
Filtering
Word
Word Set
Word Set
Topic K
Word Set
Set
Fig. 15.4 Relevancy of word categorization to taxonomy generation
word–text matrix where each column stands for a text and each row for a word. The
rows of the word–text matrix become numerical vectors which represent words,
while the columns become ones which represent texts.
Let us explain the process of classifying words by a machine learning algorithm.
The sample labeled words are encoded into numerical vectors by the process which
was mentioned above. The classification capacity is constructed by learning the
samples. The test words are encoded into numerical vectors, and they are classified
into one or some of the predefined categories. Therefore, the word categorization
is the same as the text categorization except that words are given as classification
targets, instead of articles.
Even if both tasks belong to the classification, the differences between the topic-
based word categorization and the keyword extraction are illustrated in Table 15.1.
In the word categorization, the categories are predefined as a list or a tree, whereas
in the keyword extraction, the two categories, keyword and non-keyword, are
predefined. The word categorization usually belongs to the multiple categorization,
whereas the keyword extraction always belongs to the binary classification. In both
the tasks, words are given as classification targets. In the word categorization, words
are classified based on their meanings, whereas in the keyword extraction, they are
classified based on their importance degrees to the given text.
Let us mention the relevancy of the word classification to the taxonomy
generation which is described in this chapter. The predefinition of categories
and the allocation of sample words are manual preliminary tasks for the word
categorization. As illustrated in the left part of Fig. 15.4, the words which are
classified into one or some of the predefined categories are gathered. Through
filtering, we select important words among the classified ones; texts are retrieved
based on the selected ones. We may add one more task, word clustering, for
automating the manual preliminary tasks.

324
15
Taxonomy Generation
Fig. 15.5 Word clustering

15.2.3

Word Clustering
Word clustering is referred to the process of segmenting a group of words into
subgroups of similar ones, as illustrated in Fig. 15.5. In the broad view, we
consider the lexical clustering where words are clustered by their spellings and the
grammatical one where they are done by their grammatical functions. However,
in this section, we restrict the scope to only semantic clustering where words are
clustered by their meaning or topics. A corpus is necessary for encoding words
into numerical vectors. In this section, we describe the word clustering in detail,
compare it with the word categorization, and present its relevancy to the taxonomy
generation.
The word clustering is compared with the word categorization before discussing
it. The word categorization requires predefining categories and gathering labeled
sample words as the preliminary tasks. To the word categorization, the supervised
learning algorithms are applied, whereas to the word clustering, the unsupervised
learning algorithms are applied. The word clustering proceeds depending on the
semantic similarities among words; the lexical and grammatical ones are out of
scope of this section. In both the tasks, words should be encoded into numerical
vectors whose attributes are text identifiers.
Let us explain briefly the process of clustering words by their meanings. The
words are encoded into numerical vectors whose attributes are text identifiers,
referring to a corpus. The numerical vectors are clustered by a clustering algorithm
into subgroups. The clusters of content-based similar words become the reference
for doing the taxonomy generation. Clustering words by their spellings is regarded
as a trivial task and is not counted in this section.
Figure 15.6 presents the synergy by combining the text clustering and the word
clustering with each other. The left part of Fig. 15.6 shows the word clustering
and the right part shows the text clustering. The important references which are
necessary for doing the text clustering are derived from the word clustering. The
results from clustering words are adjusted by ones from clustering texts. The

15.2 Relevant Tasks to Taxonomy Generation
325
Fig. 15.6 Combination of word and text clustering
Word
Clusters
Taxonomy
C1
C2
CM
Word
Word
Word
....
....
....
....
Word
Word
Word
....
Representative Representative Representative
Word 1
Word 2
Word M
Representative
Representative
Representative
Word 1
Word 2
Word M
Fig. 15.7 Application of word clustering to taxonomy generation
decision whether the initial clustering is performed on words, texts, or mixtures
becomes the issue of connecting the two tasks with each other.
Figure 15.7 illustrates the process of applying the word clustering to the
taxonomy generation. The words are encoded into numerical vectors, referring to
the corpus, and they are clustered by their semantic similarities. The representative
words are extracted from clusters by the medoid schemes which are mentioned in
Chap. 10. The representative words are given as a list of predefined categories and
they are linked with their relevant texts. Extracting and selecting words from the
corpus become the preliminary tasks.

15.2.4

Topic Routing
Topic routing is defined as the process of retrieving relevant texts to the given topic,
as shown in Fig. 15.8. It is viewed as the inverse of text categorization where the
input is a topic and the output is a list of texts. The task is interpreted as a special
type of information retrieval where a topic is given as a query. The core operation
in the topic routing is to compute the relevancy between a text and the topic. In
this section, we explain the topic routing in its functional view, interpret it into a
classification task, and connect it with the taxonomy generation.

326
15
Taxonomy Generation
Fig. 15.8 Topic routing
Fig. 15.9 Mapping topic routing into classification task
Let us review briefly the topic spotting which was mentioned in Sect. 5.4.4. The
topic spotting is from viewing the fuzzy text categorization into the scene where
some topics are spotted to each text. A full text is given as the input and its relevant
topics are assigned to it through the fuzzy classification. In the literature, it was
decomposed into binary classifications. The topic routing is derived by reversing
the input and the output of the text spotting.
The topic routing is the process of finding relevant texts to the given topic. The
topics are predefined as a list or a tree, and each of them is given as the input.
Matching value between the topic and each text is computed, and highly matched
texts are selected by ranking them. A list of texts which are relevant to the given
topic is generated as the output. The topic routing is viewed as the task which is
similar as the information retrieval, in that a topic becomes a query.
The topic routing is mapped into a binary classification task as shown in Fig. 15.9.
The topics are predefined in advance, and classifiers and training examples are
allocated to their corresponding topics. The classifier which corresponds to its own
topic learns the training examples which are labeled with the positive class and the
negative class. The topic is given as the input, texts in the corpus are classified by
its corresponding classifier, and texts which are classified into the positive class are
retrieved. To an alien topic which is out of the predefined ones, one more classifier
is created and training examples should be prepared.
Figure 15.10 illustrates the process of implementing the taxonomy generation
using the topic routing. A corpus is indexed into a list of words, and only essential

15.3 Taxonomy Generation Schemes
327
Fig. 15.10 Application of topic routing to taxonomy generation
Fig. 15.11 Process of generating taxonomies based on text indexing
words are selected among them. The selected words become the topics which are
given as input in the topic routing, and the relevant texts are retrieved through the
topic routing. The topic is associated with a list of texts. The criterion of selecting
words as topics is very important for implementing the taxonomy generation.
15.3
Taxonomy Generation Schemes
This section is concerned with the schemes of generating taxonomies from a
corpus. In Sect. 15.3.1, we explain the simplest scheme which is called the index-
based scheme. In Sect. 15.3.2, we mention the popular scheme which is called the
clustering-based one. In Sect. 15.3.3, we cover the taxonomy generation through the
data association. In Sect. 15.3.4, we describe the process of generating taxonomies
by analyzing semantic networks of words and texts.

15.3.1

Index-Based Scheme
Figure 15.11 illustrates the process of generating the taxonomies based on the text
indexing. A corpus is given as the input for generating taxonomies. It is indexed into
a list of words, some among them are selected as taxonomies, and relevant texts are
328
15
Taxonomy Generation
arranged to each taxonomy. The selected words are categories or topics of a given
text group. In this section, we explain the process of generating taxonomies from
the corpus by this scheme.
The entire corpus is indexed into a list of words as the first step of the taxonomy
generation. The texts in the corpus are concatenated into an integrated text, and it is
tokenized into a list of tokens. Each token is converted into its root form by applying
the stemming rules. The stop words are removed. The process of indexing a text is
described in detail in Chap. 2.
We need to select some words among them as taxonomies. The selection criterion
is the total frequencies of words in the given corpus, assuming that all of stop
words were already removed. The average TF-IDF weight is the advanced criteria
for selecting words. The posting information and the grammatical information
are considered may be considered as the criteria for selecting so. The process of
selecting words as taxonomies may be viewed as the classification task to which
machine learning algorithms are applicable.
After selecting important words as taxonomies, we need to consider their seman-
tic connections. Taxonomies are given as ones which are semantically connected
by their networks, rather than independent ones. The connections among them are
determined by their collocations. Two words are connected by rate of the number of
texts which include both words multiplied by two to the summation of the number of
texts which include either of them, which is called collocation rate. For deciding the
connections among words, we may consider other factors: adjacency of two words
within a text and number of co-occurrences of them in the given text.
It is assumed that semantic relations among words are available. The semantic
operations were defined and their mathematical theorems were set by Jo in 2015,
under the assumption [40]. The semantic similarity and the lexical one between
two words are not always correlated. The semantic similarity between two words
is computed based on their collocations. We need to define and characterize
mathematically more advanced semantic operations on words.

15.3.2

Clustering-Based Scheme
This section is concerned with the process of generating taxonomies by clustering
texts, as shown in Fig. 15.12. A corpus is given as the input, and texts in the corpus
are clustered into subgroups. Each cluster is named by the process which was
described in Sect. 9.4.1. The named clusters which are generated through the text
clustering and the cluster naming become the output of taxonomy generation. In
this section, we describe the scheme for generating taxonomies based on the text
clustering, in detail.
A corpus which is given as a text collection is clustered into unnamed subgroups.
Texts in the corpus are encoded into numerical vectors by the process which was
mentioned in Chap. 3. Clusters of content-based similar texts are constructed by
a clustering algorithm, such as the AHC algorithm and the k means algorithm.

15.3 Taxonomy Generation Schemes
329
Fig. 15.12 Clustering-based taxonomy generation scheme
By policies, we decide the crisp or fuzzy clustering and the flat or hierarchical
clustering. The process of clustering texts was explained in detail in Part III.
The cluster naming is the subsequent task to the text clustering for generating
taxonomies. The cluster naming was mentioned in Sect. 9.4.1, in terms of its
principle and process. For each cluster, TF-IDF weights of words are computed
and words with their higher weights are extracted as the cluster names. Identifying
clusters by numbers is out of the definition of cluster naming. The browsing should
be enabled from the results from naming clusters.
Analyzing relations among clusters is an additional task after naming clusters.
Clusters which are results from data clustering are not always independent ones;
some clusters independent of others and others are related to each other semanti-
cally. We may analyze the links by computing the intercluster similarities which
are mentioned in Chap. 12. As the results from analyzing the links among clusters, a
graph where its vertices are cluster names and its edges are semantic links is derived.
Taxonomies are generated in this scheme through the three steps: text clustering,
cluster naming, and the link analysis.
Even if this scheme is expected to generate results with their good qualities, it
takes much computation cost. It takes the quadratic complexity to the number of
data items for clustering data items, and it also does the identical complexity for
analyzing the links among clusters. It takes less complexity in clustering data items
by the single pass algorithm which was described in Sect. 10.2.3, but it generates
results with the worse quality as the payment. As the solution, we propose that texts
are clustered by their summaries instead of their full texts by adding the task, text
summarization. In order to do that, we need to summarize text individually in the
given corpus.

15.3.3

Association-Based Scheme
This section is concerned with the taxonomy generation scheme based on the
word association, as illustrated in Fig. 15.13. The corpus is given as the input and
individual texts in it are indexed into a set of words. Association rules are extracted

330
15
Taxonomy Generation
Fig. 15.13 Word association
from word sets by the process which was described in Chap. 4. Some association
rules are filtered and the words in the conditional parts are given as the list of
taxonomies. In this section, we review the process of extracting the association rules
and explain the taxonomy generation scheme.
We mentioned the process of extracting association rules of words in Chap. 4.
Individual texts in the corpus are indexed into word sets. Their subsets are generated
and some of them are filtered by their supports. For each subset, all association rules
are generated and some of them are filtered by their confidences. The association of
a single word in the conditional part with a list of words in the causal part is given
as an association rule.
As shown in Fig. 15.13, we need the additional filtering of association rules for
generating taxonomies. Here, the association rules are those whose causal parts are
subsets of the causal part with its maximum size in another association rule; when
the causal part of the association rule is a subset of that in another association rule,
the two association rules are treated as redundant ones. The TF-IDF of the word in
the conditional part becomes a criterion for filtering association rules. The causal
parts are pruned by cutting down some words for increasing their support in each
association rule. The results from filtering association rules is input which is direct
to the task of the taxonomy generation.
The conditional words of association rules which are pruned and filtered become
the topics of corpus. We need to link texts to each association rule. The causal part
and a text are encoded into numerical vectors, and the similarity between a word list
in the causal part and a text is computed by the cosine similarity. If the similarity
is more than the threshold, the text is linked with the causal part of the association
rule. The final results of generating taxonomies from a corpus by this scheme are the
effect of accomplishing the preliminary tasks for text categorization automatically.
It is possible to cluster association rules into subgroups of similar ones. The
intersection between causal parts of association rules is used for defining the
similarity metric between them. Using the AHC algorithm, the association rules are
clustered based on the similarity metric. An alternative way is to encode association

15.3 Taxonomy Generation Schemes
331
Fig. 15.14 Link analysis-based scheme
rules into numerical vectors and select representative one in each cluster, using the

k means algorithm, or the k medoid algorithm. The taxonomies are generated as a
hierarchical structure from the clustered association rules.

15.3.4

Link Analysis-Based Scheme
This section is concerned with the alternative scheme of taxonomy generation to
what is covered in the previous sections, as shown in Fig. 15.14. In the previous
sections, we already described the index-based scheme, clustering-based scheme,
and association-based scheme. We define the connections among texts in the corpus
as a network and select texts which play a role of hubs in the network. As shown
in Fig. 15.14, taxonomies are generated by indexing selected texts which are called
hub texts. In this section, we explain in detail the process of generating taxonomies
by the scheme which is presented in Fig. 15.14.
Creating links among texts is to start building the text networks. Texts are
encoded into numerical vectors, and cosine similarities among them are computed.
If the similarity between the two texts is greater than or equal to the threshold, the
link between texts is created. The threshold is given as an external parameter, and
if the threshold is close to zero, dense links among texts are built. In the too dense
networks, almost all of texts are selected as hubs, while in the very sparse networks,
very few texts are selected.
The text network is constructed by creating links among texts. It is represented as
a graph where vertices are texts and edges are links between them. The links which
are created by the process which is mentioned above are bidirectional among texts.
Each link is associated with a cosine similarity value as a weighted edge. The texts
which are not connected with any other text are removed as the isolated one.
Taxonomies are generated from the text network which is constructed by the
above process. The degree of each node which indicates a text is counted as the
number of connected ones. Texts which correspond to the node with the degree
332
15
Taxonomy Generation
which is more than or equal to the threshold are selected as hub texts. The hub texts
are indexed into a list of words, and among them, some with higher weights are
selected as taxonomies. Relevant texts are linked to each selected word.
Let us consider the undirected links among texts in the text network. The link
which is created between texts implies the two texts which are similar with each
other based on their contents. We may consider the directed link between texts
where one is the source and the other is destination. Words which occur in both
texts are called shared words, and the text which includes the shared words with less
portion becomes the source text. Texts with a higher number of outgoing degrees are
selected as hub texts in the directed text network.
15.4
Taxonomy Governance
This section is concerned with the operations which are involved in governing the
existing taxonomy and consists of four subsections. In Sect. 15.4.1, we explain
the schemes of maintaining the existing taxonomy. In Sect. 15.4.2, we mention
the scheme for growing a single taxonomy into its advanced one by adding more
texts. In Sect. 15.4.3, we consider the process of integrating multiple taxonomy
organizations into a single taxonomy organization. In Sect. 15.4.4, we mention
ontology that is the form expanded from the taxonomy organization.

15.4.1

Taxonomy Maintenance
This section is concerned with the maintenance of existing taxonomy to the
additions of more texts and the deletions of some texts. In Sect. 15.3, we studied
the schemes of creating a new taxonomy organization from a corpus. We need to
maintain the created one to changing corpus by the operations: addition, deletion,
and update. The operations which are involved in maintaining the taxonomy
organization are division of a particular topic into several specific ones, merge of
multiple topics into one topic, and addition of new topics. In this section, we explain
the operations which are involved in managing the taxonomy organizations to the
dynamic corpus.
Figure 15.15 illustrates the taxonomy division which is an operation for govern-
ing the taxonomy. Among M taxonomies, taxonomy i grows as a bigger one, as
texts are accumulated. The taxonomy i is divided into taxonomy i and i + 1 by a
clustering algorithm. The total number of taxonomies is increased by one through
division. The intra-cluster similarity is considered as the alternative criteria to the
number of texts for deciding the taxonomy division.
The taxonomy merge as another operation is illustrated in Fig. 15.16. In the
figure, it is assumed that the two taxonomies, i and i + 1, are most similar with
each other. The two taxonomies are merged into a taxonomy, and the number
15.4 Taxonomy Governance
333
Taxonomy 1
Taxonomy i
Taxonomy M
Taxonomy 1
Taxonomy i
Taxonomy i+1
Taxonomy M+1
Fig. 15.15 Taxonomy division
Taxonomy 1
Taxonomy i Taxonomy i+1
Taxonomy M
Taxonomy 1
Taxonomy i
Taxonomy M-1
Fig. 15.16 Taxonomy merge
of taxonomies is decremented by one. A pair of taxonomies is selected by their
similarity and the total number of texts in both the taxonomies. The intercluster
similarity may be considered as the criterion for deciding the taxonomy merge.
Let us consider the taxonomy addition and deletion as well as taxonomy merge
and division in governing taxonomies. There are cases that very sparse taxonomies
which are iterated from others happen and texts need to be added to a new
topic rather than to one or some of existing ones. If adding texts about a new
topic or new topics, we need to create new taxonomies. If taxonomies have very
few texts and are isolated from others, they need to be deleted. Here, the four
operations, the taxonomy division, the taxonomy merge, the taxonomy creation,
and the taxonomy deletion, become the main operations which are involved in
maintaining taxonomies.

334
15
Taxonomy Generation
Fig. 15.17 Continual addition and deletion of texts
Let us consider the taxonomy script which is the brief version of taxonomy
contents. It is very tedious to access some texts for knowing taxonomy contents.
It is necessary to make a script for each taxonomy by summarizing texts in it. In
Chap. 13, we mentioned the techniques of summarizing texts automatically. We use
the script about taxonomy for previewing its contents.

15.4.2

Taxonomy Growth
This section is concerned with the taxonomy growth which is the gradual evolution
of taxonomies. In this section, it is assumed that texts are added continually to
the corpus which consists of taxonomies. In the given organization, taxonomies
grow continually in the sizes by doing so. We need to maintain them by upgrading
organization. In this section, we describe the taxonomy growth by adding texts,
continually, and schemes of updating taxonomies.
In Fig. 15.17, we illustrate the continual addition of new texts and continual
deletion of some texts. Taxonomies are constructed from the corpus by the schemes
mentioned in Sect. 15.3. When adding more texts than deleting ones, taxonomies
in the organization grow with respect to its size. The quality of organizing texts
with the current taxonomies may be degraded by doing so. Therefore, we need to
maintain the text organization by updating taxonomies.
Figure 15.18 illustrates the process of creating a new taxonomy to alien texts.
There is a possibility that texts about new topics are given rather than ones about
existing topics. The entire group of texts divided into the familiar and alien groups
by the similarities with existing taxonomies. The texts in the alien group are indexed
into a list of words and the new taxonomies are created from the list. It is important
to define the criteria for doing the division.
Figure 15.19 illustrates the process of expanding the hierarchical taxonomy by
one level. Taxonomy 1 and 2 are given as the big sized ones on the left side in
Fig. 15.20. Taxonomy 1 is divided into taxonomy 1–1 and 1–2, and taxonomy 2 is
divided into taxonomy 2–1 and 2–2. Taxonomy 1, 2, and 3 are given in the first
level, and taxonomy 1–1, 1–2, 2–1, and 2–2 are given in the second level on the
right side in Fig. 15.19. The divisive clustering algorithm which was mentioned in
Sect. 10.2.2, is used for dividing a cluster into two clusters, at least.

15.4 Taxonomy Governance
335
Fig. 15.18 Creating new taxonomy to alien texts
Taxonomy
Taxonomy
Taxonomy
Taxonomy
1
2
3
Taxonomy
Taxonomy
1
2
3
Taxonomy
Taxonomy
Taxonomy
Taxonomy
1-1
1-2
2-1
2-2
Fig. 15.19 Expanding hierarchical taxonomy by one level
We need to consider the taxonomy downsize by deleting texts continually. The
taxonomy downsizing is the process of cutting down the level one by one by
deleting texts continually. It is regarded as the opposite process to what is shown
in Fig. 15.19. Taxonomy 1–1 and 1–2 are merged into taxonomy 1, and taxonomy
2–1 and 2–2 are merged taxonomy 2, for example. Because more texts are usually
added than the ones which are deleted, the taxonomy growing is more frequent than
the taxonomy downsizing.

15.4.3

Taxonomy Integration
This section is concerned with the taxonomy integration which is the process of
merging existing taxonomy organizations into a single organization. Several tax-
onomies are constructed by different schemes which were mentioned in Sect. 15.3.
We need to integrate them into a single organization of taxonomies. In this case, we
consider the similarity between taxonomies as the important fact for doing so. In
this section, we describe schemes for integrating taxonomy organizations which are
made by different algorithms from difference sources.

336
15
Taxonomy Generation
Fig. 15.20 Simple way of merging taxonomy organizations
Figure 15.20 shows the easy way of merging taxonomy organizations by the
corpus integration. We gather the corpora which are associated with the taxonomy
organizations which we try to merge. The gathered corpora are integrated into a
single corpus by merging them with each other. Taxonomies are constructed from
the merged one using one of the schemes which were mentioned in Sect. 15.3. In
this merging scheme, it should be considered that the important structures in two
existing taxonomy organizations may be lost.
Before integrating multiple taxonomy organizations, we need to consider the
similarity between two taxonomies. A taxonomy is given as a single symbolic name
and its linked text list; the taxonomy is viewed as a named cluster of texts. The
similarity between two taxonomies is one between two clusters; the process of
computing the cluster similarity was mentioned in Sect. 10.2.1. In the process of
integrating taxonomy organizations, two taxonomies from different organizations
are merged into one taxonomy. The taxonomy merge within the same organization
which is presented in Fig. 15.16 is called intra-taxonomy merge, whereas the
taxonomy merge between different organizations is called inter-taxonomy merge.
The process of integrating the taxonomy organizations is illustrated by a simple
example in Fig. 15.21. The two organizations are merged; corpus A consists of
taxonomies: business, information, society, and Internet, and corpus B consists of
taxonomies: IoT, company, sport, and automobile. There are similar taxonomies
between the two corpora; one has business and company, the other has Internet
and IoT. The taxonomies, business and company, are merged into business, and
the taxonomies, Internet and IoT, are merged into Internet, on integrating the
two taxonomy organizations. The four taxonomies, information, society, sport, and
automobile, are treated as the independent ones, in the integrated organizations.
The flat taxonomy organizations are integrated by simply merging similar
taxonomies into one as shown in Fig. 15.21, but some issues should be considered in
integrating hierarchical taxonomy organizations. We need to decide in which level
the two similar taxonomies in the different levels of two organizations are merged.

15.4 Taxonomy Governance
337
Fig. 15.21 Integrating taxonomy organizations
The issue is how nested taxonomies should be treated in merging their parents into
one. Another issue is how the nested taxonomies whose parents are very different
are merged. We need the manual edit of taxonomy organization into which two
organizations are merged.

