

 Text Mining in Practice with R

Ted Kwartler
This edition first published 2017
© 2017 John Wiley & Sons Ltd

Library of Congress Cataloging-in-Publication Data
Names: Kwartler, Ted, 1978- author.
Title: Text mining in practice with R / Ted Kwartler.
Description: Hoboken, NJ : John Wiley & Sons, 2017. | Includes
bibliographical references and index.
Identifiers: LCCN 2017006983 (print) | LCCN 2017010584 (ebook) | ISBN
9781119282013 (cloth) | ISBN 9781119282099 (pdf) | ISBN 9781119282082
(epub)
Subjects: LCSH: Data mining. | Text processing (Computer science)
Classification: LCC QA76.9.D343 K94 2017 (print) | LCC QA76.9.D343 (ebook) |
DDC 006.3/12--dc23
LC record available at https://lccn.loc.gov/2017006983
Set in 10/12pt WarnockPro by SPi Global, Chennai, India
Contents
Foreword
xi
1
What is Text Mining?
1
1.1
What is it? 1
1.1.1
What is Text Mining in Practice? 2
1.1.2
Where Does Text Mining Fit? 2
1.2
Why We Care About Text Mining 2
1.2.1
What Are the Consequences of Ignoring Text? 3
1.2.2
What Are the Benefits of Text Mining? 5
1.2.3
Setting Expectations: When Text Mining Should (and Should Not)
Be Used 6
1.3
A Basic Workflow – How the Process Works 9
1.4
What Tools Do I Need to Get Started with This? 12
1.5
A Simple Example 12
1.6
A Real World Use Case 13
1.7 Summary

15
2
Basics of Text Mining
17
2.1
What is Text Mining in a Practical Sense? 17
2.2
Types of Text Mining: Bag of Words 20
2.2.1
Types of Text Mining: Syntactic Parsing 22
2.3
The Text Mining Process in Context 24
2.4
String Manipulation: Number of Characters and Substitutions 25
2.4.1
String Manipulations: Paste, Character Splits and Extractions 29
2.5
Keyword Scanning 33
2.6
String Packages stringr and stringi 36
2.7
Preprocessing Steps for Bag of Words Text Mining 37
2.8 Spellcheck

44
2.9
Frequent Terms and Associations 47
2.10
DeltaAssist Wrap Up 49
2.11 Summary

49
3
Common Text Mining Visualizations
51
3.1
A Tale of Two (or Three) Cultures 51
3.2
Simple Exploration: Term Frequency, Associations and Word
Networks 53
3.2.1
Term Frequency 54
3.2.2
Word Associations 57
3.2.3
Word Networks 59
3.3
Simple Word Clusters: Hierarchical Dendrograms 67
3.4
Word Clouds: Overused but Effective 73
3.4.1
One Corpus Word Clouds 74
3.4.2
Comparing and Contrasting Corpora in Word Clouds 75
3.4.3
Polarized Tag Plot 79
3.5 Summary

83
4
Sentiment Scoring
85
4.1
What is Sentiment Analysis? 85
4.2
Sentiment Scoring: Parlor Trick or Insightful? 88
4.3
Polarity: Simple Sentiment Scoring 89
4.3.1
Subjectivity Lexicons 89
4.3.2
Qdap’s Scoring for Positive and Negative Word Choice 93
4.3.3
Revisiting Word Clouds – Sentiment Word Clouds 96
4.4
Emoticons – Dealing with These Perplexing Clues 103
4.4.1
Symbol‐Based Emoticons Native to R 105
4.4.2
Punctuation Based Emoticons 106
4.4.3 Emoji

108
4.5
R’s Archived Sentiment Scoring Library 113
4.6
Sentiment the Tidytext Way 118
4.7
Airbnb.com Boston Wrap Up 126
4.8 Summary

126
5
Hidden Structures: Clustering, String Distance, Text Vectors and Topic
Modeling
129
5.1
What is clustering? 129
5.1.1
K‐Means Clustering 130
5.1.2
Spherical K‐Means Clustering 139
5.1.3
K‐Mediod Clustering 144
5.1.4
Evaluating the Cluster Approaches 145
5.2
Calculating and Exploring String Distance 147
5.2.1
What is String Distance? 148
5.2.2
Fuzzy Matching – Amatch, Ain 151
5.2.3
Similarity Distances – Stringdist, Stringdistmatrix 152
5.3
LDA Topic Modeling Explained 154
5.3.1
Topic Modeling Case Study 156
5.3.2
LDA and LDAvis 158
5.4
Text to Vectors using text2vec 169
5.4.1 Text2vec

171
5.5 Summary

179
6
Document Classification: Finding Clickbait from Headlines
181
6.1
What is Document Classification? 181
6.2
Clickbait Case Study 183
6.2.1
Session and Data Set‐Up 185
6.2.2
GLMNet Training 188
6.2.3
GLMNet Test Predictions 196
6.2.4
Test Set Evaluation 198
6.2.5
Finding the Most Impactful Words 200
6.2.6
Case Study Wrap Up: Model Accuracy and Improving Performance
Recommendations 206
6.3 Summary

207
7
Predictive Modeling: Using Text for Classifying and Predicting
Outcomes
209
7.1
Classification vs Prediction 209
7.2
Case Study I: Will This Patient Come Back to the Hospital? 210
7.2.1
Patient Readmission in the Text Mining Workflow 211
7.2.2
Session and Data Set‐Up 211
7.2.3
Patient Modeling 214
7.2.4
More Model KPIs: AUC, Recall, Precision and F1 216
7.2.4.1 Additional Evaluation Metrics 218
7.2.5
Apply the Model to New Patients 222
7.2.6
Patient Readmission Conclusion 223
7.3
Case Study II: Predicting Box Office Success 224
7.3.1
Opening Weekend Revenue in the Text Mining Workflow 225
7.3.2
Session and Data Set‐Up 225
7.3.3
Opening Weekend Modeling 228
7.3.4
Model Evaluation 231
7.3.5
Apply the Model to New Movie Reviews 234
7.3.6
Movie Revenue Conclusion 235
7.4 Summary

236
8
The OpenNLP Project
237
8.1
What is the OpenNLP project? 237
8.2
R’s OpenNLP Package 238
8.3
Named Entities in Hillary Clinton’s Email 242
8.3.1
R Session Set‐Up 243
8.3.2
Minor Text Cleaning 245
8.3.3
Using OpenNLP on a single email 246
8.3.4
Using OpenNLP on Multiple Documents 251
8.3.5
Revisiting the Text Mining Workflow 254
8.4
Analyzing the Named Entities 255
8.4.1
Worldwide Map of Hillary Clinton’s Location Mentions 256
8.4.2
Mapping Only European Locations 259
8.4.3
Entities and Polarity: How Does Hillary Clinton Feel About
an Entity? 262
8.4.4
Stock Charts for Entities 266
8.4.5
Reach an Insight or Conclusion About Hillary Clinton’s Emails 268
8.6 Summary

269
9
Text Sources
271
9.1
Sourcing Text 271
9.2
Web Sources 272
9.2.1
Web Scraping a Single Page with rvest 272
9.2.2
Web Scraping Multiple Pages with rvest 276
9.2.3
Application Program Interfaces (APIs) 282
9.2.4
Newspaper Articles from the Guardian Newspaper 283
9.2.5
Tweets Using the twitteR Package 285
9.2.6
Calling an API Without a Dedicated R Package 287
9.2.7
Using Jsonlite to Access the New York Times 288
9.2.8
Using RCurl and XML to Parse Google Newsfeeds 290
9.2.9
The tm Library Web‐Mining Plugin 292
9.3
Getting Text from File Sources 293
9.3.1
Individual CSV, TXT and Microsoft Office Files 294
9.3.2
Reading Multiple Files Quickly 296
9.3.3
Extracting Text from PDFs 298
9.3.4
Optical Character Recognition: Extracting Text from Images 299
9.4 Summary

302
 Index

305
Foreword
This book has been a long labor of love. When I agreed to write a book, I had no idea of the amount of work and research needed. Looking back, it was pure hubris on my part to accept a writing contract from the great people at Wiley.
The six‐month project extended outward to more than a year! From the outset
I decided to write a book that was less technical or academic and instead
focused on code explanations and case studies. I wanted to distill my years of work experience, blog reading and textbook research into a succinct and more approachable format. It is easy to copy a blog’s code or state a textbook’s explanation verbatim, but it is wholesale more difficult to be original, to explain technical attributes in an easy‐to‐understand manner and hopefully to make
the journey more fun for the reader.
Each chapter demonstrates a text mining method in the context of a real case study. Generally, mathematical explanations are brief and set apart from the code snippets and visualizations. While it is still important to understand the underlying mathematical attributes of a method, this book merely gives you a glimpse. I believe it is easier to become an impassioned text miner if you get to explore and create first. Applying algorithms to interesting data should embolden you to undertake and learn more. Many of the topics covered could
be expanded into a standalone book, but here they are related as a single section or chapter. This is on purpose, so you get a quick but effective glimpse at the text mining universe! So my hope is that this book will serve as a foundation as you continually add to your data science skillset.
As a writer or instructor I have always leaned on common sense and non‐
academic explanations. The reason for this is simple: I do not have a computer science or math degree. Instead, my MBA gives me a unique perspective on
data science. It has been my observation that data scientists often enjoy the modeling and data wrangling, but very often fail to completely understand the needs of the business. Thus many data science business applications are actually months in implementation or miss a crucial aspect. This book strives to have original and thought‐provoking case studies with truly messy data. In
other text mining or data science books, data that perfectly describes the
method is illustrated so the concept can be understood. In this book, I reverse that approach and attempt to use real data in context so you can learn how
typical text mining data is modeled and what to expect. The results are less pretty but more indicative of what you should expect as a text mining
practitioner.
“It takes a village to write a book. ”
Throughout this journey I have had the help of many people. Thankfully,
family and friends have been accommodating and understanding when I chose
writing ahead of social gatherings. First and foremost thanks to my mother,
Trish, who gave me the gift of gab, and qualitative understanding and to my
father Yitz, who gave me quantitative and technical writing acumen. Additional thanks to Paul, MaryAnn, Holly, Rob, K, and Maureen for understanding when
I had to steal away and write during visits.
Thank you to Barry Keating, Sarv Devaraj and Timothy Gilbride. The Notre
Dame family, with their supportive, entertaining professors put me onto this path. Their guidance, dialogue and instructions opened my eyes to machine
learning, data science and ultimately text mining. My time at Notre Dame has positively affected my life and those around me. I am forever grateful.
Multiple data scientists have helped me along the way. In fact to many to
actually list. Particular thanks to Greg, Zach, Hamel, Jeremy, Tom, Dalin,
Sergey, Owen, Peter, Dan, Hugo and Nick for their explanations at different
points in my personal data science journey.
This book would not have been possible if it weren’t for Kathy Powers. She
has been a lifelong friend and supporter and amazingly stepped up to make
revisions when asked. When I changed publishers and thought of giving up on
the book her support and patience with my poor grammar helped me continue.
My entire family owes you a debt of gratitude that is never able to be repaid.
1
1
What is Text Mining?
In this chapter, you will learn
●
●
the basic definition of practical text mining
●
●
why text mining is important to the modern enterprise
●
●
examples of text mining used in enterprise
●
●
the challenges facing text mining
●
●
an example workflow for processing natural language in analytical contexts
●
●
a simple text mining example
●
●
when text mining is appropriate
Learning how to perform text mining should be an interesting and exciting
journey throughout this book. A fun artifact of learning text mining is that you can use the methods in this book on your own social media or online exchanges.
Beyond these everyday online applications to your personal interactions, this book provides business use cases in an effort to show how text mining can
improve products, customer service, marketing or human resources.
1.1 What is it?
There are many technical definitions of text mining both on the Internet and in textbooks, but as the primary goal of text mining in this book is the extraction of an output that is useful such as a visualization or structured table of outputs to be used elsewhere; this is my definition:
Text mining is the process of distilling actionable insights from text.
Text mining within the context of this book is a commitment to real world
cases which impact business. Therefore, the definition and this book are aimed
2

Text Mining in Practice with R
at meaningful distillation of text with the end goal to aid a decision‐maker.
While there may be some differences, the terms text mining and text analytics can be used interchangeably. Word choice is important; I use text mining
because it more adequately describes the uncovering of insights and the use of specific algorithms beyond basic statistical analysis.
1.1.1 What is Text Mining in Practice?
In this book, text mining is more than an academic exercise. I hope to show that text mining has enterprise value and can contribute to various business units.
Specifically, text mining can be used to identify actionable social media posts for a customer service organization. It can be used in human resources for various purposes such as understanding candidate perceptions of the organization or to match job descriptions with resumes. Text mining has marketing implications to measure campaign salience. It can even be used to identify brand evangelists and impact customer propensity modeling. Presently the state of text mining is somewhere between novelty and providing real actionable business
intelligence. The book gives you not only the tools to perform text mining but also the case studies to help identify practical business applications to get your creative text mining efforts started.
1.1.2 Where Does Text Mining Fit?
Text mining fits within many disciplines. These include private and academic uses. For academics, text mining may aid in the analytical understanding of
qualitatively collected transcripts or the study of language and sociology. For the private enterprise, text mining skills are often contained in a data science team. This is because text mining may yield interesting and important inputs for predictive modeling, and also because the text mining skillset has been
highly technical. However, text mining can be applied beyond a data science
modeling workflow. Business intelligence could benefit from the skill set by quickly reviewing internal documents such as customer satisfaction surveys.
Competitive intelligence and marketers can review external text to provide
insightful recommendations to the organization. As businesses are saving
more textual data, they will need to break text‐mining skills outside of a data science team. In the end, text mining could be used in any data driven decision where text naturally fits as an input.
1.2 Why We Care About Text Mining
We should care about textual information for a variety of reasons.
●
●
Social media continues to evolve and affect an organization’s public efforts.

1 What is Text Mining? 3
●
●
Online content from an organization, its competitors and outside sources,
such as blogs, continues to grow.
●
●
The digitization of formerly paper records is occurring in many legacy
industries, such as healthcare.
●
●
New technologies like automatic audio transcription are helping to capture
customer touchpoints.
●
●
As textual sources grow in quantity, complexity and number of sources, the
concurrent advance in processing power and storage has translated to vast
amounts of text being stored throughout an enterprise’s data lake.
Yet today’s successful technology companies largely rely on numeric and cat-
egorical inputs for information gains, machine learning algorithms or opera-
tional optimization. It is illogical for an organization to study only structured information yet still devote precious resources to recording unstructured natural language. Text represents an untapped input that can further increase competitive advantage. Lastly, enterprises are transitioning from an industrial age to an information age; one could argue that the most successful companies are
transitioning again to a customer‐centric age. These companies realize that taking a long term view of customer wellbeing ensures long term success and helps the company to remain salient. Large companies can no longer merely create a product and forcibly market it to end‐users. In an age of increasing customer expectations customers want to be heard by corporations. As a result, to be
truly customer centric in a hyper competitive environment, an organization
should be listening to their constituents whenever possible. Yet the amount of textual information from these interactions can be immense, so text mining
offers a way to extract insights quickly.
Text mining will make an analyst’s or data scientist’s efforts to understand vast amounts of text easier and help ensure credibility from internal decision‐makers. The alternative to text mining may mean ignoring text sources or merely sampling and manually reviewing text.
1.2.1 What Are the Consequences of Ignoring Text?
There are numerous consequences of ignoring text.
●
●
Ignoring text is not an adequate response of an analytical endeavor. Rigorous scientific and analytical exploration requires investigating sources of information that can explain phenomena.
●
●
Not performing text mining may lead an analysis to a false outcome.
●
●
Some problems are almost entirely text‐based, so not using these methods
would mean significant reduction in effectiveness or even not being able to
perform the analysis.
Explicitly ignoring text may be a conscious analyst decision, but doing so
ignores text’s insightful possibilities. This is analogous to an ostrich that sticks
4

Text Mining in Practice with R
its head in the ground when confronted. If the aim is robust investigative
quantitative analysis, then ignoring text is inappropriate. Of course, there are constraints to data science or business analysis, such as strict budgets or timelines. Therefore, it is not always appropriate to use text for analytics, but if the problem being investigated has a text component, and resource constraints do not forbid it, then ignoring text is not suitable.
Wisdom of Crowds
As an alternative, some organizations will sample text and manually review it.
This may mean having a single assessor or panel of readers or even outsourcing analytical efforts to human‐based services like mturk or crowdflower. Often
communication theory does not support these methods as a sound way to
score text, or to extract meaning. Setting aside sampling biases and logistical tabulation difficulties, communication theory states that the meaning of a message relies on the recipient. Therefore a single evaluator introduces biases in meaning or numerical scoring, e.g. sentiment as a numbered scale. Additionally, the idea behind a group of people scoring text relies on Sir Francis Galton’s theory of “Vox Populi” or wisdom of crowds.
To exploit the wisdom of crowds four elements must be considered:
●
● Assessors need to exercise independent judgments.
●
● Assessors need to possess a diverse information understanding.
●
● Assessors need to rely on local knowledge.
●
● There has to be a way to tabulate the assessors’ results.
Sir Francis Galton’s experiment exploring the wisdom of crowds met these
conditions with 800 participants. At an English country fair, people were asked to guess the weight of a single ox. Participants guessed separately from each other without sharing the guess. Participants were free to look at the cow themselves yet not receive expert consultation. In this case, contestants had a diverse background. For example, there were no prerequisites stating that they needed to be a certain age, demographic or profession. Lastly, guesses were recorded on paper for tabulation by Sir Francis to study. In the end, the experiment
showed the merit of the wisdom of crowds. There was not an individual correct guess. However, the median average of the group was exactly right. It was even better than the individual farming experts who guessed the weight.
If these conditions are not met explicitly, then the results of the panel are suspect. This may seem easy to do, but in practice it is hard to ensure within an organization. For example a former colleague at a major technology company in California shared a story about the company’s effort to create Internet‐connected eyeglasses. The eyeglasses were shared with internal employees, and feedback was then solicited. The text feedback was sampled and scored by internal employees. At first blush this seems like a fair assessment of the product’s features and

1 What is Text Mining? 5
expected popularity. However, the conditions for the wisdom of crowds were not met. Most notably, the need for a decentralized understanding of the question was not met. As members of the same technology company, the respondents are
already part of a self‐selected group that understood the importance of the overall project within the company. Additionally, the panel had a similar assessment bias because they were from the same division that was working on the project.
This assessing group did not satisfy the need for independent opinions when
assessing the resulting surveys. Further, if a panel is creating summary text as the output of the reviews, then the effort is merely an information reduction effort similar to numerically taking an average. Thus it may not solve the problem of too much text in a reliable manner. Text mining solves all these problems. It will use all of the presented text and does so in a logical, repeatable and auditable way. There may be analyst or data scientist biases but they are documented in the effort and are therefore reviewable. In contrast, crowd‐based reviewer assessments are usually not reviewable.
Despite the pitfalls of ignoring text or using a non‐scientific sampling method, text mining offers benefits. Text mining technologies are evolving to meet the demands of the organization and provide benefits leading to data‐driven decisions. Throughout this book, I will focus on benefits and applied applications of text mining in business.
1.2.2 What Are the Benefits of Text Mining?
There are many benefits of text mining including:
●
●
Trust is engendered among stakeholders because little to no sampling is
needed to extract information.
●
●
The methodologies can be applied quickly.
●
●
Using R allows for auditable and repeatable methods.
●
●
Text mining identifies novel insights or reinforces existing perceptions based on all relevant information.
Interestingly, text mining first appears in the Gartner Hype Cycle in 2012. At that moment, it was listed in the “trough of disillusionment.” In subsequent years, it has not been listed on the cycle at all, leading me to believe that text analysis is either at a steady enterprise use state or has been abandoned by enterprises as not useful. Despite not being listed, text mining is used across industries and in various manners. It may not have exceeded the over‐hyped
potential of 2012’s Gartner Hype Cycle, but text is showing merit. Hospitals use text mining of doctors’ notes to understand readmission characteristics of patients. Financial and insurance companies use text to identify compliance
risks. Retailers use customer service notes to make operational changes when
6

Text Mining in Practice with R
Legal
Data
Marketing
Science
Documents to be Analyzed
Information
Human
Retrieval
Resources
Fraud &
Product
Compliance
Innovation
Figure 1.1 Possible enterprise uses of text min.
failing customer expectations. Technology product companies use text mining
to seek out feature requests in online reviews. Marketing is a natural fit for text analysis. For example, marketing companies monitor social media to identify
brand evangelists. Human resource analytics efforts focus on resume text to
match to job description text. As described here, mastering text mining is a skill set sought out across verticals and is therefore a worthwhile professional endeavor. Figure 1.1 shows possible business units that can benefit from text mining in some form.
1.2.3 Setting Expectations: When Text Mining Should (and Should Not)
Be Used
Since text is often a large part of a company’s database, it is believed that text mining will lead to ground‐breaking discoveries or significant optimization. As a result, senior leaders in an organization will devote resources to text mining, expecting to yield extensive results. Often specialists are hired, and resources are explicitly devoted to text mining. Outside of text mining software, in this case R, it is best to use text mining only in cases where it naturally fits the business objective and problem definition. For example, at a previous employer, I wondered how prospective employees viewed our organization compared to
peer organizations. Since these candidates were outside the organization, capturing numerical or personal information such as age or company‐related per-
spective scoring was difficult. However, there are forums and interview reviews anonymously shared online. These are shared as text so naturally text mining

1 What is Text Mining? 7
was an appropriate tool. When using text mining, you should prioritize defining the problem and reviewing applicable data, not using an exotic text mining method. Text mining is not an end in itself and should be regarded as another tool in an analyst’s or data scientist’s toolkit.
Text mining cannot distill large amounts of text to gain an absolute view of the truth. Text mining is part art and part science. An analyst can mislead
stakeholders by removing certain words or using only specific methods. Thus, it is important to be up front about the limitations of text mining. It does not reveal an absolute truth contained within the text. Just as an average reduces information for consumption of a large set of numbers, text mining will reduce information. Sometimes it confirms previously held beliefs and sometimes it
provides novel insights. Similar to numeric dimension reduction techniques,
text mining abridges outliers, low frequency phrases and important informa-
tion. It is important to understand that language is more colorful and diverse in understanding than numerical or strict categorical data. This poses a significant problem for text miners. Stakeholders need to be wary of any text miner who knows a truth solely based on the algorithms in this book. Rather, the
methods in this book can help with the narrative of the data and the problem at hand, or the outputs can even be used in supervised learning alongside
numeric data to improve the predictive outcomes. If doing predictive modeling using text, a best practice when modeling alongside non‐text data features is to model with and without the text in the attribute set. Text is so diverse that it may even add noise to predictive efforts. Table 1.1 refers to actual use cases where text mining may be appropriate.
Table 1.1 Example use cases and recommendations to use or not use text mining.
Example use case
Recommendation
Survey texts
Explore topics using various methods to gain a respondent’s
perspective.
Reviewing a small
Don’t perform text mining on an extremely small corpus, as
number of documents
the results and conclusion can be skewed.
Human resource
Tread carefully; text mining may yield insights, but the data
documents
and legal barriers may make the analysis inappropriate.
Social media
Use text mining to collect (when allowed) from online sources
and then apply preprocessing steps to extract information.
Data science predictive Text mining can yield structured inputs that could be useful in modeling
machine learning efforts.
Product/service reviews Use text mining if the number of reviews is large.
Legal proceeding
Use text mining to identify individuals and specific
information.

8

Text Mining in Practice with R
Another suggestion for effective text mining is to avoid over using a word
cloud. Analysts armed with the knowledge of this book should not create a
word cloud without a need for it. This is because word clouds are often used without need, and as a result they can actually diminish their impact. However, word clouds are popular and can be powerful in showing term frequency,
among other things, such as the one in Figure 1.2, which runs over the text of this chapter. Throwing caution to the wind, it demonstrates a word cloud of
terms in Chapter 1. It is not very insightful because, as expected, the terms text and mining are the most frequent and largest words in the cloud!
In fact, word clouds are so popular that an entire chapter is devoted to various types of word clouds that can be insightful. However, many people con-
sider word clouds a cliché, so their impact is fading. Also, word clouds represent Figure 1.2 A gratuitous word cloud for Chapter 1.

1 What is Text Mining? 9
a relatively easy way to mislead consumers of an analysis. In the end, they
should be used in conjunction with other methods to confirm the correctness
of a conclusion.
1.3 A Basic Workflow – How the Process Works
Text represents unstructured data that must be preprocessed into a structured manner. Features need to be defined and then extracted from the larger body
of organized text known as a corpus. These extracted features are then ana-
lyzed. The chevron arrows in Figure 1.3 represent structured predefined steps Problem
Gain subject matter expertise and define text mining goals.
Definition
Surveys
Blogs
Unorganized
Articles
State
Reviews
Social
Emails
Media
Organization
Feature
Extraction
Analysis
Organized
Insight, recommendation or analytical output
State
Figure 1.3 Text mining is the transition from an unstructured state to a structured understandable state.
10

Text Mining in Practice with R
that are applied to the unorganized text to reach the final output or conclusion.
Overall Figure 1.3 is a high level workflow of a text mining project.
The steps for text mining include:
1) Define the problem and specific goals. As with other analytical endeavors, it is not prudent to start searching for answers. This will disappoint
decision‐makers and could lead to incorrect outputs. As the practitioner,
you need to acquire subject matter expertise sufficient to define the prob-
lem and the outcome in an appropriate manner.
2) Identify the text that needs to be collected. Text can be from within the organization or outside. Word choice varies between mediums like Twitter
and print so care must be taken to explicitly select text that is appropriate to the problem definition. Chapter 9 covers places to get text beyond reading
in files. The sources covered include basic web scraping, APIs and R’s spe-
cific API libraries, like “twitteR.” Sources are covered later in the book so you can focus on the tools to text mine, without the additional burden of
finding text to work on.
3) Organize the text. Once the appropriate text is identified, it is collected and organized into a corpus or collection of documents. Chapter 2 covers
two types of text mining conceptually, and then demonstrates some prepa-
ration steps used in a “bag of words” text mining method.
4) Extract features. Creating features means preprocessing text for the specific analytical methodology being applied in the next step. Examples
include making all text lowercase, or removing punctuation. The analytical
technique in the next step and the problem definition dictate how the fea-
tures are organized and used. Chapters 3 and 4 work on basic extraction to
be used in visualizations or in a sentiment polarity score. These chapters are not performing heavy machine learning or technical analysis, but instead
rely on simple information extraction such as word frequency.
5) Analyze. Apply the analytical technique to the prepared text. The goal of applying an analytical methodology is to gain an insight or a recommendation or to confirm existing knowledge about the problem. The analysis can
be relatively simple, such as searching for a keyword, or it may be an
extremely complex algorithm. Subsequent chapters require more in‐depth
analysis based on the prepared texts. A chapter is devoted to unsupervised
machine learning to analyze possible topics. Another illustrates how to per-
form a supervised classification while another performs predictive mode-
ling. Lastly you will switch from a “bag of words” method to syntactic
parsing to find named entities such as people’s names.
6) Reach an insight or recommendation. The end result of the analysis is to apply the output to the problem definition or expected goal. Sometimes this
can be quite novel and unexpected, or it can confirm the previously held
idea. If the output does not align to the defined problem or completely

1 What is Text Mining? 11
satisfy the intended goal, then the process becomes repetitious and can be
changed at various steps. By focusing on real case studies that I have
encountered, I hope to instill a sense of practical purpose to text mining. To that end, the case studies, the use of non‐academic texts and the exercises of this book are meant to lead you to an insight or narrative about the issue
being investigated. As you use the tools of this book on your own, my hope
is that you will remember to lead your audience to a conclusion.
The distinct steps are often specific to the particular problem definition or analytical technique being applied. For example, if one is analyzing tweets, then removing retweets may be useful but it may not be needed in other text
mining exploration. Using R for text mining means the processing steps are
repeatable and auditable. An analyst can customize the preprocessing steps
outlined throughout the book to improve the final output. The end result is an insight, a recommendation or may be used in another analysis. The R scripts in this book follow this transition from an unorganized state to an organized
state, so it is important to recall this mental map.
The rest of the book follows this workflow and adds more context and exam-
ples along the way. For example, Chapter 2 examines the two main approaches
to text mining and how to organize a collection of documents into a clean corpus. From there you start to extract features of the text that are relevant to the defined problem. Subsequent chapters add visualizations, such as word clouds, so that a data scientist can tell the analytical narrative in a compelling way to stakeholders. As you progress through the book the types and methods of
extracted features or information grow in complexity because the defined
problems get more complex. You quickly divert to covering sentiment polarity so you can understand Airbnb reviews. Using this information you will build
compelling visualizations and know what qualities are part of a good Airbnb
review. Then in Chapter 5 you learn topic modeling using machine learning.
Topic modeling provides a means to understand the smaller topics associated
within a collection of documents without reading the documents themselves.
It can be useful for tagging documents relating to a subject. The next subject, document classification, is used often. You may be familiar with document
classification because it is used in email inboxes to identify spam versus legitimate emails. In this book’s example you are searching for “clickbait” from
online headlines. Later you examine text as it relates to patient records to model how a hospital identifies diabetic readmission. Using this method, some hospitals use text to improve patient outcomes. In the same chapter you even examine movie reviews to predict box office success. In a subsequent chapter you switch from the basic bag of words methodology to syntactic parsing using the OpenNLP library. You will identify named entities, such as people, organizations and locations within Hillary Clinton’s emails. This can be useful in legal proceedings in which the volume of documentation is large and the deadlines
12

Text Mining in Practice with R
are tight. Marketers also use named entity recognition to understand what
influencers are discussing. The remaining chapters refocus your attention back to some more basic principles at the top of the workflow, namely where to get text and how to read it into R. This will let you use the scripts in this book with text that is thought provoking to your own interests.
1.4 What Tools Do I Need to Get Started with This?
To get started in text mining you need a few tools. You should have access to a laptop or workstation with at least 4GB of RAM. All of the examples in this book have been tested on a Microsoft’s Windows operating systems. RAM is important because R’s processing is done “in memory.” This means that the objects being analyzed must be contained in the RAM memory. Also, having a high
speed internet connection will aid in downloading the scripts, R library packages and example text data and for gathering text from various webpages. Lastly, the computer needs to have an installation of R and R Studio. The operating system of the computer should not matter because R has an installation for Microsoft, Linux and Mac.
1.5 A Simple Example
Online customer reviews can be beneficial to understanding customer per-
spectives about a product or service. Further, reviewers can sometimes leave feedback anonymously, allowing authors to be candid and direct. While this
may lead to accurate portrayals of a product it may lead to “keyboard courage”
or extremely biased opinions. I consider it a form of selection bias, meaning that the people that leave feedback may have strong convictions not indicative of the overall product or service’s public perception. Text mining allows an enterprise to benchmark their product reviews and develop a more accurate
understanding of some public perceptions. Approaches like topic modeling
and polarity (positive and negative scoring) which are covered later in this book may be applied in this context. Scoring methods can be normalized
across different mediums such as forums or print, and when done against a
competing product, the results can be compelling.
Suppose you are a Nike employee and you want to know about how consum-
ers are viewing the Nike Men’s Roshe Run Shoes. The text mining steps to follow are:
1) Define the problem and specific goals. Using online reviews, identify overall positive or negative views. For negative reviews, identify a consistent cause of the poor review to be shared with the product manager and manufacturing personnel.

1 What is Text Mining? 13
2) Identify the text that needs to be collected. There are running websites providing expert reviews, but since the shoes are mass market, a larger collection of general use reviews would be preferable. New additions come out
annually, so old reviews may not be relevant to the current release. Thus, a shopping website like Amazon could provide hundreds of reviews, and
since there is a timestamp on each review, the text can be limited to a par-
ticular timeframe.
3) Organize the text. Even though Amazon reviewers rate products with a number of stars, reviews with three or fewer stars may yield opportunities to improve. Web scraping all reviews into a simple csv with a review per row and the corresponding timestamp and number of stars in the next columns will
allow the analysis to subset the corpus by these added dimensions.
4) Extract features. Reviews will need to be cleaned so that text features can be analyzed. For this simple example, this may mean removing common
words with little benefit like “shoe” or “nike,” running a spellcheck and making all text lowercase.
5) Analyze. A very simple way to analyze clean text, discussed in an early chapter, is to scan for a specific group of keywords. The text‐mining analyst may want to scan for words given their subject matter expertise. Since the analysis is about shoe problems one could scan for “fit,” “rip” or “tear,” “narrow,”
“wide,” “sole,” or any other possible quality problem from reviews. Then summing each could provide an indication of the most problematic feature. Keep
in mind that this is an extremely simple example and the chapters build in
complexity and analytical rigor beyond this illustration.
6) Reach an insight or recommendation. Armed with this frequency analysis, a text miner could present findings to the product manager and manufacturing personnel that the top consumer issue could be “narrow” and “fit.” In practical application, it is best to offer more methodologies beyond keyword frequency, as support for a finding.
1.6 A Real World Use Case
It is regularly the case that marketers learn best practices from each other.
Unlike in other professions many marketing efforts are available outside of the enterprise, and competitors can see the efforts easily. As a result, competitive intelligence in this space is rampant. It is also another reason why novel ideas are often copied and reused, and then the novel idea quickly loses salience with its intended audience. Text mining offers a quick way to understand the basics of a competitor’s text‐based public efforts.
When I worked at amazon.com, creating the social customer service team, we
were obsessed with how others were doing it. We regularly read and reviewed
14

Text Mining in Practice with R
other companies’ replies and learned from their missteps. This was early 2012, so customer service in social media was considered an emerging practice, let alone being at one of the largest retailers in the world. At the time, the belief was that it was fraught with risk. Amazon’s legal counsel, channel marketers in
charge of branding and even customer service leadership were weary of publi-
cally acknowledging any shortcomings or service issues. The legal department was involved to understand if we were going to set undeliverable expectations or cause any tax implications on a state‐by‐state basis. Further, each brand owner, such as Amazon Prime, Amazon Mom, Amazon MP3, Amazon Video
on Demand, and Amazon Kindle had cultivated their own style of communicat-
ing through their social media properties. Lastly, customer service leadership had made multiple promises that reached all the way to Jeff Bezos, the CEO,
about flawless execution and servicing in this channel demonstrating customer centricity. The mandate was clear: proceed, but do so cautiously and do not
expand faster than could be reasonably handled to maintain quality set by all these internal parties. The initial channels we covered were the two “Help”
forums on the site, then retail and Kindle Facebook pages, and lastly, Twitter.
We had our own missteps. I remember the email from Jeff that came down
through the ranks with a simple “?” concerning an inappropriate briefly posted video to the Facebook wall. That told me our efforts were constantly under
review and that we had to be as good as or better than other companies.
Text mining proved to be an important part of the research that was done to
understand how others were doing social media customer service. We had to
grasp simple items like length of a reply by channel, basic language used, typical agent workload, and if adding similar links repeatedly made sense. My initial thought was that it was redundant to repeatedly post the same link, for example to our “contact us”, form. Further, we didn’t know what types of help links were best to post. Should they be informative pages or forms or links to outside resources? We did not even know how many people should be on the
team and what an average workload for a customer service representative was.
In short, the questions basic text mining can help with are
1) What is the average length of a social customer service reply?
2) What links were referenced most often?
3) How many people should be on the team? How many social replies is rea-
sonable for a customer service representative to handle?
Channel by channel we would find text of some companies already providing
public support. We would identify and analyze attributes that would help us
answer these questions. In the next chapter, covering basic text mining, we will actually answer these questions on real customer service tweets and go through the six‐step process to do so.
Looking back, the answers to these questions seem common sense, but that
is after running that team for a year. Now social media customer service has

1 What is Text Mining? 15
expanded to be the norm. In 2012, we were creating something new at a
Fortune 50 fast growing company with many opinions on the matter, including
“do not bother!” At the time, I considered Wal‐Mart, Dell and Delta Airlines to be best in class social customer service. Basic text mining allowed me to review their respective replies in an automated fashion. We spoke with peers at
Expedia but it proved more helpful to perform basic text mining and read a
small sample of replies to help answer our questions.
1.7 Summary
In this chapter you learned
●
●
the basic definition of practical text mining
●
●
why text mining is important to the modern enterprise
●
●
examples of text mining used in enterprise
●
●
the challenges facing text mining
●
●
an example workflow for processing natural language in analytical contexts
●
●
a simple text mining example
●
●
when text mining is appropriate
17
2
Basics of Text Mining
In this chapter, you’ll learn
●
●
how to answer the basic social media competitive intelligence questions in
Chapter 1’s case study
●
●
what the average length of a social customer service reply is
●
●
what links were referenced most often
●
●
how many people should be on a social media customer service team and
how many social replies are reasonable for a customer service representative to handle
●
●
what are the two approaches to text mining and how they differ
●
●
common Base R functions and specialized packages for string manipulation
2.1 What is Text Mining in a Practical Sense?
There are technical definitions of text mining all over the Internet and in academic books. The short definition in Chapter 1, (“the process of distilling actionable insights from text”) alludes to a practical application rather than relating to idle curiosity. As a practitioner, I prefer to think about the definition in terms of the value that text mining can bring to an enterprise. In Chapter 1 we covered a definition of text mining and expanded on its uses in a business context. However, in more approachable terms an expanded definition might be:
Text mining represents the ability to take large amounts of unstructured
language and quickly extract useful and novel insights that can affect stakeholder decision‐making.
Text mining does all this without forcing an individual to read the entire corpus (pl. corpora). A graphical representation of the perspective given in Chapter 1
is shown in Figure 2.1. In the social customer service case the problem was
18

Text Mining in Practice with R
Problem
Gain subject matter expertise and define text mining goals.
Definition
Surveys
Blogs
Unorganized
Articles
State
Reviews
Social
Emails
Media
Organization
Feature
Extraction
Analysis
Organized
Insight, recommendation or analytical output
State
Figure 2.1 Recall, text mining is the process of taking unorganized sources of text, and applying standardized analytical steps, resulting in a concise insight or recommendation.
Essentially, it means going from an unorganized state to a summarized and
structured state.
reasonably well defined in order to inform operational decisions. The figure is a review of the mental map for transitioning from a defined problem and an unorganized state of data to an organized state containing the insight.
The main point of this practical text mining definition is that it views text mining as a means to an end. Often there are “interesting” text analyses that are performed but that have no real impact. If the effort does not confirm existing business instincts or inform new ones, then the analysis is without merit beyond the purely technical. An example of non‐impactful text mining occurred when
a vendor tried to sell me on the idea of sentiment analysis scoring for customer

2 Basics of Text Mining 19
satisfaction surveys. The customer ranked the service interaction as “poor” or
“good” in the first question of the survey. Running sentiment analysis on a subset of the “poor” interactions resulted in “negative” sentiment for all the survey notes. But confirming that poor interactions had negative sentiment in a later text‐based question in no way helped to improve customer service operations.
The customer should be trusted in question one! Companies delivering this
type of nonsense are exactly the reason that text mining has never fully delivered on its expected impact.
The last major point in the definition is that the analyst should not need to read the entire corpus. Further, having multiple reviewers of a corpus doing text analytics causes problems. From one reviewer to another I have found a
widely disparate understanding of the analysis deliverable. Reviews are subjective and biased in their approach to any type of scoring or text analysis. The manual reviewers represent another audience and, as communication theory
states, messages are perceived by the audience not the messenger. It is for this reason that I prefer training sets and subjectivity lexicons, where the author has defined the intended sentiment explicitly rather than having it performed by an outside observer. Thus, I do not recommend a crowd‐sourcing approach
to analysis, such as mturk or crowdflower. These services have some merit
in a specialized context or limited use, but overall I find them to be relatively expensive for the benefit. In contrast, interpreting biases in methodology
through a code audit, and reviewing repeatable steps leading to the outcome
helps to provide a more consistent approach. I do recommend the text miner
to read portions of the corpus to confirm the results but not to read the entire corpus for a manual analysis.
Your text mining efforts should strive to create an insight while not manually reading entire documents. Using R for text mining ensures that you have code that others can follow and makes the methods repeatable. This allows your
code to be improved iteratively in order to try multiple approaches.
Despite the technological gains in text mining over the past five years, some significant challenges remain. At its heart, text is unstructured data and is often high volume. I hesitate to use “big data” because it is not always big, but it still can represent a large portion of an enterprise’s data lake. Technologies like Spark’s ML‐Lib have started to address text volume and provide structur-ing methods at scale. Another remaining text mining concern that is part of the human condition is that text represents expression and is thereby impacted by individualistic expressions and audience perception. Language continues to
evolve collectively and individually. In addition, cultural differences impact language use and word choice. In the end, text mining represents an attempt to hit a moving target as language evolves, but the target itself isn’t clearly defined.
For these reasons text mining remains one of the most challenging areas of
data science and among the most fun to explore.
20

Text Mining in Practice with R
Where does text mining fit into a traditional data science machine learning
workflow?
Traditionally there are three parts to a machine learning workflow. The initial input to the process is historical data, followed by a modeling approach and finally the scoring for both new observations and to provide answers. Often the workflow is considered circular because the predictions inform the problem
definition, and the modeling methods used, and also the historical data itself will evolve over time. The goal of continuous feedback within a machine learning workflow is to improve accuracy.
The text mining process in this book maps nicely to the three main sections of the machine learning workflow. Text mining also needs historical data from
which to base new outcomes or predictions. In the case of text the training data is called a corpus or corpora. Further, in both machine learning and text mining, it is necessary to identify and organize data sources.
The next stage of the machine learning workflow is modeling. In contrast to a typical machine learning algorithm, text mining analysis can encompass non-algorithmic reasoning. For example, simple frequency analysis can sometimes
yield results. This is more usually linked to exploratory data analysis work than in a machine learning workflow. Nonetheless, algorithm modeling can be done in
text mining and is covered later in this book.
The final stage of the machine learning workflow is prediction. In machine
learning, this section applies the model to new data and can often provide
answers. In a text mining context, not only can text mining based algorithms function exactly the same, but also this book’s text mining workflow shows how to provide answers while avoiding “curiosity analysis.”
In conclusion, data science’s machine learning and text mining workflows are closely related. Many would correctly argue that text mining is another tool set in the overall field of data discovery and data science. As a result, text mining should be included within a data science project when appropriate and not
considered a mutually exclusive endeavor.
2.2 Types of Text Mining: Bag of Words
Overall there are two types of text mining, one called “bag of words” and the other “syntactic parsing,” each with its benefits and shortcomings. Most of this book deals with bag of words methods because they are easy to understand and analyze and even to perform machine learning on. However, a later chapter is devoted to syntactic parsing because it also has benefits.
Bag of words treats every word – or groups of words, called n‐grams – as a
unique feature of the document. Word order and grammatical word type are not captured in a bag of words analysis. One benefit of this approach is that it is