15.4.4

Ontology
Ontology is referred to the specification of what exists in the real word as a tree
or a graph. In the graph representing an ontology, each node indicates a concept
or an entity which exists in the world and each edge indicates the relation of two
concepts or entities. More components which are not available in the taxonomy
organization such as the script, the properties, and the methods are added, based
on the object-oriented programming concept. Because the ontology is much more
complicated than the taxonomy organization, it tends to be constructed manually
or semiautomatically. In this section, we describe briefly the ontology with simple
examples and their definition language.
Figure 15.22 presents a simple example of ontology. The department of computer
science is given as a root node, the three concepts, graduate course and undergradu-
ate course, are provided from it, and people are given as members. The two concepts,
machine learning and neural networks, are given as instances of graduate courses,
and the two concepts, data structures and Java programming, are given as instances
of undergraduate courses. The concept, people, is divided into the three subgroups:
students, faculty, and staff. The three levels of faculty are defined as full professor,
associate professor, and assistant professor, at the bottom of Fig. 15.22.
The OWL (Web Ontology Language) is the standard language for defining an
ontology. The ontology which is illustrated in Fig. 15.22 is expressed by the OWL,
as shown in Fig. 15.23. The OWL consists of tags which indicate objects. The node
in the ontology in Fig. 15.22 is given as a tag which consist of owl, thing, RDF, and
name. We need the indent for writing nested ones in objects.

338
15
Taxonomy Generation
Department
of CS
Member
Provide
Provide
Graduate
Undergraduate
People
Course
Course
Is_a
Is_a
Is_a
Is_a
sub
sub
sub
Java
Machine
Neural
Data
Students
Staffs
Programming
Faculty
Learning
Networks
Structures
Level
Level
Level
Associate
Full
Assistant
Professor
Professor
Professor
Fig. 15.22 An example of ontology
Fig. 15.23 Expressing ontology in OWL
15.5 Summary and Further Discussions
339
Entity
Living
Non Living
Plant
Animal
Natural
Artifact
Organic
InOrganic
Fig. 15.24 Nodes in first level of WordNet
Figure 15.24 illustrates the nodes at the root level and the first level of the ontol-
ogy, WordNet. The existing ontologies are built manually or semiautomatically,
including WordNet, by Noy and Hafner [74]. The WordNet is the ontology type
where entities are organized semantically; the entity which is what exists in the
world is divided into living and nonliving. The living is divided into plants and
animals, and the nonliving is divided into natural, artifact, inorganic, and organic.
The WordNet is used for the semantic information retrieval where matching between
the query and the text is computed based on not the spelling but the meaning.
Let us compare the ontology with the taxonomy organization with respect to
their differences. The taxonomy organization is intended for building a frame of
performing the text categorization, whereas the ontology is intended for building
a knowledge base. The concepts called taxonomies are given as a list, a tree, or a
graph in the taxonomy organization, whereas the concepts which are connected with
others are given as forests or graphs in the ontology. In the taxonomy organization,

the relation between taxonomies indicates a semantic similarity or a specification,
whereas in the ontology, the relation indicates one of various types. The properties
and the methods are added to each concept, assuming each concept is regarded as a
class, in the ontology.
15.5
Summary and Further Discussions
In this chapter, we described the taxonomy generation with respect to the involved
tasks, the generation schemes, and the maintenance schemes. We mentioned
some tasks which are needed for executing the taxonomy generation such as the
keyword extraction, the word classification, the word clustering, and topic routing.
We explained the four schemes of creating taxonomy organization, newly. We
considered schemes of maintaining the taxonomy organization to the cases where
texts are added or deleted continually. In this section, we make some further
discussions from what we studied in this chapter.
340
15
Taxonomy Generation
Let us consider the process of identifying clusters with their symbolic names.
Text clusters are named by weights or frequencies of words in the texts in their
corresponding cluster. In the word cluster, each cluster consists of words, so the
representative word is selected among them, in order to name the cluster. In this
case, the k medoid algorithm which was mentioned in Sect. 10.3.4 is applied to the
word clustering. The word clusters are named with their representative word which
was selected by the algorithm.
We mentioned several schemes of generating taxonomies in Sect. 15.3. We
may consider the combinations of multiple schemes, rather than using a single
scheme for generating taxonomies. Taxonomies are generated by each scheme,
independently, and taxonomy organizations are integrated into a single version.
Integrating intermediate outputs during the taxonomy generation is the alterative
way of combining the multiple schemes. If using the combination of multiple
schemes for the task, we expect more reliable results but degraded speed as the
payment.
Text prediction is the process of estimating a full text, a summary, a title, or a
topic in figure to the given temporal text sequence. The assumption underlying in
the task is that texts have been added continually, following a pattern. Texts are
arranged as a time series sequence, and they are encoded into numerical vectors.
The numerical vector is estimated in the next step, and decoded into a virtual text.
It is constructed by assembling existing paragraphs, based on the numerical vector.
The taxonomy organization consists of taxonomies and linked text lists in the
simple version, but we need the additional components, to reinforce it. The semantic
relations among taxonomies are defined in the organization, rather than a linear
taxonomy list. The categories are defined on the relations among taxonomies and
the relations should be discriminated by their strength. The summary of linked texts
is given as the taxonomy script. Each taxonomy may be defined as a class which has
the properties and methods, and taxonomy instances are created as objects.

Chapter 16
Dynamic Document Organization
This is concerned with the process of executing the dynamic document organization
system which was initially proposed by Jo in 2006. We explore the dynamic
document organization system with respect to its execution, in Sect. 16.1, and
explain the online clustering which is the basis for implementing the system,
in Sect. 16.2. In Sect. 16.3, we describe the dynamic organization which is the
compound task of text categorization and clustering, in detail. We point out the
issues in implementing the DDO (Dynamic Document Organization) system, in
Sect. 16.4, and make the summarization and further discussions on this chapter, in
Sect. 16.5. In this chapter, we describe the DDO system as the compound system.
16.1
Definition of Dynamic Document Organization
The system of DDO is a software agent or program for managing texts automatically
based on their contents. This system is able to be implemented by only online
clustering. However, in 2006, Jo validated that the system should be implemented
by compounding the text clustering and the text categorization with each other for
its better performance. The DDO system executes with the two operation modes: the
creation mode and the maintenance mode, which will be explained in detail, later.
Before describing its process in detail, in this section, we explore the functions of
the DDO system.
Organizing and managing texts are viewed as a compound task of text clustering
and categorization. The DDO system which is covered in this chapter is one which
is distinguished from the text mining system which executes the text clustering
and the text categorization, separately and independently. Depending on the given
modules, one of the two tasks is automatically selected. This system starts with
the maintenance model where texts are piled as a single group and maintains texts
by automatic transition between the two operation modes. Human beings never
intervene into the system for managing and organizing texts.
© Springer International Publishing AG, part of Springer Nature 2019
341
T. Jo, Text Mining, Studies in Big Data 45,
https://doi.org/10.1007/978-3-319-91815-0_16
342
16
Dynamic Document Organization
Let us mention the role of text clustering in executing the automatic management
of texts. The role is to provide a new organization or an updated one. Texts
are continually added into a single group in the initial stage, and the texts are
clustered into several subgroups. The quality of text organization is monitored and
the organization is updated into one with its better quality. There are two types of
updating the text organization: the soft reorganization which is merge and division
of existing clusters and the hard organization which is the reorganization of entire
texts, ignoring the previous one.
Let us explain the role of text categorization in executing the DDO system. In
the initial stage, added texts are piled, continually. Afterward, the system learns
the texts which are organized by the text clustering into clusters as sample texts,
and constructs its classification capacity. Texts which are added subsequently are
arranged after the organization; it is the main role of text categorization. The mode
where texts are arranged into one of the clusters by the text categorization is called
the maintenance mode.
Before discussing the proposed system, we need to distinguish between the
mixture and the compound of two tasks. The fact that the two tasks are given
independently as two menus is regarded as a mixture of them, whereas if the two
tasks are coupled into one task, this case is regarded as the compound of them. In
the mixture, human beings intervene for selecting one of the two tasks, whereas
no intervention is available in the compound. In the mixture, both the tasks are
evaluated independently of each other, whereas in the compound, both are evaluated
as a single task. In the mixture, either of the two tasks is executed depending on
user’s selection, semiautomatically, whereas the human decision is not required in
the compound.
16.2
Online Clustering
This section is concerned with the online clustering which is a way of managing text
automatically. In Sect. 16.2.1, we explain the online clustering in its conceptual and
functional view. In Sect. 16.2.2, we describe the version of k means algorithm which
is modified to the online clustering. In Sect. 16.2.3, we mention the KNN which is
the typical supervised learning algorithm but is modified into an online clustering
version. In Sect. 16.2.4, we introduce the online fuzzy clustering which estimates
memberships of examples to their clusters, rather than arranging them.

16.2.1

Online Clustering in Functional View
The online clustering is referred to the specific type of clustering where items
are given as a stream, and the clustering is continued almost infinitely. The data
clustering, which was covered entirely in Part III, is the offline clustering, assuming

16.2 Online Clustering
343
Fig. 16.1 Offline clustering
that all items to cluster are given at a time. In the real world, items which we try to
cluster are never given at a time, and data items enter as an almost continual stream.
We need to develop online clustering techniques by modifying existing clustering
algorithms and creating a new one, for clustering data items which are given as a
continual stream. In this section, we compare the offline and online clustering, and
point out their issues.
The offline clustering is illustrated in Fig. 16.1. The clustering which was
entirely covered in Part III belongs to this clustering type. The offline clustering
is referred to the clustering where all data items are given at a time. The assumption
underlying in the offline clustering is that no data item is available subsequently after
clustering existing ones. The traditional clustering algorithms which were described
in Chap. 10 are used for doing the offline clustering, so they need to be modified
into their online clustering versions for processing big data.
The online clustering is illustrated as a diagram in Fig. 16.2. The assumption
underlying in the online clustering is that data items are given as a continuous
stream, and it is impossible to wait for all data items to be clustered. Before data
items arrive, the number of clusters should be decided and each cluster should
be characterized, initially. Whenever it arrives, it is arranged into one or some of
clusters, and their characters are updated. The difference from the offline clustering
is that clusters are updated, interactively and incrementally.
Let us consider some issues in expanding the offline clustering into the online
one. Because data arrives as an almost unlimited stream especially in processing big

344
16
Dynamic Document Organization
Fig. 16.2 Online clustering
data, it is impossible to investigate the entire collection of data items for executing
the data clustering. The results from the online clustering depend strongly on the
order in which data items arrive. We need to adjust results from clustering a stream
of data items for improving them; too frequent adjustment causes the heavy load of
the system, and too infrequent one causes the poor quality of clustering results. We
need to monitor a stream of data in queues for deciding when the results should be
adjusted.
Because the existing clustering algorithms were developed under the assumption
of the offline clustering, we need to modify them into their online versions.
Each cluster should be updated interactively, whenever an item arrives, instead of
updating it in batch after exploring all items. We may prepare the predicted data
items which are made artificially depending on the knowledge about the application
domain, called virtual examples, for initializing the cluster characteristics. The
decremental clustering may be added for the situation of deleting some data from
the collection. The online clustering may be expanded into one which deals with the
data items whose values are variable.

16.2.2

Online K Means Algorithm
Let us mention the modified version of k means algorithm which is suitable for
the online clustering. In Sect. 16.2.1, we already explained the online clustering in
its functional view. The k means algorithm consists of computing mean vectors of
16.2 Online Clustering
345
clusters and arranging items into their clusters, depending on their similarities with
cluster mean vectors. The modification from the offline version into the online one
is to replace the batch updates of the cluster mean vectors by the interactive ones.
So, in this section, we describe the online version of the k means algorithm and
mention some of its variants.
We already explained the offline version of k means algorithm, in Chap. 10. All of
data items which we try to cluster are given initially, and the cluster mean vectors are
initialized at random. The data items are arranged into clusters by their similarities
with the cluster mean vectors, and they are updated by averaging arranged data
items. The arrangement and the update are repeated until the cluster mean vectors
are converged. Refer to Chap. 10 for obtaining a more detailed description of the k
means algorithm.
The k means algorithm is modified into the online version, by updating interac-
tively mean vectors to each arrived data item. It is assumed that data items arrive as
a stream. The cluster mean vectors are initialized at random or based on the prior
knowledge about the application domain. Each arrived data item is arranged into one
or some of the clusters, depending on its similarities with the mean vectors, and the
mean vectors are updated. Updating the mean vectors interactively for each arrived
data item is called at-a-time streaming processing and doing them after arranging
several data items as a block is called micro-batched stream processing [68]. The
issues of online clustering are the worse clustering performance than the offline
clustering and the strong dependency on the order in which data items arrive.
It is possible to modify the variants as well as the traditional version. The
fuzzy k means algorithm may be modified by updating the mean vectors whenever
membership values of clusters of the arrived item are computed. The k medoid
algorithm may be modified into its online version by nominating the medoids,
whenever an individual item arrives. In order to optimize the mean vectors, we
may add virtual examples which are derived from existing examples which arrived
previously. An offline clustering may be attached, in order to organize the previous
data items again.
Because the k means algorithm is the most simplified version of EM algorithm,
we may modify the EM algorithm into its online version. For each cluster, a
Gaussian distribution is defined with its initial mean vector and covariance matrix at
random or on primary knowledge. Whenever an item arrives, the two steps, E-step
and M-step, are executed; the E-step is to estimate probabilities that the item belongs
to the clusters and the M-step is to update the parameters of Gaussian distributions
which represent the clusters. We consider other distributions for modeling the
clusters such as triangle distribution, trapezoid distribution, or uniform distribution,
as well as the Gaussian distribution, in designing the EM algorithm.

16.2.3

Online Unsupervised KNN Algorithm
This section is concerned with the unsupervised version of KNN. The KNN
algorithm was already mentioned in Chap. 6 as an approach to text categorization.
346
16
Dynamic Document Organization
The supervised learning algorithm, KNN, is modified into its online clustering
algorithm. It is possible to modify supervised learning algorithms into unsupervised
ones, and vice versa. In this section, we will describe the KNN as an online
clustering algorithm.
Let us review briefly the original version which was covered in Chap. 6 for
providing the background for understanding the modified version. In advance, the
training examples are never touched before any novice example is given. For each
novice example, its similarities with the training examples are computed. Most
similar training examples are selected as its nearest neighbors and its label is decided
by voting their labels. In Chap. 6, we mentioned its variants as well as its original
version.
In modifying the KNN into the online version, it is assumed that the labeled
training examples are not available initially. The number of clusters is determined
initially and virtual training examples are generated in each cluster, at random or by
prior knowledge about the given application domain. When each training example
arrives, its similarities with virtual examples are computed and its cluster is decided
by voting clusters which the selected virtual examples belong to. In the supervised
KNN, some of actual training examples are selected as the nearest neighbors,
whereas in this version, some of virtual ones are selected. If the KNN is applied
to the offline clustering, some items are selected at random as representative ones of
clusters.
The variants of KNN may be modified into their unsupervised versions as well
as its original version. The radius nearest neighbors may be modified by generating
virtual examples in each cluster, at random or depending on the prior knowledge
about the given application domain. The variant which assigns different weights
to the selected nearest neighbors may be modified into unsupervised version by
doing so, as mentioned above. The strong prior knowledge about the application
domain becomes the requirement for discriminating attributes by their importance.
It is considered to derive further more virtual examples by cross-over, mutation, and
midpoint which are mentioned in the area of evolutionary computations [16].
The constraint clustering reminds us of the unsupervised KNN algorithm. The
constraint online clustering means the clustering where some labeled examples
are given initially, for clustering subsequent data items. The labeled examples
are assigned to their corresponding clusters for using the unsupervised KNN
algorithm, instead of virtual examples. If the number of labeled examples is actually
insufficient, more virtual examples tend to be added to the clusters. The labeled
examples in the constraint clustering become the prior knowledge for proceeding
with the clustering.

16.2.4

Online Fuzzy Clustering
We mention the online fuzzy clustering in this section. The fuzzy clustering is one
where each item is allowed to be arranged into more than one cluster. Actually,
16.2 Online Clustering
347
rather than arranging data items, membership values of each item in the clusters are
computed. In the fuzzy clustering, when each item arrives, the membership values
of clusters are computed and it is arranged into more than one cluster based on their
membership values. In this section, we describe the fuzzy clustering in detail.
Let us review the fuzzy clustering which was mentioned in Chap. 9, before
discussing the fuzzy online clustering. The fuzzy clustering which was called
overlapping clustering is the clustering where each item is allowed to belong to
more than one cluster. Even if the overlapping clustering and the fuzzy clustering
are mentioned as the same one, they are different from each other with respect to
their focuses. The overlapping clustering focuses on the fact that some items stand
on more than two clusters as overlapping ones, whereas the fuzzy clustering focuses
on the fact that membership values of clusters are computed as continuous values.
In the case of visualizing clustering by different clusters, overlapping areas tend to
be colored by mixtures of colors of clusters.
Let us expand the fuzzy clustering into the online version. It is assumed that
data items arrive as a stream instead of being given at a time. For each item which
arrives, its similarities with the cluster prototypes are computed, and it is arranged
into clusters whose similarities are above the given threshold. As an alternative way,
its similarities with them are computed and transformed into its membership values
through normalization. Whenever a new item arrives subsequently, the clusters,
which are overlapped with others, or the matrix, where each column corresponds to a
cluster, each row corresponds to a data item, and an entry stands for its membership
value of the cluster, are updated.
Let us mention the online fuzzy k means algorithm as a fuzzy online clustering
tool. The number of clusters is decided and their mean vectors are initialized. The
membership values of each item are computed by its cosine similarity with a mean
vector which is expressed in Eq. (16.1),

μc(x
) =

μ · x
(16.1)
|| μ|| · ||x||
where μ is the mean vector, and μc(x
) is the membership value of the input vector,
x, to the cluster, C. Each mean vector is updated based on the membership value by
Eq. (16.2),

μ(t + 1) = μ(t) + μc(x
)x
(16.2)
1 + μc(x
)
Each item has its membership vector which consists of membership values to the
clusters.
Let us mention the fuzzy constraint clustering as the alternative type to the fuzzy
online clustering. The constraint clustering was already mentioned in Sect. 9.2.4 as
one where some examples are clustered in advanced as labeled ones. Some examples
are labeled with more than one category or have their own membership values
of clustering. The cluster prototypes are initialized, referring to the fuzzy labeled

348
16
Dynamic Document Organization
examples. This type of clustering is identical to the constraint clustering, except that
some examples are labeled with more than one class or have continuous membership
values.
16.3
Dynamic Organization
This section is concerned with the dynamic organization of texts which was
proposed by Jo in this PhD dissertation in 2006 [25]. In Sect. 16.3.1, we demonstrate
the execution process of the system. In Sect. 16.3.2, we explain the maintenance
mode of the system. In Sect. 16.3.3, we describe the creation mode of executing
the system. In Sect. 16.3.4, we mention text mining tasks which are involved in
implementing the system.

16.3.1

Execution Process
This section is concerned with the process of executing the dynamic document
organization system which is implemented by Jo in 2006 [25]. The system has no
text initially, and when it is installed in the field, it starts with the initial maintenance
mode where texts are piled into a single group. Texts start to be clustered after piling
them, as the initial transition into the creation mode. Subsequently added texts are
arranged into clusters by classifying them in the maintenance mode. In this section,
we explain briefly the two modes, the creation mode and the maintenance mode, of
the dynamic document organization system.
Figure 16.3 illustrates the initial maintenance mode of the dynamic document
organization system. When the system is installed initially, there is no document in
it. Texts arrive into the system continually as the process of piling them. After piling
so, we need to define the criteria for transitioning the current mode into the creation
mode, automatically. The number of texts or intra-cluster similarity is the criterion
for carrying out the transition.
Fig. 16.3 Initial maintenance in DDO system
16.3 Dynamic Organization
349
Classifying subsequently added texts into their own cluster identifiers is the
alternative scheme of arranging them, in the maintenance mode. A supervised
machine learning algorithm is adopted separately from the unsupervised one in
the creation mode, and it learns the organized texts which are sample texts. The
subsequently added texts are encoded into numerical vectors, and they are classified
into one or some of the cluster identifiers. They are arranged into clusters whose
identifiers are assigned to themselves. It is more desirable to arrange them by
the supervised learning algorithm through the empirical validation which was
performed by Jo in 2006 [25].
In order to decide whether the system transits into the creation mode, we
need to evaluate the quality of organizing texts. Because target labels are not
available in maintaining the system, the clustering index needs to be modified into
the version which is suitable for the situation. The intercluster similarity and the
intra-cluster similarity are computed for organizing texts, depending on the cosine
similarities among texts. The clustering index is computed by Eq. (12.6), using the
two measures. The cosine similarity depends on text representations, rather than full
texts, themselves.
As the maintenance mode continues, the organization quality may be degraded,
so we need the transition from the maintenance mode to the creation mode.
The number of texts which are added subsequently becomes the direct transition
criterion. The distribution over text clusters may become another criterion; the
transition is caused by a very unbalanced distribution over clusters. The clustering
index which is based on the intercluster similarity and the intra-cluster similarity
may be the transition criterion. Once the tradition is decided by the criteria which are
mentioned above, we need to decide one of the soft transition which adjusts clusters
by the merge and division and the hard transition which clusters texts entirely, again.

16.3.2

Maintenance Mode
This section focuses on the maintenance mode of the DDO system. The maintenance
mode is the status of DDO system for maintaining the organization to texts which
are added and deleted, continually. The texts which are added subsequently are
arranged into their own clusters, during the maintenance mode. We need to evaluate
the current organization of texts, in order to decide whether it moves into the creation
mode, or not. So, in this section, we explain the execution, the evaluation, and issues
which are involved in the maintenance mode.
Texts which are added subsequently are arranged into their own clusters,
depending on their distances or similarities. It is assumed that more texts arrive
as a stream at the system. Their similarities as and distances from the prototype
vectors of clusters are computed. They are arranged into clusters whose similarities
are maximum and whose distances are minimum. It is assumed that the clusters
which are built in the creation mode are hyperspheres.
350
16
Dynamic Document Organization
Table 16.1 Non
Non decomposition
Decomposition
decomposition vs
Classifiers
Single
#Classes
decomposition
Task
Multiple classification
Binary classifications
Adv
No overhead
More reliability
Dis
Less reliability
Overhead
Classifying subsequently added texts into their own cluster identifiers is the
alternative scheme of arranging them, in the maintenance mode. A supervised
machine learning algorithm is adopted separately from the unsupervised one in
the creation mode, and it learns the organized texts which are sample texts. The
subsequently added texts are encoded into numerical vectors, and they are classified
into one or some of the cluster identifiers. They are arranged into clusters whose
identifiers are assigned to themselves. It is more desirable to arrange them by
the supervised learning algorithm through the empirical validation which was
performed by Jo in 2006 [25].
In order to decide whether the system transits into the creation mode, we
need to evaluate the quality of organizing texts. Because target labels are not
available in maintaining the system, the clustering index needs to be modified into
the version which is suitable for the situation. The intercluster similarity and the
intra-cluster similarity are computed for organizing texts, depending on the cosine
similarities among texts. The clustering index is computed by Eq. (12.6), using the
two measures. The cosine similarity depends on text representations, rather than full
texts, themselves.
Table 16.1 illustrates between the decomposition into binary classifications and
non-decomposition in the maintenance mode. Without decomposing the classifi-
cation into binary classifications, only one single classifier is used for arranging
subsequent texts, whereas with doing so, the classifiers as many as clusters in the
text organization are used. Without doing so, each text is usually arranged into only
one cluster, whereas with doing so, it is usually arranged into more than one cluster.
Without the decomposition there is no overhead as the advantage, whereas with
it, it is more reliable in arranging texts in the maintenance mode as its advantage.
However, note that decomposing the classification into binary classifications causes
the system to become heavy.