2 Basics of Text Mining 21
generally not computationally expensive or overwhelmingly technical to organize the corpora for text mining. As a result, bag of words style analysis can often be done quickly. Further, bag of words fits nicely into machine leaning frameworks because it provides an organized matrix of observations and attributes. These are called document term matrices (DTM) or the transposition, term document
matrices (TDM). In DTM, each row represents a document or individual corpus.
The DTM columns are made of words or word groups. In the transposition
(TDM), the word or word groups are the rows while the documents are the
columns.
Don’t be overwhelmed, it is actually pretty easy once you see it in action! To make this real, consider the following three tweets.
●
●

@hadleywickham: “How do I hate thee stringsAsFactors=TRUE? Let me
count the ways #rstats”
●
●

@recodavid: “R the 6th most popular programming language in 2015 IEEE
rankings #rstats”
●
●

@dtchimp: “I wrote an #rstats script to download, prep, and merge
@ACLEDINFO’s historical and realtime data.”
This small corpus of tweets could be organized into a DTM. An abbreviated
version of the DTM is in Table 2.1.
The transposition of the DTM is the term document matrix (TDM). This
means that each tweet is a column in the matrix and each word is a row. Within the bag of words text mining approach, the type of analysis dictates the type of matrix used. Table 2.2 is an abbreviated TDM of the small three‐tweet corpus.
In these examples, the DTM and TDM are merely showing word counts. The
matrix shows the sum of the words as they appeared for the specific tweet.
With the organization done, you may notice that all mention #rstats. So without reading all the tweets, you could simply surmise, based on frequency, that the general topic of the tweets most often is somehow related to R. This simple frequency analysis would be more impressive if the corpus contained tens of
thousands of tweets. Of course, there are many other ways to approach the
matter and different weighting schemes used in these types of matrices.
Table 2.1 An abbreviated document term matrix, showing simple word counts contained in the three‐tweet corpus.
@
Tweet
acledinfo’s
#rstats
2015
6th
And
Count
Data
Download
…
1
0
1
0
0
0
1
0
0
…
2
0
1
1
1
0
0
0
0
…
3
1
1
0
0
2
0
1
1
…
22

Text Mining in Practice with R
Table 2.2 The term document matrix contains the same information as the document term matrix but is the transposition. The rows and columns have been switched.
Word
Tweet1
Tweet2
Tweet3
@acledinfo’s
0
0
1
#rstats
1
1
1
2015
0
1
0
6th
0
1
0
And
0
0
2
Count
1
0
0
Data
0
0
1
Download
0
0
1
…
…
…
…
However, the example is sound and shows how this simple organization can
start to yield a basic text mining insight.
2.2.1 Types of Text Mining: Syntactic Parsing
Syntactic parsing differs from bag of words in its complexity and approach. It is based on word syntax. At its root, syntax represents a set of rules that define the components of a sentence that then combine to form the sentence itself (similar to building blocks). Specifically, syntactic parsing uses part of speech (POS) tagging techniques to identify the words themselves in a grammatical or useful
context. The POS step creates the building blocks that make up the sentence.
Then the blocks, or data about the blocks, is analyzed to draw out the insight.
The building block methodologies can become relatively complicated. For
instance, a word can be identified as a noun “block” or more specifically as a proper noun “block.” Then that proper noun tag or block can be linked to a verb and so on until the blocks add up to the larger sentence tag or block. This continues to build until you complete the entire document.
More generally, tagging or building block methodologies can identify sen-
tences; the internal sentence components such as the noun or verb phrase; and even take an educated guess at more specific components of the sentence
structure. Syntactic parsing can identify grammatical aspects of the words
such as nouns, articles, verbs and adjectives. Then there are dependent part of speech tags denoting a verb linking to its dependent words such as modifiers.
In effect, the dependent tags rely on the primary tags for basic grammar and sentence structure, while the dependent tag is captured as metadata about the original tag. Additionally, models have been built to perform sophisticated

2 Basics of Text Mining 23
tasks including naming proper nouns, organizations, locations, or currency
amounts. R has a package relying on the OpenNLP (open [source] natural lan-
guage processing) project to accomplish these tasks. These various tags are
captured attributes as metadata of the original sentence. Do not be over-
whelmed; the simple sentence below and the accompanying Figure 2.2 will help make this sentence deconstruction more welcoming.
Consider the sentence: “Lebron James hit a tough shot.”
When comparing the two methods, you should notice that the amount of
information captured in a bag of words analysis is smaller. For bag of words, sentences have attributes assigned only by word tokenization such as single
words, or two‐word pairs. The frequencies of terms – or sometimes the inverse frequencies – are recorded in the matrix. In the above sentence that may mean having only single tokens to analyze. Using single word tokens, the DTM or
TDM would have no more than six words. In contrast, syntactic parsing has
many more attributes assigned to the sentence. Reviewing Figure 2.2, this sentence has multiple tags including sentence, noun phrase, verb phrase, named
entity, verb, article, adjective and noun. In this introductory book, we spend most of our time using the bag of words methodology for the basis of our foundation, but there is a chapter devoted to R’s openNLP package to demonstrate part of speech tagging.
‘ sentence’
Lebron James hit a tough shot.
‘ noun phrase’

tagged as a ‘ verb phrase’
Leborn James
hit a tough shot.
‘ named entity’
‘ verb’
‘ article’
‘ adjective’
‘ noun’
Lebron James
hit
a
tough
shot.
Figure 2.2 The sentence is parsed using simple part of speech tagging. The collected contextual data has been captured as tags, resulting in more information than the bag of words methodology captured.
24

Text Mining in Practice with R
2.3 The Text Mining Process in Context
1) Define the problem and the specific goals. Let’s assume that we are trying to understand Delta Airline’s customer service tweets. We need to launch a
competitive team but know nothing about the domain or how expensive this
customer service channel is. For now we need to answer these questions.
a) What is the average length of a social customer service reply?
b) What links were referenced most often?
c) How many people should be on a social media customer service team?
How many social replies are reasonable for a customer service repre-
sentative to handle?
Although the chapter covers more string manipulations beyond those
needed to answer these questions, it is important to understand common
string‐related functions since your own text mining efforts will have different questions.
2) Identify the text that needs to be collected. This example analysis will be restricted to Twitter, but one could expand to online forums, Facebook
walls, instagram feeds and other social media properties.
Getting the Data
Please navigate to www.tedkwartler.com and follow the download link. For this analysis, please download “oct_delta.csv”. It contains Delta tweets from the Twitter API from October 1 to October 15, 2015. It has been cleaned up so we can focus on the specific tasks related to our questions.
3) Organize the text. The Twitter text has been organized already from a JSON object with many parameters to a smaller CSV with only tweets and
date information. In a typical text mining exercise the practitioner will have to perform this step.
4) Extract features. This chapter is devoted to using basic string manipulation and introducing bag of words text cleaning functions. The features we
extract are the results of these functions.
5) Analyze. Analyzing the function results from this chapter will lead us to the answers to our questions.
6) Reach an insight or recommendation. Once we answer our questions we will be more informed in creating our own competitive social customer
service team.
a) What is the average length of a social customer service reply? We will
use a function called nchar to assess this.

2 Basics of Text Mining 25
b) What links were referenced most often? You can use grep, grepl and
a summary function to answer this question.
c) How many people should be on a social media customer service team?
How many social replies are reasonable for a customer service repre-
sentative to handle? We can analyze the agent signatures and look at it as
a time series to gain this insight.
2.4 String Manipulation: Number of Characters
and Substitutions
At its heart, bag of words methodology text mining means taking character strings and manipulating them in order for the unstructured to become structured into the DTM or TDM matrices. Once that is performed other complex analyses can
be enacted. Thus, it is important to learn fundamental string manipulation. Some of the most popular string manipulation functions are covered here but there are many more. You will find the paste, paste0, grep, grepl and gsub functions useful throughout this book.
R has many functions for string manipulation automatically installed within
the base software version. In addition, the common libraries extending R’s string functionality are stringi and stringr. These packages provide simple
implementations for dealing with character strings.
To begin all the scripts in this book I create a header with information
about the chapter and the purpose of the script. It is commented out and has no bearing on the analysis, but adding header information in your scripts will help you stay organized. I added my Twitter handle in case you, as the reader, need to ask questions. As your scripts grow in number and complexity having the description at the top will help you remember the purpose of the
script. As the scripts you create are shared with others or inherited, it is important to have some sort of contact information such as an email so the
original author can be contacted if needed. Additionally, as part of my standard header for any text mining, it is best to specify two system options that have historically been problematic. The first option states that strings are not to be considered factors. R’s default understanding of text strings is to treat them as individual factors like “Monday,” “Tuesday” and so on with distinct
levels. For text mining, we are aggregating strings to distill meaning, so treating the strings as individual factors makes aggregation impossible. The sec-
ond option is for setting a system locale. Setting the system location helps overcome errors associated with unusual characters not recognized by R’s
default locale. It does not fix all of them but I have found it helps significantly. Below is a basic script header that I use often in my text mining
applications.
26

Text Mining in Practice with R
#Text Mining in R
#Ted Kwartler
#Twitter: @tkwartler
#Chapter 2 Text Mining Basics
#Set Options
options(stringsAsFactors=F)
Sys.setlocale('LC_ALL','C')
Next I bring in libraries to aid in our basic string exercises. In addition to base functions, I like to use stringi, stringr and qdap for these, although
there are many other libraries that can aid in string manipulation.
library(stringi)
library(stringr)
library(qdap)
You can now jump into working with text for the first time, since you have a concise reference header, our specialized text libraries loaded, and some sample text similar to our Delta case study.
The base function nchar will return the number of characters in a string.
The function is vectored, meaning that it can be applied to a character column directly without using an additional apply function. In contrast, some functions work only on a part of the data like an individual cell in a data frame. In practical application, nchar may be of interest if you are reviewing competitive marketing materials. The function can also be used in other functions to help clean up unusually short or even blank documents in a corpus. It is worth noting that nchar does count spaces as characters.
The code below references the first six rows of the corpus and the last col-
umn containing the text. Instead of using the head function you can reference the entire vector with nchar or you can look at any portion of the data frame by referencing the corresponding index position.
text.df<-read.csv(‘oct_delta.csv’)
nchar(head(text.df$text))
The returned answer:
[1] 119 110 78 65 137 142
If you want to look at only a particular string, you can refer to it by its exact index location. Here apply nchar to only the fourth row and last column containing a single tweet.
nchar(text.df[4,5])
The individual answer returned:
[1] 65

2 Basics of Text Mining 27
Using this function you can easily answer your first case study question. The code below calculates the average for the number of characters for the entire vector tweets.
mean(nchar(text.df$text))

What is the average length of a social customer service reply? The answer is approximately 92 characters. Since tweets can be a maximum of 140 characters, the insight here is that agents are concise and not often maximizing the Twitter character limit. In the data set, there are cases of a long message being broken up into multiple tweets. In this type of analysis it is best to have more data and to subset these multiple tweets to ensure accuracy.
Another use for the nchar function is that it can be used to omit strings
with a length equal to 0. This can help remove blank documents from a corpus, as is sometimes the case in a table with extra blank rows at the bottom. To do this you can use the subset function along with the nchar function as shown
below. If you end up with blank documents, it may make analyzing the entire
collection difficult. So this function keeps only documents with the number of characters greater than 0.
subset.doc<-subset(text.df,nchar(text.df$text)>0)
The following functions do not necessarily answer the questions in the case
study but nonetheless are important to know. These functions replace defined patterns in strings. These functions represent a simple way to substitute parts of strings. As a result these useful functions are often used in unifying text and aggregating important terms. This family of functions can be useful to clean up unwanted punctuation, aggregate terms, change ordinal abbreviations
(e.g. “2nd”) or change acronyms to their long form. For example, if you are
analyzing text with a lot of tweets, you may encounter a lot of “@” symbols
which could be removed using these functions. Another example would be to
aggregate terms. We could look for patterns of “Coke” and change them to
“Coke a Cola” if it made sense in the problem context.
The first function is sub. The sub function looks for the first pattern match in a string and replaces it. In the data set, Delta’s first customer service tweet is
“@mjdout I know that can be frustrating..we hope to have you parked and
deplaned shortly. Thanks for your patience. *AA.” We can substitute one string for another using the code below.
sub('thanks','thank you',text.df[1,5], ignore.case=T)
The console prints the resulting tweet with changed words as shown
below.
[1] "@mjdout I know that can be frustrating..we hope
to have you parked and deplaned shortly. thank you for
your patience. *AA"
28

Text Mining in Practice with R
The sub function is also vectored so that it can be applied to a column, and replacements will occur for each of the first pattern matches by row. The index below is applying sub to the first five tweets’ rows within the fifth column but can just as easily be used on the entire column.
sub('pls','please',text.df[1:5,5], ignore.case=F)
This changes the ‘pls’ in tweets two, three and four. Three replacements were made because each instance is the first pattern for that specific row.
Next we will discuss the function gsub. This global substitution function
will replace not just the first instance of a pattern but instead all instances.
Consider the following example text string to illustrate the difference between sub and gsub.
fake.text<-'R text mining is good but text mining in
python is also'
sub('text mining','tm', fake.text, ignore.case=F)
gsub('text mining','tm', fake.text, ignore.case=F)
Using just sub the first pattern match of text mining is replaced with tm
while the second one is not. However, using gsub allows the function to match more than once within a string. As a result the second result has both substitutions completed. As was the case with sub, the gsub function can be applied
to an entire vector of strings.
[1] "R tm is good but tm in python is also"
The gsub function is useful for removing specific characters in entire corpora.
In the fifth Delta tweet R has parsed the “&” ampersand to “&.” We can remove this pattern entirely or substitute a new word by using gsub on a specific row.
gsub('&','',text.df[5,5])
When you look closely you see that the pattern “&” is being replaced with nothing inside the quotes as the second entry to the function. This is a simple way to drop the matched pattern. It can also be used, sometimes clumsily, to remove punctuation. To remove a single punctuation, the pattern to search for would merely be a punctuation like “!” or “@”. However, to remove all punctuation using the regular expression and gsub you can call on the following code.
gsub('[[:punct:]]','',text.df[1:5,5])
Another point that is worth noting is that the last part of both sub and gsub function is the parameter ignore.case=F). This tells the function to explicitly match the pattern. Changing the F to T for true will tell the sub or gsub function that it can match either upper or lowercase strings.
The qdap package, which is a wonderfully expansive package providing a lot
of useful text mining tools, offers a very convenient wrapper for gsub. It is

2 Basics of Text Mining 29
called mgsub or multiple global substitutions. This allows an R programmer to pass a vector of pattern matches to be replaced with another vector. It is compact and makes repeating many multiple substitutions easy. To begin with, we create a string vector of patterns to be matched. Then we create another string vector of replacements. Lastly we invoke the mgsub function applied to the
fake.text object created earlier. In the code below “good” will be replaced
with “great,” “also” will be replaced with “just as suitable,” and “text mining” will be replaced by “tm.”
library(qdap)
patterns<-c('good','also','text mining')
replacements<-c('great','just as suitable','tm')
mgsub(patterns,replacements,fake.text)
Rather than having three separate gsub function calls we are able to accom-
plish three substitutions more efficiently. The result is below.
[1] "R tm is great but tm in python is just as
suitable"
The mgsub function is the easiest and best way to programmatically do mul-
tiple substitutions. In text analysis an analyst may end up with a vector of words that were identified earlier and needs to be replaced, modified or aggregated.
In my experience, mgsub is the best way forward instead of tedious individual gsub function calls or a custom function.
In practical business application the substitute functions are useful. We can change repeating words to aggregate terms. For example, changing acronyms is easy using sub functions. At Amazon, customer service agents refer to “WMS”
in call notes. This stands for “where’s my stuff” and represents a caller who is looking for a shipment. Using the sub function one can revert WMS to the
entire phrase or vice versa.
Tip: Sometimes appropriate yet unintended consequences can occur. For example, at a large organization one of my scripts was replacing RT with a
blank space to remove a retweet designation. Using gsub had the unintended
consequence of changing words like “airport” to “airpo.” So beware when using gsub as you may encounter unplanned consequences.
2.4.1 String Manipulations: Paste, Character Splits and Extractions
Another useful function, especially when dealing with multiple columns of text to be analyzed, is the paste function. For business analysts used to Excel,
paste is the same as the concatenation function used for vectors. In the
example data set and case study, you are trying to understand the number of
tweets handled by an agent for a specific timeframe. As a result we need to
paste the month, date and year columns from the data frame.
30

Text Mining in Practice with R
First you need to change the month abbreviations to the corresponding num-
ber. To do this you can simply use a substitute function from the previous section.
If you were executing this analysis for real, you would be looking at more than a single month in the data set, so the code below subs all 12 months of the year.
patterns<-c('Jan','Feb','Mar','Apr','May','Jun','Jul',
'Aug','Sep','Oct','Nov','Dec')
replacements<-seq(1:12)
text.df$month<-mgsub(patterns,replacements,text.
df$month)
text.df$combined<-paste(text.df$month,
text.df$date,text.df$year, sep='-')
This creates a new column or vector called “combined.” The function takes the three string vectors and combines them with a separator. Another variant of the paste function is paste0. The paste0 function can be used if there are no
separating characters needed and is therefore slightly more efficient in some cases.
If you were completing this analysis for real and needed to understand the
agent’s tweet patterns as a time series, you would need to change the text.
df$combined vector to dates. The lubridate package is then used in
order to switch the newly created dates into an official date format. Once this is done, an analyst can use all date‐related functions (like difference times) to explore work load arrival patterns.
library(lubridate)
text.df$combined<-mdy(text.df$combined)
With the date cleaned up and having covered some basic string manipulation
functions, you now turn your attention to actually understanding the agent
workload. Another base R function that acts similarly is strsplit. The str-
split function creates subset strings by matching character patterns.
In setting up Amazon’s customer service team, I reviewed other companies’
tweets similar to these, in an effort to learn the number of agents that other companies were using and also how many tweets each agent could handle in a
normal shift. This could aid in proper benchmarking and workforce manage-
ment. Reviewing the first two example tweets from the data frame you can see that agents are adding personal initials to each tweet.
text.df$text[1:2]
[1] "@mjdout I know that can be frustrating..we hope
to have you parked and deplaned shortly. Thanks for
your patience. *AA"

2 Basics of Text Mining 31
[2] "@rmarkerm Terribly sorry for the inconvenience.
If we can be of assistance at this time, pls let us
know. *AA"
String split on the asterisk to identify the agent for each tweet.
agents<-strsplit(text.df$text,'[*]')
Notice the pattern is [*] not just *. This is because a standalone * in regular expressions is considered a wildcard, meaning match anything. In this example, that would not be useful. However, adding the brackets around the asterisk tells the strsplit function to treat the asterisk as simply the character.
The result is a list with each second value holding the information we are
interested in. In practical application, doing this on many weeks’ worth of
tweets allows a text miner to aggregate the customer service agent initials, and summarize along with the timestamp of the tweet in order to deduce
how that specific team performs. Here, the same agent “AA” signed both
tweets.
agents[1:2]
[[1]]
[1] "@mjdout I know that can be frustrating..we hope
to have you parked and deplaned shortly. Thanks for
your patience. "
[2] "AA"
[[2]]
[1] "@rmarkerm Terribly sorry for the inconvenience.
If we can be of assistance at this time, pls let us
know. "
[2] "AA"
The strsplit function works as long as all agents are using the same pat-
tern to close their messages. If an agent uses another character such as a dash instead of an asterisk, then the strsplit function would miss that tweet
signature. It may be the case that agents use a mixture of patterns to close messages. Thus a custom function may be better to accomplish this or a similar
task where the text miner needs to capture the final two characters from a
document.
An example of a custom function follows. In this case, it is called “last.chars.”
You need to specify a piece of text and a number when invoking the function.
The function will return the object called ‘last’ that represents the last number of letters in the string. The last.chars function works by using the substring
function along with nchar. Substring extracts parts of a string based on a beginning and ending number. A quick example is shown below. The function extracts
32

Text Mining in Practice with R
the portion of the overall string “R text mining is great” beginning at the 18th character and ending at the 22nd. The function counts spaces in this withdrawal, and the result is only the characters in the word “great,” as shown.
substring('R text mining is great',18,22)
[1] "great"
The last.chars function merely creates the numbers for substring
dynamically. The first numerical substring function input uses the number
of characters in the string minus the number given when calling the last.
chars function plus one. The second input represents the number to end the
extraction. Since the function is meant to capture the end of the string, the second number is the total number of characters in the string itself, meaning grab characters until the end is reached.
last.chars<-function(text,num){
last<-substr(text, nchar(text)-num+1,nchar(text))
return(last)
}
Applying the last.chars function to the “R text mining is great” function
is straightforward and can capture the same information as substring. The
advantage is that last.chars is dynamic and does not extract based on a
specific character like strsplit.
last.chars('R text mining is great',5)
[1] "great"
Now you need to apply the last.chars function to the vector along with
the number two. This will dynamically grab the last two characters of the vector. This solves the problem of splitting on an exact character match in case the agent used a different character to signify the start of the signature.
last.chars(text.df$text[1:2],2)
[1] "AA" "AA"
Armed with your custom function, you can use it on one or more weeks of @
deltaassist tweets. For the sake of learning, subset based on your pasted and cleaned dates and then perform an analysis to see the hardest working Delta
customer service agent. In the next code, you create an object called “week-
days.” It represents a subset of the entire data frame in between October 5 and October 9. Then in order to make sense of them for analysis, you need to treat them as categorical factors, so you can call on the table function.

2 Basics of Text Mining 33
Table 2.3 @DeltaAssist agent workload – The abbreviated table demonstrates a simple
text mining analysis that can help with competitive intelligence and benchmarking
for customer service workloads.
Agent AA AD AN BB CK CM DD DR EC HW … VI VM WG
Cases 32
7
6
14 7
4
5
6
5
5
… 8
9
35
Agent AA AD AN BB CK CM DD DR EC HW … VI VM WG
Cases 32
7
6
14 7
4
5
6
5
5
… 8
9
35
weekdays<-subset(text.df,text.df$combined >= mdy('10-
05-2015') & text.df$combined<= mdy('10-09-2015'))
table(as.factor(last.chars(weekdays$text,2)))
The result is a table summary of the last two characters for each tweet within the time period. Some tweets are continuations of customer service cases and are showing up as “/2” or something similar. Because these are continuations, and we are concerned about individual caseloads, to answer our earlier question you can safely ignore them, although an interesting analysis may be to later understand how often agents need to create these truncated messages. Table 2.3
is an abbreviated version of the table output. You can quickly determine that the busiest agent is WG, and with a little more effort you can examine the average among all agents.
Using the above code answers the simple case study question about agent
workload in a week. You can easily extend this analysis by looking at days of the week and actual times of day for responses. In fact, Twitter’s api returns the entire timestamp of tweets with time of day. With that you could extend
this agent workload analysis to make an educated guess at each agent’s work
shift.
2.5 Keyword Scanning
The functions grep and grepl have a long history of use in computer pro-
gramming. R has inherited these commands from Unix, created over 40 years
ago! In fact, the grep commands are so often used that the command grep is
both a noun and a verb. While grep and grepl sound like alien terms, the
commands are in fact merely searching for a regular expression pattern. More specifically, the functions stands for “global regular expression print.”
The pseudo code for both is straightforward. The “l” within grepl changes
the output printed, but the function parameters are the same. The pseudo code shown next.
34

Text Mining in Practice with R
Grep-Text-search(character pattern to search, where
should the search happen?, should uppercase matter or
be ignored?)
Simply calling grep will return the position of the searched pattern. For
example, if the second document of a corpus has the string pattern “text,” then grep will return a [2]. In contrast, adding the lowercase l, “l,” to grep will return a logical vector of TRUE or FALSE for every place it searched. TRUE
means the pattern that was searched appeared at least once while FALSE means it was not found. It is important to note that grep does not count the number of times the search term appeared, only whether it appeared at least once.
To start searching for terms you can pass a pattern to the grep function.
Here you are looking for the pattern “sorry” within all DeltaAssist tweets. We are explicitly telling the grep command to look within the column called
“text”. Lastly, you are telling grep to ignore the case of the pattern because the last parameter is set to T or TRUE.
grep('sorry', text.df$text,ignore.case=T)
Grep will return the position of the tweets that contain this pattern at least once.
After typing the command above into your console, R will return a vector of numbers including 2, 18, 22 and 26. These represent the tweet position in the original data frame that contains the character pattern “sorry.” Look at one of these tweets.
text.df$text[413]
[1] "@RSstudi0 …you on your way as soon as we can. Sorry
for the wait. *SB 2/2"
The grepl command functions similarly but the returned information is
different. Here the returned information is a logical vector. For the DeltaAssist tweets, there are 1377 different tweets, one per row. As a result grepl will return a vector of 1377 true or false results when searching for the specified pattern. Since it is a logical return, R can also treat True as 1 and False as 0.
This can come in handy when trying to summarize the occurrence of a word.
The code below illustrates how to calculate the percentage of the time Delta customer service agents state that they are sorry from among all tweets in the timeframe. First, you create an object called sorry using grepl. If you then type sorry into the console, you see 1377 TRUE or FALSE returns, one for
each row. Although the sorry vector is True or False, R will treat True as 1
and False as zero so you can sum it. We can simply sum the true and divide
by the number of tweets in the entire data frame. The result is that 0.131 or 13.1% of all tweets contain at least a sorry. At Amazon, our legal department was leery of over apologizing and perhaps taking binding public acceptance
of blame. It was through analyses like this that we argued that apologizing is part of social customer service expectations and therefore does not pose a
large risk.

2 Basics of Text Mining 35
sorry<-grepl('sorry', text.df$text,ignore.case=T)
sum(sorry)/nrow(text.df)
Next you may want to search for more than one term at a time. You can do
this by passing more than one word to the grep functions. However, since you are working with regular expressions, you must combine them in a specific and logical manner. The “pipe” or straight line is located above the enter key on some keyboards and above the left‐hand Ctrl key on others. The pipe represents an “or” in between string patterns.
In this code, you are looking for any tweets that contain “sorry” or “apolo-
gize”. Within the function section that holds the character patterns, you are combining a vector of words with the pipe in between them. If you wanted to
add more words with an “or” relationship, you can simply add another pipe and the new pattern to search for. The “|” represents the “alternative operator” for regular expressions.
grep(c('sorry|apologize'),text.df$text,ignore.case=T)
To answer the final case study question you can identify the tweets con-
taining a link, and you can also compare it to how often the agents are sharing a phone number. You need to deconstruct the regular expression below to
help understand it. The first pattern you are looking for is anything that has
“http” since urls often start with the hypertext transfer protocol pattern
“http.” The next pattern you are looking for may yield some false positives but is likely good enough for this basic analysis. The pattern is any three digits appearing in a row or any four digits appearing in a row. This is because
phone numbers in the US follow a predictable xxx‐xxx‐xxxx pattern. In this
expression, you assume that you are looking for either of the numerical
blocks of a phone number. This could cause problems if agents are using, say, a confirmation number that matches this pattern. However, agents do not
usually share personal information like this over a public channel. In both
cases, R is summing the TRUE from grep and dividing by the number of
tweets in the data frame.
sum(grepl('http', text.df$text, ignore.case =
T))/nrow(text.df)
sum(grepl('[0-9]{3})|[0-9]{4}', text.df$text))/
nrow(text.df)
The surprising insight here is that the phone numbers are twice as likely as the links to be shared (0.098 to 0.042). At Amazon, the preference is for self‐service to an issue because it is best for the customer’s time and cheaper for Amazon.
So, in that case, Amazon agents contrast with Delta’s because Amazon agents
defer to a web page with the answer rather than instruct a customer to call.
36

Text Mining in Practice with R
To understand the links themselves that Delta agents are using, you can
simply use the grep function to identify tweets with the “http” pattern and
then apply a frequency analysis.
2.6 String Packages stringr and stringi
Earlier you learned how to identify if a particular character string or word is present at least once in a document. For this purpose, grep and grepl work
well. However, if you are looking to count the number of times within a document that a string is found, rather than just its existence, then you will need to use a customized library. The stringi library provides a function for just this task. The stri_count function performs this task by returning a vector of
1377 numbers, one per tweet, which is the frequency count for the exact search term. Here you are searching for any instance of “http.” In doing so you are able to identify the tweets that contain a url link. As part of the analysis that was done at Amazon, we needed to find out the common links to send people to,
on social media. The functions in this chapter provided an easy way to scan
and find messages containing links. This helped identify whether the links
were to an input form or general information. In this case, it looks like
DeltaAssist uses links sparingly in favor of direct messages through the Twitter platform. Changing the “http” to “DM,” which is an abbreviation for a direct message, will scan for these customer service replies for comparison.
library(stringi)
stri_count(text.df$text, fixed='http')
Tip: The function works in a different order from grep or grepl. First you tell stri_count where to search and then you pass the pattern.
In the last section, you learned how to search for terms using grep and even how to search for multiple instances using the pipe, representing “or” between patterns. There are instances in which you may want to search for patterns
using an “and” instead. To do so you need to load another useful package called stringr. Here you can stack the returned values with an ampersand to represent the fact that you need both searches to return a true result.
The code below returns a logical vector looking for the character pattern
“http” within your tweets.
library(stringr)
str_detect(text.df$text,'http')
In order to stack one of these logical statements, you can use the following code. This code is looking for http and DM and returns a TRUE if both patterns

2 Basics of Text Mining 37
are present. In this case, it looks like DeltaAssist never asks for a DM and provides a URL link. When setting up a similar team, this type of information can be useful for creating operational procedures for customer service agents.
patterns <- with(text.df, str_detect(text.df$text,
'http') & str_detect(text.df$text, 'DM'))
text.df[patterns,5]
While this may look confusing, you can deconstruct it to make more sense.
First you create an object called patterns. This is using two str_detect
functions stacked with an ampersand. If you want to add more search pat-
terns, then you would add another ampersand and str_detect function
before the last parentheses. If you remember indexing a data frame, then the next line of code should make some intuitive sense. The text.df data
frame is being indexed using the newly created patterns object but only the
fifth column is returned. In this line of code we are removing all other information in the data frame to return just the text that matches both logical
checks in the patterns object. This type of language exploration can be use-
ful, as you may guess that Delta would be providing a link with helpful information and then would be asking for a DM, should the customer have any
more questions. This type of text mining requires some subject matter
expertise to specify the patterns to search for and is therefore limited but nonetheless useful.
Both stringr and stringi have many string manipulation functions
and are worth exploring. For example, returning words by position in a sen-
tence or making characters all upper or lowercase can be useful. From a text mining perspective the functions covered in this chapter should lay a solid
foundation as you build your expertise. As you progress in skill level or are confronted with a specific use case beyond the general one outlined thus far, it would make sense to further explore these two important libraries.
2.7 Preprocessing Steps for Bag of Words
Text Mining
Now that you have learned basic string manipulation you can expand to more
interesting text mining. It is important to master the preprocessing steps and how to apply them. These preprocessing steps are consistent and foundational to most of the scripts in this book, no matter the analysis being performed or visual output. In Figure 2.1, the chevron style arrows in between
the unstructured state and the insight represent the preprocessing steps and
38

Text Mining in Practice with R
analysis that will be performed by R. Specifically the “organization” chevron is meant to encompass not only the collecting of text but also these preprocessing or cleaning steps. It should be noted that you can create custom pre-
processing steps, depending on the analysis. For instance, in Twitter you may want to preprocess specific tokens such as “RT” or “#” by either removing
retweets or explicitly identifying hash tokens as providing more context in
the analysis. The cleaning steps outlined here represent common and foun-
dational steps.
After setting the options in R that support text mining, you will load applicable libraries. These set R to realize that strings are not categorical variables and broaden the system location to avoid some encoding problems. For this exercise we will continue using the DeltaAssist tweets in object “text.df.”
options(stringsAsFactors = FALSE)
Sys.setlocale('LC_ALL','C')
library(tm)
library(stringi)
Please remember when you read in files, create new objects or perform analy-
sis that in R objects are held in RAM instead of on a hard drive. As a result, your computer’s RAM can become a constraint on the amount of text and analysis
that can be done. This example is merely 1377 tweets, so most modern laptops will be fine. However, as you explore larger corpora you will need to start increasing RAM, removing objects from the work stream that are no longer needed, or exploring packages such as SOAR and data.table. In fact, it is such a problematic issue that a many blogs deal with setting up cloud instances, which is a cheap alternative to buying a workstation with significant RAM.
You will need to keep track of the tweets. Since this data frame does not have unique IDs, you will create them using the code below in a new data frame
called tweets.
tweets<-
data.frame(ID=seq(1:nrow(text.df)),text=text.df$text)
Now we must begin the text‐cleaning task. The most common tasks we will
perform in this book are lowering text, removing punctuation, stripping extra whitespace, removing numbers and removing “stopwords.” Stopwords are
common words that often do not provide any additional insight, such as arti-
cles. Table 2.4 describes each of the cleaning functions and provides an
example.
You should note that the specific cleaning steps and transformations vary
with the type of analysis. For instance, making all text lowercase makes finding proper nouns or “named entities” difficult. Removing numbers makes extracting dollar amounts impossible. Table 2.4 is foundational but not used in every text mining application.

2 Basics of Text Mining 39
Table 2.4 Common text‐preprocessing functions from R’s tm package with an example of the transformation’s impact.
TM Function
Description
Before
After
tolower
Makes all text
Starbuck’s is from
starbuck’s is
lowercase
Seattle.
from seattle.
removePunctuation Removes
Watch out! That
Watch out That
punctuation like
coffee is going to
coffee is going to
periods and
spill!
spill
exclamation points.
stripWhitespace
Removes tabs, extra
I like coffee.
I like coffee.
spaces
removeNumbers
Removes numerals
I drank 4 cups of
I drank cups of
coffee 2 days ago.
coffee days ago.
removeWords
Removes specific
The coffee house and The coffee house
words (e.g. he and & barista he visited
barista visited
she) defined by the
were nice, she said
nice, said hello.
data scientists
hello.
stemDocument
Reduces prefixes and Transforming words
Transform word
suffixes on words
to do text mining
to do text mine
making term
applications is often
applic is often
aggregation easier.
needed.
needed.
The removeWords function requires another parameter, listing the exact
words you want to remove. In the table example, I merely chose the common
English stopwords – he, and, she – for removal. Table 2.5 contains all of the standard English stopwords used for the tm package. In order to customize this list, you can add or subtract words as needed. For example, if you were text mining legal documents you might want to customize the stopwords list by adding words like “defendant” and “plaintiff,” since they will appear often in that context.
The exact code to add to the stopwords list is covered later in this chapter.
Table 2.5 lists the standard English stopwords.
Word
Word
Word
Word
Word
Word
i
by
they’re
his
then
a
yours
after
they’d
them
both
while
herself
off
weren’t
these
not
through
which
where
shouldn’t
have
ourselves
in
was
other
there’s
could
she
here
does
than
if
you’ve
theirs
few
she’s
my
with
you’ll
am
own
he’d
yourselves
below
haven’t
had
your
isn’t
its
under
cannot
i’m
hers
won’t
whom
how
where’s
they’ve
what

(Continued)
40

Text Mining in Practice with R
who’s
be
such
because
she’ll
are
the
doing
very
against
doesn’t
do
at
we’re
we
from
mustn’t
he’s
before
we’d
him
further
how’s
you’d
on
wasn’t
they
any
until
they’ll
when
shan’t
that
nor
into
didn’t
most
here’s
being
ours
down
that’s
so
but
should
himself
once
an
me
for
i’ve
their
each
of
yourself
above
i’ll
those
only
during
it
over
hasn’t
has
you
out
who
why
can’t
ought
her
there
were
some
when’s
we’ve
themselves
more
did
too
or
he’ll
is
same
it’s
myself
about
hadn’t
having
she’d
he
to
couldn’t
you’re
aren’t
itself
again
why’s
i’d
wouldn’t
this
all
as
we’ll
what’s
been
no
between
don’t
and
would
our
up
let’s
Word
Word
Word
Word
Word
Word
i
by
they’re
his
then
a
yours
after
they’d
them
both
while
herself
off
weren’t
these
not
through
which
where
shouldn’t
have
ourselves
in
was
other
there’s
could
she
here
does
than
if
you’ve
theirs
few
she’s
my
with
you’ll
am
own
he’d
yourselves
below
haven’t
had
your
isn’t
its
under
cannot
i’m
hers
won’t
whom
how
where’s
they’ve
what
who’s
be
such
because
she’ll
are
the
doing
very
against
doesn’t
do
at
we’re
we
from
mustn’t
he’s
before
we’d
him
further
how’s
you’d
on
wasn’t
they
any
until
they’ll
when
shan’t
that
nor
into
didn’t
most
here’s
being
ours
down
that’s
so
but
should
himself
once
an
me
for
i’ve
their
each
of
yourself
above
i’ll
those
only
during
it
over
hasn’t
has
you
out
who
why
can’t
ought
her
there
were
some
when’s
we’ve
themselves
more
did
too
or
he’ll
is
same
it’s
myself
about
hadn’t
having
she’d
he
to
couldn’t
you’re
aren’t
itself
again
why’s
i’d
wouldn’t
this
all
as
we’ll
what’s
been
no
between
don’t
and
would
our
up
let’s

2 Basics of Text Mining 41
Table 2.5 In common English writing, these words appear frequently but offer little insight.
As a result, they are often removed to prepare a document for text mining.
Word
Word
Word
Word
Word
Word
i
by
they’re
his
then
a
yours
after
they’d
them
both
while
herself
off
weren’t
these
not
through
which
where
shouldn’t
have
ourselves
in
was
other
there’s
could
she
here
does
than
if
you’ve
theirs
few
she’s
my
with
you’ll
am
own
he’d
yourselves
below
haven’t
had
your
isn’t
its
under
cannot
i’m
hers
won’t
whom
how
where’s
they’ve
what
who’s
be
such
because
she’ll
are
the
doing
very
against
doesn’t
do
at
we’re
we
from
mustn’t
he’s
before
we’d
him
further
how’s
you’d
on
wasn’t
they
any
until
they’ll
when
shan’t
that
nor
into
didn’t
most
here’s
being
ours
down
that’s
so
but
should
himself
once
an
me
for
i’ve
their
each
of
yourself
above
i’ll
those
only
during
it
over
hasn’t
has
you
out
who
why
can’t
ought
her
there
were
some
when’s
we’ve
themselves
more
did
too
or
he’ll
is
same
it’s
myself
about
hadn’t
having
she’d
he
to
couldn’t
you’re
aren’t
itself
again
why’s
i’d
wouldn’t
this
all
as
we’ll
what’s
been
no
between
don’t
and
would
our
up
let’s
It is worth noting that the transformation stemDocument may result in
non‐English words. When stemming documents, you may end up creating
word fragments like “applic,” so another transformation called stem
42

Text Mining in Practice with R
completion may be needed afterwards to revert the fragments back to the
most common complete word. For example “liking,” “liked” and “like” would all be stemmed to “lik” then stem completed to “like.”
The following code neatly organizes these foundational text transformations
into functions. This makes applying them to various corpora easier and saves typing them repeatedly.
The first function is a wrapper for the base R tolower function. People
online have noted that tolower fails when it encounters a special character
that it is unable to recognize. Using base R’s tryCatch function allows the
function to ignore the error, keeping it from failing. The tryCatch function provides a way of handling unusual conditions that result in errors or warn-ings. In this case, we create another function called tryTolower that simply returns NA instead of failing.
Return NA instead of tolower error
tryTolower <- function(x){
return NA when there is an error
y = NA
tryCatch error
try_error = tryCatch(tolower(x), error = function(e) e)
if not an error
if (!inherits(try_error, 'error'))
y = tolower(x)
return(y)
}
Next you will define our stopwords. The code below creates a vector of
word strings that includes the common English stopwords from above and
also allows for adding to it. You can change the custom words by including
quotes, and commas as shown for the custom words “lol,” “smh” and “delta.”
This new character vector of words will be used later in our next transfor-
mation function. Twitter speak is evolving and often abbreviated. Here lol
and smh are removed representing laughing out loud and shaking my head.
This serves as an example of removing words based on the context of the
corpora. The last custom word is delta. This is because the entire data frame is made of delta assist tweets so the word may be frequent yet not yield a new insight.
custom.stopwords <- c(stopwords('english'), 'lol',
'smh', 'delta')
Tip: It’s best to rerun a text mining analysis with different custom stopwords to explore the conclusions that can be extracted. The words in the vector have to be lower case in order to be recognized and removed.