16.3.3

Creation Mode
This section is concerned with the creation mode in operating the DDO system. The
creation mode is the status where texts are organized or reorganized by clustering
them. The system is initially given in the maintenance mode where texts are piled,
and its status is transitioned into the creation mode by a number of piled texts. The
maintenance mode after clustering texts in the creation mode becomes the status
16.3 Dynamic Organization
351
where subsequent texts are arranged into one of clusters through the classification
task. In this section, we explain the creation mode and enumerate approaches which
are adopted for executing the creation mode.
The system status is transitioned into the creation mode from the initial mainte-
nance mode or subsequent one. The organized texts are flatted into a single group
and they are clustered into subgroups of content-based similar texts, entirely. The
creation mode may be implemented into various versions depending on which
clustering algorithm is adopted. The cluster naming was implemented as the
subsequent task but its performance was not evaluated [25]. We may consider the
multiple text summarization for providing a script to each cluster and the virtual text
generation as the additional tasks for upgrading the DDO system.
In 2006, Jo adopted various clustering algorithms in implementing the DDO
system [25]. The single pass algorithm, which was mentioned in Sect. 10.2.3, was
used as the fast approach. The AHC algorithm, which was covered in Sect. 10.2.1,
was adopted as another approach to clustering text in the DDO system. The means
algorithm, which was described in Sect. 6.3.1, was also used for executing the
creation mode. The Kohonen Networks were adopted for performing the creation
as the unsupervised neural networks.
The named clusters of content-based similar texts are generated as results from
the creation mode. A list of cluster names becomes the results from predefining
categories. Texts which are organized into clusters are sample texts for learning
classifiers which are involved in the maintenance mode. The creation mode provides
the automation of preliminary tasks for the text categorization as its effect. The
quality of samples that are produced from the creation mode is less than that of the
samples that are manually prepared.
Let us consider the transition from the second maintenance mode to the second
creation mode. There are two types of text organization: the hard organization where
entire texts are clustered at a time and the soft organization where some clusters are
updated and adjusted. It takes too much time for performing the hard organization in
the second creation mode. The soft organization is to merge some smaller clusters
which are similar to each other and to divide a large cluster into several clusters.
Selecting either of two types or both of them depends on the policy which we
decided in advance.

16.3.4

Additional Tasks
This section is concerned with additional tasks that are necessary for reinforcing
the DDO system. The text categorization, the text clustering, and the cluster naming
are involved in implementing the DDO system by Jo in 2006 [25]. We need the text
taxonomy generation, the text summarization, and the text segmentation which were
covered in the previous chapters as the additional tasks to the system. The taxonomy
generation is needed to transition from the maintenance mode to the creation mode,
352
16
Dynamic Document Organization
and the text summarization is needed for processing texts more efficiently in the
system. In this section, we describe the additional tasks briefly and explain their
roles of the DDO system.
Let us consider the taxonomy generation which was described in Chap. 15 as an
additional task for implementing the DDO system. The taxonomy generation means
the process of generating topics and their links to texts from a corpus. In Sect. 15.3,
we mentioned the four schemes of doing it. In the current version, we adopted
the clustering-based scheme for generating the taxonomies. Another scheme of
generating may be adopted to the current version.
Let us consider the text summarization as another additional task for imple-
menting the DDO system. It takes much less time for encoding summaries into
numerical vectors than full texts. Cluster summaries are generated by the multiple
text summarization as cluster scripts. It is more desirable to present summaries of
organized texts for users than full texts as their previews. Therefore, this system is
expected to be reinforced by installing the text summarization module.
Let us consider the addition of the text segmentation which was covered in
Chap. 14 to the DDO system. Texts that are organized in the system have very
variable length; it is possible that a very long text which spans over multiple topics
may exist in the system. When a long text is loaded to the system, it is segmented
into topic based subtexts by executing the text segmentation. Subtexts are generated
from the long text and treated as independent ones in the system. In order to do
so, we adopt the heuristic approaches, which were mentioned in Sect. 14.3.1, and
expand them to the advanced approaches.
The virtual texts which are opposite to the actual ones mean texts which
are synthesized artificially by concatenating subtexts from different texts. When
adding the text summarization and the text segmentation to this system, a text is
partitioned into paragraphs and topic-based subtexts. A full text may be constructed
by assembling subtexts or paragraphs which are relevant to the topic. Individual
sentences may be changed by replacing pronouns by their corresponding nouns. We
will consider the topic analysis of individual texts using the HMM (Hidden Markov
Model).
16.4
Issues of Dynamic Document Organization
In this section, we consider some issues of implementing the DDO system beyond
the text categorization and clustering. In Sect. 16.4.1, we mention some issues in
encoding texts into numerical vectors. In Sect. 16.4.2, we consider the problems
which are caused by applying the decomposition into binary classifications in the
transition from the creation mode to the maintenance mode. In Sect. 16.4.3, we cover
conditions of transitioning from the maintenance mode to the creation mode as the
process of reorganizing texts. In Sect. 16.4.4, we mention some hybrid tasks of the
text clustering and the text categorization as alternatives to the tasks in the DDO
system.
16.4 Issues of Dynamic Document Organization
353

16.4.1

Text Representation
This section is concerned with the issues in encoding texts into numerical vectors.
The previous works pointed out the problems of encoding texts so for executing text
mining tasks [25, 61]. In previous works, there were trials of encoding texts into
alternative structured ones that are numerical vectors [35, 61]. The DDO system
where texts were encoded into string vectors, instead of numerical vectors, was
implemented in Jo’s PhD dissertations in 2006 [25]. In this section, we discuss the
issues of encoding texts into numerical vectors and present solutions to them.
Let us consider the process of extracting the feature candidates and select one
among them as the features. The entire corpus is indexed for extracting more than
ten thousands of feature candidates. Only several hundred features are selected
among them, most efficiently. The dimension of numerical vectors which represent
texts is usually three hundreds. Better performance is achieved by encoding texts
into smaller dimensional string vectors, instead of bigger dimensional numerical
vectors [26].
Another issue is the sparse distribution in each numerical vector. The sparse
distribution means the dominance of zero values over nonzero ones with more than
90%. The similarity between two sparse vectors tends to be zero by Eq. (6.1). It
means the poor discrimination among numerical vectors is caused by the sparse
distribution. It was solved by encoding texts into tables, instead of numerical
vectors, by Jo in 2015 [35].
One more issue in numerical vectors which represent texts is poor transparency.
There is no way of guessing text contents from representations, numerical vectors.
The numerical vectors which consists of only numerical values lose symbolic
values which reflect contents directly. It is given as an ordered list of numerical
values, without presenting their features. In the previous works, the transparency
was improved by encoding texts into tables or string vectors, instead of numerical
vectors [35].

16.4.2

Binary Decomposition
This section is concerned with the binary decomposition which is the issue of imple-
menting the DDO system. In Sect. 5.2.3, we explained the process of decomposing
the multiple classification task into binary classifications. The decomposition into
binary classifications as many as clusters is not choice in the transition from the
creation mode to the maintenance mode. The benefit is the more reliability in
maintaining the text organization, but the payment is much overhead of doing so. In
this section, we discuss the issue of decomposition in the transition.
We need to relabel texts with positive or negative class, in decomposing into
binary classifications. A classifier is allocated to each cluster, and texts which belong
to the cluster are labeled with the positive class. Texts which do not belong to the
354
16
Dynamic Document Organization
cluster are labeled with the negative class, and among them, only some negative
class texts are selected as many as the positive ones. All of texts with the positive
class are fixed, but many subsets of texts labeled with the negative class exist. The
performance of classifying texts which are added subsequently depends on which
of texts labeled with the negative class are selected.
If the classification task is decomposed into binary classifications in the main-
tenance mode, the classifiers are allocated as many as clusters. They are named
symbolically as categories and by the above process, sample texts which are labeled
with the positive class or the negative class are prepared for each classifier. The
classifiers which correspond to clusters are learned with their own sample texts,
and wait for texts which are added subsequently. A novice text is classified into
the positive class or the negative class by the classifiers, and it is arranged into
clusters which correspond to positive classes into which the classifiers classify it. If
the policy is adopted for executing the classification, we need an additional process
for selecting among classified ones.
Let us consider the measure for evaluating the DDO performance in the
maintenance mode. The clustering index is used for evaluating the creation mode
of system. The F1 measure is used for evaluating the maintenance mode of system.
The mode is evaluated by computing the macro-averaged and micro-averaged value,
following the process which was described in Sect. 8.3. When operating the DDO
system as a real-time system, in evaluating the maintenance mode, the balance
between the learning speed and the classification performance should be kept.
Decision of the crisp classification or the fuzzy classification is the issue in
operating the maintenance mode of the DDO system. If the crisp classification
is set as the policy of operating the system, we don’t need the process of
decomposing the classification into binary classifications. If the fuzzy classification
is decided, we absolutely need the decomposition. We consider swap between the
crisp organization and the fuzzy organization, while the DDO system is executed.
Selecting either of the two types or both of them is the issue of operating the system.

16.4.3

Transition into Creation Mode
This section is concerned with the decision on text reorganizations in the system.
The reorganization is viewed as the transition from the maintenance mode to the
creation mode. For deciding the transition, we need to observe and evaluate the
quality of the current organization. The assumption that is underlying in operating
the system is the quality of the current organization which is degraded gradually by
adding and deleting texts continually. In this section, we propose some schemes of
reorganizing texts, in order solve the problems.
The clustering index was mentioned by Jo in his PhD dissertation for defining
the condition of transiting from the maintenance mode to the creation mode
[25]. The process of adding or deleting one text in the DDO system is called
transaction. The clustering index of the current text clusters is computed, whenever
16.4 Issues of Dynamic Document Organization
355
the transaction happens. If the clustering index after doing the transaction is less
than the threshold, the texts should be reorganized as the transition to the creation
mode. The reorganization of entire texts, ignoring the previous text organization, is
called hard organization.
Touching only some clusters is the alternative scheme of improving the quality of
text organization. Here, only clusters where transaction is needed will be observed.
In deleting texts, the system decides whether a cluster is merged into another, and in
adding texts, it decides whether a cluster is divided into two clusters. The clustering
index is computed before and after the action and they are compared with each
other. When the clustering index is improved after doing it, we decide the results
after doing so.
The outlier in the context of the DDO system is a small text group whose contents
are very far from the current organization and becomes an important factor for
deciding the reorganization. As time passes, news topics may be created in the
world, and texts about the created topic may be added. If texts are arranged into
one of the existing clusters, they may exist as outliers. In this case, we need to
decide the text reorganization by the outlier portion and the clustering index. The
outlier detection is added to this system as a module, and texts which are added are
detected as outliers or not, before classifying them.
We may add the manual editing module of text organization in the creation mode
in implementing the DDO system as its commercial version. Nobody uses the sys-
tem with the perfect trust of automating the text organization. We need to implement
the text organization editor for enabling users for editing it manually. The human
intervention is needed for rearranging subsequent texts even to the maintenance
mode. We add the graphic user interface for editing the text organization to the
system.

16.4.4

Variants of DDO System
This section is concerned with variants which are derived from the DDO system.
It was intended for managing the text organization continually. From the tasks that
are involved in the DDO system, we derive other tasks, such as novice detection,
taxonomy generation, and virtual text generation. The derived tasks are applied
to reinforce the performance and the functions of the system. In this section, we
describe the tasks that are derived from the tasks as variants.
Let us mention the novice detection and novice classification as derived tasks.
The novice detection means the process of finding novice texts which deal with
emergent topics in the given corpus. The novice classification is the process of
classifying texts which are added subsequently, into novice or not. The novice
detection becomes a specialized text clustering where texts are clustered into the
familiar group and the novice group, and the classifier for the novice classification
learns texts which are clustered. Novice texts are used for building the new
taxonomies of texts in the current organization, in the soft reorganization process.
356
16
Dynamic Document Organization
Combining the taxonomy generation and the text classification with each other is
similar as doing the two tasks in implementing the DDO system. The taxonomy
generation is the process of generating and organizing taxonomies as topics or
categories, as mentioned in Chap. 15. The taxonomy list is built and texts are linked
to each taxonomy and used as the sample texts for learning classifiers. Texts which
are added subsequently are classified into one or some of taxonomies. The schemes
of generating and maintaining taxonomies were mentioned in Sects. 15.3 and 15.4.
In Sect. 14.4.4, we mentioned the virtual texts that are derived from actual ones.
It is assumed that only actual texts are available in the current version of the DDO
system. We add the module for generating virtual texts from existing and added
ones. It reinforces the process of retrieving texts which are relevant to the query.
Refer Sect. 14.4.4, for getting detailed description about virtual texts.
We need to nominate a particular text from each cluster as its representative
one. The representative text plays the role of a script or a preview of its own
cluster. The scheme of nominating the representative text was already mentioned
in Sect. 10.3.4. There is a possibility of nominating a virtual text, instead of actual
text, as a representative one. We need further research for doing a virtual text.
16.5
Summary and Further Discussions
We described the system of managing full texts automatically in this chapter. The
online clustering where only the clustering algorithm is used is the simple scheme
for organizing and managing texts. Combining the clustering with the classification
is a more reliable scheme of doing so. We pointed out some issues in implementing
the system beyond both the text clustering and the text categorization. In this section,
we make some further discussion from what we studied in this chapter.
The DDO system is intended for managing texts automatically by compounding
the text categorization and the text clustering. The combination is the cooperation
of more than two tasks as independent ones, whereas the compound is to map more
than two tasks into a single task. The taxonomy generation is the task which is
mapped by compounding the tasks which is mentioned in Sect. 16.1. The process
of synthesizing virtual texts is also the compound task of the three tasks: the text
segmentation, the text clustering, and the text classification. The task which is
viewed as a single task is derived as the compound of several tasks.
Text contents in the DDO system may be updated, continually. The assumption
underlying in the DDO system is that text contents are fixed as long as they stay in
the system. Updating texts continually causes the text reorganization: the transition
from the maintenance mode to the creation mode. The soft action such as movement
of text into another cluster becomes an alternative to the reorganization. If many
texts are updated at almost the same time, we need to take a decision of hard or soft
action.
The version of DDO system which was developed by Jo in 2006 supports only
plain texts which are given as files whose extensions are “txt”. The XML format is
16.5 Summary and Further Discussions
357
known as the standard one, and the Java class libraries for processing the XML
format are available. The document is given as a PDF image and it is possible
to convert it into a plain text. It is considered to process an MS Word file whose
extension is “doc” as a text. HTML is another text format and tags are considered
as well as contents.
The DDO system needs to be upgraded for challenging against the big data
processing. The big data is characterized as the 4Vs: Volume, Velocity, Variance,
and Veracity. We need to reorganize texts and manipulate clusters assuming the
higher velocity of texts; addition, deletion, and updates of texts are very frequent. By
the higher veracity, we must alert against noisy texts, erroneous texts, and texts with
their broken characters, in maintaining the system. For managing almost infinite
volume of texts, multiple DDO programs should be executed in the cloud computing
environment.
References
1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Pearson, Harlow (2007)
2. Allan, J., Papka R., Lavrenko, V.: On-line news event detection and tracking. In: Proceedings
of the 21st Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 37–34 (1998)
3. Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2014)
4. Baeza-Yates, R., Ribeiro-Neto, B.: Information Retrieval: Concepts and Technology Behind
Search. Pearson (2011)
5. Beaver, M.: Introduction to Probability and Statistics. PWS-KENT Publishing Company
(1991)
6. Boiy, E., Moens, M.F.: A machine learning approach to sentiment analysis in multilingual
Web texts. Inf. Retr. 12, 525–558 (2009)
7. Brun, M., Sima, C., Hua, J., Lowey, J., Carroll, B., Suha, E., Doughertya, E.R.: Model-based
evaluation of clustering validation measures. Pattern Recogn. 40, 807–824 (2007)
8. Can, F.I., Kocbrtber, S., Baglioglu, O., Kardas, S., Ocalan, H.C., Uyar, E.: New event
detection and topic tracking in Turkish. J. Am. Soc. Inf. Sci. Technol. 61, 802–819 (2010)
9. Cai, D., He, X.: Manifold adaptive experimental design for text categorization. IEEE Trans.
Knowl. Data Eng. 24, 707–719 (2011)
10. Clark, J., Koprinska, I., Poon, J.: A neural network based approach to automated e-mail
classification. In: Proceedings of IEEE/WIC International Conference on Web Intelligence,
pp. 702–705 (2003)
11. Connolly, T., Begg, C.: Database Systems: A Practical Approach to Design, Implementation,
and Management. Addison Wesley, Reading, MA (2005)
12. Cortes, C., Vapnik, V.: Support vector networks. Mach. Learn. 20, 273–297 (1995)
13. Dong, Y., Han, K.: Boosting SVM classifiers by ensemble. In: Proceeding WWW ‘05 Special
Interest Tracks and Posters of the 14th International Conference on World Wide Web, pp.
1072–1073 (2005)
14. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2000)
15. Dumais, S., Chen, H.: Hierarchical classification of Web content. In: Proceedings of the 23rd
Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 256–263 (2000)
16. Eiben, A.E., Smith J.E.: Introduction to Evolutionary Computing. Springer, Berlin (1998)
17. Fall, C.J., Torcsvari, A., Benzineb, K., Karetka, G.: Automated categorization in the interna-
tional patent classification. ACM SIGIR Forum 37, 10–25 (2003)
© Springer International Publishing AG, part of Springer Nature 2019
359
T. Jo, Text Mining, Studies in Big Data 45,
https://doi.org/10.1007/978-3-319-91815-0
360
References
18. Feldman, R., Sanger, J.: The Text Mining Handbook: Advanced Approaches in Analyzing
Unstructured Data. Cambridge, New York (2007)
19. Grossberg, S.: Competitive learning: from interactive activation to adaptive resonance. Cogn.
Sci. 11, 23–63 (1987)
20. Hanani, U., Shapira, B., Shoval, P.: Information filtering: overview of issues, research and
systems. User Model. User-Adap. Inter. 11, 203–259 (2001)
21. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. J. Intell.
Inf. Syst. 17, 107–145 (2001)
22. Hyvarinen, A., Oja, E.: Independent component analysis: algorihtms and applications. Neural
Netw. 4–5, 411–430 (2000)
23. Jo, T.: Neural based approach to keyword extraction from documents. Lect. Note Comput.
Sci. 2667, 456–461 (2003)
24. Jo, T.: The application of text clustering techniques to detection of project redundancy in
national R&D information system. In: The Proceedings of 2nd International Conference on
Computer Science and its Applications (2003)
25. Jo, T.: The Implementation of Dynamic Document Organization Using the Integration of Text
Clustering and Text Categorization, University of Ottawa (2006)
26. Jo, T.: Modified version of SVM for text categorization. Int. J. Fuzzy Log. Intell. Syst. 8,
52–60 (2008)
27. Jo, T.: Inverted Index based modified version of KNN for text categorization. J. Inf. Process.
Syst. 4, 17–26 (2008)
28. Jo, T.: Neural text categorizer for exclusive text categorization. J. Inf. Process. Syst. 4, 77–86
(2008)
29. Jo, T.: The effect of mid-term estimation on back propagation for time series prediction.
Neural Comput. Applic. 19, 1237–1250 (2010)
30. Jo, T.: NTC (Neural Text Categorizer): neural network for text categorization. Int. J. Inf. Stud.
2, 83–96 (2010)
31. Jo, T.: Definition of table similarity for news article classification. In: The Proceedings of
Fourth International Conference on Data Mining, pp. 202–207 (2012)
32. Jo, T.: VTG schemes for using back propagation for multivariate time series prediction. Appl.
Soft Comput. 13, 2692–2702 (2013)
33. Jo, T.: Application of table based similarity to classification of bio-medical documents. In:
The Proceedings of IEEE International Conference on Granular Computing, pp. 162–166
(2013)
34. Jo, T.: Simulation of numerical semantic operations on strings in medical domain. In: The
Proceedings of IEEE International Conference on Granular Computing, pp. 167–171 (2013)
35. Jo, T.: Index optimization with KNN considering similarities among features. In: The
Proceedings of 14th International Conference on Advances in Information and Knowledge
Engineering, pp. 120–124 (2015)
36. Jo, T.: Normalized table matching algorithm as approach to text categorization. Soft Comput.
19, 839–849 (2015)
37. Jo, T.: Keyword extraction by KNN considering feature similarities. In: The Proceedings of
The 2nd International Conference on Advances in Big Data Analysis, pp. 64–68 (2015)
38. Jo, T.: AHC based clustering considering feature similarities. In: The Proceedings of 11th
International Conference on Data Mining, pp. 67–70 (2015)
39. Jo, T.: KNN based word categorization considering feature similarities. In: The Proceedings
of 17th International Conference on Artificial Intelligence, pp. 343–346 (2015)
40. Jo, T.: Simulation of numerical semantic operations on string in text collection. Intl. J. App.
Eng. Res. 10, 45585–45591 (2015)
41. Jo, T.: Table based KNN for indexing optimization. In: The Proceedings of 18th International
Conference on Advanced Communication Technology, pp. 701–706 (2016)
42. Jo, T., Cho, D.: Index based approach for text categorization. Int. J. Math. Comput. Simul. 2,
127–132 (2008)
References
361
43. Jo, T., Japkowicz, N.: Text clustering using NTSO. In: The Proceedings of IJCNN, pp. 558–
563 (2005)
44. Jo, T., Lee, M.: The evaluation measure of text clustering for the variable number of clusters.
Lect. Notes Comput. Sci. 4492, 871–879 (2007)
45. Jo, T., Seo, J., Kim, H.: Topic spotting on news articles with topic repository by controlled
indexing. Lect. Note Comput. Sci. 1983, 386–391 (2000)
46. Jo, T., Lee, M., Kim, Y.: String vectors as a representation of documents with numerical
vectors in text categorization. J. Converg. Inf. Technol. 2 66–73 (2007)
47. Joachims, T.: Text categorization with support vector machines: learning with many relevant
features. In: Proceedings of European Conference on Machine Learning, pp. 137–142 (1998)
48. Joachims, T.: Learning to Classify Text Using Support Vector Machines: Methods, Theory
and Algorithms. Kluwer Academic, Boston (2002)
49. Jones, K.S.: Automatic Summarizing: Factors and Directions. In: Advanced Automate
Summarization edited by Manu, I. and Maybury M., 1–12 (1999)
50. Kaski, S., Honkela, T., Lagus, K., Kohonen, T.: WEBSOM-Self organizing maps of document
collections. Neurocomputing 21, 101–117 (1998)
51. Kohonen, T.: Correlation matrix memories. IEEE Trans. Comput. 21, 353–359 (1972)
52. Kohonen, T., Kaski, S., Lagus, K., Salojavi, J., Honkela, J.: Self organization of massive
document collection. IEEE Trans. Neural Netw. 11, 574–585 (2000)
53. Konchady, M.: Text Mining Application Programming. Charles River Media, Boston (2006)
54. Kowalski, G.J., Maybury, M.T.: Information Storage and Retrieval Systems: Theory and
Implementation. Kluwer Academic, Boston (2000)
55. Kreuzthaler, M., Bloice, M.D., Faulstich, L., Simonic, K.M., Holzinger, A.: A comparison
of different retrieval strategies working on medical free texts. J. Univers. Comput. Sci. 17,
1109–1133 (2011)
56. Kroon, H.C.M.D., Kerckhoffs, E.J.H.: Improving learning accuracy in information filtering.
In: International Conference on Machine Learning-Workshop on Machine Learning Meets
HCI (1996)
57. Larose, D.T.: Discovering Knowledge in Data: An Introduction to Data Mining. Wiley, New
York (2005)
58. Leslie, C.S., Eskin, E., Cohen, A., Weston, J., Noble, W.S.: Mismatch String Kernels for
Discriminative Protein Classification. Bioinformatics 20, 467–476 (2004)
59. Li, T., Zhu, S., Ogihara, M.: Hierarchical document classification using automatically
generated hierarchy. J. Intell. Inf. Syst. 29, 211–230 (2007)
60. Liu, J., Chua, T.S.: Building semantic perceptron net for topic spotting. In: Proceedings of the
39th Annual Meeting on Association for Computational Linguistics, pp. 378–385 (2001)
61. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classification
with string kernels. J. Mach. Learn. Res. 2, 419–444 (2002)
62. Loredana, F., Lemnaru, C., Potolea, R.: Spam detection filter using KNN algorithm and
resampling. In: Proceedings of IEEE International Conference on Intelligent Computer
Communication and Processing, pp. 27–33 (2010)
63. Luhn, H.: Statistical approach to mechanized encoding and searching of literary information.
IBM J. Res. Dev. 1, 309–317 (1957)
64. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.V., Potts, C.: Learning word vectors
for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, vol. 1, pp. 142–150 (2011)
65. Manning, C.D., Raghavan, P., Schutze, H.: Introduction to Information Retrieval. Cambridge
University Press, Cambridge (2009)
66. Markov, Z., Larose D.T.: Data Mining The Web: Uncovering Patterns in Web Content,
Structure, and Usage. Wiley, New York (2007)
67. Martinetz, T., Schulten, K.: A “neural gas” network learns topologies. In: Artificial Neural
Networks, pp. 397–402 (1991)
68. Marz, N., Warren, J.: Big Data: Principles and Best Practices of Scalable Real Time Data
Systems. Manning, Shelter Island (2015)
362
References
69. Minsky, M., Papert, S.: Perceptrons. MIT Press, Cambridge (1969)
70. Mitchell, T.: Machine Learning. McGraw-Hill Companies, New York (1997)
71. Mullen, T., Collier, N.: Sentiment analysis using support vector machines with diverse
information sources. In: Proceedings of Conference on Empirical Methods in Natural
Language Processing, pp. 412–418 (2004)
72. Myers, K., Kearns, M., Singh, S., Walker M.A.: A boosting approach to topic spotting on
subdialogues. Family Life 27, 1 (2000)
73. Nigam, K., Mccallum, A.K., Thrun, S., Mitchell, T.: Text classification from labeled and
unlabeled documents using EM. Mach. Learn. 39, 103–134 (2000)
74. Noy, N.F., Hafner, C.D.: The state of the art in ontology design a survey and comparative
review. AI Mag. 18, 53–74 (1997)
75. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2, 1–135
(2008)
76. Platt, J.: Sequential minimal optimization: a fast algorithm for training support vector
machines. Technical Report MSR-TR-98-14, Microsoft Research (1998)
77. Poole, D.: Linear Algebra: A Modern Introduction. Brooks/Collen, Pacific Grove (2003)
78. Qiu, Y., Frei, H.P.: Concept based query expansion. In: The Proceedings of the 16th
Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 160–169 (1993)
79. Rennie, J.D.M., Rifkin, R.: Improving multiclass text classification with the support vector
machine. Technical Report AIM-2001-026, Massachusetts Institute of Technology (2001)
80. Rosenblatt, F.: The perceptron: a probabilistic model for information sotrage and organization
in the brain. Psychol. Rev. 65, 385–408 (1958)
81. Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Distributed Processing: Exploration in
Microstructure of Cognition, vol. 1. MIT Press, Cambridge (1986)
82. Salton, G.: Automatic Text Processing: Transformation, Analysis, and Retrieval of Informa-
tion by Computer. Addison Wesely, Reading (1988)
83. Salton, G., Yang, C.S.: On the specification of term values in automatic indexing. J. Doc. 29,
351–372 (1973)
84. Schneider, K.M.: A comparison of event models for Naive Bayes anti-spam e-mail filtering.
In: Proceedings of the Tenth Conference on European Chapter of the Association for
Computational Linguistics, pp. 307–314 (2003)
85. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. 34,
1–47 (2002)
86. Shanmugasundara, J., Shekita, E., Kiernan, J., Krishnamurthy, R., Viglas, E., Naughton, J.,
Tatarinov, I.: A general technique for querying XML documents using a relational database
system. Newslett. ACM SIGMOD. 30, 20–26 (2001)
87. Shardanand, U., Maes, P.: Social information filtering: algorithms for automating word of
mouth. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pp. 210–217 (1995)
88. Sriram, B., Fuhry, D., Demir, E.: Ferhatosmanoglu, H., Demirbas, M.: Short text classification
in twitter to improve information filtering. In: Proceedings of the 33rd International ACM
SIGIR Conference on Research and Development in Information Retrieval, pp. 441–442
(2010)
89. Sutanto, D., Leung H.C.: Automatic index expansion for concept based image query. Lect.
Notes Comput. Sci. 1614, 399–408 (2002)
90. Tan, S.: An effective refinement strategy for KNN text classifier. Expert Syst. Appl. 30, 290–
298 (2006)
91. Tan, P., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison Wesely, Boston
(2006)
92. Tong, S., Koller, D.: Support vector machine active learning with applications to text
classification. J. Mach. Learn. Res. 2, 45–66 (2001)
93. Vega-Pons, S., Ruiz-Shulclopery, J.: A survey of clustering ensemble algorithms. Int. J.
Pattern Recognit. Artif. Intell. 25, 337–372 (2011)
References
363
94. Vendramin, L., Campello, R., Hruschka E.R.: On the comparison of relative clustering validity
criteria. In: Proceedings of the 2009 SIAM International Conference on Data Mining, pp.
733–744 (2009)
95. Wiener, E.D.: A neural network approach to topic spotting in text. The Master Thesis of
University of Colorado (1995)
96. Winter, R., Widrow, B.: Madaline rule II: training algorithm for neural networks. In:
Proceedings of IEEE 2nd International Conference on Neural Networks, pp. 401–408 (1988)
97. Wu, X., Wu, G., Wei, D.: Data mining with big data. IEEE Trans. Knowl. Data Eng. 26,
97–107 (2014)
98. Yang, Y.: An evaluation of statistical approaches to MEDLINE indexing. In: Proceedings of
the AMIA Annual Fall Symposium, pp. 358–362 (1996)
99. Yang, Y., Liu, X.: A re-examination of text categorization methods. In: Proceedings of
the 22nd Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 42–49 (1999)
100. Youn, S., McLeod, D.: A comparative study for email classification. In: Advances and
Innovations in Systems, Computing Sciences and Software Engineering, pp. 387–391 (2007)
Index
A
Bayes rule, 111–112, 126
Actual texts
Big data mining, 357
in DDO system, 356
characteristics, 14
manually written by human, 315
formatting data, 15