2 Basics of Text Mining 43
Next you will include the new tryTolower function as part of a larger pre-
processing function. Here you create a function called clean.corpus. Within
this function you can see specific foundational cleaning functions removePunctuation, stripWhitespace, removeNumbers, tryTolower, and
removeWords. The custom clean.corpus function is passed a corpus object
and then the corpus is repeatedly transformed with the specific preprocessing step. Note you use “tm_map” which is an interface function for transforming
entire corpora. The corpus object is moved from step to step and rewritten as it moves through the function. For the newly created tryTolower function you
have to add the additional “content_transformer” because you are using a customized version of “tolower” which modifies the content of an R object.
clean.corpus<-function(corpus){
corpus <- tm_map(corpus,
content_transformer(tryTolower))
corpus <- tm_map(corpus, removeWords,
custom.stopwords)
corpus <- tm_map(corpus, removePunctuation)
corpus <- tm_map(corpus, stripWhitespace)
corpus <- tm_map(corpus, removeNumbers)
return(corpus)
}
Remember as you customized the clean.corpus function, the order of
operations is purposeful. We must lowercase the corpus to match the vector
of lowercase stopword strings to be removed. Additionally the stopwords vec-
tor includes contractions like she’d, and isn’t. Thus the removal of these stopwords needs to come before removePunctuation. Similarly once the
apostrophes are removed, as part of the previous step, sometimes there is an additional white space that needs to be cleaned up as well using
stripWhitespace.
Before applying these cleaning functions, you need to define the tweets
object as your corpus or collection of natural language documents. Additionally you are preserving the metadata about each document. In this example, the
unique information is the unique tweet ID you created. In this way, the ID and value become tag value pairs. This can aid you later, in other types of analysis, where the specific author is important, such when as measuring sentiment difference between authors. In order to preserve the metadata about the author
or tweet, you need to create a specific mapping for R. This custom mapping
tells R to interpret not only the text in question but also the associated information. In this case, it is the assigned twitter ID.
meta.data.reader <- readTabular(mapping=list(content=
'text', id='ID'))
44

Text Mining in Practice with R
With the customized functions in place you must tell R that you should treat the CSV containing 1377 tweets as a corpus or collection of documents. First you create an object called corpus by invoking the volatile corpus function
and passing the tweets data frame to it. You explicitly tell R to use the “text”
column as the text analysis vector. The ID column is still captured, so you may capture some metadata about the corpus.
corpus <- VCorpus(DataframeSource(tweets),
readerControl=list(reader=meta.data.reader))
Tip: Notice that you are creating a VCorpus. This particular type of corpus is a volatile corpus. This means that it is held in RAM memory in your computer.
If you close R, shut down your computer or run out of power without saving, the VCorpus is lost, hence the volatility. In contrast a PCorpus creates a permanent corpus, because it is saved to permanent storage such as a hard drive.
With all the preprocessing transformation functions organized you must
now apply them to the DeltaAssist corpus. Since you created a simple succinct clean.corpus function, you do not need to type them again for each corpus
that you want to clean. This will be valuable later, when you are comparing
multiple corpora in the same analysis.
corpus<-clean.corpus(corpus)
Tip: Depending on your operating system and version of R, you may encounter an error during the clean.corpus step. If your code states a “core” issue then change the tm_map functions to include the number of cores as shown here:
tm_map(corpus, removeNumbers, mc.cores=1)
One way to see information about the corpus object is to look at the list of documents. Here you examine the first document within the corpus. The first
entry is captured as a plain text document along with some other basic information related to that particular document, or tweet in our case.
as.list(corpus)[1]
At this point you have a cleaned corpus of documents on which to base many
other analyses. The entire script to this point will serve as the foundation of many other subsequent analyses performed in this and other chapters.
Therefore it is important to master the reasons for which you bring in text, define it as a corpus and perform preprocessing steps.
2.8 Spellcheck
An optional preprocessing step that may be needed is correcting the spelling of terms. Text is often misspelled, and this next section will show one way to correct misspellings. You may want to correct the words depending on how impactful

2 Basics of Text Mining 45
you expect misspelled words to be in your analysis. For example, legal docu-
ments and news articles likely do not contain a lot of misspelled words. In contrast, social media like Facebook generally contain a fair amount of misspelled terms. If you explicitly know expected misspellings such as “lol” for laugh out loud, then you may want to use the previously mentioned mgsub function.
However, for more dynamic spell check you can use functions from qdap.
Consider Chapter 1’s text mining definition with intentionally misspelled
words.
tm.definition<-'Txt mining is the process of distilling
actionable insyghts from text.'
One way to check for misspelled words is with which_misspelled. The
code below will identify the words not found in the basic qdap dictionary.
which_misspelled(tm.definition)
This returns a vector with the word position that is suspected of being mis-
spelled and the word itself. The console output is shown here. Notice that
“actionable” was thought to be misspelled so qdap’s word dictionary is fairly limited. This function can help you identify words that are likely misspelled but does not help you correct them in the text.
1 7 8 9
"txt" "distilling" "actionable" "insyghts"
There is another function in qdap which allows you to interactively select a spelling correction from a list of possible terms. Appropriately named it is check_spelling_interactive.
check_spelling_interactive(tm.definition)
One of the results of calling the interactive function on the text mining definition is shown below. The dialogue occurs in the console and requests a number corresponding to a correction choice. The choice dialogue repeats for
every word that is not found in the qdap word dictionary. First, it shows the line containing a suspected misspelling. In this example, the specific word
“actionable” is bracketed and thought to be incorrect. The next section in the console lists the available options and corresponding number. The last line is where you, as the user, type a number and hit enter to move to the next. Since
“actionable” is in fact a word you would choose 2 and hit enter to move to the next word. In this example, the dialogue moves to <<distilling>>. In this case, you can select the appropriate correct spelling.
LINE: txt mining is the process of distilling
<<actionable>> insyghts from text.
SELECT REPLACEMENT:
1: TYPE MY OWN 2: IGNORE: actionable 3:
atonable
46

Text Mining in Practice with R
4: actiniae 5: accountable 6:
alienable
7: auctioned 8: abominable 9:
affectionate
10: agitable 11: amicable
Selection:
This word by word interactive function can be useful in relatively small corpora. However, it is cumbersome when you have potentially tens of thousands
of misspelled words as is the case with large Twitter corpora. As a result, a custom function can speed the process considerably.
fix.text <- function(myStr) {
check <- check_spelling(myStr)
splitted <- strsplit(myStr, split=' ')
for (i in 1:length(check$row)) {
splitted[[check$row[i]]][as.numeric(check$word.
no[i])] = check$suggestion[i]
}
df <- unlist(lapply(splitted, function(x) paste(x,
collapse = ' ')))
return(df)
}
The fix.text function accepts a string, checks its spelling then replaces
any suspect word with the first replacement from the suggestions from qdap’s function. However, this is a classic speed versus accuracy tradeoff, so care must be taken in balancing your need to spellcheck accurately and the time
which it would take to interactively spellcheck. This tradeoff is illustrated in the text mining example, because all words are corrected with the exception
of “actionable,” which is replaced with “atonable”. Both the custom function application and console results are below. You must decide if changing words interactively is worth the accuracy improvement compared to the fix.text
function.
fix.text(tm.definition)
[1] "text mining is the process of distilling atonable
insights from text."
The custom function can be applied to a single string or to an entire vector of documents. Given the limitations, it is best to avoid automatically performing spelling corrections, but it is nonetheless another tool in a text miner’s toolset.

2 Basics of Text Mining 47
2.9 Frequent Terms and Associations
As previously shown, you can find out the existence of words within a corpus using the grep, grepl or stri_count. In those examples, the text was not
transformed or cleaned. Often, cleaning the corpus will help aggregate terms so that a more accurate frequency count can be done. Also, simple frequency
counts can often add insight yet do not require exotic mathematical tech-
niques. Thus, performing a frequency analysis is often a good place to start when presented with a text mining project.
If you have followed along thus far, you should be able to create a clean corpus using the script in the previous section and the clean.corpus custom
function. Further, recall that Table 2.2 is a term document matrix (TDM) to be used in the bag of words text mining methodology. When using the bag of
words method, the matrix is what the analytics are based on. The next lines of code assume that you have a cleaned corpus from the previous section and
then will convert your matrix into the TDM for analysis. First, you create a new object called tdm, which is a list object used by the tm package. There are different weighting schemes that can be used to create a TDM. Here you specify
weightTf, which weights a TDM by term frequency. This is the default
TermDocumentMatrix parameter which simply counts the number of
occurrences by word. The other weighting options are document term inverse
frequency, binary weights and weightSMART. These will be explored later in
this book as we perform other analyses. After creating the TDM, you need to
reclassify it as a matrix for easier analysis. The converted object name is tdm.
tweets.m.
tdm<-TermDocumentMatrix(corpus,control=list(weighting
=weightTf))
tdm.tweets.m<-as.matrix(tdm)
First check the dimensions of the data frame. You will notice that it is 1377
columns and 2631 rows. This means that in total there are 2631 distinct words after performing the cleaning steps.
dim(tdm.tweets.m)
Due to the size of the matrix you may not want to use the head or tail func-
tions to explore the matrix. Instead, you can index a specific couple of rows and columns to understand what this matrix contains. The code below returns
rows 2250 to 2255 along with documents 1340 to 1342.
tdm.tweets.m[2250:2255,1340:1342]
Recall from an earlier keyword search that tweet 1340 contained the word
“sorry.” R will print the section of the matrix indexed in the line of code above
48

Text Mining in Practice with R
and show you the exact tweet that mentions “sorry.” It is marked with a one
because that tweet contained one instance of that term. Figure 2.3 shows the section of the matrix with a tweet containing “sorry.”
Figure 2.3 The section of the term document matrix from the code above.
Docs
Terms
1340
1341
1342
sooo
0
0
0
sootawn
0
0
0
sophiesoph
0
0
0
soraparuq
0
0
0
sorry
0
0
0
sound
0
0
0
At this point, you may also recognize that the matrix contains a lot of zeros.
This is often the case in this text mining method. From a practical point of view it should not be a surprise. Here, a tweet may average 10 distinct words. As a result each column may only have ten or so numbers. Consider that there are more than 2000 different terms and you are left with a bunch of zeros. Although all of these tweets are from DeltaAssist, the reality is that language choice is diverse, and so both TDM and DTM are often filled with many zeros, making them sparse.
In order for you to summarize the frequency of terms, you will need to sum
across each row because each row is a unique term in the corpus. You need to call the base R function rowSums and pass the matrix to it.
term.freq<-rowSums(tdm.tweets.m)
Then you create a new data frame object by putting the original terms and
the term frequencies next to each other. The new freq.df object has two
columns, one for terms and another that is just the summation for each row.
freq.df<-data.frame(word=names(term.freq),
frequency=term.freq)
Now you can sort the data frame and then look at the first ten most frequent terms. If you do this, you will see a lot of DeltaAssist tweets have please, sorry, flight confirmations, and numbers. As an airline, this may not be surprising, but it can still be insightful to understand common issues and help to draw
inferences.
freq.df<-freq.df[order(freq.df[,2], decreasing=T),]
freq.df[1:10,]

2 Basics of Text Mining 49
2.10 DeltaAssist Wrap Up
Given the text mining skills you have learned thus far, you should be able to answer some of the original business case questions I had when starting the
social media customer service group at Amazon. At the time, we were very concerned with legal, marketing and brand, and publicly made promises, so we
decided to understand the types of replies some of the companies we admired
in the space were writing. Using simple functions like nchar, grep, grepl,
and string counts, we could identify typical length of tweets, and look for consistently used patterns like urls or customer service agent signatures. Reviewing the most frequent terms can provide some insight into typical customer services issues these companies encounter. That helped us prepare for and think about our own most likely issues. In this chapter, I only discussed single word tokens, but later you will investigate n‐gram tokenization, specifically looking at bi‐grams or two‐word combinations. Doing so will enrich the insights that can be extracted, but the underlying bag of words methodology remains the same.
2.11 Summary
In this chapter you learned:
●
●
what text mining is
●
●
basic low level text mining functions
●
●
a business use case that benefited from basic text mining
●
●
the bag of words R script that is foundational to many other beginning text
mining analysis
●
●
frequency analysis
●
●
summarizing word frequency
51
3
Common Text Mining Visualizations
In this chapter, you’ll learn
●
●
to visualize a simple bar plot of word frequencies
●
●
to find associated words and make a related plot
●
●
to make a basic dendrogram
●
●
to make and improve the aesthetics of a hierarchical dendrogram showing
basic word clustering
●
●
how to make a word cloud
●
●
how to compare word frequencies in two corpora and create a comparison
cloud
●
●
how to find common words and represent them in a commonality cloud
●
●
how to create a polarized cloud to understand how shared words “gravitate”
to one corpus or another
●
●
how to construct a word network quickly
3.1 A Tale of Two (or Three) Cultures
So far in this book you have learned about some very basic text mining that was done when launching a social media team at Amazon. At its heart Amazon is a
book company, and senior stakeholders consume information through narra-
tive. For three years, each quarter I had to create a quarterly business review, QBR, which was a six‐page paper. This document was almost entirely narrative form explanations of the past quarter’s business issues and successes. In it, charts and tables were relegated to the appendix and seldom looked at. It is an Amazon management belief that in order to understand your section of the
business at a deep level and not be misleading or full of “fluff,” you need to write out business topics. While they do not stand on agendas, large audiences or
memos, the fact remains that Amazon’s stakeholders are committed to concise
narratives in these QBRs. During many presentations, my bosses and theirs
52

Text Mining in Practice with R
would sit reading my work quietly while I passed the time waiting for questions.
There was no sense in rereading my own work just to appear busy! After about 20 minutes of silence, the questions would come and they would come fast.
After an early failed QBR, in which I struggled to answer the probing ques-
tions, I understood the importance of what the QBR narratives were meant to
illustrate to leadership.
After Amazon, I joined a different Fortune 100 company that had a signifi-
cantly different culture. In fact, there was little text for the senior stakeholders to read during meetings. In contrast, it was a visualization‐heavy culture.
Most, if not all, of the meetings had PowerPoint visuals to convey meaning,
allowing the directors, vice‐presidents and so on to understand the business issue and then talk it through in a meeting. The collaboration and respect
given to all in attendance was impressive, and a good solution usually fol-
lowed. As was the case at Amazon, I originally misunderstood my audience’s
needs. My first presentations had text‐heavy slides, and I had sent lengthy
emails to participants for review prior to the meetings. To my surprise no one had read the emails, and as the text‐heavy slides wore on, the participants
abandoned the slides altogether in favor or talking through the topic collegially. Over the course of the next two years I worked to hone my craft for this new visual‐heavy culture. It was the only way to gain alignment on core issues with senior decision‐makers.
The two cultures could not have been more different, yet both were effective in their domain. Despite being a fast‐moving technology company, Amazon
surprisingly relies on text. On the other hand, the decades‐old seemingly less agile yet equally successful company in a different industry favored visualizations and talking through topics among decision‐makers.
After that I joined a small, venture‐backed startup. The organization was full of kaggle.com’s top‐ranked data scientists. This data science heavy organization again had a different culture. As an extremely data fluent organization building an extremely sophisticated machine learning platform, the audience
did not rely on long form narratives to execute a plan or understand an issue.
Also, visuals were kept to a minimum in favor of tabled and organized data.
The creative minds of this data science culture, with PhDs from top institu-
tions worldwide had no trouble comprehending lengthy data in tables. To them the story was in the numbers, and if the numbers were not correct, the rest was incorrect, no matter the explanation.
Depending on the work culture you find yourself in, you may favor insights
based on the text mining as, explanations with tabled numerical data of the
previous chapter or visuals created in this chapter. Visualizations can be a powerful method to convey meaning. So if you find yourself in a culture that relies on images to process information, then this chapter is a good starting point for your text mining efforts. The book has other visualizations, but the ones in this chapter are foundational to many text‐mining efforts.

3 Common Text Mining Visualizations 53
Getting the Data
This chapter assumes that you were able to follow along for the bag of words organization articulated in the previous chapter. That means you should be able to load a simple CSV file, clean and preprocess it and then create either a term document matrix or document term matrix. If you struggled with these concepts, then review them once more before proceeding. This chapter rapidly
moves from file to document matrix, so that explanations are kept to the additional manipulations needed to create the visualizations. In order to create the exact visualizations in this chapter, go to www.tedkwartler.com and download oct_delta.csv and amzn_cs.csv. Throughout this chapter you will use both files.
3.2 Simple Exploration: Term Frequency,
Associations and Word Networks
Sometimes merely looking at frequent terms can be an interesting and insightful endeavor. On some occasions frequent terms are expected within a text mining project. However, unusual words or (later in the book as you explore
multi‐gram tokenization) phrases can yield a previously unknown relationship.
This section of the book constructs simple visualizations from term frequency as a means to reinforce what would probably already be known in the case of
DeltaAssist’s customer service tweets. It then goes a step further to look at a specific term association. Text mining’s association is similar to the statistical concept of correlation. That is to say, as the frequency of a single word occurs, how correlated or associated is it with another word? The exploration of the term association can yield interesting relationships among a large set of terms.
Without also coupling association with word frequency, this may actually be
misleading and become a fishing expedition, because the number of individual terms can be immense. Lastly this section adds a word network using the qdap package. This is another way in which to explore association and connected
terms. Those familiar with social network analysis will be equally familiar with the concept of a word network. This relationship between words is captured in a special matrix called an adjacency matrix, similar to the individuals of a social network. A word network differs from word association. A word network
explores multiple word linkages simultaneously. For example, the words “text,”
“mining” and “book” can all be graphed at the same time in a word network. The word network will have scores for pairs “text” to “mining,” “text” to “book” and
“mining” to “book”. In contrast, word association scores represent the relationships of a single word to others, such as “text” to “mining” and “text” to “book”.
This contrasts because there is no score for the pair “mining” and “book.”
54

Text Mining in Practice with R
3.2.1 Term Frequency
Although not aesthetically interesting, a bar plot can convey amounts in a
quick and easy‐to‐digest manner. So let’s create a bar plot of the most frequent terms, and see if anything surprising shows up. To do so you will be loading the package ggthemes. This package has predefined themes and color palettes
for ggplot2 visualizations. As a result, we do not have to specify them all
explicitly. Using it saves time compared to using the popular ggplot2 pack-
age alone. There are other visualization packages within the R ecosystem but ggplot2 is both popular and adequate in most cases.
In review from the previous chapter you need to bring in a corpus and then
organize it. To do so you ultimately need to get back to a cleaned term document matrix. After applying last chapter’s clean.corpus custom function,
you need to make the matrix and then, as before, get the row sums into an
ordered data frame. The code below should look very familiar as it redoes the same steps as the previous chapter, ending in an ordered data frame of term
frequencies. However, at this point we are going a step beyond the tabled data and create a simple bar plot.
library(tm)
library(ggplot2)
library(ggthemes)
text.df<-read.csv('oct_delta.csv')
tweets<-data.frame(ID=seq(1:nrow(text.df)),
text=text.df$text)
tryTolower <- function(x){
y = NA
try_error = tryCatch(tolower(x), error = function(e) e)
if (!inherits(try_error, 'error'))
y = tolower(x)
return(y)
}
custom.stopwords <- c(stopwords('english'), 'lol',
'smh', 'delta', 'amp')
clean.corpus<-function(corpus){
corpus <- tm_map(corpus,
content_transformer(tryTolower))
corpus <- tm_map(corpus, removeWords,
custom.stopwords)
corpus <- tm_map(corpus, removePunctuation)
corpus <- tm_map(corpus, stripWhitespace)

3 Common Text Mining Visualizations 55
corpus <- tm_map(corpus, removeNumbers)
return(corpus)
}
meta.data.reader <- readTabular(mapping=
list(content="text", id="ID"))
corpus <- VCorpus(DataframeSource(tweets),
readerControl=list(reader=meta.data.reader))
corpus<-clean.corpus(corpus)
tdm<-TermDocumentMatrix(corpus,control=list(weighting
=weightTf))
tdm.tweets.m<-as.matrix(tdm)
term.freq<-rowSums(tdm.tweets.m)
freq.df<-data.frame(word=
names(term.freq),frequency=term.freq)
freq.df<-freq.df[order(freq.df[,2], decreasing=T),]
All of the above code is needed to create the freq.df data frame object.
This becomes the data used in the ggplot2 code below that constructs the
bar plot. In order to have ggplot2 sort the bars by value, the unique words
have to be changed from a string to a factor with unique levels. Then you actually call on ggplot2 to make your bar plot. The first input to the ggplot
function is the data to reference. Here you specify only the first 20 words so that the visual will not be too cluttered. The freq.df[1:20,] below can be
adjusted to add more or fewer bars in the visualization.
freq.df$word<-factor(freq.df$word,
levels=unique(as.character(freq.df$word)))
ggplot(freq.df[1:20,], aes(x=word,
y=frequency))+geom_bar(stat="identity",
fill='darkred')+coord_flip()+theme_gdocs()+
geom_text(aes(label=frequency),
colour="white",hjust=1.25, size=5.0)
The gg within ggplot stands for grammar of graphics and creates the visu-
alization. The ggplot code uses a structured and layered method to create
visualizations. First we pass the data object to be used in the visual freq.df, indexing only the first 20 terms. Next we define the aesthetics with the x and y axis referencing the column names of the data object. Once this is done we add a layer using the plus sign. The new layer is to contain bars, and so it uses the geom_bar function. It creates one‐dimensional rectangles whose height is
mapped to the value referenced. Further, geom_bar must be told how to sta-
tistically handle the values. Here you specify the identity so that each bar represents a unique identity and is not transformed in another manner. The code also fills the bars with dark red. You can specify various colors, including

56

Text Mining in Practice with R
hexadecimal colors, as part of the fill parameter. The next layer is again added with a plus sign and simply rotates the x and y of the graph. This is an empty function call and can be removed if it suits the analyst making the visual. The next layer is actually from ggthemes and represents an entire predefined
style. In this case, it is meant to mimic Google document visualizations. You can change the style manually using many parameters, leave the default
ggplot2 style or use a ggtheme as you have done here. Lastly, another layer
is added on top of the bars. The geom_text layer represents the white
numerical text labels at the end of each bar. On this last layer, you can change color, adjust the position, and even adjust it to the size you desire. Figure 3.1
shows the results of these efforts to construct a bar plot of frequent terms.
In this rudimentary view, you can see that many of the tweets from Delta are apologies and discussions about flight and confirmation numbers. There is
nothing overly surprising or insightful in this view, but sometimes this simple approach can yield surprising insights. Later you will use two word pairs instead of single word tokens. In my experience, changing the tokenization can enrich the insights that are found through a basic term frequency visual. The website has an extra Twitter data set called chardonnay.csv in which this approach can show an unexpected yet frequent result as you adjust the stopwords.
Notice that all the words are lowercase, and there is even a mistakenly parsed word “amp.” This is the result of the character encoding not being recognized Figure 3.1 The bar plot of individual words has expected words like please, sorry and flight confirmation.

3 Common Text Mining Visualizations 57
properly. Character encoding is the process of converting text to bytes that represent characters. R needs to read each character and encode it to a corresponding byte. There are numerous encoding types for languages, characters
and symbols, and as a result mistakes can occur. The same issue can occur with emoticons, as those are parsed into completely different characters and byte strings than would be necessary for R to be able to make sense of them. In
subsequent scripts you will add more lines of code to specify encoding, thereby changing the “amp” to the ampersand “&.”
Based on this initial visualization, you can dive further into the analysis. In the bar chart, apologies is mentioned many times. Sometimes it makes sense
to explore unexpected individual words and find the words most associated
with them. In this simple example, you can explore associated terms with
apologies to hopefully understand what DeltaAssist is apologizing for. In
your own text mining analysis, the surprising words in the bar plot or fre-
quency analysis are ripe for the following additional exploration called
“association.”
3.2.2 Word Associations
In text mining, association is similar to correlation. That is, when term x
appears, the other term y is associated with it. It is not directly related to frequency but instead refers to the term pairings. Unlike statistical correlation, the range is between zero and one, instead of negative one to one. For example, in this book the term “text” would have a high association with “mining,” as we refer to text mining often together.
The next code explores the word associations with the term “apologies”
within the DeltaAssist corpus. The word “apologies” was chosen after first
reviewing the frequent terms for unexpected items, or in this case, to learn about a behavior of customer service agents. Since the association analysis
is limited to specific interesting words from the frequency analysis, you are hopefully not fishing for associations that would yield a non‐insightful outcome. Since all words would have some associative word, looking at outliers
may not be appropriate, and thus the frequency analysis is usually per-
formed first. In the next code, we are looking for highly associated words
greater than 0.11, but you will likely have to adjust the threshold in your
own analysis.
The code itself creates a data frame of factors for each term and the corre-
sponding association value. The new data frame has the same information as
the association’s object matrix but is a data frame class for ggplot2. This data frame has a superfluous vector with rows names as a vector. The data frame
also changes the terms from strings to categorical factors. These steps may
seem redundant, but this approach makes it explicit and easy to follow when
the data is used in ggplot.
58

Text Mining in Practice with R
associations<-findAssocs(tdm, 'apologies', 0.11)
associations<-as.data.frame(associations)
associations$terms<-row.names(associations)
associations$terms<-factor(associations$terms,
levels=associations$terms)
Once you have a clean data frame of highly associated words and their cor-
responding values, you can use it for another visual. Again building by layer ggplot is pulling data from the “association” data frame. You are setting the y axis to be the terms and the x axis to be the values. Instead of geom_bar, you are using geom_point and setting the size explicitly. Next you use the predefined gdocs theme. Then you add a layer of labels for the values in dark red.
Lastly you change the default gdoc theme by increasing the y axis label’s size and removing the y axis title. The code below creates Figure 3.2, showing the most associated words with “apologies” in our corpus.
ggplot(associations, aes(y=terms)) +
geom_point(aes(x=apologies), data=associations,
size=5)+
theme_gdocs()+ geom_text(aes(x=apologies,
label=apologies),
colour="darkred",hjust=-.25,size=8)+
theme(text=element_text(size=20),
axis.title.y=element_blank())
Again, notice some poor parsing of the text done by R. Instead of “you’re”, R has interpreted the word to include some foreign characters and even a trademark strive
0.12
refund
0.12
joy
0.12
hello
0.12
diligently
0.12
work
0.13
youâ€™re
0.15
latearriving
0.15
kitmoni
0.15
deepest
0.15
appears
0.15
issues
0.25
delay
0.3
0.15
0.20
0.25
0.30

apologies
Figure 3.2 Showing that the most associated word from DeltaAssist’s use of apologies is “delay”.

3 Common Text Mining Visualizations 59
abbreviation! You will finally learn how to clean this up in the word cloud section, but for now focus on the meaning of association and basic visualization.
In this case, these words confirm what you likely already know, that airline customer service personnel have to apologize for late arrivals and delays.
However, in other instances this type of analysis can be useful. Consider a corpus with technical customer reviews and complaints for laptops. Performing a simple word frequency and association analysis may yield the exact cause of
poor reviews. You could find common words – e.g. “screen problem” – within
the corpus. And reviewing the associated words with screen and problem may
yield highly associated terms like hdmi and cable or driver. It is often the case that term frequency and word association alone can yield some surprising
results that can lead to an insight or confirm an existing belief. In this simplistic case the following tweet confirms the word frequency and association conclusion that agents apologize for delays.
“@kitmoni At the moment there appears to be a delay of slightly over an
hour. My apologies for today’s experience with us. *RB”
3.2.3 Word Networks
Another way to view word connections is to treat them as a network or graph
structure. Network structures are interesting in conveying multiple types of information visually. Word networks are often used to demonstrate key actors or influencers in the case of social media. Within the context of text mining, networks can show relationship strength or term cohesion, leading to an
assumption of a topic. A word of caution, as these can become dense and hard to interpret visually. As a result, it is important to restrict the number of terms that are being connected. In the earlier analysis, you saw that the words “apologies” and “refund” are highly associated. A word network may more broadly
indicate under what circumstances Delta would issue a refund. Since the term document matrix contains thousands of words, in your example you limit the
network illustration to the word “refund.” Word networks can be used to
understand word choice by visually producing clusters in the layout. Further, sometimes entire topics can be interpreted visually based on these diagrams.
In a later chapter we cover other clustering techniques but this is a qualitative, audience‐based approach that is worth learning.
A simple network map is shown in Figure 3.3. The lines connecting the cir-
cles in a network graph are called edges. The circles themselves are called
nodes or vertices. A network graph can have many dimensions of information
contained in it. The example below has the same size nodes, and edge thick-
ness. However, some of the parameters that can be adjusted in word networks
include the size of the nodes often showing more prominent members of the
network, thickness of lines representing the strength of a connection, and of course color, which can denote particular class attribution such as a race or
60

Text Mining in Practice with R

edge
Word 1
Word 2

node
Word 3
Figure 3.3 A simple word network, illustrating the node and edge attributes.
gender. Since there are no further informational dimensions applied, Figure 3.3
merely shows that word 1 is connected with both words 2 and 3 but that the
nodes representing words 2 and 3 are not.
To create a word network graph, an R user can employ the igraph library,
which strives to provide “pain‐free implementation” of graph structures. In
order to build a word network, you first need to limit the term document
matrix; otherwise the network will be too dense to meaningfully compre-
hend. So, the code below uses grep and a specific pattern match to index the entire tweets data. In this case, the pattern, refund, was chosen based on
the frequent terms and association analyses performed earlier. Using grep
to index the original tweets data frame leaves only seven tweets. To further reduce clutter, the code below indexes only the first three of the refund‐mentioning tweets to build the corpus. This may be too few to have credibility in a practical application but nonetheless it is a good example of how to build a simple word network graph. Later, for hierarchical clusters, the function to remove sparse or infrequent terms is introduced. Removing sparse terms
mathematically is another way of decreasing the size of a TDM. The object
refund is created using grep and represents seven tweets from the original
tweets data.
library(igraph)
refund<-tweets[grep("refund", tweets$text,
ignore.case=T),]
As before, you move from a data frame to the bag of words style matrix using functions from the tm package, and refund.reader reads the table of
refund data and then turns it into a volatile corpus. Next the small corpus is cleaned using the prior custom function clean.corpus. Lastly, a refund.
tdm object is made by calling the term document matrix function.

3 Common Text Mining Visualizations 61
refund.reader <- readTabular(mapping=list(content="text",
id="ID"))
refund.corpus <- VCorpus(DataframeSource(refund[1:3,]),
readerControl=list(reader=refund.reader))
refund.corpus<-clean.corpus(refund.corpus)
refund.tdm<-TermDocumentMatrix(refund.corpus,
control=list(weighting=weightTf))
Next we need to create an adjacency matrix, which is a simple matrix with
the same row and column names, making it square. At the intersections, there is a binary operator, 1 or 0, showing a connection or not. While this may seem confusing, consider the following simple example starting with a term document matrix. Table 3.1 is a small term document matrix of fictitious terms
called all.
Notice at this point that the matrix is not square. There are more tweets than there are words. In reality, the opposite may be true, but it does not matter because the next step transitions from this table to an adjacency matrix which is square. In order to create an adjacency matrix, R’s binary operators need to be used on the term document matrix. Specifically the matrix multiplication
binary operator is called. To the novice R programmer, binary operators may
seem tricky, but they are in fact fairly straightforward. The pseudo code for a binary operator is first input %some function% second input.
The code below illustrates just the matrix multiplication operator from among the other available ones, such as modulo and match. The first input is 10,
followed by the binary operator and then ending with a 2.
10%*%2
This will return a matrix with one row and one column. In the first and only cell is the answer 20, as shown in Figure 3.4.
Binary operators are useful in a broad application. The next example demon-
strates the matrix multiplication binary operator applied to more than one
number at a time. The result is a matrix with two columns with answers 10
Table 3.1 A small term document matrix, called all to build an example word network.
Tweet1
Tweet2
Tweet3
Tweet4
Tweet5
Tweet6
R
0
0
1
1
0
0
Text
0
0
1
0
0
0
Stats
1
1
0
0
0
0
Mining
0
1
1
0
0
0
Book
0
0
0
0
1
1
62

Text Mining in Practice with R
> 10%*%2
[,1]
[1,]
20
Figure 3.4 The matrix result from an R console of the matrix multiplication operator.
times 2 and 10 times 3 in each cell. R’s console output to this operation is captured in Figure 3.5.
10%*%c(2,3)
> 10%*%c(2, 3)
[,1] [,2]
[1,]
20 30
Figure 3.5 A larger matrix is returned with the answers to each of the multiplication inputs.
Moving back to our example of the small term document matrix in Table 3.1,
you can apply the same operator on the original TDM and the transposition of the TDM. This will make the matrix square in a new object called ‘adj.m’.
adj.m <-all %*% t(all)
Reviewing the original TDM, all, note that “R” is shared in tweets 3 and 4.
Tweet 3 contains the words R, Text and Mining. So we should expect that R will be connected to both Text and Mining, and when comparing R to itself, there is a loop or redundant connection. Similarly, tweet 4 has only the term R and does not share any other words in the TDM. As a result, tweet 4 will have no other external connections. However, when comparing tweet 4 to itself, it shares the term R and again there is a redundant loop. More explicitly, the intersection of R and R has a 2, representing the loop for each of the tweets 3 and 4. The intersection of row R and column Text contains a 1 because the original data frame has a 1 at row Text and the Tweet 3 column, and there is also a 1 at row R in the same Tweet 3 column. Further, reviewing the all TDM more closely, all terms
are in at least two tweets with the exception of the term Text. When looking at Table 3.2 The adjacency matrix based on the small TDM in Table 3.1.
R
Text
Stats
Mining
Book
R
2
1
0
1
0
Text
1
1
0
1
0
Stats
0
0
2
1
0
Mining
1
1
1
2
0
Book
0
0
0
0
2

3 Common Text Mining Visualizations 63
the diagonal values in the resulting adj.m object in Table 3.2, all terms have a 2 with the exception of the Text and Text intersection. These represent the
redundant loops. Overall, the matrix multiplication operator is applied to each of the terms and corresponding tweets to get the complete result in Table 3.2.
You are safe to build the refund adjacency matrix using the matrix multipli-
cation operator, now that the fundamental construction has been explained.
The refund.tdm object from earlier in this section needs to be converted
to the appropriate matrix class. The matrix multiplication operator is applied as before to this new matrix object. Then the object is transformed into an
object that is used by the igraph library. The last line removes the loops, as they are more visual clutter and do not provide additional context to the
DeltaAssist refunds.
library(igraph)
refund.m<-as.matrix(refund.tdm)
refund.adj<-refund.m %*% t(refund.m)
refund.adj<-graph.adjacency(refund.adj, weighted=TRUE,
mode="undirected", diag=T)
refund.adj<-simplify(refund.adj)
Plotting in the igraph package can be challenging because there are many
input parameters such as shape, thickness and color for both edges and vertices. That said, a simple word network graph that can be built using the refund adjacency matrix is shown in Figure 3.6. The refund adjacency matrix is passed to the plot.igraph function. The following parameters help to alleviate the
visual clutter. Vertex shapes, such as circles, are removed. Then the label font is passed, so that the font itself is not overtly busy. The label colors are red, and the size is adjusted to be somewhat smaller than the default. Lastly the edge lines are colored with a faint gray. By doing so, the terms are more easily read but edge connections are not completely lost. Reversing the color scheme for edges and nodes would mean that the edges would become the focal point, and
the terms may be hard to decipher. So care must be taken when building this
type of visual, so that the audience can draw meaning. Figure 3.6 comprises an adjacency matrix of three tweets.
plot.igraph(refund.adj, vertex.shape="none",
vertex.label.font=2, vertex.label.color="darkred",
vertex.label.cex=.7, edge.color="gray85")
title(main='@DeltaAssist Refund Word Network')
The result of the simple word network shows a strong connection between
refund and apologies. Since this is based on only three tweets, it should not be a surprise that there are three distinct network clusters. The first two are linked
64

Text Mining in Practice with R
fare
like
changeable
something
nickrogersrx
lanaandlovely
future
help
sorry
fully
options
offer
unable
reference
refundable
able
refund
speak
apologies
delay
airport
andrew
gsstan
hello
ticket
possible will
one
Figure 3.6 A very small word network using the igraph package.
by the words “apologies” and “refund.” This appears to confirm the associative relationship between the words as seen previously. Still the third tweet stands alone. This is because it has the word refundable which was captured using the original grep indexing, is technically a different term than “refund,” so no network connection was created linking all three. In the word cloud section of this chapter, we cover word stemming and spellcheck, which both help further
aggregate terms to avoid this issue.
The qdap package provides a convenient wrapper to create this type of visual.
The package author, Tyler Rinker, has also selected some attractive and com-
mon‐sense plot parameters, making the use of the functions very stress free. In fact, the functions explained next do not require you to manually create the term document matrix! Going through the manual exercise of creating an adjacency matrix helps to ensure comprehension, but using qdap’s word_net-
work_plot and word_associate functions saves considerable time and
effort. The single line of code to create Figure 3.7 below essentially creates the exact same visual as Figure 3.3!
library(qdap)
word_network_plot(refund$text[1:3])
title(main='@DeltaAssist Refund Word Network')
c03.indd 64
5/8/2017 10:21:39 AM

3 Common Text Mining Visualizations 65
offer
i'm
unable
wg
sorry
able
nickrogersrx
help
something
apologies
refund
reference
our
fare
options
hello
any
gsstan
changeable
lanaandlovely
refundable
airport
speak
ticket
delay
future

kc
possible
andrew
fully
Figure 3.7 Calling the single qdap function yields a similar result, saving coding time.
qdap’s word association network function goes another step further by
utilizing another binary operator, the %in% or match function. The function is passed the entire corpus of tweets and then a pattern upon which to find
matches. In this example, when the refund pattern is found, the matching
operator underneath returns a TRUE. As the function progresses, all pattern
matches are kept for building the network visual while all others tweets are dis-carded. In doing so, the function mimics the grep indexing performed earlier, saving another line of code. All of the underlying data structures to create the adjacency matrix and ultimately the network visual are contained by calling this single function. In Figure 3.7’s code, the goal is to match tweets containing
“refund” from among the entire corpus. In the code, the match.string parameter
“refund” is within a concatenate function. If needed, additional string patterns can be input by adding a comma and another quoted pattern between the
parentheses. In the previous example, the code limited the refund data frame from seven tweets to only the first three. Calling this function will use all seven tweets that return a TRUE for the pattern match. As a result, Figure 3.8 will be slightly different and more cluttered than the others because it is based on more information.
c03.indd 66
confirmation
cancel
aj
ajmarshall
asking
flight
followdm
i
itself
already
refunded
don't
receipt
anything
please
ticket
wg
nickrogersrx
ec
redeposited
airport
httpstcovimfwvzpa tchczarina
hello
gsstan
miles
refund
check
status
speak
possible
apologies
able
delay
unable
andrew
i'm
something
contact
refunds
sorry
offer
error
hrs
vm
issues
fare
options
kyrrietwin
within
future
free
lanaandlovely
noticed
kyrrie
fully
reference
risk
kc
refundable
changeable
Figure 3.8 The word association function’s network.
c03.indd 66
5/8/2017 10:27:54 AM

3 Common Text Mining Visualizations 67
word_associate(tweets$text,match.string=c(‘refund’),
stopwords=Top200Words,network.plot = T,
cloud.colors=c(‘gray85’,’darkred’))
title(main='@DeltaAssist Refund Word Network')
Tip: Notice that in both qdap applications the basic cleaning steps from the custom clean.corpus function were applied without explicitly calling them.
This can be a blessing of saving time but can also lead to less explicit control.
In conclusion, word networks used on small corpora or in conjunction with
other basic exploratory analyses can be helpful. In this case, the takeaways are minimal because the amount of information that the word networks are based
upon was purposefully limited. Further, as your corpus grows and term diver-
sity increases, word networks will likely become less and less impactful.
Nonetheless, word networks represent a basic text mining visualization that is worth adding to an explorative text project but possibly omitted for final presentations given their frenetic nature.
3.3 Simple Word Clusters: Hierarchical Dendrograms
Hierarchical dendrograms are a relatively easy approach for word clustering.
Later, you learn more complex clustering, but this section will provide a basic means of extracting meaningful clusters. A dendrogram is a tree‐like visualization and in this case based simply on frequency distance. This analysis is an information reduction. Another example of an information reduction is taking the average for a population. We reduce information to reach an amount of information that we can more readily understand about the whole population. Consider the following table of rainfall data from www.weatherdb.com. Table 3.3 is a small data set of city rainfall upon which we can then build Figure 3.9’s dendrogram.
The dendrogram, Figure 3.9, reduces the information of the rainfall data to
explain similarities by city. Cleveland and Portland are at the same height
Table 3.3 A small data set of annual city rainfall that will be used to create a dendrogram.
City
Annual rainfall (in)
Boston
43.77
Cleveland
39.14
Portland
39.14
New Orleans
62.45

68

Text Mining in Practice with R
Annual Rainfall Dendogram
leans
w Or
Ne
Height
on
Bost
veland
rtland
Po
Cle
dist(all)
hclust (*, “complete”)
Figure 3.9 The city rainfall data expressed as a dendrogram.
because their distance measures are 0. Boston receives a bit more rain, so it is set apart and above, yet is closer in difference than New Orleans. New Orleans receives so much rainfall that it is the highest city and also set well apart from the other cluster.
A similar visualization can be created using a TDM, so you can visually
explore token frequency relationships instead of city rainfall. However, unsophisticated frequency based similarity plots often help identify phrases or topics that warrant further exploration. Previously, you created a TDM to explore simple word frequency and association expressed as visuals. To create a dendrogram, you diverge from those visualizations after making the TDM. Recall from the previous section that the matrix version of the TDM using the DeltaAssist corpus had 2631 terms and 1377 rows or tweets. You need to reduce this sparse matrix considerably in an effort to make the visualization comprehensible. In my experience, it is best to reduce the TDM to approximately 50 distinct terms to make a worthwhile dendrogram. Given the lexical diversity of most corpora, usually some clusters are not helpful but there are some that can provide
insights.
Previously we used grep to index tweets and then a string pattern parameter
within a function. Instead of reducing a matrix size based on a string pattern, you can reduce the dimensions mathematically. To reduce the tdm we apply the removeSparseTerms from the tm package. The manner in which this function works is by supplying first a TDM or DTM and then a sparse parameter.