vs. virtual, 315–316
machine learning algorithms, 15
Adaptive Resonance Theory (ART), 223
PC-based software, 14
Agglomerative Hierarchical Clustering (AHC)

vs. text mining, 15–16
algorithm, 226
three tiers/layers, 15
hierarchical clustering, 194
traditional algorithms, 14
parameter tuning in, 264
table matching algorithm, 57
text clustering system
C
class, 233–234
Class definition
method implementation, 239–240
indexing texts
simple clustering algorithm, 205–206
API class, 27
Alien cluster, 189
“FileString,” 27, 28
Analysis of Variance (ANOVA), 179
methods, 32–35
Application Program Interface (API) class
StemmingRule, 30–32
definition, 136–137
“Text,” 29
method implementation, 142–145
“TextIndexAPI,” 29–30
Apriori algorithm, 11, 59–60, 75
“Word,” 27, 28
complexity of, 66
text categorization
extractAssociationRuleList, 64
category, 133–134
generateApriori, 64, 65
Classifier and KNearestNeighbor, as
generateAssociationRuleList, 64, 65
interface, 134–136
pseudocode of, 64, 65
“PlainText,” 131, 133
word association, 68
“Text,” 131–133
At-a-time streaming processing, 345
TextClassificationAPI, 136–137
Automatic text summarization, 271–272
“Word,” 131, 132
text clustering system
AHC algorithm, 233–234
B
Cluster, 230–232
Bayes classifier, 99, 108–110, 112–114, 118,
ClusterAnalyzer, as interface, 232–233
126, 141
FileString, 227
Bayesian learning, 99, 116–118, 126
“PlainText,” 228, 230
© Springer International Publishing AG, part of Springer Nature 2019
365
T. Jo, Text Mining, Studies in Big Data 45,
https://doi.org/10.1007/978-3-319-91815-0
366
Index
Class definition (cont.)
D
“Text,” 227–229
Data association, 60, 75
“Word,” 227, 229
Apriori algorithm
Classification frame, 80, 90, 319, 320
complexity of, 66
Clustering algorithms
extractAssociationRuleList, 64
AHC algorithm (see Agglomerative
generateApriori, 64, 65
Hierarchical Clustering (AHC)
generateAssociationRuleList, 64, 65
algorithm)
pseudocode of, 64, 65
divisive clustering algorithm, 206–207
definition, 61
evolutionary, 266–267
extraction of rule, 61–62
growing algorithm, 209–210
support and confidence, 62–64
independent component analysis, 48

vs. word association, 69

k means algorithm (see k means algorithm)
Data classification
with parameter tuning, 264–265
definition, 7, 8, 185–186
single pass algorithm, 207–209
text categorization
Clustering index
binary classification, 81–82
computation process
classification decomposition, 83–85
intra-cluster and inter-cluster
multiple classification, 82–83
similarities, 257–258
regression, 85–86
using unlabeled data items, 263
Data clustering
evaluation
AHC algorithm, 185
crisp clustering, 258–259

vs. association, 184, 186–187
fuzzy clustering, 259–261
characterization, 185
hierarchical clustering, 261–262

vs. classification, 187–188
evolutionary clustering algorithm, 266–267
computation of similarities, 185
parameter tuning

vs. constraint clustering, 188–189

k means algorithm with, 265–266
EM algorithm, 185
simple clustering algorithm with,
illustration, 185
264–265

k means algorithm, 185
Collocation rate, 328
subgroups, 185
Constraint clustering
Data coding, 13
alien cluster, 189
DDO system, see Dynamic Document

vs. clustering, 189
Organization system
fuzzy, 347
Discrimination among clusters, 258
labeled and unlabeled examples, 188
Divisive clustering algorithm, 206–207, 264
outlier detection, 189
Document Type Definition (DTD) file, 246

vs. semi-supervised learning, 189
Dynamic clustering
Corpus, 6, 13, 26, 54. See also Text
hard organization, 190
collections
intra-cluster and inter-cluster similarities,
characteristics, 289
190
generating word-document matrix in,
soft organization, 190
66–67

vs. static clustering, 190
text
Dynamic Document Organization (DDO)
classification, 284
system
clustering, 320
and big data processing, 357
indexing, 319
creation mode, 341, 349–351
Creation mode, 341, 349–351
execution process, 348–349
Crisp clustering
implementation, 341
dichotomy criteria, 191
issues of
evaluation of, 258–259
binary decomposition, 353–354
example of, 191
encoding texts, 353

vs. fuzzy clustering, 191–192
sparse distribution, 353
Crisp k means algorithm, 211–212
transaction, 354–355
Index
367
maintenance mode, 341, 342, 348–350
Flat text segmentation
mixture vs. two tasks, 342

vs. hierarchical text segmentation, 303–304
novice detection and novice classification,
illustration, 303
355
F1 measure, evaluating text categorization
online clustering
contingency table, 165–166
fuzzy clustering, 346–348
macro-averaged, 168–170

k means algorithm, 344–345
micro-averaged, 166–168

vs. offline clustering, 343–344
Fuzzy clustering
unsupervised KNN algorithm, 345–346

vs. crisp clustering, 191–192
representative text, 353, 356
evaluation, 259–261
taxonomy generation, 351–352, 356
example of, 191, 192
text categorization, 342
item–cluster matrix, 192
text clustering, 342
online clustering, 346–348
text summarization, 352

vs. overlapping clustering, 347
variants of, 355–356
Fuzzy k means algorithm, 212–213
virtual texts, 352, 356
XML format, 356–357
G
E
Gaussian distribution, 112–114, 171–173,
Emails classification, 94–95
213–214, 345
Encoding texts, 57–58. See also Text indexing
Grammars, 3, 5
assigning values to features, 50–51
Graphic User Interface (GUI) class, 136–137,
definition, 41
143, 156
example, 42
ActionPerformed implementation, 146,
feature selection scheme
149
ICA (see Independent Component
constructor implementation, 145–146, 148
Analysis (ICA))
initial screen, 145, 146
principal component analysis, 44–46
main program, 146, 150
SVD, 49–50
properties, 145, 147
wrapper approach, 43–44
Growing algorithm, 209–210
into numerical vectors
GUI (Graphic User Interface) program, 136,
huge dimensionality, 53–54
242
poor transparency, 55–57
sparse distribution, 54–55
steps, 42
process, 41
H
similarity computation between texts,
Hard organization, 190, 342, 351, 355
52–53
Hidden Markov Model (HMM), 27, 311–313,
E(Estimation)-step, 204, 224, 345
352
Estimation and Maximization (EM) algorithm,
Hierarchical clustering, 261–262
185
dichotomy criteria, 193
Exclusive text segmentation
evaluating process, 194

vs. overlapping text segmentation, 301, 302

vs. flat clustering, 193–194
segmentation process, 300, 301
and multiple viewed clustering, 195–196
Hierarchical text segmentation
F

vs. flat text segmentation, 303–304
Fast clustering algorithm, 209, 264
illustration, 303
Flat clustering, 9, 262
implementation, 303–304
characteristics, 194
HMM, see Hidden Markov Model
dichotomy criteria, 193
HTML format, 6, 13, 131, 133, 156, 228, 246,

vs. hierarchical clustering, 193, 194
357

k means algorithm, 193–194
Hypothesis test, 172, 175–178
368
Index
I
Initial maintenance mode, DDO system, 348
ICA, see Independent Component Analysis
Inter-cluster similarity, 10, 190, 210, 250–253,
Implementation in Java, text categorization
255–267, 349, 350
class definition
Intra-cluster similarity, 10, 190, 210, 250–253,
category, 133–134
255–260, 262–267, 349, 350
Classifier and KNearestNeighbor, as
Intra-taxonomy merge, 333, 336
interface, 134–136
“PlainText,” 131, 133
“Text,” 131–133
J
TextClassificationAPI, 136–137
Java Development Kit (JDK), 156
“Word,” 131, 132
Journal article, 5
classification process
Junk emails, 82, 94–95
preparing novice texts, 153
process of completing preparation, 153,
154
K
texts in message box, 152, 153, 155
Karush–Kuhn–Tucker (KKT) condition, 126
direction of upgrading, 155–156
Keyword extraction
methods
full text, 321
“KNearestNeighbor,” 141–142
functional view, 321
“PlainText,” 139–141
important word extraction, 320, 321
TextClassificationAPI, 142–145
mapping, classification task, 321, 322
“Word,” 138–139
relevancy, 321, 322
1 Nearest Neighbor, 151, 155

k means algorithm, 199, 203, 204, 223–224
preliminary tasks and encoding process,
crisp, 211–212
147
fuzzy, 185, 192, 212–213
adding sample texts to business
Gaussian mixture, 213–214
category, 151, 152

k medoid algorithm, 214–217
allocating sample texts, 151
online clustering, 344–345
process of adding categories, 150
with parameter tuning, 265–266
TextClassificationGUI class

K Nearest Neighbor (KNN) algorithm, 54,
ActionPerformed implementation, 146,
56–57
149
class
constructor implementation, 145–146, 148
definition, 134–136
initial screen, 145, 146
method implementation, 141–142
main program, 146, 150
lazy learning algorithms, 126, 127
properties, 145, 147
discriminated attributes, 109–110
Implicit knowledge, 3, 4
distance-based, 107–109
Independent Component Analysis (ICA)
application, 47
initial version of, 104–105
dimension reduction scheme, 47–48

vs. Radius Nearest Neighbor, 107, 118

vs. principal component analysis, 48
online unsupervised version of, 345–346
source signals, 46–47
string vector-based version, 57
vector expressions, 46
Kohonen Networks, 199, 203
Index expansion, 20, 37–38
architecture, 218
Index filtering, 20
competitive node, 219
applying to long texts, 37

vs. k mean algorithms, 219
controlling word list, 35–36
learning process, 218
grammatical information, 36
LVQ
rank-based selection, 36
architecture, 119
score-based selection, 36
learning process, 220
word positions, 36
modified learning, 220
Index optimization, 20, 38–40
for text categorization, 220
Information filtering system, 97–98
training examples, 119
Information retrieval system, 6–7, 98, 166,
Neural Gas, 222–223
169, 246, 296
neural networks, 217, 218
Index
369
SOM
computeWordWeight, 235, 236
architecture, 220–221
encodeFullText, 235, 236
competitive nodes, 220
FileString, 235

vs. initial version of Kohonen Networks,
generateFeatureList, 237
222
mergeCluster, 238, 239
in pseudocode, 221, 222
saveFileString and loadFileString, 235,
visualizing learning process, 221
236
WEBSOM, 222
Micro-batched stream processing, 345
M(Maximization)-step, 204, 224, 345
Multiple Layer Perceptron (MLP), 120, 127
L
Multiple viewed clustering, 194–195
Lazy learning algorithm, see K Nearest
Neighbor algorithm
Learning Vector Quantization (LVQ), 217,
N
219–220
Naive Bayes, 95, 114–116, 118, 126, 127, 135,
Lexical clustering, 183, 324
141, 183, 204
Neural Text Categorizer (NTC), 160
20NewsGroups, 54, 66, 90, 157–158, 160–161,
M
171, 178
Machine learning algorithms, 82, 126–127
NewsPage.com, 54, 66, 157, 159–160
classification task, 101
clustering, 102

K Nearest Neighbor algorithm
O
discriminated attributes, 109–110
Offline clustering
distance-based, 107–109
illustration, 343
initial version of, 104–105
in KNN, 346
Radius Nearest Neighbor, 106–107

vs. online clustering, 343–344
overview of, 101, 102
Online clustering
probabilistic learning
EM algorithm, 345
Bayes classifier, 112–114
fuzzy clustering, 346–348
Bayesian learning, 116–118

k means algorithm, 344–345
Bayes rule, 111–112

vs. offline clustering, 343–344
Naive Bayes, 114–116
unsupervised KNN algorithm, 345–346
regression task, 101–102
Ontology
supervised learning algorithm, 102
example of, 337, 338
support vector machine
graph representation, 337
dual parallel linear boundaries, 122–123
OWL, 337, 338
kernel functions, 120–122
taxonomies, 339
Lagrange multipliers, optimizing
WordNet, 339
constraints for, 123–126
Ordered text segmentation, 298–299
Perceptron, 119–120
OSHUMED, 54, 158, 163–164
unsupervised learning algorithm, 102–103
Outlier detection, 186, 189, 201, 355
Maintenance mode, 341, 342, 349–350
Overlapping clustering, 347
Manual summarization, 271, 273
Overlapping text segmentation
Method implementations
example, 300, 302
text categorization (see Implementation in

vs. exclusive text segmentation, 301, 302
Java, text categorization)
OWL, see Web Ontology Language
text clustering system
AHC algorithm, 239–240
Cluster, 237
P
computeClusterSimilarity, 238
Paragraph. See also Text summarization
computeInterClusterSimilarity, 238,
clustering, 198
239
definition, 5
computeWordSimilarity, 237, 238
Part of Speech (POS) tagging, 20, 27, 83, 322
370
Index
PCA, see Principal component analysis
paired difference inference, 175–177
Perceptron, 98, 119–120, 122
student’s t-distribution
“PlainText,” 6, 230
changes of, 172–174
definition, 131, 133, 228
and Gaussian distribution, 171–172
method implementation, 133, 139–141
null hypothesis, 172
properties, 133
purposes of, 172
Portable Document Format (PDF) file, 6, 7,
z values in, 172, 173
155
unpaired difference inference, 174–175
Principal component analysis (PCA)
Stemming, 19–20, 23–24, 40
covariance matrix, 44–45
Student’s t-distribution, 171–174

vs. ICA, 48
Summary-based classification, 288–289
in text mining tasks, 45–46
Summary-based clustering, 198, 288–290
Supervised learning algorithm, 102, 203–204.

See also K Nearest Neighbor
Q
(KNN) algorithm; Naive Bayes;
Query-based text summarization, 278–280
Perceptron; Support vector machine
Support vector machine (SVM), 54, 161
dual parallel linear boundaries, 122–123
R
kernel functions, 120–122
Radius Nearest Neighbor (RNN) algorithm
Lagrange multipliers, optimizing

vs. K Nearest Neighbor algorithm, 107, 118
constraints for, 123–126
into pseudo code, 106
Perceptron, 119–120
Receiver Operating Characteristic (ROC)
curve, 179
Reuter21578, 6, 54, 66, 88, 90, 157, 161–163,
T
171, 178
Taxonomy generation, 197, 201
association-based scheme
AHC algorithm, 330
S
causal part, 330
Sample texts, 129

k means algorithm, 331
Search engines, 20, 37, 68, 71, 75, 293
rules, 330
Selection criterion, 328
TF-IDF, 330
Self-Organizing Map (SOM)
word association, 329, 330
architecture, 220–221
clustering-based scheme, 328–329
competitive nodes, 220
definition, 319–320

vs. initial version of Kohonen Networks,
index-based scheme, 327–328
222
keyword extraction
in pseudocode, 221, 222
full text, 321
visualizing learning process, 221
functional view, 321
WEBSOM, 222
important word extraction, 320, 321
Semantic clustering, 183
mapping, classification task, 321, 322
Semi-supervised learning, 189, 199, 204
relevancy, 321, 322
Sentimental analysis, 25, 95–96
link analysis-based scheme, 331–332
Sequential Minimization Optimization (SMO)
ontology
algorithm, 126
example of, 337, 338
Single pass algorithm, 207–209
graph representation, 337
Single viewed clustering, 194–195
OWL, 337, 338
Singular Value Decomposition (SVD), 49–50
taxonomies, 339
Soft reorganization, 342
WordNet, 339
SOM, see Self-Organizing Map
taxonomy growth
Spam mail filtering, 94–95, 289
continual addition and deletion of text,
Static clustering, 190
334
Statistical t-test
expanding hierarchical taxonomy, 334,
example, 177–178
335
Index
371
merging taxonomy organizations, 334,
regression, 85–86
336
DDO system, 342
new taxonomy creation to alien texts,
definition, 79
334, 335
evaluating performance, 178–179
taxonomy downsizing, 335
ANOVA, 179
taxonomy integration, 335–337
F1 measures, 164–171
taxonomy maintenance
ROC, 179
merge, taxonomy, 332–333
statistical t-test (see Statistical t-test)
operations, 332
text collections (see Text collections)
taxonomy division, 332, 333
implementation in Java
taxonomy script, 334
class definition (see Class definition)
topic routing
classification process, 152–155
application, 326–327
direction of upgrading, 155–156
core operation, 325
methods, 137–145
mapping, 326
preliminary tasks and encoding process,
topic spotting, 326
147–152
word categorization
TextClassificationGUI, 145–147
machine learning algorithm, 323
learning process, 80
ordered vs. unordered text segmentation,
machine learning algorithms (see Machine
323
learning algorithms)
POS tagging, 322
preliminary tasks, 79–80
relevancy, 323
steps, 79, 80
text selection, 322–323
types
word classification, 323
flat vs. hierarchical classification, 88–90
word–text matrix, 323
hard vs. soft classification, 86–88
word clustering, 324–325
hierarchical vs. multiple viewed
Term Frequency Inverse Term Frequency
classification, 91–92
(TF-IDF) weight, 25, 26, 40, 51, 58,
independent vs. dependent
139, 328–330
classification, 92–94
Text
single vs. multiple viewed classification,
accessing method, 293
90–91
definition, 131, 132
variants
expansion, 292–293
information filtering, 97–98
methods, 133
sentimental analysis, 95–96
properties, 131, 133
spam mail filtering, 94–95
symbolic representations of, 56, 57
topic routing, 98–99
Text association, 74–75
Text clustering system, 53, 223–224