3 Common Text Mining Visualizations 69
The sparse parameter is a number between 0 and 1. It measures the percentage of zeros contained in each term and acts as a cut‐off threshold. For instance, supplying a sparse parameter of 0.99 would include all terms with 99% or fewer zeros. In contrast, changing the parameter to 0.10 would indicate that only
terms that have 10% or fewer zeros are retained among all documents. In reality, many corpora are likely to have 0.95 or more zeros, so it is good to tune your dendrogram starting at 0.95 to 0.999999. To create your new TDM object called tdm2, follow the next code. You can compare the original tdm to the tdm2 by
typing tdm then tdm2 into your console to see the summarized results and how many terms have been reduced. If you do so, you will notice that the new tdm object, tdm2, has only 43 terms.
tdm2 <- removeSparseTerms(tdm, sparse=0.975)
Once satisfied with the tdm2 size being between 40 and 70 terms, you should
be able to perform a hierarchical cluster analysis by measuring the distance between term vectors. The dist function creates a difference matrix by computing a distance between the vectors. The default way to measure distance is Euclidean, as shown, but you may specify other measures including maximum
or binary. It may be worthwhile to change to these other distances to see how the distance measures affect the shape of the tree visual. The distance matrix is then passed to the hclust function to collect the needed information in a list.
The hclust function first assumes each term is its own cluster and then iteratively attempts to join the two most similar clusters. Ultimately all individual clusters, then grouped clusters, are merged into one single cluster, and distance measures are calculated again. As with the dist function, there are a number of different clustering methods. The default is the complete method, but you may specify another, such as centroid or median. Some text mining practitioners prefer to use the median or mediod clustering techniques because the lexical diversity leads to outliers that can affect a mean clustering approach.
hc <- hclust(dist(tdm2, method="euclidean"),
method="complete")
The last line of code to create your first dendrogram clustering visualization is to merely plot it. We call the plot function, then pass the hc object made in the line before. Lastly, we remove the y axis and add a title. I prefer to remove the y axis as the height numbers appear very low to stakeholders and they may focus on that more so than on the informative clusters. The height is representative of the distance measures at this point (not the term frequencies), so it may be misleading. Often just adding these three lines of code after cleaning a corpus and creating a TDM can create an insightful cluster analysis. Figure 3.10
represents a plot of the hc object with the “@DeltaAssist Dendrogram” title.
plot(hc,yaxt='n', main='@DeltaAssist Dendrogram')
70

Text Mining in Practice with R
@DeltaAssist Dendrogram
can
pls
l
wil
team
please
flight
y
y
happ
hear
sorr
thanks
number
e
assistance
thank
mation
y
welcom
ma
confir
m
et
w
wd
rt
y
amp
see
tick
follo
follo
good
poair check
dela
glad
great
via
apologies
assist
hello
ience
m
need
sure
contact
vice
exper
confir
venience
ser
baggage
w
incon
let
kno
e
look
tak
dist(tdm2, method = "euclidean")
hclust (*, "complete")
Figure 3.10 A reduced term DTM, expressed as a dendrogram for the @DeltaAssist corpus.
The dendrogram here shows a lot of apologetic wording and a distinct clus-
ter asking for a direct message. There is also a smaller yet distinct cluster related to baggage service, so it looks like a fair number of tweets were not only related to delays but also to baggage service.
Although informative in some contexts, the base dendrogram may not be as
visually pleasing as hoped. The following lines of code simply add color, slightly change the shape and align all words across the bottom. You can create a custom function called dend.change. First you pass in an object. If the object is a leaf or end point of the dendrogram, it grabs the attributes of that specific leaf. Then it assigns the color labels to the attributes of the leaf, based on the node or cluster.
dend.change <- function(n) {
if (is.leaf(n)) {

3 Common Text Mining Visualizations 71
a <- attributes(n)
labCol <- labelColors[clusMember[which(
names(clusMember) == a$label)]]
attr(n, “nodePar”) <- c(a$nodePar, lab.col =
labCol)
}
n
}
Once you have the coloring function, you apply it in your code to improve the visual. First, you reclassify the hc object from a hierarchical cluster object to a dendrogram. Then you cut the original hierarchical cluster object into four distinct groups to be used for the plot. In more diverse corpora, you may want to increase the cutree parameter beyond four. When building this type of visualization it may make sense to try different clusters within the cutree function. Next, you need to specify the colors of the groups when you create the labelColors object. To specify colors, you can use hexadecimal or basic
color names inside the parentheses. The total number of colors must be equal to the number of clusters specified in the previous function. Also, the colors are used in the order in which they are coded. In the example below, the first cluster is assigned a darkgrey color and so on. Next, we apply the custom coloring
function to the hcd dendrogram object. The custom coloring function actually needs an object called clusMember, which we created earlier. This object
denotes how terms are grouped when we dendrapply the custom dend.
change function. The last step merely plots Figure 3.11 with the previous title and changes from a rectangular line shape to a triangle view.
hcd <- as.dendrogram(hc)
clusMember <- cutree(hc,4)
labelColors <- c('darkgrey', 'darkred', 'black',
'#bada55')
clusDendro <- dendrapply(hcd, dend.change)
plot(clusDendro, main = "@DeltaAssist Dendrogram",
type = "triangle",yaxt='n')
Still, this view may not be pleasing or visually convey the important clusters well. Instead, we can use libraries specifically tailored to improve the aesthetics of dendrograms. Specifically, Tal Galili’s excellent package dendextend combined with the circlize package can create an unusual and attention‐grabbing version of the dendrogram. In Figure 3.12, we change the color order so that we call out the specific clusters to convey the interesting insight about @DeltaAssist.
Adjust the hcd dendrogram object after loading both the dendextend
and circlize libraries. Using dendextend functions cut the tree to four
72

Text Mining in Practice with R
@DeltaAssist Dendrogram
y s
w t
y
e
a t
w
will
pl
py
le
ic
et
ay
m
see
rm
vi
can
ke
team
hear sorr flight
ma
glad
por
amp llo
wd look ta
hap
kno
assist hello
good
rv
great tick
need sure
del
thanks thank
ience
check
fo
se
confi
contact
air
please
mation llo
welcome
baggage
number
venience
fo
assistance
apologies
exper
confir
incon
Figure 3.11 A modified dendrogram using a custom visualization. The dendrogram confirms the agent behavior asking for customers to follow and dm (direct message) the team with confirmation numbers.
clusters then adjust the color labels explicitly. Second, the code below mimics the number of clusters, and colors but is applied to the dendrogram’s branches.
This will help the consistency of the visual. Lastly, instead of calling the base plot function, call the circlize_dendrogram function to create a novel
illustration in Figure 3.12.
library(dendextend)
library(circlize)
hcd<-color_labels(hcd,4, col = c('#bada55','darkgrey',
"black", 'darkred'))

3 Common Text Mining Visualizations 73
sie
ai
check
g
r
ol
y
contact
p
o
vi
or
p
w
a
t
a
dela
amp follo
incon
sure
nee
can
venience d
please
number mation
confi
confir
r
e
m
wdm
xperience
follo
look
ticket
take
great
team
glad
will
see
hear
vice
sorr
ser
y
pls
flight
good
baggage
y
hap
ma
assistance
kn
p
assist
le
y
t
o
thank
w
welcome
hello
thanks
Figure 3.12 The circular dendrogram highlighting the agent behavioral insights.
hcd<-color_branches(hcd,4, col = c('#bada55','darkgrey',
"black", 'darkred'))
circlize_dendrogram(hcd, labels_track_height = 0.5,
dend_track_height = 0.4)
3.4 Word Clouds: Overused but Effective
Another common visualization is called a word cloud or tag cloud. Generally, a word cloud is a visualization based on frequency. In a word cloud, words are represented with varying font size. In a simple word cloud, only one dimension of information is shown. Specifically, the font size corresponds to n‐gram frequency. That means that the larger a word in the word cloud the more frequent the word is in the corpus. Other dimensions of a word cloud can be changed to demonstrate new information, such as color and grouping. This section demonstrates the word cloud package and introduces a polarized tag cloud in a
pyramid plot. The pyramid plot is constructed using the plotrix package.
In general, word clouds are popular because audiences can easily compre-
hend the illustration. This has led to an over use of word clouds during text mining projects. Also, you can manipulate your audience’s interpretation of a
74

Text Mining in Practice with R
word cloud by removing certain words during preprocessing steps. This makes
choosing your stopwords paramount to a sound visualization which does not
mislead. In general, it is best to use word clouds sparingly despite their popularity. If you choose to use word clouds then changing stopwords in an iterative fashion may improve the visual appeal while maintaining a trustworthy intent.
The wordcloud library has three interesting word cloud functions. The
simplest is named wordcloud. It is passed the word terms and a vector of
corresponding term frequency and some aesthetics such as orientation, maxi-
mum number of words to plot and color. The next function is the commonal-
ity.cloud function. The commonality cloud adds another informational
dimension beyond frequency. A commonality cloud uses multiple documents’
terms. The function finds words that are shared among multiple term vectors, and if the words are shared, the function will plot the n‐grams. For example, if you want to know the terms that politicians share between parties, you would take words from speeches of two political parties and employ the commonality cloud. The commonality cloud is the conjunction of two groups of words. In
contrast, the comparison.cloud function will identify dissimilar words
among two or more corpora. This function plots the disjunction of two or
more corpora. The function constructs a segregated word cloud with each sec-
tion matching a distinct corpus. Then the function will add labels so that the audience knows what sections belong to each corpus. This type of word cloud
can be informative for understanding contrasting language. For example, this type of word cloud can be used to plot different reviews among restaurants. If reviews of a specific restaurant mention long wait times while contrasting
reviews of a competitor do not, words like “long” and “wait” will appear in the section of the first restaurant. Figure 3.13 illustrates the differences between word cloud functions. Using wordcloud will plot all words while the other
functions plot different subsections of the word population.
3.4.1 One Corpus Word Clouds
The wordcloud function takes a vector of terms, and then a term frequency
vector. In earlier code you created a data frame based on the row sums of a
TDM and term names. This was used to construct the frequency bar plot. This
data frame is called freq.df. As a refresher you may want to look at the first six terms and frequencies. The code below loads the word cloud library and
executes the head function to view the data frame made earlier.
library(wordcloud)
head(freq.df)
The code snippet below will create a word cloud with a maximum number of
terms equal to 100. You can also specify the minimum frequency threshold as
well. The code also specifies grey50 and darkred. You can change the colors

3 Common Text Mining Visualizations 75
wordcloud()
Corpus A
Corpus B
comparison.
commonality.
comparison.
cloud()
cloud()
cloud()
Figure 3.13 A representation of the three word cloud functions from the wordcloud package.
manually or, as you will learn later, you can use a predefined color palette. The resulting word cloud is shown in Figure 3.14.
wordcloud(freq.df$word,freq.df$frequency, max.words =
100, colors=c('black','darkred'))
This word cloud is an example of a non‐insightful visual. You already knew
the common terms. However, your audience may be able to consume the infor-
mation more easily from a word cloud than a table or bar plot.
3.4.2 Comparing and Contrasting Corpora in Word Clouds
In order to demonstrate the comparison and commonality clouds, you need to
introduce another corpus and change the preprocessing steps slightly. The
code should be reminiscent of other code in the book. The custom stopwords
now include “sorry,” “amp,” “delta” and “amazon.” The clean.corpus func-
tion has also been modified. The new custom function is clean.vec. The
difference is that preprocessing functions are applied to a text vector not a corpus object.
library(tm)
library(wordcloud)
tryTolower <- function(x){
y = NA
76

Text Mining in Practice with R
hear can
able
apologies member change
appreciate
thanks team information
skymiles
inconvenience
share
work
number link
best
confirmation
need
pass thank
may
know
happy
good
welcome available yes
forward apologize leadership
issues
y wayhope reach
sharing help
let
baggage
call issue via
da agent
customer
delay seat glad
hello
see
one
great
take
travel timereview travelsmake
unfortunately
online
amp
hey
reservations options
ticket
details
privacy sure
bag loyalty flt
direct
message
vice contacttwitter
confirm
back
regarding
assist pls
gate
rt
ser look flight
provide
check get
please
followdm
suppo
understand
will airport
experience assistance
feedback follow
sorry y speak
enjo
Figure 3.14 A simple word cloud with 100 words and two colors based on Delta tweets.
try_error = tryCatch(tolower(x), error = function(e) e)
if (!inherits(try_error, 'error'))
y = tolower(x)
return(y)
}
custom.stopwords <- c(stopwords('english'), 'sorry',
'amp', 'delta', 'amazon')
clean.vec<-function(text.vec){
text.vec <- tryTolower(text.vec)
text.vec <- removeWords(text.vec, custom.stopwords)
text.vec <- removePunctuation(text.vec)
text.vec <- stripWhitespace(text.vec)
text.vec <- removeNumbers(text.vec)
return(text.vec)
}
Next you import the original delta and new Amazon customer service tweets.
The Amazon tweets represent approximately 1000 tweets from @Amazonhelp. If
you want to compare more than two text groups you would import them in a similar fashion. Then you would add additional lines of code for each of the following code snippets to incorporate the third or fourth text group into the workflow.
c03.indd 76
5/8/2017 10:21:40 AM

3 Common Text Mining Visualizations 77
amzn<-read.csv('amzn_cs.csv')
delta<-read.csv('oct_delta.csv')
Before constructing the word cloud, the specific text vectors have to be
cleaned. This is an example of the custom function saving you time because
you can apply the function twice without having to rewrite individual code for each text group.
amzn.vec<-clean.vec(amzn$text)
delta.vec<-clean.vec(delta$text)
At this point, the code diverges from prior examples. Each vector is collapsed into a single document representing the larger Amazon and Delta terms. The
resulting object, all, becomes the corpus object with only two documents.
amzn.vec <- paste(amzn.vec, collapse=" ")
delta.vec <- paste(delta.vec, collapse=" ")
all <- c(amzn.vec, delta.vec)
corpus <- VCorpus(VectorSource(all))
Once you have a clean corpus of two documents, you call
TermDocumentMatrix to construct your TDM. The TDM is changed to a
matrix and the columns are named “Amazon” and “delta.” The column names
have to be added in the same order as the corpus was created. This ensures
labeling in the visual is correct.
tdm <- TermDocumentMatrix(corpus)
tdm.m <- as.matrix(tdm)
colnames(tdm.m) = c("Amazon", "delta")
You can examine a portion of the TDM to see the layout and column labels.
Table 3.4 shows the portion of the TDM that will print to your console using the code below.
tdm.m[3480:3490,]
At this point, you could create a commonality cloud. However, the code
below will give you more flexibility for coloring the terms in the word cloud.
The wordcloud library also loads another package called RColorBrewer.
This package has predefined palettes that can save you time compared to con-
structing your own. To review all pre‐constructed color schemes, use the following code. This produces a visual of all palette names with corresponding
colors. You can pick one that suits your needs that will be referenced later.
display.brewer.all()
78

Text Mining in Practice with R
Table 3.4 The ten terms of the Amazon and Delta TDM.
Term
Amazon
Delta
sonic
1
0
sonijignesh
4
0
sont
2
0
soon
14
16
sooo
0
1
sootawn
0
1
sophiesoph
0
1
soraparuq
0
2
sort
2
0
sorted
5
0
soumojit
1
0
In this example, the Purples palette is selected from the RColorBrewer
package. Originally Purples has eight color shades. The next line of code
removes the two lightest colors. Removing the lightest colors is important
because extremely light colors are hard to read in a cluttered word cloud. You can change from Purples to another color name by replacing the text in
between quotes to a palette from the previous code’s plot. Remember, the
names are case sensitive.
pal <- brewer.pal(8, "Purples")
pal <- pal[-(1:4)]
With your colors selected, you can now construct a commonality cloud. In
this example, the more frequent terms will be darker purple, but as you change your colors, this may not be the case. The commonality.cloud function
accepts the tdm.m object directly. The function will identify the words in common and then plot the cloud according to the specified aesthetics. Note that the pal object is passed to the colors parameter of the commonality cloud.
You could specify colors manually or, in this case, use a predefined color list.
Figure 3.15 is the resulting commonality cloud object from the code below.
commonality.cloud(tdm.m, max.words=200,
random.order=FALSE,colors=pal)
You can compare the contrasting words by calling the comparison.cloud
function on the same tdm.m matrix. The next code selects two colors from the Dark2 palette. If you are comparing more than two corpora the number of
colors will correctly change. The number of colors are distinct because the

3 Common Text Mining Visualizations 79
specialist
estimated
teams really
number using
process
find trying reached
customers along
personal
anything
right
charge
customer return recommend
yes
wait thank
great
contacted
currently card
y
closersoon arrive
waiting
inconvenience receive repl
home
betteravailable
comments
ening
taking
however surejust
welcome
response
w
ev
access forward contact
resolved
follo
form item
apologize
another
first now will
reach
make
pls
give hope see
back free already
book
inging
feedback feel team
lehello assistance
br
website take
unable
use
based
w
thanks
ab
link provided
call future tried order lettry
every
error
one
hear detailsdefinitely
sho
vide
rk
contacting
shortly
get
optionswantphone
shout delayed wo pro
issues
offer
pass
way
working
todaysharing
trouble
needed alsosetplease
via
support app
directly
given report
happy
share
case
hey glad agent updates
patience
need
items
disappointment
received check like
assistemail
change
time
update
infocan
y
ma
lovenext
wonderful following
still
enjoy
found request
attention
know
looktwitter
delay
help
changes
frustration
rm
claim
speak
good experience
review
ask
together
issue dayservice ns
happened
information
dueletting
confi
kind
option
apologies appreciate send
care
quickly
best accountwell
hours moment
days
services
concer
delivery confirmation
reported
understand
going sent
credit visitresolve
terribly
Figure 3.15 The words in common between Amazon and Delta customer service tweets.
colors are based on the number of columns in the matrix. For example, if you had three corpora, your TDM would have three columns. The ncol in the
code below references the total number of columns for selection from the
Dark2 color scheme.
comparison.cloud(tdm.m, max.words=200,
random.order=FALSE,title.size=1.0,
colors=brewer.pal(ncol(tdm.m),”Dark2”))
The code produces a comparison cloud similar to Figure 3.16. The previously
defined column names show up as labels in the illustration for each word
group. As expected, Delta airline tweets mention flights while Amazon cus-
tomer service agents tweet about deliveries. This may seem commonsense, but
the corpora illustrate the different types of clouds.
3.4.3 Polarized Tag Plot
The problem with the commonality cloud is that words are shown if they are
shared among corpora. It does not demonstrate the explicit differences in
80

Text Mining in Practice with R
kindly
provided
posted
product
amazon
received
httpstcovlvfjrnn
shipping provide feedback tracking
options refund tell please concern
tried
emailhttpstcohaplpmlfhn different
support click
internally
using get heylook details account
return link
try
phone
consider
httpstcojzphlab able
update help
deliveryearlier date public
personal touch
keep
don’t info want
can like
page
le ebl
thanks flight
check
pls reach
t good
flt
visib trou
welcome
team direct number
order will ticketltytravels
message
hear confirmation
por let
air
ya
take
gate
assistance thank lo
glad yes
assist
online
confirm followdmfollow
travel
leadership apologiesservice bag
great
member seat baggage happyneed
apologize
skymiles
delay hello
privacy
delta
Figure 3.16 A comparison cloud showing the contrasting words between Delta and Amazon customer service tweets.
shared words. For example, if a corpus mentions a term once and another cor-
pus mentions it 100 times the term will be plotted in the commonality cloud.
In reality, the significant difference between term frequencies may be insightful. The following code constructs a pyramid plot to explore shared words and their corpora differences. Unlike a commonality cloud, the pyramid plot can
only be constructed with two corpora. Further, the method to identify com-
mon words varies slightly, so some terms may be inconsistent between the
commonality, comparison and polarized word clouds. The code in this section
is straightforward and can be adjusted if you want to ensure consistency.
First load the plotrix package. Next create a subsection of the tdm.m
using subset. In this code, the logical statement keeps terms that appear more than 0 times in both of the two columns. This is because of the “&” ampersand.
The common.words matrix contains the same two columns as tdm.m,
“Amazon” and “Delta”. However, instead of containing 4049 terms in the original, the common.words matrix has 578.
library(plotrix)
common.words <- subset(tdm.m, tdm.m[, 1] > 0 &
tdm.m[, 2] > 0)
Examining the tail of the common.words object illustrates the effect of the
subset function. The tail of the matrix is shown in Table 3.5.

3 Common Text Mining Visualizations 81
Table 3.5 The tail of the common.words matrix.
Terms
Amazon
Delta
working
11
17
wow
2
10
write
1
1
wrong
1
2
yes
4
28
yet
14
3
tail(common.words)
Notice how all words in the new matrix have a value greater than zero. This
matrix is the foundation for your analysis. The next line of code calculates the absolute value of the differences between columns. Calculating the absolute
differences treats both columns equally for exploring the differences. You may want to remove the absolute function abs that wraps the subtraction. Doing
so will change your visualization in favor of exploring the largest term differences for the first column. Leaving the absolute value function will treat all differences the same between columns.
difference <- abs(common.words[, 1] - common.words[, 2])
The difference object is then bound to the common words as a new third
column. Then the entire matrix with terms, corpora frequencies and difference columns is ordered by the third column. The rows are ordered in decreasing
absolute difference between the words in common between Amazon and Delta.
common.words <- cbind(common.words, difference)
common.words <- common.words[order(common.words[, 3],
decreasing = TRUE),]
The matrix is converted to a smaller data frame. The data frame selects the
first 25 term values from the Amazon, and Delta columns. The row names are
also captured as another column. While redundant, this makes the exact terms easy to comprehend because the data set is smaller. In this example, the
top25.df object is used to create a pyramid plot.
top25.df <- data.frame(x = common.words[1:25, 1],y =
common.words[1:25, 2],
labels = rownames(common.words[1:25,]))
Lastly you are ready to create the pyramid plot. Using pyramid.plot from
plotrix you pass in the x and y values along with some aesthetics. If you have
c03.indd 82
Words in Common
amazon
Words
delta
let
help
thanks
provide
look
good
account
service
welcome
thank
get
touch
date
details
like
apologies
reach
follow
assistance
delivery
will
number
order
confirmation
pls
145 132 119 106 94 83 72 61 50 39 28 17 8 0
0 8 17 28 39 50 61 72 83 94 106 119 132 145
Figure 3.17 An example polarized tag plot showing words in common between corpora. R will plot a larger version for easier viewing.
c03.indd 82
5/8/2017 10:29:12 AM

3 Common Text Mining Visualizations 83
long words, the bars will cover up the terms making the illustration frustrating for your audience. If that occurs, increase the gap value in the code to increase the distance between horizontal bars. You should also change the top.
labels parameter to match the headings of your corpora.
pyramid.plot(top25.df$x, top25.df$y,
labels = top25.df$labels,
gap = 14, top.labels = c("Amazon",
"Words", "delta"),
main = "Words in Common", laxlab = NULL,
raxlab = NULL, unit = NULL)
Finally, in Figure 3.17 you see the polarized tag plot. The visualization contains words that are in common but have the 25 largest difference in use. This type of plot may be interesting in reviewing political speeches or in this case, demonstrating that Delta agents are freer to use shorthand “pls” for “please”
compared to Amazon agents.
It is a good idea to explore stopwords, and the use of the absolute function earlier when constructing a compelling polarized tag plot. They are less used than traditional word clouds, but may hold more insight in the correct
context.
3.5 Summary
In this chapter you learned:
●
●
to visualize simple bar plot of word frequencies
●
●
to find associated words and make a related plot
●
●
to make a basic dendrogram
●
●
to make and improve the aesthetics of a hierarchical dendrogram showing
basic word clustering
●
●
how to make a word cloud
●
●
how to compare word frequencies in two corpora and create a comparison
cloud
●
●
how to find common words and represent them in a commonality cloud
●
●
how to create a polarized cloud to understand how shared words “gravitate”
to one corpus or another
●
●
how to construct a word network quickly
85
4
Sentiment Scoring
In this chapter, you’ll learn
●
●
the definition of sentiment analysis
●
●
a popular academic sentiment framework called Plutchik’s wheel of emotion
●
●
what a subjectivity lexicon is
●
●
how to customize a subjectivity lexicon
●
●
the term frequency inverse document frequency weighting (TFIDF)
●
●
Zipf’s law
●
●
a basic polarity scoring algorithm
●
●
an archived sentiment library
●
●
a real application of sentiment analysis applied to Airbnb.com Boston area
reviews
●
●
the tidytext sentiment using an inner join
4.1 What is Sentiment Analysis?
At first thought, sentiment analysis may appear easy: it means distilling an author’s emotional intent into distinct classes such as happy, frustrated or surprised. As it turns out, sentiment analysis is very difficult to do well. It borrows from disciplines such as linguistics, psychology and, of course, natural language processing.
Sentiment analysis is the process of extracting an author’s emotional
intent from text.
Sentiment analysis challenges arise not only from its inter‐disciplinary foundation but also from cultural and demographic differences between authors.
Another reason is that there are hundreds of related emotional states which are part of the human condition. It is hard to quantify the difference between
happy, or elated, or the spectrum of bored to uninterested to interested. In fact, without the author’s explicit emotional tone being captured at the time of
writing, all sentiment analysis may be undermined by analyst or modeling bias.
86

Text Mining in Practice with R
Further compounding sentiment analysis difficulties may be feature‐specific
sentiment. This occurs when the topic being written about may have more
than one sentiment by feature within the overall topic. For example, a restaurant review on Yelp may state that the prices are great but the food is average.
So overall, the review may be decent, but the review itself contains two distinct emotional states (great and average) applied to a specific restaurant feature.
Analyzing this type of layered nuanced sentiment is extremely challenging.
There are numerous emotional frameworks that can be used for sentiment
analysis. Some are proprietary for commercial applications and others are
from academia. A popularized framework was created by Robert Plutchik in
the 1980s. Plutchik was a psychologist who created a classification system for emotion. He believed that there are eight evolutionarily created emotions:
1) anger
2) fear
3) sadness
4) disgust
5) surprise
6) anticipation
7) trust
8) joy
He believed that the eight primary emotions have been the basis of survival
in humans and animals. As a result, each is foundational to the psyche created over eons. He believed that the eight primary emotions helped to improve sur-vivability over time and were passed on from generation to generation. For
example, surprise allowed early humans to make quick assessments as to
whether to fight or flee. In this framework, the eight emotions each have a
polar opposite. For example, ecstasy is the opposite of grief. To Plutchik, any emotional states outside of these primary eight are amalgamations of the original eight and are therefore subordinate. Lastly, each primary and derivative emotion can be felt to varying degrees. A visual representation of this framework is referred to as Plutchik’s wheel of emotion in Figure 4.1.
If you were to create a sentiment model based on Plutchik’s framework, then
each of the labeled emotions in Figure 4.1 could be a document class in a training set while the document text n‐grams could be the independent variables.
Then a machine learning algorithm such as Naïve Bayes can be trained and
applied to new documents. The end result would be new documents and their
corresponding probability for each emotional state and another model for sub-states. You can start to understand why sentiment analysis is difficult when you consider that Pluthick’s approach is just one of many frameworks, and that
labeling emotions in the training set is fraught with bias. So it is important that you note methodologies and biases when doing sentiment analysis yourself or
when consuming sentiment analysis from others.

4 Sentiment Scoring 87
optimism
love
serenity
interest
joy
acceptance
anticipation
trust
aggressiveness
submission
ecstacy
vigilance
admiration
annoyance
anger
rage
terror
fear
apprehension
loathing
amazement
contempt
grief
awe
disgust
surprise
sadness
boredom
distraction
pensiveness
remorse
disapproval
Figure 4.1 Plutchik’s wheel of emotion with eight primary emotional states.
Beyond sentiment analysis for emotional states, an easier approach is to
merely state whether a document is positive or negative. This is referred to as the polarity of a document. Polarity can be more accurate because there are only two distinct classes, and they are easier to disassociate. For example, surprise can be both positive and negative. Positive surprise may be, “I just found out I won the lottery,” while negative surprise may be, “I was just hit by a bus.”
Rather than analyzing the nuanced differences of an emotional state like surprise, polarity of the document is often easier.
This chapter will show the archived sentiment package for R that performs
basic sentiment analysis. Next, the qdap package’s polarity function that will also be explained. Finally, the tidytext package contains a sentiment scoring approach that will be illustrated.
c04.indd 87
5/8/2017 10:24:17 AM
88

Text Mining in Practice with R
4.2 Sentiment Scoring: Parlor Trick or Insightful?
In commercial text mining applications and in many academic papers, consid-
erable time and effort has been devoted to sentiment analysis. Despite this
effort the results do not always have tangible value. The sales people of some of these commercial organizations try to impress upon the decision‐maker a
sophisticated approach such as using state‐of‐the‐art deep learning neural nets and truly big data sets as the training corpus. Even so, the value to the enterprise may be limited. For example, understanding a survey respondent’s emo-
tional state is less valuable than getting a recommendation about making a
change to improve an operation. Some marketers track sentiment over time to
attempt to understand the effectiveness of marketing efforts. However, the sentiment scores can be misleading, non‐normal or lagged indicators of marketing success, and so the sentiment data should only be accepted with supporting
marketing data. In the end, many sentiment analysis vendors do not create an actionable insight that can be used within an operation, whether to improve
marketing or change a process. It is less valuable to say “that was negative,” than it is to state, “That was negative because of X, Y or Z.” The latter requires some subject matter expertise to enrich the sentiment analysis. Still, it is impressive to have sophisticated approaches applied to millions of documents resulting in 80% or better polarity accuracy. But the question remains: to what end?
Despite these limitations, let’s embark on an example use case and follow the text mining process outlined in this book to answer a question and thereby
reach some conclusions.
Suppose for a moment you have an apartment in Boston that you would like
to rent out through the Airbnb.com service. Airbnb is a service for people to list, find and rent lodging, which is used by millions of people throughout the world. You hope to make some extra money by renting your apartment, but
you want to make sure that your apartment has the qualities of a good rental.
1) Define the problem and specific goals. What property qualities are listed in positive or negative comments?
2) Identify the text that needs to be collected. After a stay, an Airbnb renter can leave comments about the property. These comments are public and
inform new renters’ decisions about the specific property listing. You decide to analyze the comments for properties in Boston.
3) Organize the text. The corpus contains 1000 randomly selected Boston Airbnb listings. You will clean and organize the comment frequency matrices.
4) Extract features. Once it is organized, you will need to calculate various sentiment and polarity scores.
5) Analyze. The sentiment and polarity scores will be used to subset the comments so that you can analyze the terms used distinctly in positive or nega-
tive comments.

4 Sentiment Scoring 89
6) Reach an insight or recommendation. By the end of the case study you hope to answer the question from step 1: What property qualities are listed
in positive or negative comments? This will help inform you as to whether
or not your property has the qualities of a positive Airbnb listing.
4.3 Polarity: Simple Sentiment Scoring
Polarity, the measure of positive or negative intent in a writer’s tone, can be calculated by sophisticated or fairly straightforward methods. The qdap library provides a polarity function which is surprisingly accurate and uses basic arith-metic for scoring. The resulting polarity calculation is a number that is negative to represent a negative, zero to represent neutral and positive to represent positive tone. Although the resulting polarity score is easy to understand, it is best to understand the underlying calculation and how to customize it for your specific need by adjusting the subjectivity lexicon.
4.3.1 Subjectivity Lexicons
The polarity function of qdap is based on subjectivity lexicons. A subjectivity lexicon is a list of words associated with a particular emotional state. For example, the words bad, awful and terrible can all reasonably be associated with a negative state. In contrast, perfect and ideal can be connected with a positive state. Researchers at the University of Pittsburgh provide a freely available subjectivity lexicon that is very popular. It contains information on more than 8000 words that have been found to have either a positive or negative polarity.
The polarity designation has been captured by various methods and in multi-
ple academic research studies, so it stands to reason that this particular subjectivity lexicon is broadly acceptable. An abbreviated example of the University of Pittsburgh multi‐perspective question answering (MQPA) subjectivity lexicon is contained in Table 4.1.
However, the qdap package uses a different subjectivity lexicon for its polarity calculation. Specifically, the lexicon is from research performed by Bing Liu at the University of Illinois at Chicago. This lexicon is slightly smaller, containing approximately 6800 labeled words, but it is based on academic research that
has withstood scrutiny. It is important to understand the validity and size of any subjectivity lexicons used in polarity scoring. Errors or biases will have downstream impacts on the output of the analysis.
Armed with either of these or another subjectivity lexicon, you may employ
a simple approach of adding up the positive words in a passage and subtracting the negative ones. The net result would yield a number and corresponding
positive or negative tone to the passage.
For example, this sentence could be scored using an adding and subtracting
method: “Sentiment analysis in R is good yet challenging. ”
90

Text Mining in Practice with R
Table 4.1 An example subjectivity lexicon from University of Pittsburgh’s MQPA Subjectivity Lexicon.
Type
Length
Word
Part of Speech
Stemmed y/n
Polarity
Weak
1
Abundant
Adj
N
Positive
Weak
1
Abundance
Noun
N
Positive
Strong
1
Accede
Verb
Y
Positive
Weak
1
Accept
Verb
Y
Positive
…
…
…
…
…
…
Strong
1
Mar
Verb
Y
Negative
Weak
1
Marginal
Adj
N
Negative
Weak
1
Marginally
Adv
N
Negative
Strong
1
Martyrdom
Noun
N
Negative
…
…
…
…
…
…
The word “good” has a positive polarity, while the word “challenging” has a
negative polarity. The two cancel each other out, plus one and negative one
equaling zero. So the polarity of this sentence is zero.
However, this is a bit too unsophisticated. You may be thinking that other
words outside the subjectivity lexicon could have an effect on the polarity. In particular, these “valence shifter” words, called negation and amplifiers words, likely have an impact on the overall polarity of a passage. A negation word is a word that would actually infer the opposite polarity. Suppose the word “very”
in a similar example sentence was changed to “not” as in this sentence:
“Sentiment analysis in python is not good. ”
In this new example, “not” actually should negate the positive intent of the single word “good.” The “not good” phrase or token should be considered negative. Rather than just identifying the positive “good” term resulting in a polarity of one, in this case, a more accurate polarity may be closer to negative one. In this example the word “not” is a negation word.
The other type of valence shift is illustrated in the following sentence:
“Sentiment analysis in R is very good. ”
Here the token “very good” likely has a stronger positive tone than the single term “good.” So in a simplistic calculation the polarity should be greater than one and possibly approaching two because the “very” indicates a stronger
polarity.
As a result of these examples, you should be thinking that any polarity function should somehow account not only for the words in the subjectivity lexi-
cons but also the valence shifters. Luckily the qdap package polarity function does so, and this is explained later in the chapter.

4 Sentiment Scoring 91
Still another challenge of subjectivity lexicons is that word choice is not universal and is different based on medium and location. For example, in Boston people often use “wicked” in a phrase. The term wicked is largely considered negative elsewhere in the US, yet in Boston the word is sometimes considered good or even an amplifier. Bostonians may say “That’s wicked good” when they are expressing “that’s really good.” Another example of communication medium affecting the word choice occurs in social media. Tweets often contain words like “lol” and “smh.” In social media people use “lol” as an abbreviation for the positive “laugh out loud” or “smh” for a disapproving “shaking my head.” Yet these terms often do not appear outside of a casual mode of communication
and are therefore omitted from many subjectivity lexicons. The polarity function in qdap employs a basic subjectivity lexicon. You should customize the
lexicon to suit your text’s medium. In the next section you will adjust the lexicons to include specific words.
Why do subjectivity lexicons work?
Despite the shortcomings in these initial examples, subjectivity lexicons are still widely used and are often accurate enough. You may be wondering how such a
short list of words from among all known words has the ability to be somewhat accurate. The explanation is based on Zipf’s law and the principle of least effort.
A small subjectivity lexicon may seem inappropriate because the average per-
son likely has tens of thousands of words in their personal vocabulary, so any list would miss many words known to the author. On top of that, the number of
unique words used on any given timeframe varies by gender, age and demo-
graphic factors. How can a list of less than 6800 words ever be expected to
perform well?
Zipf’s law asserts that any word in a document is inversely proportional to its rank when looking at the term frequency. For example, the most frequent word, number one on a frequency list, will occur about twice as often as the second most frequent word, then three times as likely as the third and so on. Table 4.2
shows the first six terms from a frequency distribution used among ~2.5 million tweets mentioning the hashtags #SB50 or #BigGame. Then Figure 4.2 visualizes the top 50 term frequencies from the same corpus. The line chart roughly follows a Zipfian distribution. In both cases, Zipf’s law is evident after the first term because the tweets are centered on a particular search term first. After an abbreviation for the football championship, “sb,” the most frequent term is “RT,”
standing for “retweet”.
You will notice that the term “RT” appears almost exactly three times as often as the term “to”. The term appears approximately four times as often as the
term ‘a’. Zipf’s law occurs in other texts and languages. For example, it occurs in a famous collection of documents called the Brown University Standard Corpus
92

Text Mining in Practice with R
Table 4.2 The top terms in a word frequency matrix show an expected distribution.
RANK
Word
Frequency
Expected
NA
sb
1,984,423
1
rt
1,700,564
1700564/1=1,700,564
2
the
1,101,899
1700564/2=850,282
3
to
588,803
1700564/3=566,855
4
A
428,598
1700564/4=425,141
5
for
388,390
1700564/5=340,113
2000000
sb
rt
1500000

q
the

f re 1000000
500000
0
0
10
20
30
40
50

num
Figure 4.2 Top 50 unique terms from ~2.5million tweets follows Zipf’s distribution.
which contains articles published in 1961. In this corpus, there are about
1 million words in total. The term “the” occurs almost 7% (69,971 occurrences) of the time and is followed by “of” which is the second most. True to Zipf’s law, the
“of” term occurs 3.5% (36,411 occurrences) so the first term is used about twice as often as the second.
One explanation of this linguistic behavior is the principle of least effort. This principle states that humans will choose the path of least resistance and work to minimize effort for a task. Applied to communication theory and library sciences, one understands that the information‐seeking audience does not want
to exert a lot of effort to understand the message or search for meaning. Once some minimum threshold of understanding has occurred the effort exerted in
searching for meaning will decrease or cease altogether. You may have been
guilty of this when someone is babbling on about a topic at a cocktail party, yet you already know the topic well. Inevitably you end up not paying full attention and minimizing your effort to listen while not being rude. Your mind starts to wander or you may lose eye contact while you scan the room looking for

4 Sentiment Scoring 93
someone else more interesting to talk too. Likewise, the person writing or speaking wants to minimize their effort to convey meaning. If fewer words will do, then using more is wasted effort. In addition, if using abstruse words increases the effort of the audience, then it is often not wise to use such terms. This is due to the principle of least effort which ensures the audience will tune out, thereby countering the author’s intent to convey meaning.
As a result of Zipf’s law and the principle of least effort, extremely large subjectivity lexicons may not be needed. It turns out that while humans may know tens of thousands of words, they often revert to using only a few thousand distinct terms when communicating because they want to minimize effort. Due to
the predictable distribution of word choice, a subjectivity lexicon that is well researched can safely remove many words. A benefit to having a shorter lexicon is that long word lists take longer to scan and compute, while Zipf’s law confirms that many of the words would not be used anyway.
In the previous simplistic examples, some polarity measure was attained, but a more sophisticated approach is needed to boost accuracy. The polarity function of qdap goes beyond one word positive and negative differences in a passage. The qdap approach remains simple yet accounts for negation and
amplification words. Also, the function allows you to change the lexicons for specific terms that may or may not be germane to the medium, e.g. “rofl” for
“rolling on the floor laughing,” which is often used in chat transcripts.
4.3.2 Qdap’s Scoring for Positive and Negative Word Choice
The polarity function from qdap is a bit more complex than the previous
section’s example but is explained easily enough.
1) The polarity function scans for positive and negative words within a subjectivity lexicon.
2) Once a polarity word is found, the function creates a cluster of terms,
including the four preceding words and two following words.
3) Within the cluster, neutral words are counted as zero. The positive and
negative words that form the basis of the cluster are counted as one and
negative one respectively. The remaining non‐neutral and non‐polarity
words are therefore considered valence shifters. These valence shifters are
given a weight to amplify or detract from the original polar word. The
default value is 0.8. So amplifiers add 0.8 while negating words subtract 0.8.
4) All of the values in the word cluster are summed to create a grand total of the polarity with amplification or negation effects.
5) The grand total of positive, negative, amplifying and negating words with their specific weights is then divided by the square root of all words in the passage. This is helps to measure the density of the keywords.

94

Text Mining in Practice with R
Amplifier “very” = +0.8
Positive Polarity “good” = +1.0
1.8
total raw
Positive World Cluster
polarity
Sentiment analysis in R is very good. =
1
1
1 1 1
1
1
√ 7
total
words
Figure 4.3 Qdap’s polarity function equals 0.68 on this single sentence.
Although this five‐step process may seem complicated, Figure 4.3 illustrates it graphically using a previous example.
Now that you have an understanding of the polarity function in action you
may want to incorporate custom words into the original subjectivity lexicon.
Suppose as you have gained subject matter expertise in Airbnb reviews so that you believe authors use terms like “rofl” and “lol.” These two terms are not included in qdap’s polarity function dictionary. As a result, you will need to append these terms to the list of positive words.
First create a vector of the new positive terms, called new.pos. You add the terms rofl and lol but you can add more simply by using the comma and quotes within the parentheses.
library(qdap)
new.pos<-c('rofl','lol')
Most likely you will need to retain the original positive words rather than
replace them altogether. The basic subjectivity lexicon is held in an object loaded within qdap called key.pol. The key.pol object has both positive
and negative terms, but you only need the positive ones to add to. Using the subset function, you are able to retain only the terms in the original key.pol lexicon that have a polarity value equal to one.
old.pos<-subset(as.data.frame(key.pol),key.pol$y==1)
The code below concatenates the new positive terms with all terms of the old positive lexicon into a new object called all.pos.
all.pos<-c(new.pos,old.pos[,1])
You are only half done with revising the original polarity lexicon. Now you
have to adjust the negative portion in a similar manner. Suppose that your
research has determined the words “kappa” and “meh” to be negative, and you
would like to include them. It turns out that kappa is a term used among gamers to denote some amount of negative sarcasm. The other term, meh, is more
broadly used in the context of being unenthusiastic or apathetic. In any case, you need to create an object with both, called new.neg below.