vs. clustering, 60, 184, 186–187
architecture, 225–227
definition, 74
characteristics, 184
extracting association rules, 59
crisp vs. fuzzy clustering, 191–192
functional view, 71–72
data clustering (see Data clustering)
generic data association (see Data
definition, 183
association)
derived tasks
subtext association, 60
automatic sampling for text
transpose of word text matrix, 72–75
categorization, 199
word association (see Word association)
naming clusters, 196–197
Text categorization, 99, 247
redundant project detection, 200
architecture, 129–130
subtext clustering, 197–198
automatic sampling for, 199
evaluating results, 267–268
classification algorithm, 80
clustering index (see Clustering index)
data classification
external validation, 255–256
binary classification, 81–82
internal validation, 252–253
classification decomposition, 83–85
intra-cluster and inter-cluster
multiple classification, 82–83
similarities, 250–252
372
Index
Text clustering system (cont.)
stemming, 19–20, 23–24
relative validation, 253–255
stop-word removal, 20, 24–25
flat vs. hierarchical clustering, 193–194
term weighting, 20, 25–27
implementation in Java
tokenization, 19, 21–22
class definition (see Class definition)
requirement, 19
ClusterAnalysisAPI, 240–242
Text mining
ClusterAnalysisGUI, 242–244
data association, 10–11
demonstration, 244–245
data classification
directions for upgrading, 245–246
category assignment, 7, 8
method, 235–240
functional view, 7
interface, 242–243
hard and flat types, 8
role, 342
learning-based approaches, 7
simple clustering algorithms
machine learning algorithms, 8
AHC algorithm, 205–206
regression, 9
divisive clustering algorithm, 206–207
rule-based approaches, 7
growing algorithm, 209–210
training set and test set, 9
single pass algorithm, 207–209
data clustering, 9–10
single vs. multiple viewed clustering,
definition, 3–4
194–195
knowledge extraction, 16
static vs. dynamic clustering, 190
text components, 5–6

vs. text categorization, 183–184
text formats, 6–7
unsupervised learning algorithms
types
definition, 203
big data mining, 14–16

k means algorithm (see k means
relational, 12–13
algorithm)
web mining, 13–14
Kohonen Networks (see Kohonen
Text segmentation, 247, 316–317
Networks)
application to long text, 295
Text collections
definition, 295
20NewsGroups, 157–158, 160–161
derived tasks
NewsPage.com, 157, 159–160
spotting ordered topics, 311–313
OSHUMED, 158, 163–164
subtext retrieval, 313–314
real set, 158
subtext synthesization, 314–315
Reuter21578, 157, 161–163
virtual text, 315–316
test set, 158
exclusive vs. overlapping, 300–302
training set, 158
flat vs. hierarchical, 302–304
validation set, 158
machine learning-based approaches
Text corpus
application, 309–311
clustering, 320
encoding adjacent paragraph pairs,
indexing, 319
307–309
Text indexing, 40
heuristic approaches, 304–305
class definition in Java
mapping into binary classification,
API class, 27
305–307
“FileString,” 27, 28
ordered vs. unordered, 298–300
method, 32–35
spoken text
StemmingRule, 30–32
into paragraph, 295
“Text,” 29

vs. written text segmentation, 296–298
“TextIndexAPI,” 29–30
written text
“Word,” 27, 28

vs. spoken text segmentation, 296–298
definition, 19
into subtexts, 295–296
index expansion, 37–38
Text summarization, 247, 293–294
index filtering (see Index filtering)
abstraction vs. query-based summarization,
index optimization, 20, 38–40
278–280
processing steps
automatic summarization
POS tagging, 20
definition, 271, 272
Index
373
illustration, 274
V

vs. manual summarization, 273–274
Virtual texts, 315–317, 352, 356
combination with other tasks
summary-based classification, 288–289
summary-based clustering, 289–290
W
text expansion, 292–293
Web Ontology Language (OWL), 337, 338
topic-based clustering, 290–292
WEBSOM, 54, 222
definition, 271
Word
flat vs. hierarchical, 276–278
actual, 37–39
heuristic approaches, 280–281
collocation of, 37
machine learning algorithms
common, 25
classifying paragraph into
definition, 131, 132
summary/non-summary, 286,
method implementation, 131, 138–139
287
posting, 35–36
encoding paragraphs into numerical
properties, 131
vectors, 286
virtual, 37
subtexts, 286–287
weighting of, 20, 25–27
training with sample paragraphs, 286,
Word association, 60, 75
287
Apriori algorithm, 68, 69
manual summarization
association rules, 68–69

vs. automatic text summarization,
definition, 68
273–274

vs. generic data association, 69
definition, 271
multiple item sets, 70
high costs and timing consumption, 271
two item sets, 69–70
illustration, 273
word-document matrix
process of mapping
example, 67–69
into binary classification task, 281–282
frame of, 66, 67
into regression task, 282–283
generating process, 66–67
sampling schemes
item sets extraction, 67
clustering-based sampling, 284, 285
text collection, 66
domain-specific sampling, 283–284
Word categorization
granularity, 285
machine learning algorithm, 323
topic-based sampling, 284, 285
ordered vs. unordered text segmentation,
single vs. multiple, 274–276
323
TF-IDF, see Term Frequency Inverse Term
POS tagging, 322
Frequency weight
relevancy, 323
Tokenization, 5, 21–22, 40, 328
text selection, 322–323
Tokens, 19–23, 31, 32, 34, 35, 328
word classification, 323
Topic routing system, 98–99
word–text matrix, 323
Wrapper approach, 43–44, 58
U
Unordered text segmentation, 198, 298–299,
323
X
Unsupervised learning algorithm, 10, 102–104,
XML (Extensive Markup Language)
187, 203–204. See also Kohonen
document, 5–7, 13, 131, 155, 156,
Networks
200, 245, 246, 356–357

Document Outline

	Preface
	Contents
	Part I Foundation
	1 Introduction
	1.1 Definition of Text Mining
	1.2 Texts
	1.2.1 Text Components
	1.2.2 Text Formats

	1.3 Data Mining Tasks
	1.3.1 Classification
	1.3.2 Clustering
	1.3.3 Association

	1.4 Data Mining Types
	1.4.1 Relational Data Mining
	1.4.2 Web Mining
	1.4.3 Big Data Mining

	1.5 Summary

	2 Text Indexing
	2.1 Overview of Text Indexing
	2.2 Steps of Text Indexing
	2.2.1 Tokenization
	2.2.2 Stemming
	2.2.3 Stop-Word Removal
	2.2.4 Term Weighting

	2.3 Text Indexing: Implementation
	2.3.1 Class Definition
	2.3.2 Stemming Rule
	2.3.3 Method Implementations

	2.4 Additional Steps
	2.4.1 Index Filtering
	2.4.2 Index Expansion
	2.4.3 Index Optimization

	2.5 Summary

	3 Text Encoding
	3.1 Overview of Text Encoding
	3.2 Feature Selection
	3.2.1 Wrapper Approach
	3.2.2 Principal Component Analysis
	3.2.3 Independent Component Analysis
	3.2.4 Singular Value Decomposition

	3.3 Feature Value Assignment
	3.3.1 Assignment Schemes
	3.3.2 Similarity Computation

	3.4 Issues of Text Encoding
	3.4.1 Huge Dimensionality
	3.4.2 Sparse Distribution
	3.4.3 Poor Transparency

	3.5 Summary

	4 Text Association
	4.1 Overview of Text Association
	4.2 Data Association
	4.2.1 Functional View
	4.2.2 Support and Confidence
	4.2.3 Apriori Algorithm

	4.3 Word Association
	4.3.1 Word Text Matrix
	4.3.2 Functional View
	4.3.3 Simple Example

	4.4 Text Association
	4.4.1 Functional View
	4.4.2 Simple Example

	4.5 Overall Summary

	Part II Text Categorization
	5 Text Categorization: Conceptual View
	5.1 Definition of Text Categorization
	5.2 Data Classification
	5.2.1 Binary Classification
	5.2.2 Multiple Classification
	5.2.3 Classification Decomposition
	5.2.4 Regression

	5.3 Classification Types
	5.3.1 Hard vs Soft Classification
	5.3.2 Flat vs Hierarchical Classification
	5.3.3 Single vs Multiple Viewed Classification
	5.3.4 Independent vs Dependent Classification

	5.4 Variants of Text Categorization
	5.4.1 Spam Mail Filtering
	5.4.2 Sentimental Analysis
	5.4.3 Information Filtering
	5.4.4 Topic Routing

	5.5 Summary and Further Discussions

	6 Text Categorization: Approaches
	6.1 Machine Learning
	6.2 Lazy Learning
	6.2.1 K Nearest Neighbor
	6.2.2 Radius Nearest Neighbor
	6.2.3 Distance-Based Nearest Neighbor
	6.2.4 Attribute Discriminated Nearest Neighbor

	6.3 Probabilistic Learning
	6.3.1 Bayes Rule
	6.3.2 Bayes Classifier
	6.3.3 Naive Bayes
	6.3.4 Bayesian Learning

	6.4 Kernel Based Classifier
	6.4.1 Perceptron
	6.4.2 Kernel Functions
	6.4.3 Support Vector Machine
	6.4.4 Optimization Constraints

	6.5 Summary and Further Discussions

	7 Text Categorization: Implementation
	7.1 System Architecture
	7.2 Class Definitions
	7.2.1 Classes: Word, Text, and PlainText
	7.2.2 Interface and Class: Classifier and KNearestNeighbor
	7.2.3 Class: TextClassificationAPI

	7.3 Method Implementations
	7.3.1 Class: Word
	7.3.2 Class: PlainText
	7.3.3 Class: KNearestNeighbor
	7.3.4 Class: TextClassificationAPI

	7.4 Graphic User Interface and Demonstration
	7.4.1 Class: TextClassificationGUI
	7.4.2 Preliminary Tasks and Encoding
	7.4.3 Classification Process
	7.4.4 System Upgrading

	7.5 Summary and Further Discussions

	8 Text Categorization: Evaluation
	8.1 Evaluation Overview
	8.2 Text Collections
	8.2.1 NewsPage.com
	8.2.2 20NewsGroups
	8.2.3 Reuter21578
	8.2.4 OSHUMED

	8.3 F1 Measure
	8.3.1 Contingency Table
	8.3.2 Micro-Averaged F1
	8.3.3 Macro-Averaged F1
	8.3.4 Example

	8.4 Statistical t-Test
	8.4.1 Student's t-Distribution
	8.4.2 Unpaired Difference Inference
	8.4.3 Paired Difference Inference
	8.4.4 Example

	8.5 Summary and Further Discussions

	Part III Text Clustering
	9 Text Clustering: Conceptual View
	9.1 Definition of Text Clustering
	9.2 Data Clustering
	9.2.1 SubSubsectionTitle
	9.2.2 Association vs Clustering
	9.2.3 Classification vs Clustering
	9.2.4 Constraint Clustering

	9.3 Clustering Types
	9.3.1 Static vs Dynamic Clustering
	9.3.2 Crisp vs Fuzzy Clustering
	9.3.3 Flat vs Hierarchical Clustering
	9.3.4 Single vs Multiple Viewed Clustering

	9.4 Derived Tasks from Text Clustering
	9.4.1 Cluster Naming
	9.4.2 Subtext Clustering
	9.4.3 Automatic Sampling for Text Categorization
	9.4.4 Redundant Project Detection

	9.5 Summary and Further Discussions

	10 Text Clustering: Approaches
	10.1 Unsupervised Learning
	10.2 Simple Clustering Algorithms
	10.2.1 AHC Algorithm
	10.2.2 Divisive Clustering Algorithm
	10.2.3 Single Pass Algorithm
	10.2.4 Growing Algorithm

	10.3 K Means Algorithm
	10.3.1 Crisp K Means Algorithm
	10.3.2 Fuzzy K Means Algorithm
	10.3.3 Gaussian Mixture
	10.3.4 K Medoid Algorithm

	10.4 Competitive Learning
	10.4.1 Kohonen Networks
	10.4.2 Learning Vector Quantization
	10.4.3 Two-Dimensional Self-Organizing Map
	10.4.4 Neural Gas

	10.5 Summary and Further Discussions

	11 Text Clustering: Implementation
	11.1 System Architecture
	11.2 Class Definitions
	11.2.1 Classes in Text Categorization System
	11.2.2 Class: Cluster
	11.2.3 Interface: ClusterAnalyzer
	11.2.4 Class: AHCAlgorithm

	11.3 Method Implementations
	11.3.1 Methods in Previous Classes
	11.3.2 Class: Cluster
	11.3.3 Class: AHC Algorithm

	11.4 Class: ClusterAnalysisAPI
	11.4.1 Class: ClusterAnalysisAPI
	11.4.2 Class: ClusterAnalyzerGUI
	11.4.3 Demonstration
	11.4.4 System Upgrading

	11.5 Summary and Further Discussions

	12 Text Clustering: Evaluation
	12.1 Introduction
	12.2 Cluster Validations
	12.2.1 Intra-Cluster and Inter-Cluster Similarities
	12.2.2 Internal Validation
	12.2.3 Relative Validation
	12.2.4 External Validation

	12.3 Clustering Index
	12.3.1 Computation Process
	12.3.2 Evaluation of Crisp Clustering
	12.3.3 Evaluation of Fuzzy Clustering
	12.3.4 Evaluation of Hierarchical Clustering

	12.4 Parameter Tuning
	12.4.1 Clustering Index for Unlabeled Documents
	12.4.2 Simple Clustering Algorithm with Parameter Tuning
	12.4.3 K Means Algorithm with Parameter Tuning
	12.4.4 Evolutionary Clustering Algorithm

	12.5 Summary and Further Discussions

	Part IV Advanced Topics
	13 Text Summarization
	13.1 Definition of Text Summarization
	13.2 Text Summarization Types
	13.2.1 Manual vs Automatic Text Summarization
	13.2.2 Single vs Multiple Text Summarization
	13.2.3 Flat vs Hierarchical Text Summarization
	13.2.4 Abstraction vs Query-Based Summarization

	13.3 Approaches to Text Summarization
	13.3.1 Heuristic Approaches
	13.3.2 Mapping into Classification Task
	13.3.3 Sampling Schemes
	13.3.4 Application of Machine Learning Algorithms

	13.4 Combination with Other Text Mining Tasks
	13.4.1 Summary-Based Classification
	13.4.2 Summary-Based Clustering
	13.4.3 Topic-Based Summarization
	13.4.4 Text Expansion

	13.5 Summary and Further Discussions

	14 Text Segmentation
	14.1 Definition of Text Segmentation
	14.2 Text Segmentation Type
	14.2.1 Spoken vs Written Text Segmentation
	14.2.2 Ordered vs Unordered Text Segmentation
	14.2.3 Exclusive vs Overlapping Segmentation
	14.2.4 Flat vs Hierarchical Text Segmentation

	14.3 Machine Learning-Based Approaches
	14.3.1 Heuristic Approaches
	14.3.2 Mapping into Classification
	14.3.3 Encoding Adjacent Paragraph Pairs
	14.3.4 Application of Machine Learning

	14.4 Derived Tasks
	14.4.1 Temporal Topic Analysis
	14.4.2 Subtext Retrieval
	14.4.3 Subtext Synthesization
	14.4.4 Virtual Text

	14.5 Summary and Further Discussions

	15 Taxonomy Generation
	15.1 Definition of Taxonomy Generation
	15.2 Relevant Tasks to Taxonomy Generation
	15.2.1 Keyword Extraction
	15.2.2 Word Categorization
	15.2.3 Word Clustering
	15.2.4 Topic Routing

	15.3 Taxonomy Generation Schemes
	15.3.1 Index-Based Scheme
	15.3.2 Clustering-Based Scheme
	15.3.3 Association-Based Scheme
	15.3.4 Link Analysis-Based Scheme

	15.4 Taxonomy Governance
	15.4.1 Taxonomy Maintenance
	15.4.2 Taxonomy Growth
	15.4.3 Taxonomy Integration
	15.4.4 Ontology

	15.5 Summary and Further Discussions

	16 Dynamic Document Organization
	16.1 Definition of Dynamic Document Organization
	16.2 Online Clustering
	16.2.1 Online Clustering in Functional View
	16.2.2 Online K Means Algorithm
	16.2.3 Online Unsupervised KNN Algorithm
	16.2.4 Online Fuzzy Clustering

	16.3 Dynamic Organization
	16.3.1 Execution Process
	16.3.2 Maintenance Mode
	16.3.3 Creation Mode
	16.3.4 Additional Tasks

	16.4 Issues of Dynamic Document Organization
	16.4.1 Text Representation
	16.4.2 Binary Decomposition
	16.4.3 Transition into Creation Mode
	16.4.4 Variants of DDO System

	16.5 Summary and Further Discussions

	References
	Index

Table of Contents
Preface
Contents
Part I Foundation
1 Introduction
1.1 Definition of Text Mining

1.2 Texts

1.2.1 Text Components

1.2.2 Text Formats

1.3 Data Mining Tasks

1.3.1 Classification

1.3.2 Clustering

1.3.3 Association

1.4 Data Mining Types

1.4.1 Relational Data Mining

1.4.2 Web Mining

1.4.3 Big Data Mining

1.5 Summary

2 Text Indexing
2.1 Overview of Text Indexing

2.2 Steps of Text Indexing

2.2.1 Tokenization

2.2.2 Stemming

2.2.3 Stop-Word Removal

2.2.4 Term Weighting

2.3 Text Indexing: Implementation

2.3.1 Class Definition

2.3.2 Stemming Rule

2.3.3 Method Implementations

2.4 Additional Steps

2.4.1 Index Filtering

2.4.2 Index Expansion

2.4.3 Index Optimization

2.5 Summary

3 Text Encoding
3.1 Overview of Text Encoding

3.2 Feature Selection

3.2.1 Wrapper Approach

3.2.2 Principal Component Analysis

3.2.3 Independent Component Analysis

3.2.4 Singular Value Decomposition

3.3 Feature Value Assignment

3.3.1 Assignment Schemes

3.3.2 Similarity Computation

3.4 Issues of Text Encoding

3.4.1 Huge Dimensionality

3.4.2 Sparse Distribution

3.4.3 Poor Transparency

3.5 Summary

4 Text Association
4.1 Overview of Text Association

4.2 Data Association

4.2.1 Functional View

4.2.2 Support and Confidence

4.2.3 Apriori Algorithm

4.3 Word Association

4.3.1 Word Text Matrix

4.3.2 Functional View

4.3.3 Simple Example

4.4 Text Association

4.4.1 Functional View

4.4.2 Simple Example

4.5 Overall Summary

Part II Text Categorization
5 Text Categorization: Conceptual View
5.1 Definition of Text Categorization

5.2 Data Classification

5.2.1 Binary Classification

5.2.2 Multiple Classification

5.2.3 Classification Decomposition

5.2.4 Regression

5.3 Classification Types

5.3.1 Hard vs Soft Classification

5.3.2 Flat vs Hierarchical Classification

5.3.3 Single vs Multiple Viewed Classification

5.3.4 Independent vs Dependent Classification

5.4 Variants of Text Categorization

5.4.1 Spam Mail Filtering

5.4.2 Sentimental Analysis

5.4.3 Information Filtering

5.4.4 Topic Routing

5.5 Summary and Further Discussions

6 Text Categorization: Approaches
6.1 Machine Learning

6.2 Lazy Learning

6.2.1 K Nearest Neighbor

6.2.2 Radius Nearest Neighbor

6.2.3 Distance-Based Nearest Neighbor

6.2.4 Attribute Discriminated Nearest Neighbor

6.3 Probabilistic Learning

6.3.1 Bayes Rule

6.3.2 Bayes Classifier

6.3.3 Naive Bayes

6.3.4 Bayesian Learning

6.4 Kernel Based Classifier

6.4.1 Perceptron

6.4.2 Kernel Functions

6.4.3 Support Vector Machine

6.4.4 Optimization Constraints

6.5 Summary and Further Discussions

7 Text Categorization: Implementation
7.1 System Architecture

7.2 Class Definitions

7.2.1 Classes: Word, Text, and PlainText

7.2.2 Interface and Class: Classifier and KNearestNeighbor

7.2.3 Class: TextClassificationAPI

7.3 Method Implementations

7.3.1 Class: Word

7.3.2 Class: PlainText

7.3.3 Class: KNearestNeighbor

7.3.4 Class: TextClassificationAPI

7.4 Graphic User Interface and Demonstration

7.4.1 Class: TextClassificationGUI

7.4.2 Preliminary Tasks and Encoding

7.4.3 Classification Process

7.4.4 System Upgrading

7.5 Summary and Further Discussions

8 Text Categorization: Evaluation
8.1 Evaluation Overview

8.2 Text Collections

8.2.1 NewsPage.com

8.2.2 20NewsGroups

8.2.3 Reuter21578

8.2.4 OSHUMED

8.3 F1 Measure

8.3.1 Contingency Table

8.3.2 Micro-Averaged F1

8.3.3 Macro-Averaged F1

8.3.4 Example

8.4 Statistical t-Test

8.4.1 Student's t-Distribution

8.4.2 Unpaired Difference Inference

8.4.3 Paired Difference Inference

8.4.4 Example

8.5 Summary and Further Discussions

Part III Text Clustering
9 Text Clustering: Conceptual View
9.1 Definition of Text Clustering

9.2 Data Clustering

9.2.1 SubSubsectionTitle

9.2.2 Association vs Clustering

9.2.3 Classification vs Clustering

9.2.4 Constraint Clustering

9.3 Clustering Types

9.3.1 Static vs Dynamic Clustering

9.3.2 Crisp vs Fuzzy Clustering

9.3.3 Flat vs Hierarchical Clustering

9.3.4 Single vs Multiple Viewed Clustering

9.4 Derived Tasks from Text Clustering

9.4.1 Cluster Naming

9.4.2 Subtext Clustering

9.4.3 Automatic Sampling for Text Categorization

9.4.4 Redundant Project Detection

9.5 Summary and Further Discussions

10 Text Clustering: Approaches
10.1 Unsupervised Learning

10.2 Simple Clustering Algorithms

10.2.1 AHC Algorithm

10.2.2 Divisive Clustering Algorithm

10.2.3 Single Pass Algorithm

10.2.4 Growing Algorithm

10.3 K Means Algorithm

10.3.1 Crisp K Means Algorithm

10.3.2 Fuzzy K Means Algorithm

10.3.3 Gaussian Mixture

10.3.4 K Medoid Algorithm

10.4 Competitive Learning

10.4.1 Kohonen Networks

10.4.2 Learning Vector Quantization

10.4.3 Two-Dimensional Self-Organizing Map

10.4.4 Neural Gas

10.5 Summary and Further Discussions

11 Text Clustering: Implementation
11.1 System Architecture

11.2 Class Definitions

11.2.1 Classes in Text Categorization System

11.2.2 Class: Cluster

11.2.3 Interface: ClusterAnalyzer

11.2.4 Class: AHCAlgorithm

11.3 Method Implementations

11.3.1 Methods in Previous Classes

11.3.2 Class: Cluster

11.3.3 Class: AHC Algorithm

11.4 Class: ClusterAnalysisAPI

11.4.1 Class: ClusterAnalysisAPI

11.4.2 Class: ClusterAnalyzerGUI

11.4.3 Demonstration

11.4.4 System Upgrading

11.5 Summary and Further Discussions

12 Text Clustering: Evaluation
12.1 Introduction

12.2 Cluster Validations

12.2.1 Intra-Cluster and Inter-Cluster Similarities

12.2.2 Internal Validation

12.2.3 Relative Validation

12.2.4 External Validation

12.3 Clustering Index

12.3.1 Computation Process

12.3.2 Evaluation of Crisp Clustering

12.3.3 Evaluation of Fuzzy Clustering

12.3.4 Evaluation of Hierarchical Clustering

12.4 Parameter Tuning

12.4.1 Clustering Index for Unlabeled Documents

12.4.2 Simple Clustering Algorithm with Parameter Tuning

12.4.3 K Means Algorithm with Parameter Tuning

12.4.4 Evolutionary Clustering Algorithm

12.5 Summary and Further Discussions

Part IV Advanced Topics
13 Text Summarization
13.1 Definition of Text Summarization

13.2 Text Summarization Types

13.2.1 Manual vs Automatic Text Summarization

13.2.2 Single vs Multiple Text Summarization

13.2.3 Flat vs Hierarchical Text Summarization

13.2.4 Abstraction vs Query-Based Summarization

13.3 Approaches to Text Summarization

13.3.1 Heuristic Approaches

13.3.2 Mapping into Classification Task

13.3.3 Sampling Schemes

13.3.4 Application of Machine Learning Algorithms

13.4 Combination with Other Text Mining Tasks

13.4.1 Summary-Based Classification

13.4.2 Summary-Based Clustering

13.4.3 Topic-Based Summarization

13.4.4 Text Expansion

13.5 Summary and Further Discussions

14 Text Segmentation
14.1 Definition of Text Segmentation

14.2 Text Segmentation Type

14.2.1 Spoken vs Written Text Segmentation

14.2.2 Ordered vs Unordered Text Segmentation

14.2.3 Exclusive vs Overlapping Segmentation

14.2.4 Flat vs Hierarchical Text Segmentation

14.3 Machine Learning-Based Approaches

14.3.1 Heuristic Approaches

14.3.2 Mapping into Classification

14.3.3 Encoding Adjacent Paragraph Pairs

14.3.4 Application of Machine Learning

14.4 Derived Tasks

14.4.1 Temporal Topic Analysis

14.4.2 Subtext Retrieval

14.4.3 Subtext Synthesization

14.4.4 Virtual Text

14.5 Summary and Further Discussions

15 Taxonomy Generation
15.1 Definition of Taxonomy Generation

15.2 Relevant Tasks to Taxonomy Generation

15.2.1 Keyword Extraction

15.2.2 Word Categorization

15.2.3 Word Clustering

15.2.4 Topic Routing

15.3 Taxonomy Generation Schemes

15.3.1 Index-Based Scheme

15.3.2 Clustering-Based Scheme

15.3.3 Association-Based Scheme

15.3.4 Link Analysis-Based Scheme

15.4 Taxonomy Governance

15.4.1 Taxonomy Maintenance

15.4.2 Taxonomy Growth

15.4.3 Taxonomy Integration

15.4.4 Ontology

15.5 Summary and Further Discussions

16 Dynamic Document Organization
16.1 Definition of Dynamic Document Organization

16.2 Online Clustering

16.2.1 Online Clustering in Functional View

16.2.2 Online K Means Algorithm

16.2.3 Online Unsupervised KNN Algorithm

16.2.4 Online Fuzzy Clustering

16.3 Dynamic Organization

16.3.1 Execution Process

16.3.2 Maintenance Mode

16.3.3 Creation Mode

16.3.4 Additional Tasks

16.4 Issues of Dynamic Document Organization

16.4.1 Text Representation

16.4.2 Binary Decomposition

16.4.3 Transition into Creation Mode

16.4.4 Variants of DDO System

16.5 Summary and Further Discussions

References
Index

images/00185.jpg
int computeWordFrequency(String fullText)({
if (fullText.length() == 0){
return 0;
}
int offset = fullText.indexOf (this.wordName):
if (offsec == -1){
return 0;
}

return 1 + computeWordFrequency (fullText.substring(offset + 1))

images/00184.jpg
package TextClusterAnalysis;

public class PlainText extends Text {

public PlainText(String textFileName)({
this.textFileName = texcFileName:

}

void setTextlabel(String textlabel) {
this.textlabel = texclabel;

}

void setFullText (String fullText)(
this.fullText = fullText:

)

String getTexcFileName() {
retarn this.textFileName;

b

String getTexclabel() {
return this.textlabel;

b

String getFullText() {
return this.fullText:

void loadFullText() {}

void indexFullText() {}

void encodeFullTexc (int dimension) {}

double computeSimilarity(Text another)
return 0.

images/00187.jpg
Cosine Similarity

Training Examples or
ning P Euclidean Distance

[a“,‘..al,,]-f— [@lseny]2 Novice Example

[azl""azd]+

oy |-

[.. 1+ +
[aNl"“'aMI]_ []_ [> or

K most similar
vectors

images/00186.jpg
public void flatSampleTextlist(){
int size = this.categoryList.size():
System.out.println("size = " + size):
for(int i = 0;i < size; i++){
Category categoryltem = this.categoryList.elementAt(i);
int categorySize = categoryltem.getSize():
String categoryName = categoryltem.getCategoryName () :
for(int j = 0;j < categorySize: j++){
Text texcItem = categoryltem.getSampleTextItem(s):
textItem.secTextlabel (categoryName);
this.sampleTexclist.addElement (textItem) ;

images/00181.jpg
Wi

. . . . Way
Indexing Weighting Filtering
Wi

images/00180.jpg

images/00183.jpg
int computeWordFrequency (String fullTexc)({
if (fullTexc.length() == 0){
return 0;
3
int offse = fullTexc.
if(offser == -1){
return 0;

rdexOf (this.wordName) ;

3
return 1 + computeWordFrequency(fullText.substring(offsec + 1)):

images/00182.jpg
private void loadTextContent(){
FileString fs = new FileString(this.fileName):
fs.loadFileString():
this.textContent = fs.getFileString();:

private void tokenizeTextContent(){
String[] tokenList = this.textContent.split(" .2!");
int size = tokenList.length;
for(int i = 0;i < size;i++){
Word indiviWord = new Word (tokenList[i].toLowerCase()):
this.wordList.addElement (indivWord);

cover.jpeg
Studies in Big Data 45

Taeho Jo

Text Mining

Concepts, Implementation, and Big
Data Challenge

@ Springer

images/00179.jpg

images/00178.jpg
4 Testing Buttons - o X

—
Category List: fusmess |

Add Category || Delete Category

D:bu0001.txt mition
D:bu0002.txt alert
D:bu0003.txt providing
Dbu0004.txt night
Sample Texts: Feature List: |
D:bu0005.txt daily
;mlomunon
provide
! .

Add Sample Texts ‘ ‘ Show Sample Texts : Encode Sample Texts

Novice Texts:

Add Novice Texts Classify Novice Texts

images/00174.jpg

images/00173.jpg
Corpus = 1 e

Indexing Filtering N>>M Text

Arrangement

images/00176.jpg
1

Numerical
Vector
Document
Full Text
< L~ Partition
Text
Summarizer

Paragraphs

Summary

;/

Classifier

'fobic
or
Topics

images/00175.jpg
void encodefullText (int dimension, Vector<String> featurelist){
int featureSize = featurelist.size():
if(dimension != featuraSize)(
System.out.printin("Mismatch between dimension and feature size!l");
return;

this.featureVector = new int(dimension]:

for(int i = 0;1 < dimension;iss){
Scring featureName = featurelisc.elementac(i):
this.featureVector[1] = this.computeWordfrequency(featureName, thi

fallText):

images/00170.jpg

images/00169.jpg
AR

® D:bu0001.txt: Business
D:\bu0002.txt: Business
D:\bu0003.txt: Business
D:\bu0004.txt: Business
D:\bu0005.txt: Business
D:\bu0006.txt: Internet
D:\bu0007.txt: Internet
D:\bu0008.txt: Internet
D:\bu0009.txt: Internet
D:\bu0010.txt: Internet

images/00172.jpg
better good

best good
simpler simple
simplest simple
assigning assign
assigned assign
assignment assign
complexity complex
analysis analyze
categorization categorize
categorizing categorize

categorizes categorize

images/00171.jpg
Text1 computer business information Item Set Support | Selection

Text2 company computer {company, information}
Text3 company computer information {computer, information)
Text4 business computer » {business, information}
Text5 business information {company, computer}
Text6 business {business, company)
Text7 company information {business, computer)

Text8 company computer
Support Threshold = 025 Confidence Threshold = 0.25

FrequentWordList = {business company computer information}
FrequentWordSetList

({business}, {company}, {computer}, {information}}

o

o0 xo0o0 x

images/00177.jpg
@

import java.io.*:
public class FileString {

String fileName;
String fileString:
public FileString(String fileName){
this.fileName = fileName;
this.fileString = "";
¥
public FileString(String fileName, String fileString){
this.fileName = fileName;
this.fileString = fileString:
H
public String getFileString(){
retarn this.fileString;
H
public void setFileString(String fileString){
this.fileString = fileString;
)
public void loadFileString(){}
public void saveFileString(){}

images/00168.jpg

images/00163.jpg

images/00162.jpg
Classifier

Yes No

Classifier

Yes No

images/00165.jpg
Subgroups

. Clustering N)
Algorithm ? :

images/00164.jpg
[Class 1_|=>{ cisatemion | OR<
Conti '
owa = | [i s (o] v

[interval 1] [lass M |=> o] or<" *

images/00159.jpg
Hard Classification Soft Classification

gory 1 | Cotegory2 | Category3 | Category Category 1 | Gategory2 | Category3 | Categorys
tem 1 ° B X X tem 1 ° X o X
tem 2 % o X x tem2 x ° o °
tem 3 x x B ° tem 3 ° X X °
tem 4 % o X X tem 4 X o X X
tem s X o X x tem s ° ° X x
tem 6 o x x x tem 6 ° X o %
tem 7 B 3 o x fem 7 X x o X
tem x ° x x tem 8 x ° ° x

images/00158.jpg
public boolean isRegistered(Word indivWord) {
String wordName = indiviWWord.getWordName():
int size = this.variedFormlList.size():
for(int i = 0;i < size;i++){
String variedForm = (String)this.variedFormList.elementAt(i):
if (wordName == variedForm)
return true;
}
return false;

images/00161.jpg
void loadFullText() {
FileString fs = new FileString(this.textFileName):
fs.loadFileString();
this.fullText = fs.gecFileString():

images/00160.jpg
Test
Collection

Training

N Leami
ﬁ/ earning

Training set
Set External
e]
Validation Parameter
Set Tunir
uning
Test Test) i
Tes St)Evalua(lon

images/00009.jpg
I Text

" Indexer

Document

Keyword 1
Keyword 2

Keyword K

Word 1
Word 2

Word N

Keyword
Extraction

images/00008.jpg
double computeSimilarity(Cluster another){
int sizel = this.getSize():
int size2 = ancther.getSize():
double totalSimilarity = 0.0;
for(int i = 0:i < sizel: 1++){
Text textIteml = this.getTexcItem(i):
for(int 3 = 0;3 < size2;j++){
Text textIvem2 = another.getTextItem(3);
double similarity = vextlteml.computeSimilarity(texcItem):
TotalSimilarity = totalSimilarity + similarity;

3
return totalSimilarity/ (double) (sizel = size2):

images/00011.jpg

images/00167.jpg
Document

Full Text

Summary

Encoding

] 14 Classifier

Numerical
Vector |
Category
or
Categories

images/00010.jpg
bs Airways wrestles with baggage crisis

Financially troubled US Airways scrambled Monday to reunite
thousands of pieces of baggage with travelers after a dismal
series of setbacks.

The avalanche of bad news began Thursday when bad weather caused
flight relocations from Philadelphia along with a higher-than-
average number of sick calls from its baggage handlers.

images/00166.jpg
______| Cluster1 | Cluster2 | Cluster3 | Clusterd_

Item 1 0.71 0.34 0.45 0.63
Item 2 0.82 0.68 0.45 0.31
Item 3 0.34 035 0.61 0.59
Item 4 0.11 0.87 0.76 043
Item 5 023 0.74 0.62 0.19
Item 6 0.53 0.57 0.59 0.34
Item 7 043 0.86 0.83 0.48

Item 8 0.32 0.59 0.73 0.26

images/00013.jpg
public class AHCAlgorithm implements ClusterAnalyzer
int clusterListSize;
Vector<Text> textlist:
Vector<Cluster> cluscterlist:

public AHCAlgorithm(int clusterLiscSize){
this.clusterListSize = clusterListSize;
this.clusterList = new Vector<Cluster>():

public void setTexcList (Vector<Text> textlisct) {
this.cextlist = texclisc:

public Vector<Cluster> getClusterList() {
return this.clusterlist:

public void initializeClusterList(){

public void clusterTextList() {

images/00012.jpg
Binary
Classifier

Binary
Classifier

Binary
Classifier

‘Summary

Non
‘Summary
‘Summary

Non
‘Summary

Summary

Non
Summary

images/00152.jpg
Full Text

Document

images/00151.jpg
double computelntraClusterSimilaricy(){
int size = this.getSize():
double totalSimilarity = 0.
for(int i = 0;1 < size; i++){
Text texcIteml = this.getTextItem(i):
for(int 3 = 1;3 < size;3+#){
Text textItem2 = this.getTexcItem(3):

double similarity = textIteml.computeSimilarity(textlts
totalSimilarity = totalSimilarity + similarit:

¥
return (2 + totalSimilarity)/(size ¢ (size -1));

)

images/00154.jpg
package TextClusterAnalysis;

public class Word {
String wordName;
int wordFrequency;
public Word(String wordName){
this.wordName = wordName;
this.wordFrequency = 0;

void setWordFrequency(int wordFrequency) {
this.wordFrequency = wordFrequency;

String getWordName () ({
retarn this.wordName;

int getWordFrequency(){
return this.wordFrequency:

images/00153.jpg
package TextClusterAnalysis;
import java.util.=:
public abstract class Text {
String textFileName;
Vector<Word> wordList;
String fullText;
String textlabel;
double featureVector[]:

abstract void setTextLabel (String textlabel):
abstract void setFullText (String fullText);
abstract String getTextFileName();

abstract String getTextlabel():

abstract String getFullText():

abstract void loadFullText();:

abstract void indexFullText():

abstract void encodeFullText (int dimension):
abstract double computeSimilarity(Text another);

images/00150.jpg

images/00149.jpg
Full Text Summary

TXTRSSI. B

Understanding

images/00156.jpg
Not

¢ Classifier }Llnlerasllng User 1
/ L |

4 . Not
¥

Not

Y — /
4 Classifier ' Imereslingm
Ratad

images/00155.jpg
P(k-1), Pk | L

Adjacent Paragraph Pairs Numerical Vector Pairs

images/00157.jpg
3 Binary
A Classifier
F Binary
< Topie2— | Glagsifier
Text
Classifier
" Bina
L) ry
Topic K Classifier

‘Summary
Non
‘Summary
Summary

Non
Summary

Summary

Non
Summary

images/00002.jpg

images/00001.jpg
package TextClusterAnalysis:
public class FileString {
String fileName:
String fileString:
public FileString(String fileName){
this.fileName = fileName;
this.fileString = "

public FileString(String fileName, String fileString){
this.fileName = fileName:
this.fileString = fileString:

}

public String getFileString(){
return this.fileString:

}

public void setFileString(String fileString){
this.fileString = fileString;

}

public void loadFileString(){}

public void saveFileString(){}

images/00004.jpg
void mergeCluster (Cluster another){
int size = another.getSize():;
for(int i = 0;1 < size; i++){
Text textItem = another.getTextItem(i);
this.textlist.addElement (textItem)

images/00003.jpg
1D Authors _|Title __________JYear ____

il
2
3
4

Taeho Jo
Taeho Jo
Taeho Jo

Taeho Jo

Text Mining
Neural Networks
Machine Learning

Information Retrieval

1999
2000
2001
2002

images/00006.jpg
public class TexcClassificatiomAPI {
Vector<Text> sampleTextlist:
Vector<Text> noviceTextlis:
Vector<String> featurelist;
Vector<String> categorylist
int dimension;
public TextClassificationAPI(int dime:
this.dimension = dimension

public void secSampleTextList(Vector<Text> sampleTextlList){
this.sampleTextlist = sampleTextlist;

public void setNoviceTextlist(Vector<Text> noviceTextlist)(
this.noviceTexcLisc = noviceTextlisc;

public void secCategroyList (Vector<String> categorylist){
this.categorylist = categorylis

public Vector<Texc> gecNoviceTexclList(){
return this.noviceTexclist;

y

public void loadSampleTextList(){(}

public void loadNoviceTextList(){(}

public void encodeSampleTexclist(){}

public void encodeNoviceTexclist()(}

public void classifyNoviceTextlList(){}

public void generateFeaturelist()(}

public void flatSampleTexcList(){}

images/00005.jpg
public void classifyNoviceTextlist(){
Classifier textClassifier = new KNearestNeighbor();
textClassifier.setSampleTextlist (this.sampleTextlist):
textClassifier.setNoviceTextlist (this.noviceTextlist);
texcClassifier.classifyNoviceTexclisc():
this.noviceTextlist = textClassifier.getNoviceTextlist();
int size = this.noviceTextList.size():
for(int i = 0; i < size; i++){
Text textItem = this.noviceTexclist.elementht(i):
String textFileName = textItem.getTextFileName ()
String textlabel = textItem.getTextlabel():
System.out.princln(textFileName + ": " + cextLabel);

images/00007.jpg

images/00141.jpg
boolean isFresent(String fullText){
int position = fullText.indexOf (this.wordName);
if (position != -1)
return true;
return false;

images/00140.jpg
pehiic class TentClustexinalyaishfl (

Pubiic TexccusceravayssaAPE (int dimensicn)

e void serTenciast (ecsorcient> exeiise) |

e Vet cciustes gerciusteriinn ¢

Pubie void adsTensTiehne (ing coxcriieiane)

)

puwite void Jonszencisnn)
e i cexetioe o mll) ¢

Dublic veid encodeTextlion(){
2 (ot ceetan = oaid) O
Siavan. st pranein (Ll Fesncer!1%)3

pesttc voa clsscertexcisse () ¢
Siscan. oot prinein (“TaxcElssterinat RS clsszerTaxtList) 101
Cliaterinaiyzer sexecleasicies - new Asglerscveierarnicaiciisterina
Leier serTexciie (this.centiion ¢
itier SiuaterTexciin (1
Ui clunEeriist = CeNCIABRLEAE. SOLCIURSRLLFE)1
int- size = this.clusteriant.size s
Cor(int 5 = 03 4 < s1287 eap1
luster clustericen = this.cliscesiist elenencht (1
ot cluscariise = slesteriven.gecsie()s
for(ine 3 = 633 < slaseersizesi oo |
Texs ceacioen - sssterizen,gerTexcisen(s) s
String cextTiieiams = cexciiam. qutTexcriielana ()
Sistam. o printin (textriietam

pstic votd genezaterescazeLise () ¢
12 (thus.Texetast o moan) (

Stesag inegeacesrutitos -
Cortune & = ori < sazer 1) (
evemrateatuiiTens + textitem.geCRITORE)

Texs snsepzacedtexs = naw SlainTex ("dummysieaner)
Lotepracedians set i Texs (secegsacadriiiTet

images/00143.jpg
private Vector loadStemmingRulelist(String stemmingRuleFileName){
Vector stemmingRulelist = new Vector():
FileString fs = new FileString(stemmingRuleFileName);
£s.loadFileString();
String stemmingRuleStream = fs.getFileString():
String[] linelist = stemmingRuleStream.split("\n");
for(int i = 0;i < lineList.length ;i++){
StemmingRule rule = new StemmingRule (lineList(i]):
stemmingRulelist.addElement (rule);
3
return stemmingRuleList;

private String changeRootForm(Word indivWord,Vector stemmingRuleList)({
String wordName = indiviord.getWordName () :
int size = stemmingRuleList.size():
for(int i = 0;i < size;i++){
StemmingRule rule = (StemmingRule)stemmingRulelist.elementAt(i);
if (rule.isRegistered (indiviord)){
String rootForm = rule.getRootForm():
return rootForm;

return indivilord.getWordName () ;

private void stemWordList(String stemmingRuleFileName){
Vector stemmingRuleList = this.loadStemmingRuleList (stemmingRuleFileNam
int size = this.wordList.size():
for(int i = 0;1 < size;i++){
Word indiviord = (Word)this.wordList.elementAc (i):
indiviord. secWordName (this.changeRootForm (indivilord, scemmingRuleLis
this.wordList.secElementAt (indiviord, 1);

images/00142.jpg
_ | Cluster 1] Cluster2 | Cluster3 | Clusterd_

Word 1 o X X X
Word 2 X o X X
Word 3 X X X (0]
Word 4 X o X X
Word 5 X o} X X
Word 6 (0] X X X
Word 7 X X o X
Word 8 X o X X

images/00139.jpg
N Toxts:

wen

=920 [0wa)

0t et [y
Dorsuar oot eom oona
5303 nnrs (S Yt
| Soomws Qo [momssa
| Gromer Qoown Duomsa

(e [oo

I3 1B 50005 500008 B 500007 500008 540009 b 5000103]

D T

w1

["éj

images/00138.jpg
Summary 1

Query 1
J
Query 2 _Summary 2
Query k
J
Summary k

Document

images/00029.jpg
Summary

Summary

Summary

™
mf Summary

1N
m Summary

Eﬁ,‘

EE) -
o} =)

images/00028.jpg
Indexing

Keyword
Extraction

Integrated Keyword Set = Taxonomy

images/00031.jpg
Unlabled Raw Texts Numerical Vectors

images/00030.jpg
<Document>
<Title> Text Mining </Title>
<Author> Taeho Jo</Author>
<Abstract>Text mining refers to the process of
extracting important knowledge from textual collection.
</Abstract>
<Publication>2001</Publication>
</Document>

images/00033.jpg

images/00145.jpg

images/00032.jpg
public void saveFileString(){
eyl
RandomAccessFile stream = new RandomAccessFile (this.fileName, "rw");
stream.writeBytes (this.fileString);
sctream.close();
}ecateh (IOException e)({
System.out.println("There is the error in file processing!!" + e);

images/00144.jpg

images/00035.jpg
Vector<String> generateFeaturelist (int dimension){
this. indexFullTexc () ;
Af(this.wordlist == null)
retarn null;
int size = this.wordList.size():
Vector<string> sortediordNameList = new Vector<String>():
for(int i = 0;i < dimension;i++){
int maxFrequency = 0;
int maxIndex = 0;
for(int 3 = 0:3 < size;3+4){
String wordItem = this.wordList.elementAt(3):
int wordFrequency = this.compuceWordFrequency (wordItem, this.fullTexc);
1f (maxFrequency < wordfrequency) {
maxFrequency = wordFrequency:
maxIndex = 3:

3
String maxWordItem = this.wordList.elemencAc (maxIndex);
sortediordNameList . addElement (maxWordIten) ;
this.wordList.remove (maxIndex) :
size = this.wordList.size():

i

return sorcedWordNameList;

images/00034.jpg
—
-
o x. o x,]

m << n ‘x:As—»s:A"x

[31 S, ... Sm]

images/00146.jpg
Politics

Economics

Sports

Classified Negative
Classified Positive

Classified Negative
Classified Positive

Classified Negative
Classified Positive

Classified Negative
Classified Positive

100
100

100
100

200
100

10
40

200
100

10
40

images/00026.jpg

images/00025.jpg
T

Document
[E] TEXT

Document DEeent

images/00027.jpg
b import TextClassification.=*;
public class Main {
public static void main(String(] axgs) (
TextClassificationGUI gui = new TextClassificationGUI():
gui.setDefaultCloseCperation (JFrame,.EXIT ON CLOSE);
gui.setSize(475,650);
gui.setVisible (true);

images/00130.jpg
double computeSimilaricty(Text another) {

int[] anotherfeaturaVector = ancther.gecFeasureVector():

int dimension = this.featureVector.lengch:

int chisNorm = 0;

int anoctherNorm = 0;

int innerproduct = 0;

for(int 1 = 0:1 < dimension;ies)(
thisNorm = chisNorm + (this.featureVector[i] - this.feasureVector(il]);
anotherNorm = anotherNorm + (anotherFeacurevector[i] * anotherFeatureVector(i]):
innexProduct = innerProduct + (anotherfeatureVector(i] - this.featureVector(i]):

double similaricy = (2 + (double)innerProduct)/((double)thisNorm + (double)anotherNorm)
retarn similaricy:

images/00129.jpg
Apriori Association Rules

Item Set | Support | Selection Association Rules | Confidence

{company, information} 025 o company > information 05
{computer, information} 0125 X information > company 05
{business, information) 025 o Wy lsuclinGes <> fitemiEiEm 05
{company, computer} 0.375 o information >business 05
{business, company} 00 X company > computer 0.75
{business, computer} 025 o computer > company 06
business > computer 05