4 Sentiment Scoring 95
new.neg<-c('kappa','meh')
As before, you need to append these new negative terms to the original ones.
In order to do so, you create old.neg using the subset function. However, this time you are only concerned with terms that have a negative one polarity, so the code changes slightly.
old.neg<-subset(as.data.frame(key.pol),key.pol$y==-1)
To finish the negative terms, you combine the new negative terms with the
old negative terms using the code below.
all.neg<-c(new.neg,old.neg[,1])
Lastly you need to create a sentiment frame to replace the original. The
polarity function refers to this special data frame class when doing its calculation. Here you are creating a new object called all.polarity using the
sentment_frame function. The function needs the vector of all positive
terms, all negative terms which you made earlier, along with the corresponding weights to assign to each type of word.
all.polarity<-sentiment_frame(all.pos,all.neg,1,-1)
Now that you have customized the polarity function’s reference words, you
can apply it. Consider the short examples here:
“ROFL, look at that! ”
“Whatever you say. Kappa. ”
To invoke the new lexicon, you have to specify it as shown below on the
example sentences. The second parameter of the polarity function explicitly
redirects to the new sentiment frame containing the original and new subjec-
tivity words. The output of the code below follows in Table 4.3.
polarity('ROFL, look at that!',polarity.frame
=all.polarity)
In Table 4.3, the first column says “all” because there is no grouping variable, as could be the case with author or date. The second is how many sentences were detected. Next is the total number of words, followed by the average polarity score.
The last two columns would be populated if there were more than one sentence.
Table 4.3 The polarity function output
Total
Avg.
Standard dev.
Standard mean
All
Total sentences
words
polarity
polarity
polarity
all
1
4
0.5
NA
NA
96

Text Mining in Practice with R
Table 4.4 Polarity output with the custom and non‐custom subjectivity lexicon.
Total
Total
Standard dev.
Standard mean
All
sentences
words
Avg. polarity
polarity
polarity
All
1
4
−0.5
NA
NA
All
1
4
0
NA
NA
With the new lexicon in place, “ROFL” was identified as positive, with all
other words being neutral. The polarity of this sentence is 0.5. This is because
“ROFL” counts as one with three other words being neutral. The one is divided by the square root of the total number of words, 4. In the end, one divided by the square root of four is 0.5.
If you do not specify the custom polarity frame in the code as shown next,
the function will revert back to its original less customized polarity words.
Without the customized polarity frame the polarity calculation is a neutral 0
because “ROFL” was not found.
polarity('ROFL, look at that!')
The same behavior occurs with the sentence containing “kappa.” In the first
line of code the customized polarity frame will calculate a −0.5 score. Using the original polarity frame in the second code line will produce a neutral 0. The presence of “kappa” is identified as a polarized word in the first line. Table 4.4
shows the outputs, side by side, for comparison in the respective order of
the code.
polarity('whatever you say, kappa.', polarity.frame =
all.polarity)
polarity('whatever you say, kappa.')
4.3.3 Revisiting Word Clouds – Sentiment Word Clouds
By now you should have a decent understanding of how a basic polarity func-
tion can score a passage and how to customize it for your specific purpose. You can add this dimension of analysis when performing a wordcloud function in
the hope of understanding a new insight. In review from the previous chapter you can apply the word cloud package functions to the words in single corpus, or the disjunction or conjunction of multiple corpora. This is represented
again in Figure 4.4 originally from Chapter 3.
Once you calculate the polarity for documents in a corpus, you can use this
dimension to subset it. You are artificially creating two corpora to visually examine from the single corpus. Creating word clouds with this methodology

4 Sentiment Scoring 97
wordcloud()
Corpus A
Corpus B
comparison.
commonality.
comparison.
cloud()
cloud()
cloud()
Figure 4.4 The original word cloud functions applied to various corpora.
Corpus A
Positive Docs
Negative Docs
comparison.cloud()
commonality.
comparison.cloud()
cloud()
Figure 4.5 Polarity based subsections can be used to create different corpora for word clouds.
will show what distinctive words are used only for positive versus negative
posts and which other words are shared, thereby having a mixed sentiment.
This is visually represented in Figure 4.5.
98

Text Mining in Practice with R
Getting the Data
Please navigate to www.tedkwartler.com and follow the download link. For this analysis, please download “bos_airbnb_1k.csv”. It contains 1000 Airbnb reviews related to a particular stay at an apartment or house in Boston. The global
options and libraries are listed below along with the code to create the initial data frame needed to create the sentiment word cloud.
Let’s create an example sentiment word cloud based on a real corpus of
online reviews. These reviews are from 1000 randomly selected Boston Airbnb
comments left after a stay and are used throughout the chapter.
options(stringsAsFactors = F)
library(tm)
library(qdap)
library(wordcloud)
library(ggplot2)
library(ggthemes)
bos.airbnb<-read.csv('bos_airbnb_1k.csv')
The next step is to calculate the polarity of each comment. Here polarity is only applied to the vector containing the comments because the data frame
contains other information that is not to be included in the score.
bos.pol<-polarity(bos.airbnb$comments)
The scores for each document are nested in the polarity output bos.pol.
The element “all” has a scored vector called “polarity” among other informa-
tion. Both need to be referenced in order to retain only the scores for this specific word cloud effort, but the rest of the output is worth exploring. The bos.pol list contains scores, original text, identified words and other information that may aid a larger analysis. Before creating a sentiment‐based word cloud, you can easily plot the distribution of the polarity scores using the code below. The ggplot code creates Figure 4.6.
ggplot(bos.pol$all, aes(x=polarity,
y=..density..)) + theme_gdocs() +
geom_histogram(binwidth=.25,
fill="darkred",colour="grey60", size=.2) +
geom_density(size=.75)
Now that the polarity scores have been calculated, you can append part of it to the original data frame. The next code appends just the polarity scores from the bos.pol object to the original bos.airbnb data frame as a column
alongside the original text.
bos.airbnb$polarity<-scale(bos.pol$all$polarity)

4 Sentiment Scoring 99
0.75
0.50

ty

densi
0.25
0.00
0
2
4

polarity
Figure 4.6 Histogram created by ggplot code – notice that the polarity distribution is not centered at zero.
Notice that the scale function is being applied to the polarity output. When doing exploratory data analysis like Figure 4.6, you may notice that the polarity scores are not centered at 0. As shown in Figure 4.6, the mean of the original polarity scores is 0.90. This means that on average each review has at least a single positive word in it. This often occurs in reviews and market research.
Despite being anonymous, there is a social norm for people to be nice, acknowledge effort or find at least something to be positive about. This is called
response bias and results in a “grade inflation,” where people are mixing positive words alongside negative. Scaling the polarity score vector moves the average to zero. It is a good idea to use the scale function and also rerun the analysis without it, to understand the scaling effect on outcomes.
To create the sentiment‐based word cloud, you need to create a subset of the original data. This will give you only the documents that are positive or negative.
To do so, you will apply the subset function as shown in the code. There are some drawbacks to this approach worth noting. First, the subset will remove the vast majority of documents if most documents score a neutral zero. Second,
simply segregating based on greater than or less than 0 means that the degree of polarity is not captured. Another drawback occurs if you want to understand
the words in the neutral subsection. If needed, you can add a third object where polarity equals zero. To capture stronger or weaker polarity subsections, you could use additional non‐zero subset parameters. One approach may be to
quartile the polarity score and use those as the cut‐off thresholds. That said, for this example you are simply using greater than or less than zero as your cut‐off.
pos.comments<-subset(bos.airbnb$comments,
bos.airbnb$polarity>0)
100

Text Mining in Practice with R
neg.comments<-subset(bos.airbnb$comments,
bos.airbnb$polarity<0)
These two objects represent the corpora for the word clouds. At this point,
each contains many hundreds of individual comments, but for this analysis the subsections of reviews should be considered in their entirety. You need to collapse the pos.comments and neg.comments into two distinct documents.
To do so use the paste command along with collapse. Then each of these
two large comment documents are combined into a single character vector
called all.terms. This vector has only two distinct components instead of
the hundreds of individual comments in the pos.terms and neg.terms.
Finally this is passed to a VCorpus function to become the final corpus with two documents containing all positive and negative reviews.
pos.terms<-paste(pos.comments,collapse = " ")
neg.terms<-paste(neg.comments,collapse = " ")
all.terms<-c(pos.terms,neg.terms)
all.corpus<-VCorpus(VectorSource(all.terms))
Rather than review all of the preprocessing steps that can be done on a cor-
pus, the code below only performs cursory preprocessing steps. When doing
this analysis for real, you would likely create a customized function, as was shown in an earlier chapter, and then apply it to the corpus. The code below creates a TDM using common preprocessing steps. Beyond standard preprocessing, the TDM was constructed by changing the term weight. Changing the
term weight is a new parameter that was not done previously. Specifically, the weighting was changed to the term frequency inverse document frequency
(TFIDF). As you build this or other bag of words method TDMs, it is good to
explore the impact of the matrix weighting.
all.tdm<-TermDocumentMatrix(all.corpus,
control=list(weighting=weightTfIdf, removePunctuation =
TRUE,stopwords=stopwords(kind='en')))
What is TFIDF?
The TFIDF is the product of the term frequency (TF) and the inverse document frequency (IDF). Hence the TFIDF acronym. Instead of simple term frequency,
the TFIDF value increases with the term occurrence but is offset by the overall frequency of the word in the corpus. The offsetting effect helps remove commonly occurring terms that may not yield much information. From a common
sense perspective, if a term appears often, it must be important, represented in frequency. However, if it appears in all documents, it is likely not that insightful or informational. This book mentions “text” and “mining” often, so both are

4 Sentiment Scoring 101
Table 4.5 A portion of the TDM using frequency count
Terms
Positive reviews
Negative reviews
Boss
0
2
Boston
279
259
BostonCambridge
2
0
Table 4.6 A portion of the Term Document Matrix using TFIDF
Terms
Positive reviews
Negative reviews
Boss
0
1.12
Boston
0
0
BostonCambridge
1.13
0
important in some sense. However, every chapter contains these terms, so in
reality the value is pretty low compared to other terms.
For another example, the word “Boston” may appear very often in the Airbnb
reviews since these are Boston area reviews. A simple term frequency count
would probably overemphasize Boston in a word cloud. To combat this, the
inverse document frequency is calculated. The inverse document frequency
attempts to capture not only the frequency but also the importance of the information the word contains. It is a measure of term frequency times the rarity of the term across documents.
To compare the term frequency and TDIDF values, let’s look at a portion of the TDM. Table 4.5 is the portion of the Airbnb term document matrix containing
“Boston” using simple frequency count.
In contrast, Table 4.6 contains the same information but with the TFIDF
weighting. It is precisely the fact that Boston is so evenly distributed between the two document collections that the TFIDF score is zero. “Boston” is penalized for appearing in so many documents.
Mathematically the TFIDF is defined below.

Term frequency (TF) – counts the number of occurrences of a term in a document. Since words can appear more often simply because documents are long, we can normalize the frequency by dividing by the document length, as shown below.
TF = (term occurrences in a document) / (total unique terms in the document) Inverse document frequency (IDF) – the log of the total number of documents
divided by the number of documents where the term appears
IDF = log(total document in corpus / number of documents with term t in it) TDIF – the product of TF times IDF
TFIDF= TF*IDF

102

Text Mining in Practice with R
Figure 4.7 The sentiment word cloud based on a scaled polarity score and a TFIDF
weighted TDM.
Once the TDM is constructed, you must switch it to a simple matrix using as.
matrix. The next step is to label the columns, as was done when constructing a comparison cloud in the last chapter. Both of these steps are performed below.
all.tdm.m<-as.matrix(all.tdm)
colnames(all.tdm.m)<-c('positive','negative')
Lastly, you call the comparison cloud function specifying the maximum
number of words and colors for each polarity subset. The code below is used to construct Figures 4.7 and 4.8. The difference between the visualizations is due to the scaling of the polarity scores in Figure 4.7 and omitting this in Figure 4.8.
comparison.cloud(all.tdm.m, max.words=100,
colors=c('darkgreen','darkred'))
The word cloud in Figure 4.7 can lead you to an interesting conclusion. In the positive portion of the Airbnb reviews there are many first names such as Alex, Becky, and Erik among others. One could surmise that to have a positive
Airbnb experience there must be a direct interaction between host and guest.
In contrast, automated postings and dirty rooms lead to negative reviews.
Taken collectively, a guest’s ideal and expected Airbnb stay is less transactional and more personal but the need for cleanliness is also foundational.

4 Sentiment Scoring 103
Figure 4.8 The sentiment word cloud based on a polarity score without scaling and a TFIDF
weighted TDM.
Without scaling applied to the polarity score, the words themselves change
drastically in Figure 4.8. However, one can still draw conclusions, although perhaps less novel about positive and negative Airbnb stays. For positive stays, being within walking distance or having proximity to a subway station are
important. Not surprisingly if the room hygiene, condition, safety or proximity to dumpsters is mentioned, the review is negative.
4.4 Emoticons – Dealing with These Perplexing Clues
Emoticons are the combinations of punctuation marks, computer accepted
symbols or more recently small images called emoji that are meant to convey
information. In a sense, emoticons are shorthand for thoughts and feelings
rather than typing out complete words and phrases. An example of a
punctuation‐ based emoticon is “:P” which is meant to be a face with a tongue sticking out. Another example is “:‐)” representing a simple smiley face with a nose. Emoticons have gained in popularity and continue to evolve. An out-growth of the punctuation or symbol based emoticons is the use of emoji,
which are cartoon‐ like images instead of normal keyboard characters used to convey meaning. Emoji change fairly rapidly and vary by medium. For example, many smart phone updates also periodically update the emoji as part of the messaging application. Emoji differ significantly within chat transcripts

104

Text Mining in Practice with R
Figure 4.9 some common image based emoji used for smart phone messaging.
compared to smartphone emoji, especially for specialized websites like twitch.
com. Figure 4.9 contains just a selection of the smiley face emoji used in a smartphone messaging application. For comparison, Table 4.7 contains common punctuation mark and symbol‐based emoticons.
The constant evolution of emoticons and emoji, and the differences between
communication platforms make tracking these symbols for sentiment analysis
Table 4.7 A small sample of the hundreds of punctuation and symbol based emoticons.
Emoticon
Meaning
Type
:‐)
Happy face
Punctuation
:‐D
Laughing face
Punctuation
:(
Frowning face
Punctuation
;)
Winking happy face
Punctuation
Disapproval look
Punctuation
❤
Heart
Unicode symbol
✂
Cut
Unicode symbol
☺
Smiley face
Unicode symbol

4 Sentiment Scoring 105
challenging. This section shows how to deal with some common emoticons,
but you will need to refine and update them as the emoticons themselves vary.
4.4.1 Symbol‐Based Emoticons Native to R
R can interpret some older symbol‐based emoticons using the corresponding
Unicode. Unicode is a universal manner of displaying text used among com-
puters. It is often represented as “U+2764.” This specifies Unicode and character number 2764. However, if you create an object using “U+2764,” R will interpret it literally. It does not get translated to its corresponding Unicode character and is instead kept as the specific character string. R needs to have the Unicode
“escaped” to signify that the code is representative of a Unicode character. To escape the Unicode use “\” to begin the code and drop the plus sign as shown here.
"\U2764"
R will print out the result which is actually a heart represented in the console as “[1] "❤".” Many of the older emoticons primarily from word processor “wing-dings” can actually be printed and interpreted correctly with this methodology in an R console. Table 4.8 shows some basic example Unicode symbols that R
can interpret natively. Using this method, R can print some but not all Unicode characters.
Fixing the Unicode symbol‐based emoticons is fairly straightforward.
Consider the following sentences:
“I am ☻. I ❤ ice cream.”
The dark smile face and heart represent happy and love respectively. As part of the preprocessing for this passage or any other which may include a significant amount of emoticons, it makes sense to change the emoticons to normal
character strings. Borrowing from qdap, the mgsub function is helpful for
multiple substitutions. The code below searches for the Unicode patterns and replaces them with the symbol’s intent. The first object is a character vector for the Unicode equivalent for the smile face and heart. The next object is a
Table 4.8 Example native emoticons expressed as Unicode and byte strings in R.
Emoticon
Description
R Unicode
❤
Heart or love
\U2764
☺
Smiley face
\U263A
☹
Frowning face
\U2639
☻
Dark smile face
\U263B
✌
Peace sign
\U270C
106

Text Mining in Practice with R
character vector of replacements. Lastly mgsub is applied to the text object, which in this case are the example sentences.
patterns<-c('\U263B','\U2764')
replacements<-c('happy','love')
mgsub(patterns,replacements,text)
The final sentences have the replacements: “I am happy. I love ice cream.”
Once the emoticons are in a character string, the symbols or more specifi-
cally the substituted words can be calculated as part of sentiment or polarity scoring. If you expect to encounter many of these types of characters, you will need to include more patterns and replacements in the above code. An online
search for Unicode emoticons will provide lists that you can incorporate into the example here.
4.4.2 Punctuation Based Emoticons
Another way to convey meaning through symbols is to use punctuation and
keyboard letters. Once again, expressing emotion using keyboard characters is dynamic and varied. Some of the popular facial related punctuation emoticons are given in Table 4.9.
Qdap has a built‐in dictionary of 81 emoticons and their meanings. To review the emoticons, load the emoticon data frame using the code below after qdap
is loaded.
data(emoticon)
Table 4.9 Common punctuation based emoticons
Emoticon
Description
Emoticon
Description
:)
Smiley face
:‐!
Foot in mouth
:‐)
Smiley with nose
:‐D
Laughter
:(
Frowney face
:@
Exclamation "What?!"
:‐(
Sad with nose
:‐0
Yel
:‐‐‐‐‐)
Liar (long nose)
:‐@
Angry
:‐@
Scream
=^.^=
Cat
:P
Sticking tongue out (raspberry)
O.o
Confused
:‐E
Bad teeth
:*)
Drunk smile
>‐)
Evil grin
:‐O
Surprised
:‐\
Shifty
:‐$
Confused
(>_<)
Troubled Face
Q_Q
Crying
(‐_‐)
Shame
¯_()_/¯
Shrugging whatever

4 Sentiment Scoring 107
Table 4.10 Pre‐constructed punctuation‐based emoticon dictionary from qdap.
Meaning
Emoticon
Alien
(.V.)
Angel
O:‐)
Angry
X‐(
Baby
~:0
Big grin
:‐D
Bird
(*v*)
If interested, you can examine the data frame using the head function to
print the first six emoticons and their meanings. This will print out the emoticons in Table 4.10.
head(emoticon)
When you are working on social media channels, it is important that you
build out an emoticon lexicon beyond what is standard. You can append other
emoticons to the basic data frame using the code below. Simply add new mean-
ings and emoticons in between quotes and separated by commas as shown.
meaning<-c('troubled face','crying')
emoticon<-c('(>_<)','Q_Q')
new.emotes<-data.frame(meaning,emoticon)
emoticon<-rbind(emoticon,new.emotes)
Once you are comfortable with a punctuation‐based emoticon data frame,
you can call the mgsub function, also from qdap, to substitute the punctuation to the corresponding meaning. For example, the sentence below contains multiple punctuation‐based emoticons that need to be changed.
“Text mining is so much fun :‐D. Other tm books make me Q_Q because
they have academic examples!”
You can apply mgsub, referencing the emoticon data frame columns and
applying them to the text, which is the example sentence.
mgsub(emoticon[,2],emoticon[,1],text)
After substitutions, the new sentence reads: “Text mining is so much fun Big Grin. Other tm books make me crying because they have academic examples!”
Although not grammatically accurate, the sentence can now be processed
and scored using other text mining methods. The information was not lost by
simply removing punctuation marks but instead words were substituted for
emotional meaning. Thus, it is important to perform this type of substitution before any punctuation removal.

108

Text Mining in Practice with R
4.4.3 Emoji
Emoji are the small pictures or illustrations used throughout modern day communication to convey meaning. Emoji vary in use and type to convey various
emotions. For example, an emoji used to convey sarcasm among smart phone
messages appears in Figure 4.10. In contrast, Figure 4.11 is a “kappa” emoji used in chat transcripts on gaming sites like www.twitch.com to also convey
sarcasm. According to knowyourmeme.com/memes/kappa, the kappa emoti-
con is used 900,000 times per day on Twitch and is a likeness of an early
employee that created the chat client. The kappa emoji popularity has been
sustained on the platform because sarcasm is expressed often in the gaming
community.
R has difficulty dealing with emoji. The images within text are parsed and
expressed incorrectly. If printed to the console, the emoji are shown as one or more black diamonds with a white question mark inside (�). When you print
the emoticons to the console they are not recognizable as Unicode
Transformation Format or more specifically UTF‐8, which is the format that R
uses for character strings. The eight means that R is using 8‐bit blocks to represent a single character. Since the emoji are so varied, R merely assigns a question mark because it does not know how to deal with it.
If you view the text containing the emoji, or save the document, the question marks are converted to a string that is unique for each emoticon. For example,
’<ed><U+00A0><U+00BD><ed><U+00B8><U+0092>’ is the complete string for the sarcastic face in Figure 4.10. The string may appear to be normal UTF‐8, but it does not correspond to an expected UTF character. It is merely R’s
assignment for that emoticon to some characters it can interpret. Since this emoticon encoding is still unknown to R, another conversion is needed. The
code below converts a text object from UTF‐8 to UTF‐8. This may sound odd,
but it will ensure that unknown characters are substituted with a “byte”. The byte is a hex code that R creates to represent the unknown character. If you are not working with UTF‐8, you should change the first and second parameters of the iconv function.
iconv(text, "UTF-8" , "UTF-8", "byte")
Figure 4.10 Smartphone sarcasm emote.

4 Sentiment Scoring 109
Figure 4.11 Twitch’s kappa emoji used for sarcasm.
The hex byte string is unique and therefore can be substituted like other
known emoticons. Table 4.11 represents 20 popular Twitter emoji and the cor-
responding R byte interpretation for Twitter. This can serve as a solid start as you build out an emoji‐recoding data frame.
It is important to note that the byte encoding in Table 4.11 was tested on
tweets. Other channels or variations of the emoji may be assigned different
byte strings. For example, in a browser, the speak no evil monkey is black and white, but it is a color illustration in Twitter. This difference may impact the byte encoding within R. As a result, you should test the byte encoding carefully when setting up a recoding data frame.
To recode a message to account for emoji, you will once again use qdap’s
mgsub function. For example, consider the following tweet.
Manually dealing with emoji is hard, makes me 😭. Plus doing it one by one
makes me 😴. Luckily qdap’s mgsub can help 😄
If you use the twitteR package to grab this tweet, R will print the text in a manner shown below in the console.
print(tweet)
"Manually dealing with emoji is hard, makes me \xed��\
xed��. Plus doing it one by one makes me \xed��\
xed��. Luckily qdap's mgsub can help \xed��\xed�\
u0084"

110

Text Mining in Practice with R
Table 4.11 Common emoji with Unicode and R byte representations.
Emoji
Meaning
Unicode
R byte encoding
1
Speak no evil
monkey
U+1F64A <ed><a0><bd><ed><b9><8a>
2
Tears of joy face
U+1F602
<ed><a0><bd><ed><b8><82>
3
Unamused face
U+1F612
<ed><a0><bd><ed><b8><92>
4
Smiley with
heart eyes
U+1F60D <ed><a0><bd><ed><b8><8d>
5
Smiley with
smiling eyes
U+1F60A <ed><a0><bd><ed><b8><8a>
6
OK hand
U+1F44C
<ed><a0><bd><ed><b1><8c>
7
Face blowing a
kiss
U+1F618
<ed><a0><bd><ed><b8><98>
8
Thumbs down
U+1F44E
<ed><a0><bd><ed><b1><8e>
9
Loudly crying
face
U+1F62D <ed><a0><bd><ed><b8><ad>
10
Grinning face
with smiling eyes U+1F601
<ed><a0><bd><ed><b8><81>
11
Flushed face
U+1F633
<ed><a0><bd><ed><b8><b3>
12
Thumbs up
U+1F44D <ed><a0><bd><ed><b1><8d>

4 Sentiment Scoring 111
Emoji
Meaning
Unicode
R byte encoding
Clapping hands
13
or person raising
both hands in
U+1F64C
<ed><a0><bd><ed><b9><8c>
celebration
Person with
14
folded hands or
U+1F64F
<ed><a0><bd><ed><b9<8f>
praying
15
Pile of “poo”
U+1F4A9 <ed><a0><bd><ed><b2><a9>
Face with stuck
16
out tongue and
U+1F61C
<ed><a0><bd><ed><b8><9c>
winking eye
Smiling face with
17
open mouth and U+1F604
<ed><a0><bd><ed><b8><84>
smiling eyes
18
Sleeping face
U+1F634
<ed><a0><bd><ed><b8><b4>
▯
19
Hushed face
U+1F62F
<ed><a0><bd><ed><b8><af>
▯
20
Neutral face
U+1F610
<ed><a0><bd><ed><b8><90>
Yet if you use the “view” function on the object containing the text, the tweet looks different yet again.
view(tweet)
Manually dealing with emoji is hard, makes me
<ed><U+00A0><U+00BD><ed><U+00B8><U+00AD>. Plus doing it one by one makes me <ed><U+00A0><U+00BD><ed><U+00B8
><U+00B4>. Luckily qdap's mgsub can help <ed><U+00A0>< U+00BD><ed><U+00B8><U+0084>
112

Text Mining in Practice with R
So this tweet’s emoji will need to be reduced to the byte strings using iconv and the code below. The tweet is now in an object emoji.conv which will
show the byte encoding alongside the UTF‐8 text.
emoji.conv<-iconv(final.df$text,"UTF-8" , "UTF-8",
"byte")
"Manually dealing with emoji is hard, makes me
<ed><a0><bd><ed><b8><ad>.
Plus doing it one by one makes me
<ed><a0><bd><ed><b8><b4>. Luckily qdap's mgsub can help <ed><a0><bd><ed><b8><84>"
Using Table 4.11 as a reference, you can create the search patterns using the column named “R byte encoding.”
emoji.patterns <-c('<ed><a0><bd><ed><b9><8a>','<ed><a0>
<bd><ed><b8><82>',
'<ed><a0><bd><ed><b8><92>','<ed><a0><bd><ed><b8><8d>',
'<ed><a0><bd><ed><b8><8a>','<ed><a0><bd><ed><b1><8c>',
'<ed><a0><bd><ed><b8><98>','<ed><a0><bd><ed><b1><8e>',
'<ed><a0><bd><ed><b8><ad>','<ed><a0><bd><ed><b8><81>',
'<ed><a0><bd><ed><b8><b3','<ed><a0><bd><ed><b1><8d>',
'<ed><a0><bd><ed><b9><8c>','<ed><a0><bd><ed><b9><8f>',
'<ed><a0><bd><ed><b2><a9>','<ed><a0><bd><ed><b8><9c>',
'<ed><a0><bd><ed><b8><84>','<ed><a0><bd><ed><b8><b4',
'<ed><a0><bd><ed><b8><af>','<ed><a0><bd><ed><b8><90>') Then you will have to make the replacements vector using column “Meaning”
from Table 4.11.
emoji.replacements <-c('Speak no evil monkey','Tears
of Joy Face',
'Unamused face','Smiley with Heart Eyes',
'Smiley with Smiling Eyes','OK Hand',
'Face blowing a kiss','Thumbs down',
'Loudly crying face','Grinning Face with Smiling
Eyes',
'Flushed Face','Thumbs up',
'Clapping hands or person raising both hands in
celebration',
'Person with folded hands or praying',

4 Sentiment Scoring 113
’Pile of “Poo”’,’Face with stuck our tongue and wink-
ing eye’,
'Smiling face with open mouth and smiling eyes',
'Sleeping face','Hushed face','Neutral Face')
Finally, you can apply the msgub function on the emoji.conv tweet object,
alswo passing the emoji patterns and replacement objects in. The text now has the emoji replaced with their meanings from Table 4.11.
recode.tweet<-mgsub(emoji.patterns,emoji.
replacements,emoji.conv)
"Manually dealing with emoji is hard, makes me Loudly
crying face. Plus doing it one by one makes me
Sleeping face. Luckily qdap's mgsub can help Smiling
face with open mouth and smiling eyes"
In practice you do not need to use the print or view functions. You will likely need to expand and test the byte patterns and replacements beyond those in
Table 4.11. Once satisfied you can skip to the conversion and mgsub functions to perform the substitution. The mgsub function can be applied to a vector in a data frame such as the Airbnb comments (bos.airbnb$comments) as a
preprocessing step prior to creating subsets of the corpus. This is accomplished using the code line below.
recode.airbnb<-mgsub(emoji.patterns,emoji.
replacements,bos.airbnb$comments)
4.5 R’s Archived Sentiment Scoring Library
There was once an R package called sentiment. Its purpose was to classify
documents into specific emotional categories similar to Plutchik’s wheel of
emotion. It has been archived, meaning the package is not actively updated or maintained. As a result, it may not be accurate or even function properly as you update your R installation. The sentiment package uses a Bayesian approach
to document classification. You will learn more about document classification later in the book. For the purposes of the sentiment package, the author
uses a small subjectivity lexicon with six emotional categories instead of positive or negative. The six categories are anger, disgust, fear, joy, sadness and surprise. The main function in the package calculates a score for each of these emotional states and then selects the specific emotion with the highest score from among the six.
114

Text Mining in Practice with R
R has other packages that incorporate APIs to perform robust sentiment
analysis with more than six categories. This section is illustrative of an approach that was once native to R. Although not active, this section can be useful to understand one approach for sentiment analysis. If you expect to be analyzing specific emotional states, then you may want to explore one of the many API
based libraries since they will be more up to date. Further, the next section illustrates a sentiment analysis function in the tidytext package. The archived
sentiment library is shown as an alternative because the tidytext package
performs more than just sentiment analysis. Rather than a Bayesian approach to sentiment modeling, the tidytext package uses various lexicons. Each of the
lexicons can be inner-joined to the text for sentiment analysis.
The first step to install the sentiment library is to download the source
files for both sentiment and a dependent package called Rstem. These files
end in tar.gz. You can download the files at:
●
●
https://cran.r‐project.org/src/contrib/Archive/sentiment/
●
●
https://cran.r‐project.org/src/contrib/Archive/Rstem/
On each webpage, select the most recent files and save the tar.gz files to your local machine. The R code below will install both from your local source rather than the CRAN repository. You will need to change the file path to your specific download of the tar.gz file.
install.packages("C:/Users/John_Doe/Desktop/
sentiment_0.2.tar.gz", repos = NULL, type = "source")
install.packages("C:/Users/John_Doe/Desktop/
Rstem_0.4-1.tar.gz", repos = NULL, type = "source")
Once the files are unpacked, you can call on the libraries as you would any
other package in your local library.
library(Rstem)
library(sentiment)
Next, examine the emotion lexicon which was loaded with the package. To
review the last six emotion words, use the data and tail functions.
data(emotions)
tail(emotions)
This will load the data frame into your environment and then print the last
six words and corresponding emotion shown in Table 4.12. In total, there are 1541 distinct words that have been classified into anger, disgust, fear, joy, sadness and surprise represented in Table 4.12.

4 Sentiment Scoring 115
Table 4.12 The last six emotional words in the sentiment lexicon.
Number
Word
Emotion
1536
Yucki
Disgust
1537
Yucky
Disgust
1538
Zeal
Joy
1539
Zealous
Joy
1540
Zest
Joy
1541
Zestfulness
Joy
The classify_emotion function acts to get the log likelihood for a docu-
ment for each of the six emotions. The output is a matrix where each row is a document and each column is the absolute log likelihood of the document
expressing one of six emotions. The output data frame contains another col-
umn which is the “best fit” and most likely emotion among the six possible. If no words from the subjectivity lexicon are found or all tones are equal, then the last column would contain an NA.
Use the classify_emotion function on the Boston Airbnb reviews with
the code below. The function is applied only to the vector of Airbnb comments.
The function is nested in as.data.frame to change the output from a
matrix.
emotions.df<-as.data.frame(classify_emotion(
bos.airbnb$comments))
The emotions.df data frame will have 1000 rows, one per review, and
seven columns representing the scores and most likely sentiment for that particular review. Table 4.13 is an abbreviated output of the emotions data frame.
head(emotions.df)
Table 4.13 The first six Airbnb reviews and associated sentiments data frame.
Comment
Anger
Disgust
Fear
Joy
Sadness
Surprise
Best fit
1
1.468
3.092
2.067
26.286
1.727
7.340
Joy
2
7.340
3.092
2.067
26.286
1.727
2.786
Joy
3
1.468
3.092
2.067
1.025
1.727
7.340
Surprise
4
7.340
3.092
2.067
32.602
7.340
7.340
Joy
5
7.340
3.092
2.067
1.025
1.727
2.786
Anger
6
1.468
3.092
2.067
7.340
1.727
2.786
Joy
116

Text Mining in Practice with R
800
600

ws

vie

Re 400

Airbnb

Bos 200
0
anger
disgust
fear
joy
sadness
surprise
NA

emotion categories
Figure 4.12 The 10k Boston Airbnb reviews skew highly to the emotion joy.
If you review the first six comments, you may disagree with the sentiment
analysis outcome. Remember that this is a fairly unsophisticated approach with limited lexicons, and that the package itself is not actively updated. Despite these limitations, the package shows some merit and also helps you to understand one approach to sentiment analysis. An advanced R user could review
the function code looking for ways to improve the results and Bayesian model.
For now you can make a bar plot of the best fit and compare to the qdap polarity distribution in Figure 4.6. Figure 4.12 uses ggplot to construct a frequency count of the best fit sentiment. The code refers to the emotions data frame, and then specifies that the x axis is a count of the emotional categories. The rest of the code identifies aesthetics. In both polarity and sentiment, you see the comments skewing to positive and joy, so both analyses are aligned overall.
ggplot(emotions.df, aes(x=BEST_FIT)) +
geom_bar(aes(y=..count.., fill=BEST_FIT)) +
labs(x="emotion categories",
y="Bos Airbnb Reviews")+theme_gdocs() +
theme(legend.position="none")
Revisiting the sentiment word cloud, you can now redefine the corpus sub-
sections beyond positive and negative. Although this example is heavily skewed to “joy,” other text mining efforts may yield more insights than this simple example. Due to this imbalance, joy shares many words with all other emotional states. The comparison cloud does not plot many words that are distinct to that emotion. However, within the next visual it does appear that walking distance to restaurants leads to a joyful review. In contrast, wanting to be closer and in the neighborhoods of Malden and Somerville leads to a small number of reviews expressing disgust.
First you append the emotional categories to the original review data frame.
Instead of using subset with a polarity score, you split the reviews by emotional category to construct Figure 4.13. The rest of the code follows the same
c04.indd 116
5/8/2017 10:24:18 AM

4 Sentiment Scoring 117
Figure 4.13 A sentiment‐based word cloud based on the 10k Boston Airbnb reviews.
Apparently staying in Malden or Somerville leaves people in a state of disgust.
pattern as before but is applied to a list since there are more than two subsets of the text.
bos.airbnb$emotions <-(emotions.df$BEST_FIT)
emotion.reviews <-split(bos.airbnb$comments,
bos.airbnb$emotions)
emotion.reviews <-lapply(emotion.reviews,
paste,collapse=" ")
emotion.reviews <-do.call(c,emotion.reviews)
emotion.reviews <-VCorpus(VectorSource(
emotion.reviews))
all.tdm <-TermDocumentMatrix(emotion.reviews,control=
list(weighting=weightTfIdf, removePunctuation = TRUE,
stopwords=stopwords(kind='en')))
118

Text Mining in Practice with R
all.tdm.m<-as.matrix(all.tdm)
colnames(all.tdm.m)<-levels(bos.airbnb$emotions)
comparison.cloud(all.tdm.m)
4.6 Sentiment the Tidytext Way
As a small diversion from the case study, you will learn sentiment functions from the tidytext package. The package is used to perform text mining using
the tidy format. Rather than continue to work on the Boston Airbnb reviews,
this short explanation uses a copyright‐free book called The Wonderful Wizard
of Oz. The book and classic movie continue to be popular, and are about a young girl taken to a distant fantastical land and returning home. The book is in the public domain so it can be downloaded from various online sites including
www.tedkwartler.com. This corpus, along with the tidytext functions, illus-
trates a chronological view of sentiment. The Airbnb review data is not a time series data set with periodicity. In contrast, within Wizard of Oz, sentiment can be tracked as the story unfolds line by line and thus shows periodicity.
The tidytext package contains a data frame called sentiments. It can
be loaded using the next code. The data frame contains over 23,000 terms from three different subjectivity lexicons. The first column of the data frame includes the individual words. The next column contains the sentiment associated with the words. The sentiment classes include positive, negative, anger, anticipation, disgust, fear, joy, sadness, surprise, trust or NA. The Bing lexicon portion contains only positive or negative in the sentiment column. The AFINN lexicon section contains NA in this column and the NRC subdivision has all sentiments except NA. This is because scoring among the lexicons varies. The third column associates the row with a lexical source. The lexicon options include Bing, AFINN and nrc. The last column contains a numerical score between −5
and 5. These values only occurs for the AFINN lexicon while the other two
contain NA. Table 4.14 shows some example rows from the three lexicons for
comparison.
As with any sentiment scoring, you should understand its source and meth-
odology. Having the three lexicons in a single data frame makes it useful for quick comparisons. More specifically, the AFINN lexicon has 2476 words and
their associated emotion. Fin Arup Nielsen, the AFINN author, is a Danish
researcher at a technical university. The second lexicon, containing 6788 terms, is called “bing.” It is named for Bing Liu at the University of Illinois, Chicago.
This is the same lexicon as is used in the qdap polarity function mentioned
earlier. The “nrc” lexicon is the last set of words in the sentiments data frame.
The “nrc” data comprises 13,901 words associated to emotions. This data set
was labeled using Amazon’s Mechanical Turk crowd sourcing service. While
the “nrc” lexicon set is large, the biases and problems of crowd sourcing may

4 Sentiment Scoring 119
Table 4.14 Excerpt from the sentiments data frame.
Word
Sentiment
Lexicon
Score
abhorrent
NA
AFINN
−3
cool
NA
AFINN
1
congenial
positive
bing
NA
enemy
negative
bing
NA
ungrateful
anger
nrc
NA
sectarian
anger
nrc
NA
impact the lexicon’s usefulness. When analyzing sentiment with tidytext,
compare all three lexicons to reach a more generalized conclusion.
Use this code to manually compare and contrast lexicon differences. The
code creates three subsets of the original sentiments data frame.
library(tidytext) data(sentiments)
afinn<-subset(sentiments,sentiments$lexicon=='AFINN')
bing<-subset(sentiments,sentiments$lexicon=='bing')
nrc<-subset(sentiments,sentiments$lexicon=='nrc')
Getting the Data
Please navigate to www.tedkwartler.com and follow the download link. For this analysis, please download “Wizard_Of_Oz.txt”. This is a raw text file of the famous book Wizard of Oz.
After downloading the Wizard of Oz text file, load it along with tidytext,
dplyr, tm and the tidyr packages. Tidytext applies tidy data principles
to text mining. The dplyr library is used for additional data manipulation
methods. Of course, by now you should be familiar with the tm package! The
last package, tidyr, has easy functions to manipulate non‐tidy data into the tidy format. The last line constructs the oz object by reading lines of the text file. The resulting oz object is a character vector containing the book.
library(tidytext)
library(dplyr)
library(tm)
library(tidyr)
library(ggthemes)
120

Text Mining in Practice with R
library(ggplot2)
oz <- readLines("Wizard_Of_Oz.txt")
A tidy corpus has a different structure compared to other text mining pack-
ages. A tidy corpus has one word per row per section, such as line. A tidy formatted corpus could also have additional columns such as chapter, author or
document ID. Also, tidy data format proponents use “%>%”, the pipe operator, to pass objects to functions. This is compact, but can be challenging for new R
programmers to comprehend.
To begin, construct a DTM using tm principles. The explicit functions here
should be familiar since the code mirrors earlier code examples.
oz.corp<-VCorpus(VectorSource(oz))
clean.corpus<-function(corpus){
corpus <- tm_map(corpus, content_transformer(tolower))
corpus <- tm_map(corpus, removeWords,
stopwords('english'))
corpus <- tm_map(corpus, removePunctuation)
corpus <- tm_map(corpus, stripWhitespace)
corpus <- tm_map(corpus, removeNumbers)
return(corpus)
}
oz.corp<-clean.corpus(oz.corp)
oz.dtm<-DocumentTermMatrix(oz.corp)
Luckily the tidytext package provides a simple method for changing a
traditional DTM to a tidy format. Apply the tidy function directly to the
DTM to create a tidy version.
oz.tidy<-tidy(oz.dtm)
If desired, index a portion of the tidy corpus to examine it. The 6,810th to 6,815th rows from oz.tidy are shown in Table 4.15. Notice that the document vector contains the line number containing the word. Unlike qdap’s word frequency matrix, the tidy format does not aggregate the words. Instead, the terms are ordered chronologically as they appear in the story. This captures the unfolding story’s periodicity as meta information. Lastly, the term vector contains the token, and the count is the number of occurrences in that line.
oz.tidy[6810:6815,]
Later you will need shared column names for performing an inner join
between “term” in oz.tidy and “word” in sentiments. An inner join com-
pares each row from “Table A” with each row of “Table B” to find all pairs of rows that are shared. In this case, the inner join will identify the words in oz.
tidy that are contained in the sentiments lexicon. The documents or rows

4 Sentiment Scoring 121
Table 4.15 A portion of the tidy text data frame.
Document
Term
Count
1790
Brought
1
1790
Little
1
1790
Mice
3
1790
Middlesized
1
1790
One
1
1791
Dorothy
1
with a match between the two tables are returned. But first you need to have a shared column, so the code below renames the oz.tidy vectors. Also, change
the line number vector to numeric, instead of character, with the second code line. Later, the numeric line number is used to construct the timeline visual.
colnames(oz.tidy)<-c('line_number','word','count')
oz.tidy$line_number<-as.numeric(oz.tidy$line_number)

(The following code does not use the pipe operator to forward objects to new
functions, but code containing the pipe operator is provided at the end of the
section for comparison. Using the pipe operator is aligned to tidy data principles, but the less compact code can be more enlightening for learning.)
Apply subset to the sentiments data frame to select the words from the
nrc lexicon representing joy. Once you have the subdivided the nrc.joy
object, perform an inner join on the oz.tidy table. The inner_join func-
tion automatically identifies the shared column “word” to make the join. Finally the count function sums observations by group. This will provide a summarization of all “joy” words found between the two tables. A portion of the result is shown in Table 4.16.
nrc.joy <-subset(sentiments,sentiments$lexicon=='nrc'
& sentiments$sentiment=='joy')
joy.words<-inner_join(oz.tidy,nrc.joy)
joy.words<-count(joy.words, word)
To construct a polarity timeline, first subset the “bing” words. The code
drops sentiments$score. Recall that this column contains integers
between −5 and 5 but is only NA for the “bing” lexicon.
bing<-subset(sentiments,
sentiments$lexicon=='bing')[,-4]
122