Computer > business 04

FrequentitemList = {business company computer information}
FrequentitemSetList = { {company, information), {business, information),
{company, computer), {business, computer})

ftem Set |_support _|_selection |

{company, computer, information} 0125 X
{business, company, information 00 X
{business, computer, information) 0125 X

{business, company, computer} 0 %

images/00132.jpg
import java.util.*;

public class TextIndexAPI {
Text indivText;
String corpusPath;

public TextIndexAPI(String fileName,String corpusPath){
this.indivIext = new Text (fileName):
this.corpusPath = corpusPath;

public Vector indexText(){
return null;

images/00131.jpg
import java.util.s;

public class Text {
String fileName;
String ctexcContent:
Vector wordList:

public Text(String fileName){
this.fileName = fileName;
this.textContent = "";
this.wordList = new Vector():

public String gecFileName (){
return this.fileName;

public String getTexcContent(){
return this.texcContent;

public Vector getWordList(){
return this.wordList;

public void loadTextContent(){}
private void tokenizeTextContent (){}
private void stemWordList(){}
private void removeStopWozds () {}
public void indexTextContent (){}

images/00128.jpg
. -~ C2
ltem » Classifier

~CM

images/00018.jpg

images/00137.jpg
s,u) a”a‘ Xi = a5 +4a,5,

12

Q1

2
s,u) 7P ‘ Xo = 855 + 8,5,

images/00020.jpg

images/00019.jpg
oL

Adjacent Paragraph Pairs oo
an
s .. 1 Word 11
|) — r

) Word 1N

S |
)

1 Word 21

V i
Word 2N

1 WoraKi

" ok

Features

| Word 11

VWord v

Word 21

Word 2M

| Wordki

! Word KM

images/00022.jpg

images/00134.jpg
package TextClassification;
import java.util.s;
public class Word {
String wordName;
int wordFrequency;
public Word(String wordName) {
this.wordName = wordName;
this.wordFrequency = 0;

void secWordFrequency(int wordFrequency) {
this.wordFrequency = wordFrequency:

String getWordame () {
return this.wordName;

int getWordFrequency () {
return this.wordFrequency;

boolean isPresent(String fullTexc)(
retarn true;

int computeWordFrequency(String fullText){
return 0;

double computeWordWeight (String fullText, Vector textlist){
return 0.0;

double computeWordSimilarity(Word another){
return 0.0;

images/00021.jpg
ltem -{ Classifier

images/00133.jpg

images/00024.jpg
| Clusterl | Cluster2 | Cluster3 | Clusterd_

Item 1 o X X X
Item 2 X o X X
Item 3 X X X (0]
Item 4 X ¢} X X
Item 5 X o X X
Item 6 (0] X X X
Item 7 X X [} X
Item 8 X o X X

images/00136.jpg
public void classifyNoviceTextlist()
int noviceTextSize = this.noviceTextlisc.size():
int sampleTextSize = this.sampleTextlist.size(
for(int 1 = 0;i < noviceTextSize: i++){
Text noviceTextItem = this.noviceTextlisc.elems
double maxSimilarity = 0.0;
int maxIndex = 0;
for(int 3 = 0;3 < sampleTextSize; 3++){
Texc sampleTexcItem = this.sampleTexclist.elementht(3):
double similarity = noviceTextItem.computeSimilarity(sampleTexcItem):
if (maxSimilarity < similaricty)
maxSimilericy = similaricy:
maxIndex = 3:

¥

Text nearsscTextltem = this.sampleTexclist.elementAt (maxIndex):
String classifiedlabel = nearestTexcItem.gecTextlabel();
noviceTextItem.setTextLabel (classifiedlabel);
this.noviceTexclist.setElemencAc (noviceTexcItem, 1);

images/00023.jpg
‘Text categorization refers.
to the process of assign a
category or some
categories among
predefined ones to each
document, automatically.
Text categorization is a
pattern classification task
for text mining and
necessary for efficient
‘management of textual
information systems.

text
categorization
refers

to

the

process

of

assign

a

category

images/00135.jpg
public class Cluster {
int clusterID;
Vector<Texcs> textlist:

public Cluster(int clusterID){
this.cluscerID = clusterID;
this.cexclist = new Vector<Text>();

public int getClusterID(){
retarn clusterl

void addTexcItem(Text textItem)(
this.textList.addElement (texcItes

void addTextItem(String texcFileName){
Text texcItem = new PlainTex (texcFileName):
this.texclist.addElement (textItem)

Text gecTextItem(int index){
return this.ctexcLisc.elementAt (index):

3

Vector getTexcList(){
return this.cexciisc:

3

int getsize(){
return this.texclist.size();

3

void mergeCluster (Cluster another){}

double computelIntraClusterSimilarity() {return 0.0}

double computeInterClusterSimilarity(Cluster another) {return 0.0;}

double computeSimilarity(Cluster another){return 0.0:}

images/00015.jpg

images/00014.jpg

images/00017.jpg
double computelnterClusterSimilarity(Cluster another){
int sizel = this.getSize():
int size2 = another.getSize():
double totalSimilarity = 0.
for(int 1 = 0;1 < sizel; is+){
Text textIteml = this.getTextItem(1);
for(int 3 = 0:3 < size2:;3++){
Text texcltem? = another.getTexcltem(d):
double similarity = TextIteml.computeSimilaricy(cexcItem?):
totalSimilaricy = totalSimilarity + similarity;

return totalSimilarity/(sizel * size2):

images/00016.jpg
‘Segmentation @
=> e Query

@ #*; Relevant

Subtexts

Full Texts Subtexts

Corpus

images/00119.jpg

images/00118.jpg
Texts Subtexts Subtext Clusters

images/00121.jpg
public void loadFileString(){
try(
RandomAccessFile stream = new RandomAccessFile (this.fileName, "z");
long lengch = stream.lengeh()
byte[] byArray = mew byte[(int)lengthl;
stream. readFully (byArray) ;
this.fileString = new String (byArray):
stream.close () ;
Jeateh (IOException e){
System.out.printin("There is the error in file processing!!" +);
)
3

public void saveFilestring(){
tryl
RandomAccessFile stream = new RandomAccessFile (this.fileName, "rw");
stream.writeBytes (this.fileString,
stream.close ()
Jeateh (IOException e)(
System.out.printin("There is the error in file processing!!" + e):

¥

images/00120.jpg

images/00049.jpg
P(k-1), Pk | I

Adjacent Paragraph Pairs Numerical Vectors

images/00048.jpg
package TextClassification:

import java.util.=;

public interface Classifier {
void setSampleTextlist (Vector<Text> sampleTextlist):
void setNoviceTextList (Vector<Text> noviceTextlist);
Vector<Text> getNoviceTextlist():
void learnSampleTextlist();
void classifyNoviceTextlist():

images/00051.jpg
u o i
Topic > Topic
14

Routing

Relevant Texts

images/00127.jpg
public class TextClassificationGUI extends JFrame{
Vector<Category> categorylist;
Vector<String> noviceTextListVector;
Jlabel categorylistlabel;
JComboBox categoryListCombo;
JButton addCategoryButton;
JButton deleteCategoryButton:

Jlabel sampleTextlabel;

Jlist sampleTextlist:

JLabel featurelistlabel:

JList featurelist:

JButton addSampleTextlistButton;:
JButton showSampleTextlistButton;
JButton encodeSampleTextLlistButton;

JLabel noviceTextlabel;

JList noviceTextList;

JButton addNoviceTextlistButton:
JButton classifyNoviceTextlistButton;

TextClassificationAPI textClassifier:

images/00050.jpg
List extractAssociationRuleListiList itemSetList, List itemList)
//Extract Frequent 1-item Sets
for each item in itemList
if(support(item) > supportThreshold)
frequentitemSubsetList.add(itemSet.add(item))
frequentltemList.add(item)
Repeat until No FrequentSubset
frequentitemSubsetList = generateAprorifrequentitemSubsetList, frequentitemList)
for each subset in frequentitemSubsetList
associationRuleList.concat(generateAssociationRuleList(subset))
return associationRuleList

List generateAprori(List itemSetList, List itemList)
for each set in itemSetList
for each item in itemList
if(setnotContain(item) and (setsupport(item) > supportThreshold))
set.add(item)
if(newltemSetListnotContain(set))
newltemSetList.add(set)
return newltemSetList

List generateAssociationRuleList(Set itemSet)
for each set in itemSet
if(set.cardinality > 1)
for each item in set
ruleCandidate € setMakeRule(item, the others)
if(confidence(ruleCandidate) > confidenceThreshold)
associationRuleList.add(ruleCandidate)
return associationRuleList

images/00126.jpg

images/00053.jpg
_

Agent 0 0
business 1 1 0 1
company 0 1 1 0
computation 1 0 0 1
computer 0 1 0 1
information 1 1 1 0
intelligence 1 0 0 1
technology 0 1 0 1

images/00052.jpg
) - |

\
@ Familiar Group
Text Group .
.) Word 1
@ . Word 2 ~ New Topics
1

Alien Group Word N

images/00055.jpg
Numerical Vectors

Feature Generation

Text Encoding

Clustering

images/00123.jpg

images/00054.jpg
public void initializeClusterlList(){
int size = this.textlist.size():
for(int i = 0;i < size;i++){
Text textItem = (Text)this.texctList.elementAt(1):
Cluster clusterItem = new Cluster(i);
clusterItem.addTexcIcen(textitem)
this.clusterlist.addElement (clusterItem)

images/00122.jpg
Input: Labeled training examples, an unlabeled novice example

, and the number of nearest neighbors >K

for each training example
compute the similarity between the training example the novice example
(similarity: Euclidean distance or cosine similarity)

Sort the training examples in descending order of the similarity

(in ascending order of Euclidean distance or in descending order of cosine similarity)

select the K training examples with highest similarity as neighbors

return the majority of labels of neighbors

images/00057.jpg
double computeWordSimilarity(Word another,Vector<String> corpus){
int corpusSize = corpus.size():

int collocacionFrequency = 0.
for(int i = 0;1 < corpusSize ;i+s)(
String corpusFullTexcItem = corpus.elemencht(i):
1f (this.1sPresent (corpusfullTexcItem) |
documencFrequencylss:
1f (ancther. 1sPresent (corpusFullTexcizem))
documencFrequency2et;
A£((this.1sPresenc (corpusFullTexcItem)) & another.isPresent (corpusfullTexcItem))
collocacionfrequencyss;

retarn (2 = collocationfrequency)/ (documencFrequencyl + documencFrequency?);

images/00125.jpg

images/00056.jpg
Preliminary
Tasks

Learning Classification

images/00124.jpg

images/00047.jpg
informaton
computer
dta
technology
longuage

o182
0233469
a9
0869146
0090405

computer
data

informatia

language

technology

Text

computer

images/00108.jpg

images/00110.jpg
Cluster
Nameing ~ Cluster Name 1
|:}\ Cluster Name 2

q
&

Text Group Text Clusters Cluster Names

4

Clusle;li‘iame k

images/00109.jpg
] Testing Buttons

Category List: ' Add Category Delete Category

Sample Texts: Feature List:

Add Sample Texts Show Sample Texts

Encode Sample Texts

Novice Texts:

Add Novice Texts Classify Novice Texts

images/00038.jpg
import java.util.;

public class StemmingRule (
String rootForm;
Vector variedFormList;

public StemmingRule (String line){
String[] tokenList = line.split(" ")
this.rootForm = tokenList(0]:
this.variedFormlist = new Vector():
for(int 1 = < tokenList.length;i+s)
this.variedFormList.addElement (tokenList([i]);

public boolean isRegistered(Word indivWord)({
return true;

images/00040.jpg
athis touch of a certain icy pang along my blood. “Come, sir” said I.
“You forget that have not et the pleasure of your acquaintance. Be
seated, if you please” And I showed him an example, and sat down
myselfin my customary seat and with as fair an imitation of my or-
dinary manner toa patient, s the lateness of the hour, the nature of
my preoccupations, and the horror I had of my visitor, would suffer
me to muster.

Theg your pardon, D Lanyon; e replied civilly enough."What |
you say s very wellfounded; and my impatience has shown ts hels

to my politeness. I come here at the instance of your colleague, Dr.
Henry Jekyll on a piece of business of some moment; and I under-
stood...” He paused and put his hand to his throat, and I could see,

in spite of his collected manner, that he was wrestling against the

approaches of the hysteria—"1 understood. a draver.

But here I took pity on my visitor’s suspense, and some perhaps
on my own growing curiosity.

“Thereit s, sir” said 1, pointing to the draver, where itay on the
floor behind a table and still overed with the sheet.

He sprang to it, and then paused, and laid his hand upon his
heart: I could hear his teeth grate with the convulsive action of his
jaws; and his face was so ghastly to see that I grew alarmed both for
his life and reason.

“Compose yourself? said L.

He turned a dreadful smile to me, and as if with the decision of
despair, plucked away the sheet. At ight of the contents, he uttered
one loud sob of such immense relif that I sat petrifid. And the
next moment,in a voice that was already faily well under control,
“Have you a graduated glass?” he asked.

1 rose from my place with something of an effort and gave him
what he asked.

He thanked me with a smiling nod, measured out a few min-
ims of the red tincture and added one of the powders. The mix-
ture, which was at first of a reddish hue, began, in proportion as the

Summary

images/00116.jpg
Independent

(cClass1) (Class2

Classifier | | Classifier || Classifier

Yes No Yes No Yes No

Depquenl

P)
Class 1
% %

Classifier

Yes No

| |
(Class2)
A o ,‘ -

‘ Classiﬁer‘ Classifier

(Class3)
Y

Yes No

images/00039.jpg
Apriori Association Rules

ftem Set __| Support | Selection Association Rules | Confidence

ftext], text2} 025 o e 05

{text, text3) 0125 X e 05
ftext1, textd} 025 el) O
{text2, text3) 0375 o T 05
{text2ftextd) 00 X text2 > text3 05
ftext3, text4) 025 o YD 10

text2 > text4. 075

‘ textd > text2 04

FrequentitemList = {text1, text2, text3, text4}
FrequentitemSetList = { {text1, text2}, {text1, textd}, {text2, text3} , {text3, text4}}

Item Set | support
{text1, text2, text3} 0125
{text1, text2, textd} 0.125
{text1, text3, text4} 0.0

{text2, text3, text4} 0.0

images/00115.jpg
Original Text

Document Text2 Text3

images/00042.jpg

images/00041.jpg

images/00117.jpg
public void generateFeaturelist(){
if (this.sampleTextlist == null){
System.out.princla("Null Pointexr!!®);
return;
int size = this.sampleTextList.size();
String integratedFullTexc = "
for(int 1 = 0;1 < size; 2++){
Text textItem = this.sampleTexclist.elementAt(1):
egratedfuliText = integratedfullText + texcItem.getFullTexc() + "\n":

Text integratedText = new PlainText ("dummyFileName”):
integratedText.secFullText (integratedFullTexc);
this.featurelist = integracedText.generatefeaturelist(this.dimension):

images/00044.jpg
Topic
Routing

JU

images/00112.jpg
i compay compner nformaven

Text 1 l 1l

Text 2 0 1 1 0
Text 3 0 1 1 1
Text 4 1 0 1 0
Text 5 1 0 0 il
Text 6 1 0 0 0
Text 7 0 1 0 1
Text 8 0 1 1 0

images/00043.jpg
‘ ﬁ ﬁ(:ominuamddition
Corpus |
I Continual Deletion
Continual
Update

images/00111.jpg
[]
e o W

e -

[—

[
‘Sample Texts:| Feature List:|
ocbuooossxt L

[FEd

#E=91A0: [om0y -]

(0t vecurea et [yBRBROEBA
[025way] winkat Team [} buooos.xt
303 Resoren Yoot [} useor
(Socomes [zt [euseonse
(Oecioses [Yowooosnn [ssoosxt
catexnt [y boooott [puserone

% 0180 509055 50008 v o007 ur
0% 2Y0:

eEug

images/00046.jpg
public void clusterTextlist() {
this.initializeClusterList(
while(this.clusterlist.size() != 2){
int clusterSize = this.clusterList.size():
int maxIndexl = 0;
int maxIndex2 = 0;
double maxSimilarity = 0.0;
for(int 1 = 0:i < clusterSize;i++){
Cluster clusterIteml = (Cluster)this.clusterList.elementAct(1):
for(int 3 = 141 ;3 < clusterSize:3++)(
Cluster clusterItem2 = (Cluster)this.clusterList.elementAc (3);
double similaricy = cluscerIteml.compucteSimilarity(clusterltenm?):
if (maxSimilarity < similaricy){
maxsimilarity = similarity:
maxIndexl = i
maxIndex2 = 3:

3
Cluster selectedClusterl = (Cluster)this.clusterlist.elementAc (maxIndexl)

Cluster selectedCluster2 = (Cluster)this.clusterlist.elementAc (maxIndex2):
selectedClusterl.mergeCluster (selectedCluster2);
this.clusterlist.setElementAt (selectedClusterl, maxIndexl) ;
this.cluscerList. remove (raxIndex2) ;

images/00114.jpg

images/00045.jpg
double computeWordiWeight (String fullText, Vector<String> corpus)(
int corpusSize = corpus.size():
int cermFfrequency = this.computeWordFrequency(fullText) ;
int documentFrequency = 0;
for(int 1 = 0;1 < corpusSize ;i++){
String corpusFullTextItem = corpus.elementiAt(1):
if (this.isPresent (corpusfullTexcItem))
documentFrequency++;

}
double wordWeight = Mach.log((termFrequency + 1)~ (corpusSize/documencFrequency)):
return wordWeight;

images/00113.jpg
| Clusterl | Cluster2 | Cluster3 | Clusterd_

Item 1 o X X X
Item 2 X o X X
Item 3 X X X (o]
Item 4 X ¢} X X
Item 5 X o X X
Item 6 (0] X X X
Item 7 X X [} X
Item 8 X [¢] X X

images/00037.jpg
s Testing Buttons

Texts:

Add Texts

Cluster Texts

images/00036.jpg
<owl: thing rdf=/D="department of CS">
<owlthing rdf: Provide = “Graduate Course”>
<owlthing rdf: is_a = "Machine Learning’/>
<owlthing rdf: is_a = "Neural Networks'/>
</owlthing>
<owlthing rdf: Provide = “Undergraduate Course”>
<owlthing rdf: is_a = ‘Data Structures’/>
<owlthing rdf: is.a = YJava Programming />
</owl:thing>
<owl:thing rdf: Member = “People”>
<owlthing rdf: sub = "Faculty”>
<owlthing rdf: Level = ‘Assistant Professor’/>
<owlthing rdf: Level = “Associate Professor’/>
<owlthing rdf: Level = “Full Professor’/>
</owlthing>
<owlthing rdf: sub = “Student’/>
<owlthing rdf: sub = “Staff’/>
</owlthing>
</owlthing>

images/00099.jpg
Student’s ¢, df=25
Student’s ¢, df=15
Student’s ¢, df=5

images/00098.jpg
[FEX

= 9Ne: (S o)

01 Reauired 3 Wit Team [B00007AXU
025wy [)bu00otix| [buooosxt
03 Research [buoo020xt [buo00g.xt

oaomers [uooasix
ecipses) oooax.
ocatiext [buooosixt
ot [wosssitx

IS8 QD: 0055500008 b 500007 B 500008 “SuG008 AT Sua0 01|

nERE0: [2EN

s

images/00069.jpg

images/00068.jpg
public void encodeSampleTexclisc(){
if(this.sampleTextlist == null){
Syscem.out.println("Null Point
return;

rimy

H

int size = this.sampleTextList.size():

for(int i = 0;i < size; i++){
Text textItem = this.sampleTextlist.elementAt(i):
textItem.encodeFullTex (this.dimension, this.featurelist):

public void encodeNoviceTextList () {

if (this.noviceTextList == null){
System.out.printin("Null Pointer!!™):
return;

b

int size = this.noviceTextlist.size():

for(int 1 = 0;1 < size; 1+4){
Text texcItem = this.noviceTextList.elementAt(:):
texcItem.encodeFullText (this.dimension, this.featurelisc);

images/00071.jpg
Subtext

General
* Summary

Document

images/00070.jpg
void encodeFullText(int dimension, Vector<String> featurelist){
int feacureSize = featurelist.size():
if (dimension != featureSize){
System.out.printin("Mismatch between dimension and feature size

retarn;

3
this.featureVector = new int[dimension];
for(int 1 = 0;1 < dimension;i++){
String featureame = feacureList.elementAc(i):
this.feacureVector[i] = this.computeWordFrequency (featureName,

this.fullTexc) ;

images/00073.jpg
Classification
Categories 1

Classification
Categories 2

Classification
Categories 3

« Topic 1-1
* Topic 1-2

« Topic 1-K

* Topic 2-1
« Topic 2-2

« Topic 2-L

* Topic 3-1
« Topic 3-2

« Topic 3-M

images/00105.jpg
HAR|

D:bu0001.txt
Dbu0010.txt
D:1bu0005.txt
D:bu0003.txt
D:bu0006.txt
D:bu0007.txt
D:bu0009.txt
D:bu0008.txt

D:1bu0002.txt
D:1bu0004.txt

images/00072.jpg

images/00104.jpg
package TextClassification

import java.util.e;

public abstract class Text {
String texcFileName;
Vector<ord> wordList;
String fullText:
String textlabel:
double featurevector[]:

abstract
abstract
abstract
abstract
abstract
abstract
abstract
abstract
abstract

void secTextlabel(String texvlabel);
void secFullText (String fullTexc);
String getTexcFileName():

String getTexclabel():

g gecFullTexc():

void leadFullText():

void indexFullTexc():

void encodeFullText (int dimension
double computeSimilarity(Text anotker):

images/00075.jpg
Summary Non Summary

[| []

Domain1 ML 1
[] []

pomanz 00] ML2 |
[] [] —

) [] []
Domain K ML K

[| []

images/00107.jpg
CategoryList: ~[Business | +| [Add Category

Feature List:

Add Sample Texts || Show Sample Texts || Encode Sample Texts

Novice Texts:

Add Novice Texts || Classify Novice Texts

]

Category Name:

[Heatn

images/00074.jpg

images/00106.jpg
Item A
Item B
Item C
Item D

Iltem A= Item C
Item B> Item C, Item D
Item C =2 item D

images/00077.jpg

images/00101.jpg
package TextClassificati
import java.ucil

public class Category {

String cavegoryName;
Vector<Text> sampleTextlist

public Category(Scring cacegoryName){
this.categoryName = categoryName;
this.sampleTexclist = new Vector<Text>():

void addSampleTextItem(Text textltem)(
this.sampleTexclist.addElement (zextItem);

String gecCategeryName () {
return this.categoryName:

Text gecSampleTexcItem(int index){
retarn this.sampleTexclist.elemencAt (index):

int gecsize(){
return this.sampleTexclist.size():

images/00076.jpg
private Vector loadStopWordList(String stopWordFileName){
Vector stopWordList = new Vector():
FileString fs = new FileString(stopWordFileName):
£s.loadFileString();
String stopWordStream = fs.getFileString():
String[] lineList = stopWordStream.split("\n");
for(int i = 0;i < lineList.length ;i++){
stopWordList.addElement (linelist[i]);
}
return stopWordList;
1
private boolean isRegistered(Word indiviord,Vector stopWordList)({
int size = stopWordList.size():
String wordName = indiviord.getWordName ():
for(int i = 0;i < size;i++){
String stopWord = (String)stopWordList.elementAt (i)
if (wordName == stopWord)
return true;
¥
return false;

private void removeStopWords (String stopWordFileName) {
Vector stopWordList = this.loadStopWordList (stopWordFileName):
int size = this.wordList.size();
for(int i = 0;i < size;i++){
Word indiviWord = (Word)this.wordList.elementAt(i);
if (this.isRegistered(indivWord, stopWordList)) {
this.wordList.remove (i) ;

images/00100.jpg
Text Group

..... Summary

images/00103.jpg

images/00102.jpg

images/00058.jpg
Sales Information

[[iemi1 [tem2 | .| iemn |
Customer 2 1 0
il
Customer 0 2 1
2

Customer 0 2
N
Purchasing Pattern

If buying item k, then buying item m: item k - item m
If buying item p, then buying item r: item p > item r

images/00060.jpg
public interface Clusterhnalyzer {
void secTexcList (Vector<Text> textlist):
Vector<Cluster> getClusterList():
void clusterTextLisc():

images/00059.jpg
TABLE of CRITICAL VALUES for STUDENT'S t DISTRIBUTIONS

‘Column headings denote probabiliies (a) above tabulated values.

o 75 o7 | 095 | 00 | 0% | o0z | o7 | 50 [00us | o7 [o0us
0.325 | 1.000 | 3.078 | 6.314 | 7.916 | 12.706 | 15.894 | 31.821 | 63.656 | 127.321]318.289]636.578]
0.289 | 0.816 | 1.886 | 2.920 | 3.320 | 4.303 | 4.849 | 6.965 | 9.925 | 14.089 | 22.328 | 31.600
0277|0765 | T 638 | 2965 | 2oos | 502 | s dse | asat | Ssir | 7465 [Ho2ia] 12608
0271|0741 T3 | 2152 | 2955 | 2776 | 20w | 5747 460t | sos | 775 | ssto
G670 72| Tare | Fore | a1t | 2ert | 3 7er | same | dos | 4775 sooa | 605
0.265 | 0.718 | 1.440 | 1943 | 2.104 | 2447 | 2612 | 3.143 | 3707 | 4317 | 5208 | 5.959
0.263 | 0.711 | 1.415 | 1.895 | 2.046 | 2.365 | 2.517 | 2.998 | 3499 | 4.029 | 4.785 | 5408
0262|0706 | 1367 | 1 860 | 2004 | 2306 | 2 440 | 2606 | s 355 | 3655 | 4501 5oat
0261|0708 | 1365 | a5 | 75| 2762 | 2 3u8 | 2sat 3250 | seoo | door | 4rei
0.260 | 0.700 | 1372 | 1812 | 1948 | 2228 | 2.359 | 2764 | 3.169 | 3581 | 4.144 | 4.587
0.260 | 0.697 | 1.363 | 1796 | 1928 | 2201 | 2.328 | 2718 | 3.106 | 3497 | 4.025 | 4.437
0259|0698 | 1366 | 1762 | 1912 | 2170 | 2305 | 2681 | 5055 | 5428 | 5050 | 4318
0.259 | 0.694 | 1.350 | 1.771 | 1.899 | 2.160 | 2.282 | 2650 | 3.012 | 3.372 | 3.852 | 4.221
0.258 | 0.692 | 1.345 | 1.761 | 1.887 | 2145 | 2.264 | 2624 | 2977 | 3.326 | 3.787 | 4.140
0.258 | 0.691 | 1.341 | 1.753 | 1878 | 2131 | 2.249 | 2602 | 2947 | 3.286 | 3.733 | 4.073
o286 0600 | 1357 | 746 | To6o | 2120|2235 | o585 [2021 | 3280 [a6 [dots
0257 T 069 | tsas | 1740 | oo | 2110 2224 | 2567 | 258 | 3225 | sede | 5065
0.257 | 0.688 | 1.330 | 1.734 | 1855 | 2.101 | 2214 | 2552 | 2.878 | 3.197 | 3.610 | 3.922
0.257 | 0.688 | 1.328 | 1.729 | 1.850 | 2.093 | 2.205 | 2.539 | 2.861 3.174 | 3579 | 3.883
0.257 | 0.687 | 1.325 | 1.725 | 1844 | 2.086 | 2.197 | 2528 | 2845 | 3.153 | 3.552 | 3.850
o257 os6 [sz | 1721 T 1os0 | 2080|2100 T osis [283t [s1as [asor [ssto
0256 0606 321 | 717 | s | s0ra | o-ias | 2sos |21 | oo ss0s | a7e2
0.256 | 0.685 | 1.319 | 1.714 | 1832 | 2.069 | 2.177 | 2.500 | 2.807 | 3.104 | 3.485 | 3.768
0256 | 0685 | 1.318 | 1.711 | 1.828 | 2.064 | 2172 | 2492 | 2.797 | 3.091 | 3467 | 3.745
0 256 |0 604 | 1316 | 170 | 1625 | 200 | 5167 | oams | 2767 | sors [sds o7z
0.256 | 0.684 | 1.315 | 1.706 | 1.822 | 2.056 | 2.162 | 2479 | 2.779 | 3.067 | 3.435 | 3.707
0.256 | 0.684 | 1.314 | 1.703 | 1.819 | 2.052 | 2.158 | 2473 | 2771 3.057 | 3421 | 3689
o256 [0668 [13t [1701 [Tst7 | 20ds | 2154 24672765 T soa7 [3dos [se7a
o286 0'68a [ttt | 00 T sta | 204s 2150 T 2462|2756 |30 3306 [3660
0256 01603 1310 | 1667 | 1 sto | 2042 | 5147 | 2457|2750 | 5030 | 3306 | 3646
0.256 | 0682 | 1.309 | 1696 | 1.810 | 2.040 | 2.144 | 2453 | 2744 | 3.022 | 3.375 | 3633
0.255 | 0.682 | 1.309 | 1.694 | 1.808 | 2.037 | 2.141 | 2449 | 2738 | 3.015 | 3.365 | 3.622
0285 0662 1308 T 1e6o | o0s | 2095 | 3138 | 24ds 3758 | soos [3386 [st
0285 [0'682 [1307 | 1ot | s0s 203 | 2-136 T 24412728 T so0o [3348 [3ot
0.255 | 0.682 | 1.306 | 1.690 | 1.803 | 2.030 | 2.133 | 2438 | 2724 | 2.996 | 3.340 | 3.591
0.255 | 0.681 | 1.306 | 1688 | 1.802 | 2.028 | 2.131 | 2434 | 2719 | 2990 | 3.333 | 3.582
0.255 | 0.681 | 1.305 | 1.687 | 1.800 | 2.026 | 2.129 | 2431 2.715 | 2.985 | 3.326 | 3574
0285 0661 1304 | 1t | 1760 | 2004|5137 | 2429|371 | 2smo 316 | 3se6
300255 Tocat [1a04 | Teas [17es [200 [2126 [2426 [2708 [2076 [3ars T asss
40 0.255 | 0.681 | 1.303 | 1684 | 1.796 | 2.021 | 2.123 | 2423 | 2704 | 2971 | 3.307 | 3.551
60 0.254 | 0679 | 1296 | 1671 | 1.781 | 2.000 | 2.099 | 2.390 | 2660 | 2915 | 3.232 | 3.460
80 0.254 | 0678 | 1.292 | 1664 | 1.773 | 1.990 | 2.088 | 2.374 | 2639 | 2887 | 3.195 | 3416
1000254 T 0677 | 1200 | o0 | 1765 [Tooa | 2081 | 2364 | 2626 [2871 [3174 [3590
T20 | 0g54 0677 | T80 | 1688 | 1766 | Toso | 20rs | 2sss | seir | om0 | si60 | 3578
140 | 0.254 | 0676 | 1.288 | 1656 | 1.763 | 1.977 | 2.073 | 2.353 | 2.611 2852 | 3.149 | 3.361
160 | 0254 | 0676 | 1.287 | 1654 | 1.762 | 1.975 | 2.071 | 2.350 | 2.607 | 2.847 | 3.142 | 3.352
180 | 0254 | 0676 | 1.286 | 1653 | 1.761 | 1.973 | 2.069 | 2.347 | 2.603 | 2.842 | 3.136 | 3.345
2000254 T 0676 | 1286 | Tess | 1760 Tor2 2067|2345 [2601 [283 [3131 [330
250 0254 0675 | 1265 | 161|175 | To6o | 2065 | 2set | 2506 | 2652 [3125 3550
inf | 0253 | 0674 | 1282 | 1645 [1.751 | 1.960 | 2.054 | 2.326 | 2.576 | 2.807 | 3.090 | 3.290

e eofeseslea s s [as s s s s s s g s e |- | [s oo | o
ENE N R N NS A E S S e R A E T S R B B

images/00062.jpg

images/00061.jpg
public void loadFileString(){

try{
RandomAccessFile stream = new RandomAccessFile (this.fileName, "r");
long length = stream.length();
byte[] byArray = new byte[(int)length];
stream.readFully (byArzay);
this.fileString = new String(byArray):
stream.close ()

oatoh (IOException e){

System.out.println("There is the error in file processing!!" + e);

images/00064.jpg

images/00063.jpg

images/00066.jpg
public TextClassificarionUl(){
super (*Testang Butcons®) ;
seclayout (new Flowlayout()):
this.categorylist = new Vector():
this.noviceTexcListVector = new Vector():
cextClassifier = new TextClassificationPI(S0);

this.categoryListiabel = new Jlabel ("Category Lis
this.add(this. categorylistlabel) ;

Scring cavegorylamelisc(] = (1
this. cacegoryListConbo = new JComboBox (categoryameList):
this. categoryLstConbo. serMaximumRovCouaE (5)
this.add(this. categoryLiscConbo) ;

this.addCazegoryButton = new JButton("Add Category®):
this.add(this. addCategoryButtan)

this.deleteCategoryButton = new JButton ("Delece Category”|
this.add(this.deleteCategoryBuccon) ;

this.sampleTexciabel = new JLabel ("Saxple Texts:
this.add (sampleTextiabel) ;

this.sampleTextiist = new JList():
sampleTexclist.secFixedCelldeighe (30)
sampleTextlist.secFixedCellWadth(120);

this.add (new JScrollPane (sampleTextlist)):

this.featarelistiabel = new JLabel("Feature List:®):
this.add(featurelistlabel) :

this.featurelist = new JList():
featurelist.secFixedCellReight (30)

featurelist. secfixedCelliideh (120) 1
this.add (new JScrollfane (featurelist)):

ddSampleTexcLastButton = new JBuctor
dd (addSampleTexcLastButton) :
rowSazpleTexcListBuzton = new JButton("Show Sample Texcs
4d (showSampleTextListBucton) ;

ncodeSampleTextiistBuscon = new JBucton (“Encode Sample Texza®):

"Add Sample Texts®)

this.
this.
this.

this.noviceTexciabel = new JLabel("Novice Text
this.add (noviceTexciabel) ;
this.noviceTextList = new JList():
noviceTexsiist.secFixedCellteight (30):
noviceTexciist.secFixedCelladch (250) ;
this.add (new JScrollfane (noviceTexclist)):

this.addNoviceTexcListButton = new JBucton("Add Novice Texts®):
this.add (addVovaceTextLastButton) .
this.classifyNoviceTexcListBucton = new JButton("Classify Novice Texts®):
this.add (classifyNoviceTexclistBucton) ;

Butcontandler handler = new BuctonHandlez():

this. addCategoryBucton. addhctionlastener (nandler) ;
this.delezeCategoryButton.addActionlistener (nandler) ;
ddSanpleTextListBucton. addhctaonlastener (randler) ;
showSempleTextListButton. addActionlistenex (handlex) :
this.encodeSampleTextListBucton. addActionListener (handler) ;
addNoviceTexcListButton. addActionlistener (handler)
classifyNoviceTexcListBucton. addActionlastener (randler) ;

images/00065.jpg
Text Group

Association

Filtering

Word 1 > Word List 1 Word 1 > Word List 1
‘Word 2 > Word List 2 Word 2 > Word List 2

‘Word N -> Word List N Word M > Word List M

Text Retrieval

Word 1> &&) -~ @)
Word 2 > [

Word M >

images/00067.jpg
Topic 1, Topic 2, ..., Topic M
Document (Topic Temporal Sequence)

images/00089.jpg
text 1
text 2
text 3
text 4
text 5
text 6
text 7
text 8
text 9
text 10

images/00198.jpg

images/00088.jpg
o e Conadmes FeAres Neld
@ e T b Wordt1p Word11 [1
Domain 1 v [> S D
Word 1N Word 1M [1
| =
L=
Word 21 Word 21 [1
Domain 2 @ ﬁ e #mj‘:l Word2N Word 2M [
Ll
@) @j d i i ;
poman € oV) WordkN | Wordkm 7]

=)

images/00091.jpg
| TEXT

Indexing

Document

Short Full Text

-+

i |

images/00090.jpg

images/00093.jpg
Feature Feature
Indexing Generation As;g:nur:ent

[o]

Numerical Vectors

Adjacent Paragraph Pairs

images/00092.jpg
Input: Labeled training examples, an unlabeled novice example

, and the number of nearest neighbors >K

for each training example
compute the similarity between the training example the novice example
(similarity: Euclidean distance or cosine similarity)

Sort the training examples in descending order of the similarity

(in ascending order of Euclidean distance or in descending order of cosine similarity)

select the K training examples with highest similarity as neighbors

return the majority of labels of neighbors

images/00095.jpg
void indexFullTexc() {
this.wordlist = new Vector<String>():
System.out.printin("PlainText: :indexFullText():");
Vector<String> tokenlist = this.tokenizeTexcContent():
VectorcString> stopWordlist = this.loadStopWordlist("scopWordlist.ini®):
VectorcString> wordNamelisc = this.filterStopWordlist(cokenlisc, stopWordlist):
this.woxdlist = this.filterSimilarWordList (wordNamelist);
int size = wordNameLisc.size():
for(int 1 = 01 < size; 1++){
String wordName = wordNamelist.elemenchc (i):
Word wordItem = new Word (wordName):
wordItem. computeWozdFrequency (this. fullText) ;

images/00204.jpg
Word | Texts including Word
information text, text2, text3 Item Set
computer text2, text4
business text1, text2, text4 {text1, text2} 025 o
company text2, text3 {text1, text3} 0.125 X
intelligence textl, text4 ‘ {text1, text4} 0.25 [}
agent textd {text2, text3} 0375 O
computatio text1, text4 {text2, text4} 00 X
n {text3, textd} 025 O

technology text2, textd

Support Threshold = 0.25 Confidence Threshold = 0.25

FrequentWordList = {text1, text2, text3, textd}
FrequentWordSetList = {{text1)}, {text2}, {text3}, {text4}}

images/00094.jpg
Topic 1 Topic 2
Positive Positive
Negative Negative

Selection & Learning

Topic Classifier

Classification

» 4
Relevant Irrlevant

Generation

Topic M
Positive

Negative

=
i)

Unlabeled Texts

images/00203.jpg
I I
a+ m T

Corpus A Corpus B Corpus A+B

Taxonomy 1
Taxonomy 2

Taxonomy M

images/00097.jpg
Single
Cluster

Text Sequence

images/00096.jpg
public class Word {
String wordName;
double wordWeight;

public Word(String wordName) {

this.wordName = wordName:
this.wordWeight = 0.0;

public String getWordName(){
return this.wordName;

public double getWordWeight (){
return this.wordWeight;

public void setWordWeight (double wordWeight) {
this.wordWeight = wordWeight;

public void computeWordWeight (String corpusPath,String fullText)({}

images/00200.jpg
Email

Classifier

Spam Ham
(Junk) (Sound)

images/00199.jpg
Positive Neutral Negative

images/00202.jpg
public void indexTextContent (String s
String stopWordFileName) {
this.loadTextContent () ;
this.tokenizeTextContent ()
this.stemWordList (stemmingRuleFileName) ;
this.removeStopWords (stopWordFileName)

images/00201.jpg
I ee
R

images/00078.jpg
input vector

images/00080.jpg
Labels

‘ Feature Generation Novice Text
Numerical Labels | |
Vectors A |
[] : Text Encoding

S TN e p——]
[] — | Learning | Classification

— JLD<a>JC

Classification
Capacity

Label

images/00079.jpg
@ ‘Summarization Encoding []
) = N e] Cluster
L [1 ’—‘ Analyzer

Summaries Numerical
Vector2

Full Texts.

Clusters

images/00082.jpg

images/00081.jpg
Word 1
Word 2 Feature
Word 3

Feature Value
[31 52 L ad]

Selection

Assignment

Word M

Feature Candidates Numerical Vector

images/00084.jpg
Subtexts

Original Text

Document

images/00083.jpg
Corpus A Corpus B Corpus A+B
business oT business - company-> business
information company infoeraghon
society sports » soclety
internet automobile internet-loT -> internet
sports

automobile

images/00086.jpg
2 Testing Buttons

Category List: |Business | v || Add Category

D:bu0001.txt million
D:bu0002.txt alert
D:bu0003.txt providing
D:Abu0004.txt flight
sample Texts: Feature List:
DAbu0005.txt daily
information
provide
< It |
Add Sample Texts Show Sample Texts || Encode Sample Texts
D:bu0001.txt =
D:bu0002.txt
D:bu0003.txt
=|
D:1bu0004.txt
Novice Texts:
D:bu0005.txt
D:bu0006.txt I
D:1bu0007.txt
—— ——]]

Add Novice Texts.

images/00085.jpg
Single Text

images/00087.jpg

images/00196.jpg
Plural = Singular

Variation - Root

Frequency

Adverb with ‘ly’
Remove ‘ly’

images/00195.jpg

images/00197.jpg
d

Text Group

Filtering

Association
Word 1 > Word List 1 Word 1 > Word List 1
‘Word 2 > Word List 2 Word 2 > Word List 2

‘Word N -> Word List N Word M > Word List M

Text Retrieval

Word 1> &&) -~ i)
Word 2 > - i)

Word M >

images/00192.jpg
Hard Classification vs Soft Classification

images/00191.jpg
package TextClassification
import java.util.<:
public class PlainText extends Text {
public PlainTexc(String texcFileName){
this.textFileName = textFileName:

)

void secTexclabel(String textlabel) {
this.textlabel = textlabel;

void setFullTexc (Straing fullText)(
this.fullText = fullText;

String gecTexvFileName() {
return this.texcFileName:

+

String gecTextlabel() {

return this.texclLabel;

String getFullTexc() {
return this.fullTexc:

3

void loadFullText() {}

void indexFullText() {}

void encodeFullText(int dimension) {}

double computeSimilarity(Text ancther) {
retarn 0.0:

images/00194.jpg
Original Text

images/00193.jpg

images/00188.jpg

images/00190.jpg
ETNS, hany nviniuiley Snplmity Sonlaiisvenss!

Public void actionperforned (ActicnEvent event) (
String evanciiass = event.gacActicaComrand():
S (eventiiene == "Add Cacegory®) |
Stiing caceqorytane = JoprionPane. snosInputDialog("Caregory Heme:®) :
TextClassificataoaGOl. this. careqeryLissCombo. adazten (cacegorylane)
Cacegory cacegoryicem = new Cacegory (cacegoryiiane) :
TextClassificaticnGOl. this.coeqoryiist. addElemant (categeryisen)

)
s (eventiame == "pelete Categery®) (
Object sten = TexiClassificationGyl.this.categoryliscConbo. gecSelactedicen ()t
int selecteaindex = TextCiassificationdUl.this.categeryiisiconbe.getSeletedindex ();
TextClassifacationGUL. this. categoryListCanbo. reRoveTteR (icem) :
TexcClassificationGUl. this.categoryiise. renovetlenancat (selectedindex) :

)
1 (eventiiane == "Aad Sample Texts®)(
SFilechooser filechooser = new JFilechocser():
£11eCro0ser sectultaselectiontnabled (true) ;
int sasils - filacnooser. snocpenDiaiog (TexsCl
Filel] filelist = fileChooser.gerSelectedFales()
int selectedindex = TexiClassificationGUl.chis.categoryLisiConbo. GetSelectedindex ()
Cacegory selsceedCategary = (Caregory) TeXtClassificatienGUl.this,cateqoryLis. elemenchc (selectedindex);
String currenchirestory = fileChoser.getCurzentDirectory() gecAbsSluteRath();
Cortine 1 = 07 4 < filelasc.iength: foe)(
String filelame = currencDireccory + filelise(s.geciane()
Systen. out.prancin (faieliase) ;
selectadCategory addSarpleTextiven (1 etane)

o1 £1cacicnGT. ehts) ¢

s
Vector<Strings saEpleTexcPileNsmelist = sslectedCategory.GeCIsrpleTexcEleNARALIS ()}
TextClassificationGUl.this. sampleTexciist. seriistData (sanpleTextFieNaneisst)

s
L (eventiane == "Show Sample Texts)(
int selectedndex = TexcClassificacionGyl.this.categoryliscConbo. gecSelectedindex ()
Cacegory seisctedCategory = (Category) TextClassificationGUl. this.cateqorylist.elensntac (seleccedinden)
Vectoxcsurings sarpleTextiileNamelist = selscredCareqory.qerSanpleTextFileNaneiise ()
TextClass:ficationGOl. this. sempleTexcList. setiaatDac (anpleTeNtTLieNoReLEot)

)
it (evencitane == *Encode Sampie Texssm)(
TextClassificationGUL. this. CextClassifier secCateqoryList (TexcClassificasioncyl. ehis. caceqoryLast)
TexClassificationGUl.this,cexcClassifier. flatSampleTaxciist ()
TextClassificatsonGUL this.sexcClassifies loadSempleTextiie ()1
TextClassificariondll.this.cexClassifier.generaceFsatirelist(
TextClassificationGUl. this. cextClassafaer encodeSampleTextiise (|
VactorcStrings fastuzeiisc = TextClasssficacionGUl.thisCex:Classifier.GetFeAtrelist():

TeXCCla853 £16aTI0nGUL. This . FOATUTALAST S6TLASTDACA (fEATUTELISE) 5

1€ (evenciane == "Add Novice Texts®)
FileChooser fileCnooser = new JFilechoos:
fiieCrooser. setialtaSelect onEnabied (trael
iRt zesult = f3leChooser. showCpenDialog (TeXECIass:ficationGUl. this) i
Filel] filelisc = fileChooser.gerselectedtiles():
String currenchizectory = filechosser.gecCurrentDizectory() .gethbscluteRath();
Zor(int s = 0: 5 < falelisc.iengehs 10
Sting filelame = currenDirectory - falelist(sl.gesane():
SoviceTextisstvactor addElenent (£1leNane) |
TexiClassificationsUl. this. CextClasssfiar. addioviceTexcE latane (1 leName) |

)
Texce:

st i

48 (evenciiame == "Classiy Novice Texss®) (
TextClassificationGUl.this. extClassafaer.loadioviceTextiise ()
TexcClassificariondll this. cexcClassitier encodelioviceTextiist ()
TextClasss ficasioncUl. this, CexcClasss tier.classifyloviceTexcList (1
String zesuicsizean = °
Vectorclaxts classifiedoviceTexciist = TexsClassification
int size = classifiedioviceTexciist.size();
for(ine & = 0ra < sazerien)

Text excicem = claseifiedNoviceTexciist.elementhc(i)
String cexcFileNems = cexcIcem.gecTextFilevame():
String cexcisbel = textitem.gerTexciebel():

I, this. CextClassitier gerNovCaTeNCLLSE ()

"+ cexsiapel sman

)
opeacnpane. shoviessageDiaiog (TexiClasssficasaendll.this, resulosers

)

images/00189.jpg
S

T DR M IO SO

05

B T O S e e