Text Mining in Practice with R
Table 4.16 The first ten Wizard of Oz “Joy” words.
Word
“n”
Abundance
1
Alive
5
Amuse
2
Amused
1
Approve
1
Art
2
Baby
3
Beam
1
Beautiful
38
Beauty
3
Once again perform an inner join between words in the oz.tidy object and
the bing terms.
oz.sentiment<-inner_join(oz.tidy,bing)
Next use count to summarize the observations. A third parameter is passed
into the count function in this example. A new vector called index is created in the new object oz.sentiment. The index vector retains the line information for use later.
oz.sentiment<-count(oz.sentiment,sentiment,
index=line_number)
Within the tidyr package the spread function is used to spread a key‐
value pair across multiple columns. First pass in the data frame from count.
Then specify the key, the sentiment column. The n column contains the
count of positive or negative terms identified. This column is passed into
spread as the value. Lastly should there not be any key value pairs so you
specify a 0 to be filled in.
oz.sentiment<-spread(oz.sentiment,sentiment,n, fill=0)
The spread effect is to create a data frame with three columns. Index, con-
taining line information, is retained and the positive and negative words are represented as new columns. This is best illustrated by examining the data
frame directly. In rows 15 to 20 you can see that the 55th line in the book
contains one negative word and two positive words. In contrast, line 56 con-
tains two positive terms. This section of oz.sentiment is illustrated in
Table 4.17.
oz.sentiment[15:20,]

4 Sentiment Scoring 123
Table 4.17 The oz.sentiment data frame with key value pairs spread across the polarity term counts.
Index
Negative
Positive
55
1
2
56
0
2
57
1
1
59
0
1
61
0
1
72
0
1
The last two lines of data preparation create two additional vectors. The first, oz.sentiment$polarity, is equal to the positive term count minus the
negative term count. The oz.sentiment$pos vector uses an ifelse
statement. Logically the function states, “if the polarity vector is 0 or greater then assign “pos” otherwise “neg.” This defines a categorical vector for polarity that is positive or negative to be used in a visualization.
oz.sentiment$polarity<-oz.sentiment$positive-
oz.sentiment$negative
oz.sentiment$pos<-ifelse(oz.sentiment$polarity >= 0,
"pos", "neg")
The ggplot function is used to create a barplot for each of the text lines. The x value is the index position. The y value defining the height of the bars is the polarity count for the line. Then the pos vector is passed as the color fill for the bars.
The next layer of the ggplot adds the bars. Finally theme_gdocs is applied for quick premade aesthetics. The resulting bar plot is represented in Figure 4.14.
ggplot(oz.sentiment, aes(x=index, y=polarity,
fill=pos)) +
geom_bar(stat="identity", position="identity",width=
1)+theme_gdocs()
From this view, it may be difficult to understand the general polarity over
time, because the bars are visually jagged. Just after line 1000 and before 3000
there are some consistently negative terms used. However, a smoothed visual
may be more insightful compared to the choppy bar chart.
To create a smooth line running the epoch of the story utilize geom_smooth
when constructing a time series. The geom_smooth layer adds a “smoothed
conditional mean” to the plot. The smoothed line aids in identifying patterns amid busy visuals. In this case, the smoothing line is created with a generalized

124

Text Mining in Practice with R
4
2

y
pos
0
neg
pos

polarit
−2
−4
0
1000
2000
3000
4000

index
Figure 4.14 Bar plot of polarity as the Wizard of Oz story unfolds.
additive model (GAM). The GAM fits a linear model to the polarity values in
oz.sentiment. The confidence intervals are estimated based on the fitted
model and are also plotted along with the GAM line.
Adding a smoothing function to a ggplot is straightforward. After creating
the base layer using ggplot, add the stat_smooth layer and the theme for
aesthetics. The code result exemplifies the smoothed Wizard of Oz story arc in Figure 4.15.
1.0
0.5

y

polarit
0.0
−0.5
0
1000
2000
3000
4000

index
Figure 4.15 Smoothed polarity for the Wizard of Oz.
c04.indd 124
5/8/2017 10:24:18 AM

4 Sentiment Scoring 125
oz.smooth<- ggplot(oz.sentiment, aes(index, polarity))
oz.smooth + stat_smooth()+theme_gdocs()
Figure 4.15 provides more context compared to the bar plot in Figure 4.14.
For those unfamiliar with the story, Dorothy, the protagonist, is caught in a storm and taken to a fantastical land with witches and creatures. In order to get home she embarks on a journey, picking up friends along the way and seeks the help of a powerful wizard. The smoothed polarity line elucidates her journey.
Readers are drawn into the story with fairly neutral language. Around line 2700
the language turns more negative before continually rising to its most positive at the end of the story. In fact, after line 3000 the polarity is completely positive.
Without reading the book, one could infer that the story has a happy ending. In contrast, applying this method to a Greek tragedy could change the polarity arc drastically.
In keeping with the tidytext package authors’ examples, the code below
uses the pipe operator. The resulting objects and visuals will be the same. Using the pipe operator means that the code is compact and efficient but hard to
understand for new programmers. Compare and contrast the code when you
feel comfortable with the tidytext sentiment concepts outlined earlier.
This code subsets the sentiments data frame for “nrc” and “joy.”
nrc.joy <- sentiments %>%
filter(lexicon == "nrc", sentiment == "joy")
The count function provides a table of the words identified in the inner join that mirrors the previous count function.
joy.words<-oz.tidy %>%
inner_join(nrc.joy) %>%
count(word, sort = TRUE)
Select the “bing” lexicon to begin the reconstruction for the Wizard of Oz
timeline. The negative sign in the function parameter select drops the vec-
tor by its name.
bing <- sentiments %>%
filter(lexicon == "bing") %>%
select(-score)
The oz.sentiment object is created by forwarding the tidy version of the
corpus to the inner join. Next, the object is forwarded to count. Then spread receives the data frame. Mutate is used to add, remove or create new columns in a data frame. Here the mutate function creates polarity with the equation
126

Text Mining in Practice with R
positive minus negative. With tidy data functions column names can be speci-
fied by name and without quotes. The last mutate function adds the pos col-
umn. Within the function the same ifelse statement is presented to create
the “pos” or “neg” polarity attributes. The resulting oz.sentiment object
can be used to create Figures 4.14 and 4.15.
oz.sentiment <- oz.tidy %>%
inner_join(bing) %>%
count(line_number, index = line_number, sentiment) %>%
spread(sentiment, n, fill = 0) %>%
mutate(polarity = positive - negative)%>%
mutate(pos=ifelse(oz.sentiment$polarity >= 0, "pos",
"neg"))
4.7 Airbnb.com Boston Wrap Up
Turning our attention back to the Airbnb case study, you need to complete the text mining project workflow. Using the word cloud visualizations, you can
safely answer the questions raised in step 6 of the text mining process outlined earlier in the chapter.
In step 6 of the text mining process outlined earlier, you hoped to answer
some basic questions.
6) Reach an insight or recommendation – What property qualities are listed in positive or negative comments? Does your apartment have sought‐after
Airbnb qualities?
Based on the sentiment subsections used to construct various visualizations, if your apartment is clean, has nothing broken, the dumpsters are not close and the apartment is within walking distance to a subway station, you can be
reasonably assured of a positive review. Further, you can bolster your guest reviews by providing a personalized interaction in some way. Within the
limited analysis, the Airbnb community uses language inferring that personal interactions are also positive.
4.8 Summary
In this chapter, you learned:
●
●
how to apply polarity scores and sentiment categories to a real use case
●
●
a popular academic sentiment framework called Plutchik’s wheel of emotion
●
●
what a subjectivity lexicon is
●
●
how to customize a subjectivity lexicon

4 Sentiment Scoring 127
●
●
the term frequency inverse document frequency weighting (TFIDF)
●
●
Zipf’s law
●
●
a basic polarity scoring algorithm
●
●
an archived sentiment library
●
●
a real application of sentiment analysis applied to Airbnb.com Boston area
reviews
●
●
the tidytext sentiment using an inner join
129
5
Hidden Structures: Clustering, String Distance, Text
Vectors and Topic Modeling
In this chapter, you’ll learn
●
●
how to perform k‐means clustering
●
●
how to perform k‐mediod clustering
●
●
to use the StringDist library with Hclust
●
●
what LDA is
●
●
LDA topic modeling using LDA and LDAvis
●
●
other topic modeling packages
●
●
use word2Vec to get text vector calculations
●
●
make a compelling treemap visualization.
5.1 What is clustering?
In machine learning there are two methodologies. The first is called supervised learning and the second is unsupervised learning. In supervised learning each observation consists of independent attributes with a final outcome or dependent variable for the observation. For example, pretend you owned an ice cream shop and wanted to predict how many scoops you were going to sell. So you
decide to create a supervised model for this prediction. The data you collect is for each historical day with attributes such as day of the week, temperature, month of the year along with the outcome variable scoops. Once this is collected and set up as such, you could then apply any number of supervised
learning algorithms such as random forest. In contrast, unsupervised tech-
niques do not have dependent variables for each observation. Once you have
your ice cream data organized by day, you could apply an unsupervised
approach to find the underlying pattern within the data. The goal would be to identify similar days from the data. The difference is that you did not explicitly tell your algorithm to predict anything, you leave the algorithm to search on its own thereby being unsupervised. The underlying pattern is used to partition
the data into clusters or subsections of days for your shop. The end result of
130

Text Mining in Practice with R
your unsupervised approach may be a clustering of days with high scoop sales with attributes like Saturdays with temperatures above 85° and another cluster for Tuesdays with a cooler 50° in October. This chapter covers common unsupervised approaches applied to text and a subsequent chapter illustrates supervised modeling with text.
Applying clustering methods helps to organize individual documents into
groups of similar documents. For example, a clustering technique for newspa-
per articles might partition each article into clusters representing business, sport and politics among other clusters. Document clustering can sometimes
be used to extract broad topics from a large group of documents and also to aid in information retrieval systems.
Clustering techniques can help elucidate the topics within a broad corpus
without reading the documents. As a marketer you can apply these methods to
forum posts or online reviews to understand the broad topics that reviewers
find meaningful. This can help inform product innovation and sources of cus-
tomer angst. If you were in a healthcare compliance role, clustering techniques might help to find outlier and possibly fraudulent expense descriptions.
Document clustering is also used for fast information retrieval because
documents can be automatically tagged without human intervention. In
another business related example, this means that a database of millions of
articles does not need to be read and tagged for finding later. Instead a clustering algorithm can be applied to understand what each article mentions and
then that tag is stored as an article attribute. For example, a researcher might want to get a specific group of business articles mentioning Atlanta. The system could subset to only the cluster of business articles, and then perform a smaller keyword search on Atlanta. This is almost certainly faster than searching many millions of articles for both business and Atlanta.
This chapter aims to give you numerous approaches to clustering documents
and provide you with exposure to topic modeling. Each has different approaches and popularity. While the technological method varies significantly the differences often boil down to speed versus accuracy. Thus it is important to apply multiple approaches balancing speed and accuracy for your particular application needs.
5.1.1 K‐Means Clustering
One method of clustering documents is called k‐means clustering. It is a simple approach and relatively easy to comprehend so it is a good place to start.
Within the context of documents, k‐means clustering seeks to partition each
document into a number of predefined “k” clusters which should be similar in the terms used. K‐means clustering follows the high‐level steps below.
1) Choose the number of clusters represented by “k.” The number of clusters must be chosen before any partitioning.

5 Hidden Structures: Clustering, String Distance, Text Vectors and Topic Modeling 131
2) For every cluster k, a random point is selected as the “centroid” by the algorithm.
3) Each document is assigned to the closest centroid.
4) Once all documents are assigned, the sum of all distances to the centroid is calculated. Then the centroids are moved to the average distance sum of all
assigned documents from the original randomly chosen location. When the
centroids move, the clusters will gain and lose documents. The algorithm
will continually redefine cluster boundaries and adjust mean centroids as
long as sum of distances can be minimized by moving the centroid.
5) The algorithm will stop recomputing centroids when the sum of cluster
distances cannot be reduced further. This would mean that all documents
stay in their cluster.
Consider the following nonsensical documents which we can use in a simple
illustration of k‐means. Table 5.1 shows the documents that are made of only two terms with varying frequency.
Reviewing this corpus, you can calculate the saturation of terms “text” and
“mining.” For each document, each term is divided by the entire length or number of words. The results are shown in Table 5.2.
Once this is done, you can plot the documents in a two‐dimensional space.
Of course, with real documents they exist in hyperspace but that would not be possible to illustrate. Figure 5.1 shows each document plotted by the corresponding “text” and “mining” value.
To begin a k‐means clustering algorithm on this corpus you decide to choose
two clusters. Next k‐means will assign a random “centroid” and assign docu-
ments to the closest cluster. In Figure 5.2, the solid black dots represent arbitrary centroids to begin the partitioning. The elliptical lines are the clusters of documents themselves.
You can probably see that the randomly assigned centroids are not correct.
Simply looking at the visual, you can guess that documents 3 and 5 should be a cluster while 1, 2 and 4 are more similar. The upper left cluster includes document 3 because the randomly assigned centroid is closer than the other
Table 5.1 A sample corpus of documents only containing two terms.
Document
Text
D1
Text text text text mining
D2
Text text text mining
D3
Text mining mining mining mining
D4
Text text text mining mining
D5
Mining mining mining
132

Text Mining in Practice with R
Table 5.2 Simple term frequency for an example corpus.
Document
Term = Text
Term = Mining
D1
0.80
0.20
D2
0.75
0.25
D3
0.25
0.75
D4
0.60
0.40
D5
0.00
1.00
0.8 1 2
0.6
4
text
0.4
3
0.2
0.0
5
0.2
0.4
0.6
0.8
1.0
mining
Figure 5.1 The five example documents in two‐dimensional space.
0.8 1 2
0.6
4
text
0.4
3
0.2
0.0
5
0.2
0.4
0.6
0.8
1.0
mining
Figure 5.2 The added centroids and partitions grouping the documents.
centroid. At this point, the k‐means algorithm will move the centroids to minimize the sum of distances. An analogy to this is that all documents have a
gravitational pull like planets. The center of the document solar system is the point at which all “gravity” pulls are equal. Figure 5.3 shows the transition of the centroids. The old centroid coordinates are marked with an “X” and the
arrow shows the movement to a new spot.

5 Hidden Structures: Clustering, String Distance, Text Vectors and Topic Modeling 133
0.8 1 2
0.6
4
text
0.4
3
0.2
0.0
5
0.2
0.4
0.6
0.8
1.0
mining
Figure 5.3 Centroid movement to equalizing the “gravitational pull” from the documents, thereby minimizing distances.
0.8 1 2
0.6
4
text
0.4
3
0.2
0.0
5
0.2
0.4
0.6
0.8
1.0
mining
Figure 5.4 The final k‐means partition with the correct document clusters.
The last step is to redefine the partition boundaries. With the movement of
the centroids, the documents cluster as expected between 3 and 5 and the rest.
This is shown in Figure 5.4.
You can now apply the k‐means clustering approaches in the following code.
An example HR case study is outlined within the context of the six‐step text mining process from Chapter 1. For the case study, assume that you work in an HR function at a call center. Call centers often have high employee turnover as the jobs can be unsatisfying, low wage and repetitive. Constantly working on talent acquisition due to high turnover is expensive in call centers. Thus you decide to understand employee characteristics based on their prior work experience. As an HR professional with a data driven mentality you wonder if clustering on employee prior work experience will lead you to identify attributes of employees that are successful in call centers. The hope is to find employee
resume clusters that have stayed longer than one year linked by common
resume terms. These terms may give you insights for candidate attributes to
focus on when interviewing new call center representatives. If you were per-
forming this analysis for real you would likely need more resumes and think
134

Text Mining in Practice with R
explicitly about your organization’s needs to make an appropriate selection, e.g. using performance reviews instead of tenure.

Reviewing the six‐step text mining process in the context of this case study 1) Problem definition and specific goals. Can you search for common traits among employees who have lasted more than a year from their resumes?
2) Identify the text that needs to be collected. You have 50 resumes from employees who have stayed more than a year at your organization. From
each of the resumes, you select the most recent employment description.
3) Text organization. You will organize your text into a DTM with TF‐IDF
weighting.
4) Feature Extraction. You will perform a k‐means clustering algorithm.
5) Analysis. You will analyze the cluster membership of your corpus and identify prototypical terms.
6) Reach an insight or recommendation. The goal is to identify three distinct terms in employee clusters that may help recruiters identify candidates likely to stay more than a year, based on past experiences.
Getting the Data
Please navigate to www.tedkwartler.com and follow the download link. For this analysis, please download “1yr_plus_final4.csv.” Keep in mind due to the nature of personal information the work experiences have been modified and disassociated from the entire resume. They have been constructed from randomized
portions of public resumes posted online. The work experiences are then organized into a data frame for the analysis.
The code section below is provided without explanation because the con-
cepts and functions were presented earlier in the book. This represents a basic foundation to execute a k‐means clustering algorithm and utilizes minimal text cleaning. The code libraries include tm for text mining, flexible procedures for clustering (fpc) and cluster.
options(stringsAsFactors = F)
set.seed(1234)
library(skmeans)
library(tm)
library(clue)
library(cluster)
library(fpc)
library(clue)
library(wordcloud)

5 Hidden Structures: Clustering, String Distance, Text Vectors and Topic Modeling 135
clean.corpus <- function(corpus){
corpus <- tm_map(corpus, removePunctuation)
corpus <- tm_map(corpus, removeNumbers)
corpus <- tm_map(corpus, content_transformer(tolower))
corpus <- tm_map(corpus, removeWords,
c(stopwords("en"), "customer",
"service","customers","calls"))
return(corpus)
}
wk.exp<-read.csv('1yr_plus_final4.csv', header=T)
wk.source <- VCorpus(VectorSource(wk.exp$text))
wk.corpus<-clean.corpus(wk.source)
wk.dtm<-DocumentTermMatrix(wk.corpus,
control=list(weighting= weightTfIdf))
You can now start to perform a cluster analysis using the work experi-
ences constructed as a DTM called wk.dtm. You should normalize the
term vectors because the DTM is made of continuous numeric features and
the algorithm relies on an average of these numeric attributes. This is
accomplished with the next code using the scale function to create a scaled
object called.
wk.dtm.s<-scale(wk.dtm,scale=T)
The k‐means clustering function is installed as part of the base R installation.
It is part of the base stats package. There are more in‐depth explanations of the k‐means functions in books devoted to machine learning so here the code simply calls the function on the scaled matrix and specifies that three clusters should be partitioned.
wk.clusters<-kmeans(wk.dtm.s,3)
The object wk.clusters represents the work experience cluster output.
In it each document is assigned a cluster, and some evaluation metrics are
returned. An easy place to start evaluating your results is by plotting the total number of documents assigned to each of the three clusters. The returned kmeans object has an element that captures this information. A basic plot function can be used to show the outcome. Figure 5.5 shows a very unbalanced
document cluster from wk.clusters.
barplot(wk.clusters$size, main='k-means')
Next you may want to plot the clusters to get a sense of the partition separation. This is accomplished with plotcluster. In this example, the plot-
cluster function uses the cmdscale function nested inside the first
parameter, which is also nesting the dist function. To understand the nested functions you should start at the innermost function. If you remember the dist function from Chapter 3, you will know that it creates a distance matrix. Moving
136

Text Mining in Practice with R
K-Means
0
04
03
10
02
Figure 5.5 The k‐means clustering with three partitions on work experiences.
outward, the distance matrix is then used within cmdscale. This calculates the
“principal coordinates analysis” which is similar in spirit to the more common principal component analysis. Essentially cmdscale forces a high number of
dissimilarity measures into a low‐dimensional space, making it great for plotting.
It is searching for the main axes of the dissimilarities matrix so either 2D or 3D
space. The results of these two nested functions make up the first parameter for plotcluster. The second is the cluster assignments from the k‐means object.
The plotcluster function itself uses discriminant coordinates to plot the
principal differences between the first and second parameters. Again this is similar to cmdscale, in that it is reducing high‐dimensional data for a 2D plot. After running the following code you will notice that the k‐means clustering approach is not very explanatory. However, this code will be useful later in the chapter when you apply other methods for comparison. Figure 5.6 reinforces the fact that k‐means clustering did not partition the work experiences DTM well.
plotcluster(cmdscale(dist(wk.dtm)),
wk.clusters$cluster)
Another great way to evaluate clustering effectiveness is with a silhouette
plot. To interpret a silhouette plot, think of each document grouped by their 4
2
2
2
0
2
2
2
2
2 2 2
22
2
2
dc
–2
–4
2
0
1
2
3
4
5
dc 1
Figure 5.6 The plotcluster visual is overwhelmed by the second cluster and shows that partitioning was not effective.

5 Hidden Structures: Clustering, String Distance, Text Vectors and Topic Modeling 137
assigned cluster casting a shadow over the visual. The more complete the
shadow the more defined the cluster. A silhouette coefficient of 1 would be a perfectly defined cluster with each document creating a long shadow extending across the visual. Since the documents themselves are grouped by cluster you should expect to see distinct shadows for each partition.
To create a silhouette plot from a k‐means clustering output use the follow-
ing code. Once again, you calculate a distance matrix for all points in the scaled work experience DTM. Next you apply the silhouette function to the cluster
assignment results. In this case, it is the assigned cluster for each document from 1, 2 or 3. Then both are simply plotted using the base plot function.
dissimilarity.m <- dist(wk.dtm.s)
plot(silhouette(wk.clusters$cluster, dissimilarity.m))
If the k‐means algorithm were effective for this data you would expect to see three distinct groups of silhouettes with a large average silhouette coefficient in Silhouette plot of (x = wk.clusters$cluster, dist = dissimilarity.m)
3 clusters C
n = 50
j
j : nj | aveiϵCj si
1 : 1 | 0.00
2 : 1 | 0.00
3 : 48 | 0.22
0.0
0.2
0.4
0.6
0.8
1.0
Silhouette width si
Average silhouette width : 0.21
Figure 5.7 The k‐means clustering silhouette plot dominated by a single cluster.

138

Text Mining in Practice with R
Figure 5.7. Unfortunately, the plot in Figure 5.7 shows that the algorithm did not partition well and is dominated by a single shadow. The silhouette for two clusters is actually 0.00, so this approach is not appropriate and further methods, explained next, need to be explored.
Next you can extract the prototypical words for each cluster. The poor results in the cluster and silhouette plots mean that the prototypical terms are likely not going to be informative and are also shared among the clusters.
To extract prototypical cluster terms you call cl_prototypes from the
clue library. The clue library provides clustering ensemble methods but also has this function for extracting prototypes from each partition. To create the work cluster prototypes you apply cl_prototypes to the k‐means object
and then transpose the result in the new object shown in the code here.
work.clus.proto<-t(cl_prototypes(wk.clusters))
The resulting cluster prototype object is a matrix. Each term is a term in the work experiences and each column is the score for a particular cluster. As a result cluster has a corresponding column. A quick way to examine the cluster values visually is with a comparison cloud from the word cloud library. The
code below is used to construct Figure 5.8 from scored prototype terms.
comparison.cloud(work.clus.proto, max.words=100)
The comparison cloud in Figure 5.8 is not informative and it should come as
no surprise that the second cluster has no unique words. It is the dominant
cluster and therefore contains words also mentioned in the other two parti-
tions. The next section using the spherical k‐means approach explores the
prototypes and resulting comparison cloud with a more insightful outcome.
Overall, it may be disappointing that k‐means did a poor job of partitioning the work experiences. This may be due to the fact that the work experiences are not very diverse. They represent prior work experiences from a fairly homoge-nous population of call center workers. Further each has shown a measure of
success by lasting longer than a year. As a tenacious HR professional and text miner, you decide to try another clustering approach called spherical k‐means.
Figure 5.8 The comparison clouds based on
prototype scores.

5 Hidden Structures: Clustering, String Distance, Text Vectors and Topic Modeling 139
5.1.2 Spherical K‐Means Clustering
You can now extend your clustering knowledge to the spherical k‐means
approach. It is useful to try many approaches to ensure that you select an appropriate clustering method that leads to an insightful, reliable conclusion. The benefit of spherical k‐means is that it handles sparse matrices very well. You may recall that the tm package’s DTM and TDM are both usually very sparse, made
up mostly 0 values.
The difference between k‐means and spherical k‐means is the way in which
similarity distance is measured. In k‐means, the distances are measured in
Euclidean or Manhattan distance. Euclidean distance is calculated as the root sum‐of‐squares of differences between documents. Squaring then taking the
root of distances means there are no negative distances between objects. The Manhattan distance measure is calculated as the sum of absolute distances in order to get rid of any negative distances. This Euclidean distance is the distance measured as a straight line and is used in the previous example. In contrast to Euclidean distance, spherical k‐means clusters are based on using
cosine similarity to calculate distance. Cosine similarity is the cosine of the angle between documents after the documents have been normalized. Similar
documents will have a cosine similarity approaching 1. As documents become
less similar their respective cosine similarity decreases from 1.
Figure 5.9 shows the difference in distance measurements used for both
k‐means and spherical k‐means clustering. In the illustration document D1 has a lot to do with “text” such as an instructional book for aspiring authors. Documents D2 and D4 are a mix of “text” and “mining” like this book. Lastly document D3 is mostly about “mining” which could be mineral mining. On the left documents are plotted in 2D space with Euclidean distances shown as arrows from D4. Using
Euclidean distance documents D1, D4 and D3 would be clustered since they are Euclidean Distance
Cosine Similarity
Text
Text
D1
D2
1
D4
D1
D2
D4
D3
D3
Mining
Mining
1
Figure 5.9 A comparison of the k‐means and spherical k‐means distance measures.
140

Text Mining in Practice with R
closest, while document D2 would be in its own cluster. On the right, the
document lengths have been normalized to length 1. Once this length normalization has been performed the documents now form part of a circle leading to the spherical nature of spherical k‐means. Keep in mind that since the illustration is only in two dimensions, it is not really a sphere for this example. Further on the right‐hand side the distance measure is now the cosine of the angles shown as arcs from D4. In this case, the spherical k‐means approach would correctly cluster documents D2 and D4 as being similar mixing “text” and “mining” more equally than D1 or D3.
You can use the following code to execute a spherical k‐means approach on
the example HR texts. Remember, the goal is to identify specific terms, attributes or work experiences, that can help educate HR recruiters at your call
center. You hope the new approach yields more insights and a possible recom-
mendation for your recruiting team.
Start by loading the spherical k‐means and cluster ensemble libraries in addition to the previous section’s libraries. To get started, the code below skips ahead past corpus creation and cleaning to recreate the work experiences DTM
that has TFIDF weighting as shown in the previous k‐means section.
library(skmeans)
library(clue)
wk.dtm<-DocumentTermMatrix(wk.corpus,
control=list(weighting= weightTfIdf))
Next you will actually perform the spherical k‐means clustering. To do so,
you invoke the skmeans function. It is applied to the work experience DTM
called wk.dtm. The next parameter specifies the number of clusters similar to simple k‐means. Once again, you decide to choose three clusters. The next
parameter is “m.” This parameter is the fuzziness of the clusters as the algorithm is constructed. This allows the cluster sphere to have a border that is not concretely defined. This is analogous to a border between two countries that have a demilitarized zone in between. Both countries could claim this fuzzy
shared border. The m parameter ranges from 1 upward. A value of 1 would
mean to perform a hard partition without any fuzziness between cluster bor-
ders. The higher the m value the fuzzier the borders. Here, the m parameter is 1.2, meaning some fuzziness is needed. The last section of skmeans contains
a list of nruns and verbose. The nruns number tells the function to rerun the model building a specific number of times. This helps to ensure that the stabil-ity of the model results are similar to doing cross validation in other machine learning methods. The last parameter, verbose, simply tells the function to
print the ongoing results to the console. Because text mining can be very computationally intensive, this helps you to know whether the model has frozen
your computer, as you get updates in the console while the model is building.
The spherical k‐means function has multiple methods that can be executed

5 Hidden Structures: Clustering, String Distance, Text Vectors and Topic Modeling 141
including “genetic,” “gmeans” and “kmndirs” among others. However, when
doing a soft partition the only method that can be used is pclust. As you
experiment by changing the m value you may also want to change the method
within the functions too.
soft.part <- skmeans(wk.dtm, 3, m = 1.2, control =
list(nruns = 5, verbose = T))
Once again, you can create a bar plot to see how the cluster partitioning
occurred. Unlike the k‐means object the soft partition spherical k‐means
object does not have the total cluster size automatically calculated. As a result, the code below nests the table function on the individual cluster assignments before calling the bar plot.
barplot(table(soft.part$cluster), main='Spherical
k-means')
Figure 5.10 shows three clusters with more evenly distributed frequency
compared to the k‐means approach.
Next you create a cluster plot for visual comparison to the k‐means cluster
plot. Again using the plotcluster function you pass in a distance matrix
nested in the cmdscale function as the first input. The second object passed in plotcluster represents the soft partition’s 50 document assignments to
the three clusters.
plotcluster(cmdscale(dist(wk.dtm)), soft.part$cluster)
Figure 5.11 is the resulting cluster plot from the spherical k‐means approach.
You can plainly see a lot of overlap but there is some improved dispersion
among the individual documents compared to k‐means. Specifically, you can
see that all clusters overlap, yet some documents assigned to the second and third clusters are relatively separated. The third and first clusters overlap too, but you can also see some minor separation. As a result, some parameter tuning may be needed to further improve the results.
Next you may want to compare the silhouette plot from the previous section.
The spherical k‐means object contains all the information needed to calculate Spherical K-Means
0
52
01
5
01
1
2
3
Figure 5.10 The cluster assignments for the 50 work experiences using spherical k‐means.
142

Text Mining in Practice with R
4
2
2
2
2
2
0
3
1 1
2
311 13
2 31
dc
–2
–4
2
0
1
2
3
4
5
dc 1
Figure 5.11 The spherical k‐means cluster plot with some improved document separation.
the silhouette. Thus it is not necessary to calculate a distance plot first as was done with the k‐means object. In a silhouette plot you expect to see three distinct cluster shadows within the plot since you chose three clusters to begin with. Figure 5.12 shows that three distinct clusters are emerging. This contrasts with the previous silhouette plot although the spherical k‐means silhouette
size is still small. Keep in mind that the corpus is small and this is merely an example but Figure 5.12 does show that it is behaving as you expect.
plot(silhouette(soft.part))
For an in‐depth look at the partitions you again extract the prototype scores using cl_prototypes. The soft partition cluster prototype scores is a three-column matrix which can be used to create another comparison cloud. The
code below is used to create the word cloud in Figure 5.13.
s.clus.proto<-t(cl_prototypes(soft.part))
comparison.cloud(s.clus.proto, max.words = 100)
Silhouette plot of (x = soft.part)
n = 50
3 clusters Cj
j : nj | aveiϵCj si
1 : 18 | 0.02
2 : 12 | 0.02
3 : 20 | 0.005
0.0
0.2
0.4
0.6
0.8
1.0
Silhouette width si
Average silhouette width : 0.02
Figure 5.12 The spherical k‐means silhouette plot with three distinct clusters.

5 Hidden Structures: Clustering, String Distance, Text Vectors and Topic Modeling 143
Figure 5.13 The spherical k‐means comparison cloud improves on the original in the previous section.
Finally some interesting and unique words start to appear. In cluster 1, the words Amazon and home appear. In cluster 2, the most prototypical terms
include responsible, daily, team, goals and performance. So you may conclude, based on this visual, that your longest tenured call center agents were at one time Amazon employees providing home resolutions. Still another cluster may
be one that had an operational leadership role because they were responsible for the daily performance of their team’s goals.
In order to confirm these suspicions and possibly add new insights you
decide to explicitly review the top five most prototypical terms in each cluster.
To do so you reference the same s.clus.proto matrix used for the com-
parison cloud. Each column representing a cluster is sorted in a decreasing
fashion. Then you can simply review the top five terms through indexing 1 to 5. This is shown in the code snippets below for the three clusters. The top
prototypical terms for each cluster are shown in Table 5.3.
sort(s.clus.proto[,1],decreasing=T)[1:5]
sort(s.clus.proto[,2],decreasing=T)[1:5]
sort(s.clus.proto[,3],decreasing=T)[1:5]
Compared to the k‐means clustering approach clearly measuring the cosine
similarity in a spherical k‐means has shown more promising results. In practical application, you would likely be working on a larger corpus and also explore the tuning parameters when constructing the clusters. However, in this limited example, you may come to the conclusion your recruiters should focus on former
144

Text Mining in Practice with R
Table 5.3 Top five terms for each cluster can help provide useful insights to share.
Cluster1
Cluster2
Cluster3
1
Amazon
Team
Taking
2
Provide
Target
Multitasking
3
Orders
Call
Accounts
4
Order
Center
Skills
5
Issues
performance
Inbound
Amazon employees, leadership and goal‐focused experiences and resumes men-
tioning multitasking.
5.1.3 K‐Mediod Clustering
Another related algorithm is the k‐mediods method. K‐mediods uses the median value instead of average when calculating the cluster centers. Within R you create a “pam” object. This stands for partition around median. The k‐mediods does not compute “centroids” but instead the cluster centers are called “mediods.”
Similar to k‐means approaches the k‐mediods approach seeks to minimize the
distance of the documents to the center point. However, instead of a random
point in space used for the k‐means approach, the k‐mediods approach will
always pick an actual document.
There are two benefits to using k‐mediods with document clustering. First,
since the approach utilizes actual prototypical centers rather than a calculated point in space, you will be able to get an explicit example for each cluster. The next mediod clusters are less affected by outliers. K‐means clusters can be
affected if there is an outlier document, meaning a document that uses terms completely unlike the rest of the collection in either diversity or frequency. K-mediod and k‐mean approaches are often similar but it is worthwhile to explore many approaches during the course of an analysis.
A numeric example illustrates both benefits of k‐mediods well. If you had a
population with values 1, 2, 4, 6 and 100, the mean and median values differ greatly. The mean of the population is 22.6. The sum, 113, is divided by 5. Note the 22.6 is highly affected by the 100 value and that the population was made of integers, so 22.6 does not really exist in the original data. In contrast, the median value for the population is 4. This number seems more appropriate in
that it is not skewed by the outlier 100 and is also equal to a value in the population. Applied to documents, this means that a mediod approach may be more
insightful because the prototype exists for examination, and given the wide
range of possible words, mediod clusters may be less affected by an outlier
document containing highly diverse lexicons.

5 Hidden Structures: Clustering, String Distance, Text Vectors and Topic Modeling 145
The following code sections execute a k‐mediods clustering algorithm on the
existing HR resume use case. As before, you start with the work experience
DTM with TFIDF weighting. It is cleaned with the exact same method used in
the previous sections for consistency.
wk.dtm<-DocumentTermMatrix(wk.corpus,
control=list(weighting= weightTfIdf))
Within the fpc library the function pamk can be used to construct a k‐
mediods object. As with k‐means, the default distance measure is the Euclidean distance although you can specify other methods. One of the nice parameters
within pamk is krange. Using a sequence of integers, krange allows you to
specify a range of possible clusters rather than explicitly selecting them a priori.
The function will calculate the silhouettes for each of the clusters in the range and return the number of clusters with the highest silhouette area.
wk.mediods<-pamk(wk.dtm, krange=2:4, critout = T)
After you run the pamk code you will note that two clusters have the highest silhouette and this is printed in your console. As before, you decide to create a silhouette plot using the next code snippet.
dissimilarity.m <- dist(wk.dtm)
plot(silhouette(wk.mediods$pamobject$clustering,
dissimilarity.m))
Unfortunately very similar to the k‐means approach a single cluster is
dominating the partitioning. One way this shows up is in the silhouette plot in Figure 5.14.
Although disappointing, for the sake of this educational example you could
still create a comparison cloud. However, unlike previous examples the mediod approach means that the prototypical cluster centers are actually real documents. This can be helpful with larger and more diverse corpora to explicitly show a document that exemplifies the median center of each partition and this can help “make it real” to decision‐makers. First you extract the cluster prototypes and transpose the result. Then call the word cloud library function, comparison.cloud on the prototype object. Here the mediod points are work
experiences 15 and 40 and are labeled explicitly. If you had more clusters and therefore mediod centers you would have more than two documents in the
comparison cloud in Figure 5.15.
5.1.4 Evaluating the Cluster Approaches
Revisiting the six‐step text mining process, you should now feel comfortable reaching an insight or recommendation. Reviewing the original intent of the
exercise below you can safely come up with some recommendations for your
call center recruiters to focus on.
146

Text Mining in Practice with R
Silhouette plot of (x = wk.mediods$pamobject$clustering, dis
n = 50
2 clusters Cj
j : nj | aveiϵCj si
1 : 49 | 0.46
2 : 1 | 0.00
0.0
0.2
0.4
0.6
0.8
1.0
Silhouette width si
Average silhouette width : 0.45
Figure 5.14 K‐mediod cluster silhouette showing a single cluster with 49 of the documents.
7) Reach an insight or recommendation. The goal is to identify three distinct terms in employee clusters that may help recruiters identify candidates likely to stay more than a year, based on past experiences.
The best clustering approach in this limited exercise was spherical k‐means.
You could likely improve the results by using a larger corpus and performing clustering on contrasting documents, e.g. work experiences less than a year. It may not always be the case but here the spherical k‐means partitions appear to be more valid and some conclusions can be drawn. The prototypical terms in
each cluster can help lead you to the conclusion that call center agents that last more than a year have the following attributes in their prior experiences:
●
●
performance target oriented
●
●
worked at amazon.com providing order resolution
●
●
list multitasking and inbound [calls] in prior experience
For a statistical comparison of cluster outputs, you may want to use the function cluster.stats from the fpc package. This function will calculate rele-
vant evaluation statistics, allowing cluster approaches to be compared. This can help to validate the best approach and the number of clusters and help in decision‐making. The code below applies this function to the k‐means and k‐mediod approaches. In the code chunk, the first parameter is a distance matrix based on the DTM, followed by the cluster assignments from each of the two algorithms.
results<-
cluster.stats(dist(wk.dtm.s),wk.clusters$cluster,
wk.mediods$pamobject$clustering)

5 Hidden Structures: Clustering, String Distance, Text Vectors and Topic Modeling 147
Figure 5.15 Mediod prototype work experiences 15 & 40 as a comparison cloud.
The resulting object is a list with 34 pieces of information. Overall these statistics are beyond the scope of this basic text mining book. However, items like average silhouette width should be relatively familiar, since you have already made silhouette plots in this chapter. Other items include the average distance of documents within a cluster to its center, and average distances of a point in the cluster to the points of other clusters. If you want to explore these statistics in greater detail, a book on unsupervised clustering techniques will go into much greater detail.
5.2 Calculating and Exploring String Distance
So far in this chapter we have followed the six‐step text mining process for document clustering in an HR analytics case study. In this next section we use a different type of distance measurement. We will work to find the distances
148

Text Mining in Practice with R
between strings in a different manner than Euclidean distance or cosine similarity. This section introduces Mark van der Loo’s stringdist package and
another corpus to work on. For this section we will not work within the structured text mining workflow so we can focus on the concepts. However, in the
topic modeling section we will work on another case study.
The string distance package has three important functions within the context of text mining (it can also work on integers). The first amatch (and related ain) compute a fuzzy match between a character string and a table of other strings. The result of the function is the position in the table that is a fuzzy match. The stringdist function calculates the distance between a string and a vector of various strings. Still a third useful function in this package is stringdistmatrix used to calculate a distance matrix that can be used in clustering. Both stringdist and stringdistmatrix return a number representing the number of basic
operations needed to turn one string into the other. This contrasts with amatch, which returns the position of a fuzzy match within a table. Do not be overwhelmed, string distance and the accompanying functions are explained here.
5.2.1 What is String Distance?
String distance is the measurement of one string to another at the character level. That is to say the number of letters that need to be changed in some manner to make that string into another. For example, the word “cat” has a distance of 1 to the word “bat.” This is because the substitution of “c” for “b” is the only difference. The distance between “cat” and “bats” is two because there is a single substitution and also an insertion of “s.”
All three functions, amatch, stringdist and stringdistmatrix, are
passed a specific method allowing for the types of changes that are allowed. The five methods dictate which of the four operators can be used to change one
string to another so they match. These include substitution, deletion, insertion and transposition of adjacent characters. The four operators work within the larger character string and act upon substrings. The distance is then just the minimum number of changes needed to match the two terms. Another practical example is “book” and “books.” These strings have a distance of 1. This is because you can insert a single “s” to get a match between the two terms.
The five distinct methods passed to the functions represent a mixture of one or more of the four substring operators. Fuzzy matching and string distance
measurements can be the basis behind document spellcheck and corrected
search queries when using a search engine.
The first of the five methods uses only substitution. As you may expect, this is when you can substitute one character for another in order to match the terms.
For example, assume that you only had substitution as your tool to match two terms. When comparing “racecarz” and “racecars” you would be able to substitute one character to make them match. The single letter “z” can be substituted with

5 Hidden Structures: Clustering, String Distance, Text Vectors and Topic Modeling 149
“s” to get a match. If a term was further misspelled to “racearzc” the substitution count increases. In this case, there are four substitutions, the second “a” to “c”, second “r” to “a”, “z” to “r” and the last “c” to “s” to make a match. Notice that the substitution operations did not insert a “c” and move the “ar” to the right. It simply substituted character by character. This distance method is called “Hamming.”
Still another method that can be applied to string distance functions is optimal string alignment (OSA). The OSA method allows the use of all four opera-
tions, substitution, deletion, insertion and transposition. Armed with more
tools, our racecar example results change. With OSA, racecarz and racecars still have distance of 1 stemming from the substitution operator. However, given
that OSA can use more operations to match strings, the example of “racearzc”
and “racecars” has a distance of 3 not 4. Since OSA can use insertion it inserts a
“c” in front of the “ar” as the first operation. Next, OSA can delete the last letter and substitute the “z” to an “s”. So the total number of operations in this example is only three. It should be noted that in OSA the transposition limit is one. This differentiates it from other distance methods and means that a character cannot be transposed twice to move it elsewhere in the larger string.
Related to the OSA method is the Damerau–Levenshtein (DL) method.
With this methodology, all operations are available, just like OSA. The difference between OSA and DL is that adjacent substrings can be transposed more
than once.
The last two methods are less common and more restrictive in the types of
operators used. The Levenshtein distance method uses substitution, deletion
and insertion only. It is not permitted to use transposition. The longest common string (LCS) method only uses deletion and insertion. LCS is not permit-
ted to change the order of characters and returns the total characters not shared in a substring. For example, the distance between “apple” and “crabapple” is four using LCS. This is because “apple” is the longest shared substring between the two terms. That leaves “crab”, which is four characters long. However, for
“crabapples” and “apple” the longest common string calculation would now be
5. This is because of the original four letters of “crab” and the additional “s.”
The best way to get fluent with the string distance measures is to use them.
Simply change the method part of the code below as well as the input strings to get the change in scores.
> stringdist('crabapple','apple',method="lcs")
[1] 4
> stringdist('crabapples','apple',method="lcs")
[1] 5
The five methods of strings distance calculation are summarized in Table 5.4
along with the parameter abbreviation used in the stringdist library
functions.
tion
evia
tion abbr
Func
hamming
osa
dl
lv
lcs
e
s
Transposition
No
Yes, Only Onc
Ye
No
No
tion
s
s
s
s
Inser
No
Ye
Ye
Ye
Ye
.
s
s
s
s
Deletion
No
Ye
Ye
Ye
Ye
t methods
emen
s
s
s
s
Substitution
Ye
Ye
Ye
Ye
No
e measur
ing distanc
ing
htein
e str
evens
ommon str

The fiv
u–L
htein
st c
ethod
amming
SA
amera
Table 5.4
M
H
O
D
Levens
Longe

5 Hidden Structures: Clustering, String Distance, Text Vectors and Topic Modeling 151
There are other distance measures in the library that can be explored,
although these five are common. The other measures include soundex for pho-
netic similarities and Jaro, which measures between 0 and 1. When performing string distance analysis it is important to know the method with which the
strings were collected, the ways distance calculations impact results and subsequently the resulting cluster analysis. Damerau–Levenshtein is popular
because it has all available operators, and the results are usually stable. LCS can produce wide ranges of distances which may be misleading to interpret but
useful for clustering. If the strings were transcribed or dictated, then the soundex method may also be useful. In the end it is the judgment of the text miner to use a method that is both accurate and effective. For the stringdist
library, the default method is OSA.
5.2.2 Fuzzy Matching – Amatch, Ain
The amatch function is fairly straightforward and similar to the base R function match, the latter returning the position of the first exact match between two terms. The amatch function, however, provides a bit more flexibility. It returns the position of the closest term or “fuzzy” match between strings given a maximum distance allowed. It receives a string that you want to approximately match against a group of words along with the distance number and
method. Consider the following code lines using match and amatch.
match('apple',c('crabapple','pear')
[1] NA
Here match returns NA because there is no exact match between apple and
the other two terms.
amatch('apple',c('crabapple','pear'),maxDist=3,
method='dl')
[1] NA
In this example, the result is the same, NA, despite having all operators to work with because “dl” is the method specified. This is because there is no
approximate matches that have a maximum distance of 3 between apple and
the other terms. Remember that distance is the minimum number of opera-
tors, substitutions, deletions, insertions and transpositions needed to match the terms.
amatch('apple',c('crabapple','pear'),maxDist=4,
method='dl')
[1] 1
152

Text Mining in Practice with R
In this case, the maxDist parameter was increased to 4. The strings “apple”
and “crabapple” are separated by four deletion operations. The function returns a 1 because “crabapple” is the first term in the vector of “crabapple” and “pear.”
Instead of the position of the first approximate match, you may need a True
or False outcome. The ain function will provide this binary outcome and fol-
lows a similar functional pattern.
ain('raspberry',c('berry','pear'),maxDist=4,
method='dl')
[1] TRUE
In this example, four characters can be deleted so that “raspberry” and
“berry” can match. The maximum distance is 4 and the Damerau–Levenshtein
method is allowed to use the deletion operator. The net result is True. Changing the method to method=‘hamming’ will result in a False being returned. This
is because the Hamming method is not allowed to use deletion. Similarly, had the “berry” term been “Berry” instead the ain function would return False.
This is because the function is case sensitive. To normalize the strings you would apply tolower to the terms being passed to the function. Hopefully
you are familiar with tolower, because it is a function used in cleaning and preprocessing earlier in the book.
5.2.3 Similarity Distances – Stringdist, Stringdistmatrix
The next functions stringdist and stringdistmatrix do not return
the position of an approximate match from a vector but instead return the
actual minimum number of operators needed to make a match between terms.
Stringdist works on a single term and one or more terms while string-
distmatrix will perform the calculation between all strings.
The stringdist function calculates the distance between a single term
and another single term or vector containing multiple terms. In this example, the distance of the single term “raspberry” is being calculated between “berry”
and “pear” using the Hamming method.
stringdist('raspberry',c('berry','pear'),method='hamm
ing')
[1] Inf Inf
The result is infinity twice. This is because there is no way to match rasp-
berry to either term using only substitution. However, changing the Hamming
to the more robust optimal string alignment in the following code will return two integers. Since OSA is the default, you do not really need to specify it as shown here.

5 Hidden Structures: Clustering, String Distance, Text Vectors and Topic Modeling 153
stringdist('raspberry',c('berry','pear'),
method='osa')
[1] 4 6
The first integer returned is 4. This is because the default method OSA can
delete four characters to match “raspberry” and “berry”. The next distance
between “raspberry” and “pear” is a bit more complicated. The first three letters, “ras”, are all deleted. That leaves a substring “pberry”. Next delete the “b”
and “y”. The resulting string is “perr” and there is still one more operator needed to match “pear”. The function then substitutes the first “r” for an “a” to make the match. Figure 5.16 may help illustrate the operations needed to match
“raspberry” to “pear”.
Earlier in the chapter you worked on various distance measures of text to
create distance matrices and ultimately clustering. String distance is just
another method for performing distance calculations and as a result can likewise be used for clustering. Now that you have a foundation in string distance calculation methods you can work on clustering. In this basic example, the
code below creates a distance matrix using some of the fruit examples shown
before and then plots a dendrogram.
fruit<-c('crabapple','apple','raspberry')
fruit.dist<- stringdistmatrix(fruit)
The fruit.dist object is a distance matrix between all combinations of
the fruit names. The results are shown in Table 5.5.
When plotting a simple dendrogram illustrating the hierarchical nature of
the text you should expect that “apple” and “crabapple” should be a cluster
raspberry
Delete
Delete
Delete
p Delete e Substitute
r for a
r Delete
pear
Figure 5.16 The six OSA operators needed for the distance measure between “raspberry”
and “pear”.
154

Text Mining in Practice with R
Table 5.5 The distance matrix from the three fruits.
Crabapple
Apple
Apple
4
Raspberry
8
6
since their distance is 4. “Raspberry” will be by itself as an outlier because it is very far from “crabapple.” Since a dendrogram reduces information, the smaller difference between “apple” and “raspberry” is lost. The code below creates the expected dendrogram shown in Figure 5.17.
plot(hclust(fruit.dist),labels=fruit)
You can now apply this technique to larger strings, but beware that the den-
drograms can become dense, and additional steps may be needed to make the
outcomes useful. However, string distance can be useful for term aggregation and spellcheck. The examples here are meant to lay a foundation for further
exploration to unlock the underlying structure and connections within a cor-
pus using string distance.
5.3 LDA Topic Modeling Explained
Topic modeling is a probability‐based approach to finding clusters within documents. It is unsupervised because you do not have document‐assigned classes
like “spam” versus “not spam.” Instead, topic modeling observes the word
Cluster Dendrogram
78
raspberry
456
Height
e
appl
crabapple
fruit.dist
hclust (*,"complete")
Figure 5.17 The example fruit dendrogram.

5 Hidden Structures: Clustering, String Distance, Text Vectors and Topic Modeling 155
frequency distribution among all documents to define “K” topics, and documents are given a probability for each topic. As the text miner, you input the number of topics as the “K” parameter. The topic modeling algorithm assigns a probability from all observed topics to each document. With K = 4, each document
would get four probabilities for being part of the observed topics.
The LDA stands for Latent Dirichlet allocation. It is considered latent because the modeling technique identifies concealed topics that are not explicitly
defined by the text miner. It seeks to find the concealed group of words that represent each topic or theme. Dirichlet distributions are used in statistics to understand multivariate, or in this case multi‐word, probability distributions.
Dirichlet distributions can be used to model seemingly random occurrences
such as rolling dice. In fact, dice rolling is not completely random because of manufacturing processes and physics. Taken holistically one may think that
word choice in a large corpus is close to random, but the Dirichlet distribution can be used to model the word allocations.
The LDA topic modeling technique is not that complicated but it can be
intimidating. In practice, you may not really need to possess a deep under-
standing to gain meaningful insights. A simple example could be using LDA
topic modeling on multiple art history books. In the large corpus, books could be about painting and photography or just a single style of painting or exclusively about photography. Topic modeling may observe the words in the books
and define K = 3 topics which could include “art,” “photo” and “painting.” So each book is assigned a probability of being part of each of these three topics.
One book may be about photography and score highly in that topic while
another may be about impressionist painting and likewise have a high proba-
bility for the “paint” topic. The photography book would likely have a low probability for the “paint” topic and similarly the impressionist book would have a low score for the “photo” topic. However, all books would have a similar probability for the “art” topic. The books themselves are a mixture of topics
simultaneously.
The topic modeling approach seeks to answer two basic questions. First, how
to decide if a specific word is part of a particular topic among other topics.
Second, how common is a particular topic within a document.
If the LDA modeling approach were a person she would approach a docu-
ment armed with multiple differently colored highlighters. Each highlighter
would be represent a topic and be defined before she started reading. As the algorithm “reads,” she would highlight a word based on the frequency and code it by color to a topic. If applied to this book the algorithm would highlight words having to do with case studies in “blue,” math‐related terms in “yellow”
and R code in “red.” Once this is completed the words in each color group are tallied. The list of blue highlighted words represents one particular topic and so on. Within the book, each chapter could be viewed as a mixture of these
topics. Some chapters may have more math, which would be yellow, while
156

Text Mining in Practice with R
other chapters have more case‐study‐related words which would be blue.
Figure 5.18 illustrates this technique on an earlier passage in the chapter. The passage is a mix of all three topics but mostly math terms.
In this section, we examine a case study and a particular type of LDA topic
modeling called Gibbs sampler. This type of LDA model is faster than others
and can be useful when working on large corpora. The Gibbs sampler is a
Markov chain Monte Carlo (MCMC) algorithm. While complicated, it approx-
imates distributions, then correlates Markov chain samples and is used for
statistical inference techniques. In fact, the topic modeling algorithm is doing just that, sampling to infer distributions of words which is in turn inferring the topics within documents. Beware that sampling can decrease accuracy.
However, increasing the number of sampling iterations in the model will help to ensure stable results. There are other topic modeling R libraries that you may want to explore beyond this case study including topicmodels, irlba
and textmineR.
5.3.1 Topic Modeling Case Study
In this section, we revisit the six‐step text mining process in a new case study.
Using articles from the Guardian newspaper as our corpus, you will do some
topic modeling to create an interactive visual of the topic model and a treemap representing polarity, topic and size of article.
1) Problem definition and specific goals. The goal of this project is to analyze Guardian newspaper articles to understand the topics covered, the
journalistic effort put towards each topic and the polarity of the articles.
The specific problem statement could be “How does the Guardian newspa-
per prioritize articles about Pakistan?”
2) Identify the text that needs to be collected. This corpus was collected from the GuardianR package, using the newspaper’s API. This API will be
discussed in detail later in the book but the topic modeling section has
already collected the articles. The intended text contains all Guardian articles mentioning Pakistan between November 14 2015 and December 1 2015.
Getting the Data
Please navigate to www.tedkwartler.com and follow the download link. For this analysis, please download “Guardian_articles_11_14_2015_12_1_2015.csv.”
This file contains 27 articles and associated information from the API.
3) Text Organization. The articles will be organized in the returned API object chronologically. The text will be cleaned using common and new
character manipulation functions.

c05.indd 157
R code
Math Terms
Case Study
Figure 5.18 “Highlighters” used to capture three topics in a passage.
c05.indd 157
5/8/2017 10:31:14 AM
158

Text Mining in Practice with R
4) Feature Extraction. The lda package provides a new function called lexal-ize which captures document level information. This is in contrast to the
DTM or TDM objects we have created thus far.
5) Analysis. First you will create a topic model, reviewing the words within each topic. Then plot the model visually in a dynamic plot that is opened in a web browser. Next, you will create a treeplot, illustrating three dimensions including polarity, length of document and observed topic from a topic
model prediction.
6) Reach an insight or recommendation. Using the topic modeling and visualizations you will be able to group the articles by observed topic and
then hopefully understand how the newspaper’s writers spend their time
concerning Pakistani articles.
5.3.2 LDA and LDAvis
This script is slightly different from our previous ones. This is because we are going to clean and preprocess the text vector of 27 articles without a custom function. This is because the lda package expects a text vector and not a corpus object.
To begin, load the required packages and the text object from the csv. By now you should be familiar with the tm and qdap packages. The next package, lda, provides functions to read in documents and fit latent Dirichlet allocation (LDA) models. Once a model has been created, it can be used to predict topic models on new text and to be explored. Later in the chapter we review another lda package simply called topicmodels. The next package, LDAvis, provides simple functions to create an interactive visualization of the topic model for exploration. The last package, pbapply, simply adds a progress bar to the more common apply
functions. Since text processing on many articles can be computationally intensive it is informative to know the progress your computer is making.
library(tm)
library(qdap)
library(lda)
library(GuardianR)
library(pbapply)
library(LDAvis)
library(treemap)
library(car)
options(stringsAsFactors = F)
text<-read.csv(
'Guardian_articles_11_14_2015_12_1_2015.csv')
Step 3. Text organization – The text object has many extraneous columns.
You are only going to analyze the text$body vector which contains the text

5 Hidden Structures: Clustering, String Distance, Text Vectors and Topic Modeling 159
for each of the articles. The following code block cleans that single vector in a new object called articles. First iconv is used to convert the character vector, text$body , from latin1 to ASCII while simultaneously creating the
articles object. This is not always needed but sometimes API text has unu-
sual encodings that need to be changed. Next the gsub function is used to
remove any url links that start with http. The raw API text contains many urls that can hinder the topic modeling by emphasizing the urls instead of the actual article text. Next the bracketX function from qdap is applied. This helps to remove all text within brackets. For example, text within square brackets is often added to quotes as in “[inserted text].” In this case, bracketX is applied to the articles because the API returned html text such as “
.” The “br” line break in html is not really part of the article and thus needs to be extracted.
Next, the more familiar removeNumbers, tolower and removeWords are
applied to the articles.
articles <- iconv(text$body, "latin1", "ASCII", sub="") articles <- gsub('http\\S+\\s*', '', articles)
articles <- bracketX(articles,bracket='all')
articles <- gsub("[[:punct:]]", "",articles)
articles <- removeNumbers(articles)
articles <- tolower(articles)
articles <-removeWords(articles,c(stopwords('en'),
'pakistan','gmt','england'))
The lda package struggles with blank word tokens made entirely of spaces. It will treat empty tokens made of spaces as actual words, which will seem very frequent to the model. If they are present, this skews the results of your LDA model. Also, this has a downstream impact on the LDAvis interactive plot. The interactive visualization enforces that all word tokens in the articles’ vocabulary have at least one character.
There are many solutions to trimming the words so that they have at least
one character, but the code below creates a simple function called blank.
removal using string splitting. You can also adjust the zero in the subset line to focus the analysis on longer and possibly more insightful words. As a result the function becomes another tuning parameter of your analysis, giving you
flexibility to extract important insights.
blank.removal<-function(x){
x<-unlist(strsplit(x,' '))
x<-subset(x,nchar(x)>0)
x<-paste(x,collapse=' ')
}
articles<-pblapply(articles,blank.removal)
160

Text Mining in Practice with R
To understand this function, let’s explore a simple example. Consider the
following two sentences “Text mining is a good time” and “Text mining is a good time”. Both sentences are the same with the exception of the extra
spaces in the first sentence. The code snippet creates the example text to
explore.
ex.text<-c('Text mining is a good time',
'Text mining is a good time')
When applying strsplit on the first sentence the returned list has many
empty tokens.
strsplit(ex.text[1],' ')
[[1]]
[1] "Text" "mining" "is" "a" ""
[6] "" "" "" "" ""
[11] "" "good" "time"
In contrast, applying the string split using spaces on the second sentence
shows no empty tokens.
strsplit(ex.text[2],' ')
[[1]]
[1] "Text" "mining" "is" "a" "good" "time"
In the custom function, the string split is nested in unlist, which simply
changes the list to a character vector of each individual word including the empty ones. The code below creates a simple object, and demonstrates the
character vector outcome.
char.vec<-unlist(strsplit(ex.text[1],' '))
char.vec
[1] "Text" "mining" "is" "a" "" ""
[7] "" "" "" "" "" "good"
[13] "time"
The next function subsets that vector of words by number of characters,
nchar, greater than 0. Then the console results are printed showing the
removal of the empty words.
char.vec<-subset(char.vec,nchar(char.vec)>0)
char.vec

5 Hidden Structures: Clustering, String Distance, Text Vectors and Topic Modeling 161
[1] "Text" "mining" "is" "a" "good" "time"
At this point, the sentence is still broken up into individual words, but now with at least one character. The last part of the blank.removal function
merely collapses the text back into a single sentence or document.
char.vec<-paste(char.vec,collapse=' ')
char.vec
[1] "Text mining is a good time"
So applying the custom function blank.removal not only solves the
empty token problem but also allows you to have a tuning parameter during
analysis. As a result, the function is better than simply trimming tokens using regular expressions.
The blank.removal function is applied to the document vector using the
pblapply function. You could also use lapply from base R but the pb ver-
sion adds a progress bar so you can see how long it will take. This can be helpful if you are working on a lot of text.
articles<-pblapply(articles,blank.removal)
Step 4. Feature extraction – Step 3, text organization, is complete. The text has been preprocessed and cleaned within the document vector. Now you are
going to create your feature extractions in the fourth step of the workflow. The lda package does not use the more familiar volatile corpus from tm or word
frequency matrix from qdap. Instead the lda package provides a function
lexicalize. The list created from lexicalize contains two elements
called “documents” and “vocab.” The result is fairly complicated, so we will first look at a simple example before applying it to the Guardian articles.
Consider the following sentence in the ex.text object below that is
lexicalized.
ex.text<-c('this is a text document')
ex.text.lex<-lexicalize(ex.text)
The resulting list has two elements called documents and vocab that we will
examine. The ex.text.lex$documents is a nested list of matrices. Each
document has its own matrix of word frequency similar to a DTM. Examining
our corpus of a single document is shown next. You will see that the document is represented with four columns, one for each word. The matrix also has two rows. The first represents the position of the word in the vocab and the second is the frequency of that word in the document. With this information and the vocab object you can reconstruct the original document. In this illustration the document has one for each word in the vocab starting with token zero (not one).
162

Text Mining in Practice with R
ex.text.lex$documents[[1]]
[,1] [,2] [,3] [,4]
[1,] 0 1 2 3
[2,] 1 1 1 1
Reviewing the vocabulary in the ex.text.lex object returns all four of
the unique word tokens from the corpus. The vocabulary is a text vector of
unique words.
ex.text.lex$vocab
[1] "this" "is" "a" "document The quixotical nature of the lexicalize object is increased with more
non‐unique terms and additional documents. In this next example, another
document is added to the first and then lexalicalized.
ex.text<-c('this is a document', 'text mining a text
document is great')
ex.text.lex<-lexicalize(ex.text)
The resulting ex.text.lex$document object now has two matrices
shown below and referenced by double brackets. The first is the same as before.
The second matrix has 4,5,2,4,3,1,6 in the first row, referencing the position of the word in the vocabulary. Notice that the frequency of the words is always one in row 2 in this matrix, despite the fact that “text” appears twice. This contrasts the lexicalize matrices from DTMs shown before.
[[1]]
[,1] [,2] [,3] [,4]
[1,] 0 1 2 3
[2,] 1 1 1 1
[[2]]
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 4 5 2 4 3 1 6
[2,] 1 1 1 1 1 1 1
When reviewing the vocabulary you can recreate the original documents
based on the specific matrix. Remember that the first vocabulary word is referenced as 0 not 1.
ex.text.lex$vocab
[1] "this" "is" "a" "document" "text" "mining"
"great"

5 Hidden Structures: Clustering, String Distance, Text Vectors and Topic Modeling 163
So the second document vocab positions are 4,5,2,4,3,1,6 indexing to “text,”
“mining,” “a,” “text,” “document,” “is” and “great.”
Now that you have a basic understanding of the lexicalize results, you
can apply it to your Guardian articles.
documents <- lexicalize(articles)
Step 5. Analysis – At this point, you have extracted the information from the text and can begin step 5, analysis. You will need to calculate some summary statistics to be used later. The lda function word.counts computes the word count for the set of documents. The result is similar to a word frequency matrix where the total number of times a word is used throughout all documents is computed in a table. The function accepts the documents and the explicit vocabulary to perform the tabulation. The other function documents.length is a summed vec-
tor for the total number of words in each document. So, long articles containing many words will have larger numbers. Using the previous example the document length is a sum of the ex.text.lex$document row containing ones.
wc <- word.counts(documents$documents,
documents$vocab)
doc.length<- document.lengths(documents$documents)
Further analysis beyond these two summary objects is needed. More impor-
tantly you are going to fit the LDA model. To begin, specify function parameters k, iterations, alpha and eta. The k variable represents the number of topics the function will identify. For example, if you specify k = 10, the function will observe 10 topics from the corpus. It is good to revise this number to identify an appropriate number of distinct topics. Then iterations is the number of
sampling repetitions to be done on the text. This helps ensure that you have a reliable model similar to cross validation. Next, alpha represents the prior document‐topic distributions, and eta is the parameter setting the prior topic-term distributions. The code below separates the input parameters and model
building, as well as setting a specific seed for reproducibility.
k <- 4
num.iter <- 25
alpha <- 0.02
eta <- 0.02
set.seed(1234)
fit <- lda.collapsed.gibbs.sampler(documents =
documents$documents, K = k, vocab = documents$vocab,
num.iterations = num.iter, alpha = alpha, eta = eta,
initial = NULL, burnin = 0,compute.log.likelihood =
TRUE)
164

Text Mining in Practice with R
The other inputs to the model were the documents$documents matrices
and documents$vocab that were previously created. Here the model was
built with 25 iterations, and eta and alpha of 0.02. The model was fit with k = 4
to extract four topics. After fitting the model, a visual inspection of fit$log.
likelihood illustrates that the algorithm has reached a stable convergence.
This is accomplished with the code below and illustrated in Figure 5.19.
plot(fit$log.likelihoods[1,])
Once the model object has been created, the lda package provides some easy
functions to extract the topic words and identify the prototypical documents for each topic. Using top.topic.words on the fit$topics object along
with the number of words you want to review in the code below will print the top words for each of the k (4) topics.
top.topic.words(fit$topics, 7, by.score=TRUE)
[,1] [,2] [,3] [,4]
[1,] "new" "said" "ball" "three"
[2,] "australia" "paris" "pm" "world"
[3,] "test" "attacks" "th" "women"
[4,] "smith" "people" "four" "far"
[5,] "zealand" "french" "leg" "attack"
[6,] "day" "isis" "single" "change"
[7,] "voges" "syria" "wicket" "will"
Here you can see that the first topic contains terms such as “new,” “australia,”
“test,” “smith” and “zealand.” The third topic mentions “ball,” “single” and “wicket.”
Both of these topics are about test cricket matches with Australia and New
Zealand. The second topic mentions words like “isis,” “paris” and “attacks.” Articles with this assigned topic are about Parisian attacks. The last topic is a bit more ambiguous concerning some “attack.” We could rerun the model, changing the
number of topics to three, or more than four, in an effort to gain some clarity.
–520000
fit$log.likelihoods[1,]
–580000
5
10
15
20
25
Index
Figure 5.19 The log likelihoods from the 25 sample iterations, showing it improving and then leveling off.

5 Hidden Structures: Clustering, String Distance, Text Vectors and Topic Modeling 165
The next function is used to identify the document or article that best represents each topic. Within the function top.topic.documents you pass the
document sums from the model and the top number of returned articles. In
this case, you are passing one so you get one article for each of the four topics.
The result is a matrix showing that the 49th document is the best example of the first topic, the 50th is associated with the second and so on.
top.topic.documents(fit$document_sums,1)
[1] 49 50 6 3
To create the interactive plot using LDAvis, you need to estimate the document-topic distributions. This is done in the code snippet here, to create the theta object and referencing alpha. You also need to estimate the topic term distributions, phi, using eta.
theta <- t(pbapply(fit$document_sums + alpha, 2,
function(x) x/sum(x)))
phi <- t(pbapply(t(fit$topics) + eta, 2, function(x)
x/sum(x)))
Now that all model and article statistics are calculated you are ready to construct the interactive visual. To do so use the createJSON function and pass in the objects that were created previously. This constructs a a large character string organized as a JavaScript object notation (JSON). The JSON object is
passed to the web browser in the final function.
article.json <- createJSON(phi = phi,theta = theta,
doc.length = doc.length, vocab =
documents$vocab,
term.frequency = as.vector(wc))
This last function will create all JavaScript and HTML files so it can be
opened in a browser. If you are using R Studio click the “show in new window”
icon to open a browser after executing this function. Figure 5.20 is a screenshot of the resulting visualization. Since it is running live you will not be able to type any other R code into your console until you explicitly stop the function.
serVis(article.json)
In Figure 5.20 the left‐hand side is a principal component analysis among the words in the topics. On the right is a bar chart of frequent words among all articles and also a comparison for a specific topic once it is highlighted. Shown here, topic 1 is highlighted. As expected, topics 1 and 3, related to cricket, have an overlapping topic. As you navigate the visual you will be able to understand how top words are more strongly aligned with specific topics, and how separated the topics are.

Figure 5.20 A screenshot portion for the resulting topic model visual.
5/8/2017 10:31:15 AM
c05.indd 166
5/8/2017 10:31:15 AM

5 Hidden Structures: Clustering, String Distance, Text Vectors and Topic Modeling 167
The interactive visual should be informative as you explore the topics in your web browser but now we turn to constructing a treemap. A treemap illustrates hierarchical data structures. The treemap will show articles grouped by topic, the size of each article measured in number of words will be represented as the visual area and the color of each section will be the basic emotional polarity.
Since articles are a mixture of the topics you need to assign each article to the most prominent topic from the four. To do so you can create a custom function. The lda model output contains an object called assignments. This is a
vector of numbers, one per word for the entire article. The number for each
word corresponds to each topic. So tabulating the most frequent number
among zeros, ones, twos and threes will identify an article as primarily made of that topic. In essence, you are calculating the mode for each of the document topics. One way to do this is in the function doc.assignment below.
doc.assignment<-function(x){
x<-table(x)
x<-as.matrix(x)
x<-t(x)
x<-max.col(x)
}
Each document’s word topic assignments is passed to the function. The vec-
tor of numbers, one per word, is tabulated into a table, then converted from a table to a matrix. Next it is transposed, and the maximum column is returned.
For example, the code below will print the topic assignments for the first 10
words from the second article. This shows that the first word is assigned to topic 2 and so on.
fit$assignments[[2]][1:10]
[1] 2 1 3 3 2 1 3 3 1 0
Next, the custom function creates a table of the assignments.
table(fit$assignments[[2]][1:10])
0 1 2 3
[1] 1 3 2 4
The next functions simply change the table to a matrix, and transpose it.
This keeps it in the same shape as the table so you can then apply max.col.
t(as.matrix(table(fit$assignments[[2]][1:10])))
0 1 2 3
[1,] 1 3 2 4
168

Text Mining in Practice with R
Using max.col on this matrix will return the column name containing the
most frequent topic assignment. The fourth topic is the most frequent in this small sample, despite the words being diverse among the four topics.
max.col(t(as.matrix(table(fit$assignments[[2]]
[1:10]))))
[1] 4
Now that you understand the function, it is applied to all words within each individual document or article. Using the progress bar version of lapply the function is applied to the model’s assignment object. The entire procedure is nested in unlist, so the topic assignments are collapsed to a vector. The net result is a vector containing one number for each article that corresponds to the most frequent topic.
assignments<-
unlist(pblapply(fit$assignments,doc.assignment))
You can recode the topics to something more familiar using recode and the
code below. After examining the interactive visual you may decide to change
the topic number to a specific name. You could simply use the numbers or pass the top words per topic as examined previously. Here the topics are named,
“Cricket1,” “Paris Attacks,” “Cricket2” and “Unknown.” Note each recoded
value is separated with a semicolon not a comma as is expected in other R
functions.
assignments<-recode(assignments, "1='Cricket1';
2='Paris Attacks'; 3='Cricket2';4='Unknown'")
Next create a sequence of numbers corresponding to the articles in the text.
Then calculate the polarity of all articles using the polarity function from qdap.
For this example, the subjectivity lexicons are not adjusted. Depending on the system RAM, this may take longer than previously because articles can be relatively long. The code below only captures the polarity scores from the overall polarity object which includes extraneous information for the treemap.
article.ref<-seq(1:nrow(text))
article.pol<-polarity(articles)[[1]][3]
article.tree.df<-cbind(article.ref,
article.pol,doc.length,assignments)
treemap(article.tree.df,index=c("assignments",'article.
ref'),
vSize="doc.length",vColor="polarity", type="value", title="Guardan Articles mentioning Pakistan",
palette=c("red","white","green"))
The treemap function relies on this data frame to construct Figure 5.21.

5 Hidden Structures: Clustering, String Distance, Text Vectors and Topic Modeling 169
Figure 5.21 Illustrating the articles’ size, polarity and topic grouping.
Step 6. Reach an insight or recommendation – In less than 100 lines of code you were able to execute a topic model and construct some exploratory
visualizations. Following the six‐step workflow, you are now able to reach an insight or conclusion. To begin this section, the problem was stated as “How does the Guardian newspaper prioritize articles about Pakistan?” Since the
number of words in a particular article is represented as the square’s area you can somewhat infer the amount of journalistic effort to create the article. Based on the limited analysis only one large article concerned the Paris attacks, ISIS
and Syria, while the majority of writing in this timeframe concerned cricket. As expected, the language used to mention the Paris attacks was negative and
cricket was mostly positive. Interestingly, the Paris attackers were part of the Islamic State of Iraq and Levant (ISIL), not Pakistani. However, the Guardian articles in this timeframe did mention Pakistan and were subsequently returned by the API.
5.4 Text to Vectors using text2vec
So far this chapter has sought to give you tools to identify underlying structure in text. These include document clustering, string distance calculations and topic modeling techniques. This last section examines a relatively new R package called text2vec. Text vectorization is either done using the word2vec
or GloVe methods.
170

Text Mining in Practice with R
The word to vector (word2vec) was made public by Google engineers in 2013
and the GloVe method was pioneered at Stanford’s NLP Group shortly thereaf-
ter. Both are unsupervised algorithms that seek to learn the meaning behind
words. They use a two‐layer neural network that is trained to reconstruct the words in context. Although many technical papers and books are emerging on
covering neural networks, this section seeks to explain code with minimal technical explanation. The nuances of the lowly perceptron, neural networks and deep learning architectures are best left to in‐depth courses and lengthy academic textbooks. So this section will give you the very basic but useable foundation word vectorizations using the text2vec R package using the GloVe method.
The sections of this chapter dealing with distance measures such as cosine
similarity and Euclidean distance are all implementations of nearest neighbors.
These approaches quantify the related documents and underlying words,
which allows you to perform cluster analysis based on the nearest word neighbor. The distance measured is between a specific word and another specific
word. However, these tools are limited for identifying a sophisticated word
meaning, because the distance measure is singularly between terms. For exam-
ple, the terms basketball and football may be close in many Euclidean distance measures because both are about sports. However, the terms represent two
very different sports and have differing meaning, beyond being sports, such as the shape of the ball. So a more complicated method seeks to understand the
differences between vectors of co‐occurring words not individual distances
between two words. Thus the co‐occurrences of terms are calculated and rep-
resented as vectors. Then the multiple vectors are compared. This added com-
plexity yields a more nuanced understanding of meanings between words.
For example, consider two documents made of only two words. The first is
“text.” The second is “mining.” These can be represented in two dimensions as vectors shown in Figure 5.22. Now consider a new document with words “text
mining.” This vector of terms would lie in between the vector from the first two documents as shown.
Text
Text Mining
Mining
Figure 5.22 The vector space of single word documents and a third document sharing both terms.

5 Hidden Structures: Clustering, String Distance, Text Vectors and Topic Modeling 171
While this is a crude example, it forms the foundation for a more complex vector space. Since documents contain many words they are represented in n‐dimensions or hyperspace. Each word in a corpus gets its own vector dimension. Dimensions intersect when words appear together in the documents or co‐occur.
5.4.1 Text2vec
The text2vec package provides fast implementations of a vector‐based
approach. It is used best with large corpora and with some term weighting like TFIDF or vocabulary pruning. In the previous chapter, you worked on 1000
randomly selected Airbnb reviews from the Boston area. Now we apply the
text vectorization to a larger corpus of approximately 43000 Airbnb reviews.
The preprocessing of very large corpora needs to be done in an iterator
which performs the task chunk by chunk on the text. The text2vec package
provides an iterator function for this purpose. However, the example in this section is able to be executed on a single machine with only 4GB of RAM, so
preprocessing is performed directly on the text vector.
Getting the Data
Please navigate to www.tedkwartler.com and follow the download link. For this analysis, please download "Airbnb‐boston_only.csv." This file contains all Airbnb reviews for the Boston area.
Once you have the data stored locally, the script employs a new function for importing large files. The fread which the data.table package author says
is a “fast and friendly file finagler.” This is a convenient function for importing large files because it provides a percent of file read to track progress, handles mixed data types well and also reads the file quicker than read.csv.
library(data.table)
library(text2vec)
library(tm)
text<-fread('Airbnb-boston_only.csv')
The text object is both a data frame and a data.table object. The next
line simply creates a new object called airbnb. This may seem redundant and
computationally intensive but it is done to preserve the original text should you make a text cleaning error.
airbnb<-data.table(review_id=text$review_id,
comments=text$comments,
review_scores_rating=text$review_scores_rating)
172

Text Mining in Practice with R
Rather than wrap a custom function as you did in the past, all the cleaning
steps are performed directly on the vector, one at a time. You could write a custom function, but this is a single vector called comments and the extra
effort to create a custom function isn't warranted. By now the preprocessing functions should be familiar and commonplace.
airbnb$comments<-
removeWords(airbnb$comments,c(stopwords('en'),'Boston'))
airbnb$comments<- removePunctuation(airbnb$comments)
airbnb$comments<- stripWhitespace(airbnb$comments)
airbnb$comments<- removeNumbers(airbnb$comments)
airbnb$comments<- tolower(airbnb$comments)
The string split function is then applied to each of the 43000 comments. The resulting tokens object is a list with each element representing a unique comment. The elements are made of individual word tokens since the split was
performed at spaces between words.
tokens <- strsplit(airbnb$comments, split = " ",
fixed = T)
The next step is to create a vocabulary using the create_vocabulary
function from text2vec. To do so you iterate over the tokens object by creating n‐grams. In this example, n‐grams are shown as 1 to 1, meaning single
words, but you could change it to capture a vocabulary of bi‐grams (2,2) or
mixing uni‐gram and bi‐grams (1,2). The n‐gram tokenization is done chunk
by chunk because of the iterating function itoken that is nested in the
create_vocabulary function. Since text2vec is meant to work on large
corpora, the package author kindly provides a progress bar that will increase as your computer computes the vocabulary.
vocab <- create_vocabulary(itoken(tokens),ngram = c(1,
1))
Next the vocabulary is pruned, allowing you to throw out frequent terms and
infrequent terms. Here the code is pruning words that appear less than five
times in the vocabulary.
vocab<- prune_vocabulary(vocab, term_count_min = 5)
In the end, the vocabulary is a list of terms, term counts and document counts.
For example, the following code shows a small portion of the terms, term counts and documents. The result will be printed to your console but is shown in Table 5.6.
vocab[[1]][221:225]
Next you will create the term co‐occurrence matrix (TCM). To begin, you
create an iterator again. Specifically, your iterator will not act with a function like tolower, working chunk by chunk to change words, but on the actual
individual document words themselves. This is passed to the next function
vocab_vectorizer in the next line. The vocab_vectorizer creates a

5 Hidden Structures: Clustering, String Distance, Text Vectors and Topic Modeling 173
Table 5.6 A portion of the Airbnb Reviews vocabulary.
Terms
Term count
Document count
arrived
2675
2535
prãpare
1
1
bedre
1
1
lujos
1
1
listening
18
18
function which is used in constructing the TCM. It defines parameters of the matrix build and is therefore a custom function like the clean.corpus function shown elsewhere in the book rather than a data object like a matrix, data frame or list. This function is passed the iterative word tokens, and some additional parameters. The grow_dtm=F is a logical statement telling the function not to build a document term matrix, but it could be changed to T if you wanted a DTM. Next the skip gram window defines the number of n‐grams around the
target word for calculating the vector word embedding. To learn more about
skip grams, refer to the call‐out “What is the skip gram method?” In this script, the value is 5 so that the neural network uses the prior and former five words around a target word. Finally the iterator and vectorizer functions are passed to the create_tcm function. This constructs a TCM using the words in the
iterator so as not to overwhelm a computer’s memory and with the specific
parameters defined previously in the vectorizer object.
iter <- itoken(tokens)
vectorizer <- vocab_vectorizer(vocab, grow_dtm = F,
skip_grams_window = 5)
tcm <- create_tcm(iter, vectorizer)
The result is a square matrix because all words co‐occur with at least some
other word in the corpus. In this case, reviewing the structure of the TCM tells you that there are 10,838 words, because the dimensions are 10838 by 10838.
Further, the dimension names include co‐occurring words such as “dreamy”
and “goose” for both rows and columns. The values within the matrix represent the probabilities of one word co‐occurring with another.
str(tcm)
Formal class 'dgTMatrix' [package "Matrix"] with 6 slots
..@ i : int [1:1557265] 6678 1284 7363 1284
6079 2568 5993 5993 7449 2654 …
174

Text Mining in Practice with R
..@ j : int [1:1557265] 10328 3918 10752 3922
6852 7846 9933 9934 7691 4773 …
..@ Dim : int [1:2] 10838 10838
..@ Dimnames:List of 2
.. ..$: chr [1:10838] "dreamy" "cell" "goose"
"gigantic" …
.. ..$: chr [1:10838] "dreamy" "cell" "goose"
"gigantic" …
..@ x : num [1:1557265] 0.333 0.2 0.5 0.5
0.333 …
..@ factors : list()
What is the Skip Gram Method?
In building linguistic models mimicking grammar there are two methods. The
continuous bag of words and the skip gram model. The code shown in this sec-
tion uses the skip gram model.
Consider the following preprocessed sentence.
“after fouling out of the game steph curry complained to the referee and
threw his mouthpiece in frustration”
Choosing a skip gram window of 1 would mean that each word’s context is
defined by the words on either side of the target word. For example, the words in the sentence “after” and “out” are the context for the word “fouling.” This is done for each word and its corresponding context words. So the target and contextual data may look like Table 5.7.
Skip gram modeling tries to predict the context words based on the target
word. For example if the target word was “curry” then the model will try to predict the likelihood of steph and then curry predicting complained. Since there is a professional basketball player named Stephan Curry, it is more likely to predict Table 5.7 A portion of the example sentence target and context words with a window of 1.
Target
Preceding context word
Proceeding context word
fouling
after
out
out
fouling
of
of
out
the
the
of
game
game
the
steph
steph
game
curry
…
…
…

5 Hidden Structures: Clustering, String Distance, Text Vectors and Topic Modeling 175
Table 5.8 A portion of the input and output relationships used in skip gram modeling.
Input
Output
fouling
after
fouling
out
out
fouling
out
of
of
out
of
the
the
of
the
game
game
the
game
steph
steph
game
steph
curry
that than red curry if the larger corpus contained more basketball than cooking themes. An example of the prediction schema for target and context words is
shown in Table 5.8.
The input and output objective function is defined over the entire document
or large batches of the document terms. As the model builds it computes the loss between the input and output against the input and some “noise” or contrasting words. For example, predicting the probability of steph from curry with a noisy example that is predicting steph from some other word such as cavaliers. While the Cavaliers may be elsewhere in a document concerning basketball, Stephan
Curry never played for them and is likely not directly a 1 window skip gram input.
So the loss between the two probabilities steph, curry and cavaliers, curry is computed. As this loss function is calculated for inputs, outputs and inputs to noise is done across the entire document for each word and the word vectors move in
hyperspace. The neural network model eventually learns how to distinguish real words from the random noise words. Once this is accomplished the word vectors have a remarkable ability to understand the words in context.
The term co‐occurrence function uses a window of 5 n‐grams not one
so it is more complicated and accurate than the simple example outlined here.
Now you have to fit a vector model based on the TCM. In this example, you
are calculating a GloVe model. The model will first construct vectors with the TCM as the data followed by the parameters you specified. Next the desired
dimensions of the word vectors are specified as 50, but they can be changed to
176

Text Mining in Practice with R
increase the hyperspace dimensionality. Next x_max specifies the maximum
number of co‐occurrences as the weighting function. Increasing this parameter brings in more information thereby ensuring a more stable model. However,
this increases the computation time needed. Next the learning rate is specified.
This is a parameter that may improve results by explicitly stating a low value, but is not recommended because the glove model employs an optimization
algorithm for this purpose automatically. GloVe uses a gradient descent algorithm to optimize learning rates automatically. Lastly the number of iterations specifies the number of times the optimization algorithm is applied. More
specifically it is the number of times the AdaGrad algorithm is applied to the neural network weights, and each round is called an epoch. At each epoch, the AdaGrad algorithm adjusts the learning rate of the model without you having
to do so manually. AdaGrad performs large updates for infrequent terms and
conversely enacts small learning rate changes for frequent terms. This makes it well suited for sparse matrices, as is often the case for text. You will see the AdaGrad algorithm at work when you run the code as it prints a loss result for each epoch. You will see the epoch cost being minimized over each epoch but
do not be tempted to increase the number so that the cost becomes zero. This will result in an inaccurate model.
fit.glove <- glove(tcm = tcm,
word_vectors_size = 50,
x_max = 10, learning_rate = 0.2,
num_iters = 15)
Recall that the dimensions of the TCM were 10838 by 10838, corresponding to
individual words. The fit.glove object’s second element, fit.
glove$word_vectors, contains the word vectors. In it there is another list
which contains 10838 individual vectors with 50 numbers for each. These represent a vector with 50 values for each word in the TCM. It is these vectors that can be explored to understand meaning and context.
Before starting to explore the word vectors you have to add the two fit.
glove vectors together and assign the words to each value using rownames
instead of a numeric index. Next you square then square root the values for use later. The code below performs all of these tasks.
word.vectors <- fit.glove$word_vectors[[1]] +
fit.glove$word_vectors[[2]]
rownames(word.vectors) <- rownames(tcm)
word.vec.norm <- sqrt(rowSums(word.vectors^2))
The first example of exploring the word vectors is done next. To begin you
select the vector for “walk,” subtract the vector for “disappointed” and then add

5 Hidden Structures: Clustering, String Distance, Text Vectors and Topic Modeling 177
the vector for “good.” So the result should be representative of what a good walk without disappointment is within the Airbnb reviews. This was chosen
because in chapter 4 the Airbnb word clouds showed that good reviews were
within walking distance. So hopefully the resulting good.walks contextual
vector will illustrate what specifically about the walks make them good.
good.walks <- word.vectors['walk', , drop = FALSE] -
word.vectors['disappointed', , drop = FALSE] +
word.vectors['good', , drop = FALSE]
The good.walks object is a matrix with one row and 50 values correspond-
ing to its coordinates in the hyperspace. To make a meaning of the seemingly arbitrary numbers the text2vec package provides a cosine distance function. It is passed the matrix query – in this case good.walks. Then it must be given the matrix source containing all the word vectors. Lastly it is passed the normalized values that were created earlier. The resulting cosine distance
matrix is a single row matrix with a length 10838. This represents the cosine distance between the good.walks and all other words in the vocabulary.
cos.dist <- text2vec:::cosine(good.walks,
word.vectors,
word.vec.norm)
Since you will only care about the top terms, the following code sorts and
prints the top 10 terms according to cosine similarity. Table 5.9 shows the top terms. In it you can see that the algorithm has correctly understood the
Table 5.9 The top vector terms from good.walks.
Term
Cosine distance
Walk
0.8319209
Close
0.8245839
T
0.7779517
Subway
0.7727851
Downtown
0.7647843
Short
0.7556932
Walking
0.7542060
Also
0.7485843
Convenient
0.7419344
Good
0.7411359
178

Text Mining in Practice with R
meaning of good walks. They are short and convenient, close to downtown and
subways and T commuter rail.
head(sort(cos.dist[1,], decreasing = T), 10)
You can easily switch the terms to explore within the code. Additionally in
Chapter 4 the mention of dirty sinks was considered negative in the reviews.
Now the code has been changed to explore what other words are part of the
contextual meaning for dirty sinks.
dirty.sink <- word.vectors['sink', , drop = FALSE] -
word.vectors['condition', , drop = FALSE] +
word.vectors['dirty', , drop = FALSE]
cos.dist <- text2vec:::cosine(dirty.sink,
word.vectors,
word.vec.norm)
head(sort(cos.dist[1,], decreasing = T), 10)
The resulting ten words from this code are shown in Table 5.10. Part of the
contextual meaning of a dirty sink is mentions of other items in an Airbnb
review that can be dirty. So the algorithm has started to understand the meaning of dirty applied to nouns.
With other large corpora the meanings will vary. It is best to first do some rudimentary exploration, as was shown in chapter 4, so the vector exploration shown here is more informed. If you were an Airbnb host not only should you
Table 5.10 The top ten terms demonstrating the cosine distance of dirty and other nouns.
Term
Cosine distance
Sink
0.8305685
Dirty
0.7270638
Toilet
0.6514039
Dishes
0.6298118
Bathtub
0.5420831
Microwave
0.5365451
Kitchenette
0.5272143
Hairdryer
0.5244365
Plug
0.5239127
Dishwasher
0.5159356

5 Hidden Structures: Clustering, String Distance, Text Vectors and Topic Modeling 179
clean your sink but also the other items in the Table 5.10! There are more applications of text vectorization in terms of both identifying uncommon contex-
tual meaning and predictive modeling.
5.5 Summary
In this chapter you applied various techniques to understand the underlying
structure of resumes and newspaper articles. Specifically you learned:
●
●
how to perform k‐means clustering
●
●
how to perform k‐mediod clustering
●
●
to use the StringDist library with Hclust
●
●
what LDA is
●
●
LDA topic modeling using LDA and LDAvis
●
●
other topic modeling packages
●
●
use word2Vec to get text vector calculations
●
●
make a compelling treemap visualization
181
6
Document Classification: Finding Clickbait
from Headlines
In this chapter, you’ll learn
●
●
how to create a DTM from a training set and use it when constructing new
DTMs for new documents
●
●
what a sparse model matrix is
●
●
how to create a data partition for training and testing of the document classification algorithm
●
●
how to create a document classification algorithm
●
●
what lasso regression is and how it differs from linear regression
●
●
perform cross validated lasso regression
●
●
how to calculate the area under the curve (AUC) for the document
classifier
●
●
how to calculate the overall accuracy of the classifier on unseen headlines
●
●
how to identify the words most contributing to clickbait headlines
6.1 What is Document Classification?
Document classification falls within the field of machine learning. Machine
learning is an extension of artificial intelligence; it represents the tool set, methods and approaches allowing a computer to write code from data on
behalf of the programmer.
There are two approaches to machine learning. The first set of algorithms
make up “unsupervised learning.” Without a dependent or outcome variable
the unsupervised learning algorithms look for complex patterns within the
data and infer outcomes such as “cluster.” Unsupervised approaches were
explored in the last chapter. For review, if you applied unsupervised approaches to all historical basketball teams with seasonal stats, an algorithm could identify the best and worst team clusters without a pre‐existing label “best” or
“worst.”
182

Text Mining in Practice with R
However, in this chapter you explore approaches for supervised learning.
Supervised learning algorithms require an outcome or “y” variable for each
observation. Supervised learning methods require the defined outcome for
each observation or document. The result of the algorithm is not a cluster, but a prediction or classification for “y.” The prediction is the algorithm’s best guess at the “y” value. Figure 6.1 illustrates the development step of taking labeled “y”
data and training an algorithm. Figure 6.2 shows how new data is given to the algorithm and the outcome is then predicted.
Drilling down further, there are two types of outcome variables for super-
vised learning. The first is classification and the second is continuous prediction. For example, predicting the winner of a basketball game can be done
using classification or prediction. A team can win or lose a game. These represent two classes, win or lose, for the outcome and as such you could build a classification algorithm. In contrast, you could build a different algorithm to predict the team scores. Predicting scores is a continuous outcome because the points have a continuous range between 0 and some larger number.
This chapter covers classification outcomes related to documents. The
model inputs are document terms, or term weights. The algorithm is then
applied to new documents so that the new documents’ category is classified.
The next chapter uses text to make classifications or predictions too. However, the output is not related to another new document. Instead the output in the next chapter’s algorithms is an external prediction or classification. For the purposes of this chapter, a simple document classification definition is below.
Document classification assigns a document to one or more classes or categories.
X
X
X
X
Y
X
X
X
X
Y
X
X
X
X
Y
1
2
3
4
1
1
2
3
4
1
1
2
3
4
ithm
ampleEx Algor
Figure 6.1 The training step where labeled data is fed into the algorithm.

6 Document Classification: Finding Clickbait from Headlines 183
X1
X2
X3
X4
ta
Daw
Ne
Y
e
Outcom
Figure 6.2 The algorithm is applied to new data and the output is a predicted value or class.
There are many machine learning books devoted to in‐depth explanation
and analysis. This book is meant to be a practical guide for text mining. As such, this chapter demonstrates a case study and one method for document
classification. The principles learned in this chapter can aid in applying different algorithms and in other use cases. For example, a well‐documented
approach is to use naive Bayes for spam classification although that is not the method illustrated in this chapter. You can extend your knowledge beyond this case study by reading specific machine learning books.
6.2 Clickbait Case Study
In August 2016, leaders at Facebook announced a plan to identify and limit
clickbait, because the Facebook newsfeed goal is to “show people the stories most relevant to them.” Facebook leaders contend that clickbait clutters newsfeeds and detracts from authentic communication. The Facebook algorithm
scores headlines according to whether or not the headline withholds information (requiring the user to click the link) and whether or not the text is misleading or exaggerated. Clickbait links often have both of these attributes. According the Facebook announcement limiting clickbait, the document classification
184

Text Mining in Practice with R
algorithm was trained on tens of thousands of headlines according to these two dimensions. For simplicity, you will take a simpler approach classifying a
smaller number of headlines as clickbait.
Examples of clickbait include
●
●
The Most Shocking ‘Jerry Springer’ Episode EVER!!
●
●
A Man Spots A Reckless Driver, When He Stops Her I’m Shocked. OMG!!
●
●
ALERT: Diet Pepsi Removes Aspartame And Replaces It With An Equally
Dangerous Chemical!
●
●
How To Get Weed In 5 Minutes Without Leaving Your Couch
●
●
She Was Born With Birthmarks That Covered Her Entire Body But Wait
Until You See Her Now!
In this case study, suppose you are a text miner working at a large social
media company. The company makes money through ads placed in and around
its newsfeed. To remain salient, the feed needs to have engaging content.
However, dubious social posts are cluttering the newsfeed, thereby affecting the ad revenue. These clickbait posts lure your users away from the newsfeed, costing the company ad revenue. Company leaders have asked you to create a
simple algorithm to identify clickbait posts so they can be removed from the newsfeed. Your text mining workflow may look something similar to this.
1) Define the problem and specific goals. Create a document classification algorithm identifying clickbait. Evaluate the algorithm and make suggestions on improving its performance.
2) Identify the text that needs to be collected. For this example, your model will be built using 3000 headlines. The “y” variable is 1 if the headline came from a clickbait source and 0 if the source was considered newsworthy.
Getting the Data
Please navigate to www.tedkwartler.com and follow the download link. For this analysis, please download “all_3k_headlines.csv.” The file headlines were obtained from multiple news and clickbait sources. The file contains three
columns, headline, url and source .
3) Organize the text. To begin, the text will be separated into training and test sets. The model will be built using the training, and evaluated based on the test set.
4) Extract features. To build a classification algorithm you will construct a TFIDF weighted DTM from the training data. The original DTM matrix
TFIDF terms and weight will be used to construct the test DTM. This allows
you to train the model separately without preprocessing the entire corpus
when presented with new unseen documents.

6 Document Classification: Finding Clickbait from Headlines 185
5) Analyze. DTM matrices are extremely sparse. As a result, you will train a GLMNet lasso regression. Lasso regression is memory efficient, making it
ideal for document classification. Then you will evaluate the classification algorithm’s accuracy and determine the most impactful clickbait terms.
6) Reach an insight or recommendation. You will know the top terms signal-ing clickbait. Further you will be able to recommend ways to improve the
algorithm’s accuracy.
6.2.1 Session and Data Set‐Up
After loading the headlines data frame into your R session you need to add the appropriate packages. The tm library is very familiar by now. Matrix provides memory efficient methods for manipulating sparse matrices. Recall, DTMs are
sparse, containing many thousands of columns made primarily of zeros. The
glmnet package provides elastic net regression which is a combination of
lasso and ridge regression. The regression specifics will be explained later, but this package provides the Fortran bindings for training and predictions. The caret library is useful for data partitioning, categorization and regression training. The pROC library helps create and analyze receiver operator curves (ROC). The ROC is an evaluation metric used in classification problems. The
last two packages, ggplot2 and ggthemes, are used for visualizations.
library(tm)
library(Matrix)
library(glmnet)
library(caret)
library(pROC)
library(ggthemes)
library(ggplot2)
library(arm)
In order to have consistent preprocessing, it is best to create a custom function.
Then you can apply the same steps to the training data and on any new docu-
ments that need to be classified. Usually headlines do not have misspellings, emoji or unusual characters so the function is very basic.
headline.clean<-function(x){
x<-tolower(x)
x<-removeWords(x,stopwords('en'))
x<-removePunctuation(x)
x<-stripWhitespace(x)
return(x)
}

186

Text Mining in Practice with R
To avoid recreating the entire DTM and retraining a model each time you are
presented with new documents you must match a new document’s attributes
to the existing DTM terms that were used for model training. For example, if you create a model based on 1000 terms represented as matrix columns, any
new document must have a value for the same 1000 terms. That means the new
document DTM may have to lose terms that were not part of the original data
or original DTM terms to the new DTM. To score a new document, the algo-
rithm will be expecting the new DTM to have the same number of columns for
new data as was contained in the training data.
The RTextTools library contains a function called create_matrix
which allows you to reference an originalMatrix for constructing a new
DTM. However, the library is not actively maintained and contains a typo in
line 42 of the code. If you decide to use the create_matrix function you will need to fix the original code using this snippet. Once the trace window appears navigate to line 42 and change “A” to “a.” Figure 6.3 is a screenshot of the trace window showing the capital “A” that needs to be changed at line 42.
install.packages("RTextTools")
library(RTextTools)
trace("create_matrix",edit=T)
To avoid using an unmaintained package, you can use the simpler version of
create_matrix shown below, called match.matrix. The custom
match.matrix function drops the internal preprocessing steps and tokeni-
zation from create_matrix. The match.matrix function retains the
ability to reference an original matrix for new document DTMs. This will be
shown later in the code.
match.matrix accepts a single text column, an original matrix object if
desired and a term weighting parameter. Recall that DTMs can be constructed
using term frequency or TFIDF weighting. You can specify either when calling this function. Within this function the DTM controls are defined first. Next, the vector’s encoding is changed to avoid errors stemming from unusual characters. After that, the VCorpus function is applied to the text vector. A DTM
is constructed with DocumentTermMatrix along with the previous control
input.
Figure 6.3 Line 42 of the trace window where “Acronym” needs to be changed to “acronym.”

6 Document Classification: Finding Clickbait from Headlines 187
The next internal function code beginning with an if statement retains the
original matrix’s information to be applied to a new document. If the origi-
nal.matrix parameter is not NULL then the matching will occur. This is a
programmatic way of saying “if you reference an original matrix then begin the matching process and if not then ignore the matching process.” Specifically the terms in the new matrix that are not in the original are dropped. Any terms in the original that are not in the new documents are added. The weight of all new terms is set at 0 so that it does not impact the original DTM weights. There is a second if statement in case the weighting is tf‐idf. If the original DTM
weighting is tf‐idf then the weight is changed to a near zero amount,
0.000000001, to avoid an error. Ultimately, the output of this function is a DTM, as you have used many times throughout this book. When constructing
the training matrix you would not add an original.matrix parameter but
later during testing on new documents you would reference the original matrix object for matching and weighting.
match.matrix <- function(text.col,
original.matrix=NULL,
weighting=weightTf)
{
control <- list(weighting=weighting)
training.col <-
sapply(as.vector(text.col,mode=”character”),iconv,
to=”UTF8”,sub=”byte”)
corpus <- VCorpus(VectorSource(training.col))
matrix <- DocumentTermMatrix(corpus,control=control);
if (!is.null(original.matrix)) {
terms <-
colnames(original.matrix[,
which(!colnames(original.matrix) %in% colnames(matrix))])
weight <- 0
if (attr(original.matrix,”weighting”)[2] ==”tfidf”)
weight <- 0.000000001
amat <- matrix(weight,nrow=nrow(matrix),
ncol=length(terms))
colnames(amat) <- terms
rownames(amat) <- rownames(matrix)
fixed <- as.DocumentTermMatrix(
cbind(matrix[,which(colnames(matrix) %in%
colnames(original.matrix))],amat),
weighting=weighting)
matrix <- fixed
}
188

Text Mining in Practice with R
matrix <- matrix[,sort(colnames(matrix))]
gc()
return(matrix)
}
}
With the set‐up functions and libraries loaded you are now able to start
training your document classification algorithm. With the set‐up and custom
functions complete you have completed step 3, text organization, of the text mining workflow.
6.2.2 GLMNet Training
The next step in the text mining workflow is to extract features. To do so, parse the all_3k_headlines.csv file. The createDataPartition function selects random number rows based on the dependent variable distribu-
tion. This is helpful if you have unbalanced classes or multiple classes. The p parameter will select 50% of all row numbers. This leaves 50% or 1500 headlines to be used as a holdout test set. You can adjust this parameter to increase the number of records used in the training split.
When building models it is important to have a holdout set. Otherwise you
run the risk of “overfitting” your model. Without a holdout, you may believe the model is vastly more accurate than it really is when confronted with new data. In this snippet, the train number vector is used to index the headlines data into train.headlines and using a minus sign, removing the
train numbers leaving the test.headlines.
headlines<-read.csv('all_3k_headlines.csv')
train<-createDataPartition(headlines$y,p=0.5,list=F)
train.headlines<-headlines[train,]
test.headlines<-headlines[-train,]
At this point, the code will focus on the training data. First apply the headline.clean function to preprocess the text vector. Then apply the match.
matrix function to construct a DTM. Within match.matrix add the
term weighting tm::weightTfIdf. The double colon tells R to use the
specific meaning of weightTfIdf from the tm “namespace.” If you want to
weight by term frequency, use tm::weightTf. You do not need to specify
the third parameter, original.matrix, since train.dtm is the original matrix
clean.train<-headline.clean(train.headlines$headline)
train.dtm <- match.matrix(clean.train,
weighting=tm::weightTfIdf)

6 Document Classification: Finding Clickbait from Headlines 189
The resulting train.dtm object is a familiar DTM from the tm package.
Calling train.dtm provides information including the 4996 terms among
the 1500 documents.
> train.dtm
<<DocumentTermMatrix (documents: 1500, terms: 4996)>>
Non-/sparse entries: 10461/7483539
Sparsity : 100%
Maximal term length: 23
Weighting : term frequency - inverse document
frequency (normalized) (tf-idf)
The DTM needs to be changed into an acceptable object for modeling. First
change the DTM to a simple matrix with as.matrix. Then using Matrix
change the object into a sparse matrix. The sparse matrix drops the zeros completely, making the object very memory efficient. Within Matrix, the
sparse=T parameter automatically becomes TRUE if more than half the val-
ues are 0. The parameter is shown here for educational purposes only.
train.matrix<-as.matrix(train.dtm)
train.matrix<-Matrix(train.matrix, sparse=T)
To understand the differences between train.dtm and the sparse train.
matrix use the code below. The dimensions are still 1500 rows by 4996 col-
umns. However, when calling a section of the train.matrix the zero values
are now a period. This makes the matrix very lightweight for modeling.
dim(train.matrix)
train.matrix[1:5,1:25]
What are ElasticNet, Ridge and Lasso Regression?
Foundationally ElasticNet, ridge and lasso approaches are forms of multiple variable regression. According to Barry Keating in Business Forecasting with ForecastX

“multiple regression is a statistical procedure in which a dependent variable is modeled as a function of more than one independent variable.” That is to say the outcome variable is predicted by a linear combination of unrelated inputs.
For example, to predict the number of ice cream cones sold, a linear regres-
sion may have inputs including “number of people passing by” and “tempera-
ture.” The linear regression model may use a y intercept, called “beta‐naught (β0),” and beta coefficients for the “number of people passing by” and “price”
inputs. These input coefficients are represented as “beta‐1 (β1)” and “beta‐2 (β2)”
190

Text Mining in Practice with R
respectively. With more independent variables or inputs comes more beta coefficients. Lastly, the regression has an error term to account for errors between predicted and actual values. With this information, the ice cream cone regression could be written as:

Number of Ice

Cream Cones
= β0 + β1X1 + β2 X2 + ε
Where X1 is equal to the number of people passing by and X 2 equals the temperature. If the linear model was created, the beta coefficients would
contain numeric information affecting the baseline ice cream cones sold,

β0 . In this example, the equation may look like:

Number of Ice

Cream Cones
= 15 + (1
. * # of
people) + (− 2
. 0 * price)
Reviewing the coefficients, the baseline number of ice cream cones sold is 15.
For each 10 people passing by, you can expect to sell an additional ice cream cone (0.1*10). That number is offset by the negative coefficient assigned to price. In this fictitious example, if the price was set at $5 per cone, sales dip by 1 cone (−0.2*5.). If the ice cream stand had 100 people pass by while prices were $5 per cone, the stand would sell 24 cones. The linear combination of inputs is 15 + 10 (0.1*100) − 1 (−0.2*5). As you build a regression model keep in mind that coefficients should align with expectations about the business problem. For example, using temperature as an additional factor should increase the ice
cream sales and the resulting coefficient should be positive.
In the ice cream example, the outcome, number of ice cream cones, is con-
tinuous. However, a special type of regression called logistic regression can be used to calculate the logit, which can be changed into probability between 0
and 1. Since the probability outcome is between 0 and 1 a logistic regression can be used for binary classification.
The glmnet package constructs logistic regression among other types.
The “glm” stands for “generalized linear model.” Generalized linear models are more flexible than ordinary linear regression models because GLMs allow for
response variable errors to be non‐normally distributed. Additionally, the
glmnet models employ a penalty parameter. Specifically, the penalty parame-
ters are employed in both ridge and lasso regression. The penalty variable is called “lambda.” The mixture between lasso and ridge is captured in the “alpha”
parameter. When alpha=1 the package performs lasso. Conversely when
alpha = 0, ridge regression is performed. Alpha values between 0 and 1 mix
the penalty parameter method resulting in an ElasticNet model.
Lasso stands for “least absolute shrinkage selection operator.” Lasso performs variable selection with regularization by ignoring inputs that have little

6 Document Classification: Finding Clickbait from Headlines 191
explanatory power. The lasso method forces the sum of the beta coefficients to be less than a fixed amount. Therefore certain coefficients are forced to 0. The result is a smaller model with fewer inputs, which is easily interpreted. This method is great for text classification because the training data contains so many columns.
Rather than create many small coefficients for thousands of columns (terms), the input words are penalized. This forces the model to throw out many thousands of words and, in doing so, the model is constructed accurately and quickly. For lasso regression the regularization or penalty calculation method is “L1.”
The ridge regression technique adds a quadratic part to lasso’s regularization penalty. Similar to lasso, ridge regression assumes a constant variance and input variable independence. However, the regularization calculation in ridge regression is “L2.”
In both L1 and L2 regularization the calculations penalize document terms or model inputs. By removing many inputs to a model the hope is that the simpler algorithm is more applicable to new data and avoids overfitting. In both cases the penalty ensures that large coefficients are not assigned to rare words. Rare words with large coefficients reduce the effectiveness of the model because
new documents are unlikely to contain the rare word. Using regularization
avoids assigning coefficients to rare terms thereby improving the model’s accuracy for new observations. The math underlying L1 and L2 calculations requires significant explanation beyond the scope of this small section. In very short, L1
and L2 are two methods for calculating the magnitude of a value using a jagged geometric distance versus a straight line. An analogy would be measuring distance “as the crow flies” or navigating city blocks in a jagged pattern between two points.
For practical purposes, remember that lasso regression using L1 regulariza-
tion attempts to change the coefficients to zero in as many input variables as possible. In contrast, ridge regression’s L2 regularization will push coefficients towards zero but not exactly zero. Generally speaking, lasso will be a simpler model because it ignores more inputs than ridge but often lasso is slightly less accurate than ridge. This is because the L2 regularization is able to keep more inputs compared to L1’s need to force inputs to zero.
Finally, mixing the two regularization techniques by changing alpha between
0 and 1 will create an elastic net regression model. The elastic net regression is a linear combination of L1 and L2 penalty methods. In the end, the alpha input is a model tuning parameter balancing accuracy, and simplicity.
You are now ready to train your glmnet model using cv.glmnet. The cv.
glmnet function performs cross validation when constructing a glmnet
model. Cross‐validation is a method for breaking up the training data and
repeatedly shuffling the groups. Iteratively training on different groups of data

192

Text Mining in Practice with R
Training
Training
...
Training
Training
Training
Training Data
Training
olds or k times
Training
fled nf
Training
Training
Shuf
Validation
Average performance among all model folds.
Figure 6.4 Training data is split into nine training sections, with one holdout portion used to evaluate the classifier’s performance. The process is repeated while shuffling the holdout partitions. The resulting performance measures from each of the models are averaged so the classifier is more reliable.
helps reduce the likelihood of overfitting. As a result, the model has a better chance of generalizing to new data when put into practice. At the conclusion of the multiple model builds, the classifier performance measures are averaged. In cross validation, every record has a turn at being in the training and then in the holdout set. Figure 6.4 visually depicts cross validation on a training data set.
To create the object cv, pass the sparse matrix train.matrix into the cv.
glmnet function. Next define the outcome or y variable. The sparse matrix contains the word columns but not the 0 or 1 outcome variable. Thus the y= parameter uses the column train.headlines$y from the original training set. Further,
the column contains numbers and must be changed to a categorical variable using as.factor. Next, the alpha parameter is the mixing input for how regularization (penalty) is calculated. If interested see the prior section for more detail. As written alpha=1 will ensure that a lasso regression model is created. The family= parameter defines how the model should behave. The complete family
parameter options include “Gaussian,” “binomial,” “Poisson,” “multinomial,” “cox”
and “mgaussian.” Since the outcome “clickbait” is binary, the family is binomial forcing the model to build a logistic regression. If the outcome has multiple classes, this parameter would change to multinomial. The nfolds input defines the
number of cross validation folds to perform. The higher the number, the longer computational time, but the model has an improved chance of being reliable when put to use. The last parameter type.measure=’class’ selects the best penalty
“lambda” value from among the cross validation models based on the lowest misclassification rate between clickbait and legitimate headlines. Other measures can be chosen depending on the model family and the misclassification implications.
The type.measure inputs include “deviance,” “AUC,” “class,” “mse” and “mae.”

6 Document Classification: Finding Clickbait from Headlines 193
cv<-cv.glmnet(train.matrix,
y=as.factor(train.headlines$y), alpha=1,
family='binomial', nfolds=10, intercept=F,
type.measure = 'class')
The cv object is a list containing the model information. One way to review
the outcome is by calling plot on the model object. The graphic demonstrates the relationship between the misclassification rate and the lambda penalties.
Changing the type.measure parameter when calling cv.glmnet will
change the y axis accordingly. Within the graph, there are two vertical dotted lines. The left‐most line represents the lambda value which minimizes the misclassification rate. The other dotted vertical line represents the highest regularization value within one standard deviation of the minimal class error. A model based on second penalty value will have fewer inputs compared to a model
using the first dotted line lambda value. This helps you make an informed decision to balance complexity against accuracy when making predictions. Figure 6.5
demonstrates the cross validation results visually.
plot(cv)
Next use the classifier model on the training headlines to gain an understanding of the model’s accuracy. Keep in mind that the classifier is now being applied to headlines that it has already seen, and the accuracy will be inflated. Still, it is a good idea to review this information before applying the classifier to the test data.
If the model does not perform well here, investigate any data integrity issues, change the training set size, adjust text preprocessing and finally adjust the tuning parameters of the lasso regression. Doing so before applying the model to the test set ensures an a priori approach to the classification construction.
Use the predict function to apply the lasso regression to data. First, pass
in the lasso regression, cv, and a matrix of inputs. The matrix must contain the 1713 1705 1683 1680 1598 1436 1345 1089 565 367 165 76 31 10 4 3 2 2 2 1
0.50
or
0.45
ication Err
0.40
0.35
Misclassif
0.30
–7
–6
–5
–4
–3
log(Lambda)
Figure 6.5 The interaction between lambda values and misclassification rates for the lasso regression model.
194

Text Mining in Practice with R
same columns as was used during the training step. Next the type parameter
specifies whether or not the returned information should be the class “1” or “0.”
Changing this parameter to type="response" will return the probabilities instead of the final class for each row. Lastly, s=cv$lambda.1se instructs
the predict function to use a lambda value corresponding to the second ver-
tical dotted line in the previous figure. This minimizes the inputs without losing a lot of accuracy. You can change the s value to cv$lambda.min to use a
more complex model that truly minimizes the misclassification rate.
preds<-predict(cv,train.matrix,type=’class’,
s=cv$lambda.1se)
The preds object is a matrix with 1500 rows and a single column. The val-
ues correspond to 0 for a legitimate headline and 1 for clickbait. If probabilities are needed, change the type to response in the previous code.
Using the roc function, you can calculate the receiver operator characteris-
tics (ROC) curve. The curve represents the relationship between how sensitive and specific the model is. In other words, the relationship between the true positive rate on the y axis and the false positive rate on the x axis is displayed.
For example, if you were a doctor trying to classify cancerous tumors, you may want to be more sensitive and less specific. In doing so, you would lower the threshold of classifying a malignant tumor at the expense of being accurate.
This would mean more false positives, but would likely give you a better chance of saving lives, because you would address more tumors in total. In contrast, a model classifying citizens as terrorists must be very specific. Law enforcement cannot arrest large swaths of the population without some backlash. As a result, a terrorist classification has a high threshold and is not very sensitive. Instead, it would be very specific and require a high probability of being correct.
The total area under the curve (AUC) is a performance indicator for classification models. An AUC of 0.5 means that the model is no better than a random guess. AUC values below 0.5 are worse than random. A perfect model would
have an AUC equal to 1. Use the code snippet to calculate the ROC and AUC
for the training predictions. For roc, pass in the original classes and then the predicted values.
train.auc<-roc(train.headlines$y,as.numeric(preds))
train.auc
Calling train.auc in your console will print data characteristics and the
area under the curve result. An AUC of 0.892 is more than 0.5 and is approaching 1 so the model is performing well. Keep in mind that the score represents predictions on headlines that the model has already seen. Thus, it will perform better then predictions applied to the test headline set.
> train.auc

6 Document Classification: Finding Clickbait from Headlines 195
Call:
roc.default(response = train.headlines$y, predictor =
as.numeric(preds))
Data: as.numeric(preds) in 750 controls (train.
headlines$y 0) < 750 cases (train.headlines$y 1).
Area under the curve: 0.892
Call plot on the train.auc object to create the ROC curve. The diagonal
line at 45° represents a random guess. The area under the diagonal line is 50%
of the total square so it represents a 50/50 guess. The line extending upwards represents the ROC for the training set predictions. The line extends upwards above the diagonal line. The visualization is shown in Figure 6.6.
plot(train.auc)
Another way to review the performance is to review the classification accu-
racy. This can be done using a confusion matrix. To tally the results of the predictions and the actual headline values use the table function. In the
resulting confusion matrix, rows represent the predictions from the model
while the columns are the actual headline classes in the training set. For this model the confusion matrix results are presented in Table 6.1.
01.
0.8
y
0.6
Sensitivit
0.4
0.2
0.0
1.0
0.8
0.6
0.4
0.2
0.0
Specificity
Figure 6.6 The ROC using the lasso regression predictions applied to the training headlines.
Table 6.1 The confusion table for the training set.
Actual classes
0 = legitimate headlines
1 = clickbait
Predicted classes
0 = legitimate headlines
705
117
1 = clickbait
45
633
196

Text Mining in Practice with R
confusion<-table(preds,train.headlines$y)
The intersections of the same classes denote the headlines that the model
predicted correctly. Conversely the class differences represent incorrect predictions. So the model predicted a legitimate headline 822 (705 + 117) times.
The model was correct 705 times and incorrect on 117 other headlines. The
same is true for the clickbait class. The total clickbait predictions were 678.
This time the intersection shows 633 correct classifications versus 45 incorrect. To calculate overall model accuracy, sum the diagonal, representing the correct predictions for both classes, then divide by all observations. The code below uses the diag function nested inside the sum function and then divides that amount by the matrix sum. Diag will extract all values along the diagonal, no matter what the size of the matrix. This vector is then summed. In this case, the model classified 89.2% (1338/1500) of headlines correctly. Your model may differ slightly because the randomness of the data partition.
sum(diag(confusion))/sum(confusion)
So far, the analysis of the model is based on training data. You are technically analyzing the model’s output to ensure its overall accuracy and consistency.
Within the text mining workflow model building and review completes the
information extraction, step 4. The extracted information, a classification
model that has been reviewed, is now applied to the test data. Applying the
model to test data represents step 5 in the text mining workflow.
6.2.3 GLMNet Test Predictions
With your cross validated model constructed you are now able to make predic-
tions on new headlines. To do so, the model needs a matrix containing values with the same weighting as the training data, along with matching column
names. Applying the headline.clean function to the test set ensures pre-
processing consistency. Next, apply the match.matrix function to the test
headlines. As before pass in the headline object then the weighting parameter.
Be sure to use the same weighting as before. Lastly, pass in a parameter for original.matrix. Passing in the training matrix, train.dtm, ensures
that the columns match between the training and test matrices. Specifically, test words that do not appear in the training set are dropped. The words in common are retained, and columns of zeros are appended for any words that were in the training set but not in the test set. This is done because it is impossible for the lasso regression to make a classification on information it has not already seen, such as new words in the test set. Further, the regression model is expecting to have a value, even zero, for all columns presented during training.
clean.test<-headline.clean(test.headlines$headline)
test.dtm<-match.matrix(clean.test,
weighting=tm::weightTfIdf,
original.matrix=train.dtm)

6 Document Classification: Finding Clickbait from Headlines 197
test.dtm is another DTM from the tm package. Compare the previous
train.dtm and test.dtm by calling the objects in the console. Both DTMs
contain 4996 terms. The data partition split the headlines in half, so both contain 1500 documents, but this is not necessary. The only requirement is that the regression inputs must match, not the number of observations. The code below calls both test.dtm and train.dtm. The only difference between
the two is the number of non‐sparse terms.
> test.dtm
<<DocumentTermMatrix (documents: 1500, terms: 4996)>>
Non-/sparse entries: 7273/7486727
Sparsity : 100%
Maximal term length: 23
Weighting : term frequency - inverse document
frequency (normalized) (tf-idf)
> train.dtm
<<DocumentTermMatrix (documents: 1500, terms: 4996)>>
Non-/sparse entries: 10461/7483539
Sparsity : 100%
Maximal term length: 23
Weighting : term frequency - inverse document
frequency (normalized) (tf-idf)
As before, change the test.dtm to a simple matrix. Then change the object
to the memory efficient sparse matrix with Matrix. You can nest these func-
tions into a single line or use the pipe operator to make the code more concise.
The code below separates the functions for educational purposes, rather than nest functions or use the pipe operator.
test.matrix<-as.matrix(test.dtm)
test.matrix<-Matrix(test.matrix)
To make predictions on the test data, use the predict function with the
model object. The predict function accepts the cv model first. Then the
response type “class” is specified. With “class” the class predictions, 1 or 0, are returned. In contrast, using type ="response" will produce the probability for each of the test headlines. Lastly, the “s” parameter is defined. In Figure 6.6, there were two lambda values denoted by dotted lines. The first
represented the lambda value that minimized the overall misclassification
error. The right‐hand lambda value in Figure 6.6 maximized the penalty within one standard deviation of the minimum or best performing model. This value
has the lowest number of inputs, and sacrifices a little accuracy. The code
below specifies the minimum lambda value from the cross validated model.
Within the cv object, the value is captured as cv$lambda.min. To drop
198

Text Mining in Practice with R
more inputs, thereby making the model simpler yet retain most of the predic-
tive accuracy, specify s=cv$lambda.1se.
preds<-predict(cv,test.matrix,type=’class’,
s=cv$lambda.min)
headline.preds<-data.frame(doc_row =
rownames(test.headlines),class=preds[,1])
The second line creates a concise data frame with appropriate column names
and referencing the test rows from the original data set. To examine the class predictions you can call head on the preds. Within the table, class is a categorical factor and must be changed to numeric for calculating the ROC. This
information is given in Table 6.2.
6.2.4 Test Set Evaluation
The preds object is a matrix with 1500 results. Evaluation metrics can be
calculated on the test set because the test data represents known headlines and outcomes. When the model is applied to truly new headlines, outcomes are
unknown so calculating the ROC is not possible. In practical application, periodic sampling and classification reviews help to keep the model from becom-
ing stale. Using labeled test data, the roc function calculates the receiver operator characteristics curve as before. Pass in the actual test headline classes with the predicted classes after the predictions are changed to numeric. Calling the test.auc object prints the AUC information.
test.auc<-roc(test.headlines$y,as.numeric(preds))
test.auc
> test.auc
Call:
Table 6.2 The first six rows from headline.preds.
doc_row
class
1
1
2
1
3
1
6
1
7
0
9
0

6 Document Classification: Finding Clickbait from Headlines 199
roc.default(response = test.headlines$y, predictor =
as.numeric(preds))
Data: as.numeric(preds) in 750 controls (test.
headlines$y 0) < 750 cases (test.headlines$y 1).
Area under the curve: 0.7698
You should expect a lower AUC because these headlines represent com-
pletely new and unseen information compared to the cross validated training
set. In this case, the train.auc value is 0.892 compared to the test.auc
value of 0.7698. This drop‐off is not significant, and both are above 0.75.
Therefore the approach is showing merit at identifying clickbait headlines.
AUC values above 0.5 mean that the model is better than random guessing.
A value of 1.0 means that the model is likely overfitting the data and has some flaw. To improve this model’s test.auc score a data scientist or text miner
could increase the number of training headlines, add bi‐gram and tri‐grams to the matrices making both wider, or increase the number of headline sources
to add diversity to the training set.
Use the code below to visually compare the AUC curves for both models.
Using the base plot device function, pass in the train.auc specifying the
color “blue” along with a title using the main parameter. Next add a layer for the test.auc curve to be plotted in “red.” The code below employs lty=2 so
that the line is dashed to add further contrast. As you move along the test set AUC curve it is lower than the training set yet remains above the diagonal
random threshold line. Keep in mind that depending on the data partition the exact AUC and resulting visual may differ slightly. Figure 6.7 compares both AUC curves.
RED = test, BLUE = train
01.
0.8
y
0.6
Sensitivit
0.4
0.2
0.0
1.0
0.8
0.6
0.4
0.2
0.0
Specificity
Figure 6.7 A comparison between training and test sets.
200

Text Mining in Practice with R
plot(train.auc,col="blue",main="RED = test, BLUE =
train",adj=0)
plot(test.auc, add=TRUE,col="red", lty=2)
Next use table to create a confusion matrix. The function accepts the pre-
dictions contained in the second column of the headline.preds data frame
along with the actual outcomes from the test set, test.headlines$y. In
the second line the sum of the diagonal divided by the total cases calculates the misclassification rate for the test set. It is likely the case that rerunning the model will vary because of the data partition and the way the lasso regression removes inputs based penalty calculations.
confusion<-table(headline.preds[,2],test.headlines$y)
sum(diag(confusion))/sum(confusion)
A Word of Caution
Avoid repeatedly rerunning the test score analysis hoping for improved results based solely on partitioning and lasso penalty behavior. When the test set evaluation is rerun, accuracy scores have a range of 0.70 to 0.76. Rerunning the analysis in the hopes of a better partition violates a priori assumptions. Fishing for scores based on a random split is not sound data science. Instead, make final adjustments to tuning parameters when training the model not after seeing the test set results. At the training stage, adjustments should be made to cross validation folds, the size of the training set itself and the alpha parameter. In fact, it is a good idea to rerun the model building step with training data using
alpha=0. This will change the regression from lasso to ridge. Then retrain the model using an alpha between 0 and 1. This will help you learn the accuracy
tradeoffs between lasso, ridge and elastic net regression. For each, the accuracy will change along with this tuning parameter. Once you feel comfortable that the results are maximized to your best a priori knowledge and the model is stable with a large number of cross validation folds then proceed to apply the
tuned model to the test set. The test set scores are the best indication of how the model will behave when put to real use.
6.2.5 Finding the Most Impactful Words
Analyzing both evaluation metrics and individual model inputs is needed to
complete step 5 of the text mining workflow. A benefit of using linear regression is that the model can be examined for insights. The beta coefficients have a magnitude and positive or negative sign relating to the outcome relationship.
A text classification model can have thousands of inputs which can be

6 Document Classification: Finding Clickbait from Headlines 201
overwhelming to process. Instead, only reviewing the top and bottom terms
can still be meaningful.
To organize the coefficients for the thousands of term inputs, the coef function is applied to the cv linear model object along with a specific lambda value.
Doing so extracts the coefficient values for each input term, and the input
terms are captured as row names. The numeric information is returned as a
sparse matrix that is changed to a simple matrix nesting with as.matrix.
glmnet.coef<-as.matrix(coef(cv, s='lambda.min'))
The row names are appended as a separate vector along with column names.
The data.frame function accepts the column name, words and then a vec-
tor of row.names from the prior matrix. The second column in the new data
frame is named glmnet_coefficients and contains the numeric beta
coefficients in the model.
glmnet.coef<-data.frame(words= row.names(glmnet.coef),
glmnet_coefficients=glmnet.coef[,1])
Reordering the data frame by decreasing coefficient value is done using
order along with the decreasing=T parameter. This is done within the
data frame using square brackets as if you were indexing specific values. Also, the vector of row names is changed to a categorical factor so ggplot can
handle the terms more appropriately.
glmnet.coef<-glmnet.coef[order(
glmnet.coef$glmnet_coefficients, decreasing=T),]
glmnet.coef$words<-factor(glmnet.coef$words,
levels=unique(glmnet.coef$words))
The glmnet.coef data frame contains a value for over 5000 terms along
with a y intercept. Exploring the coefficients can be done by calling summary on the numeric vector. The lasso regression forced many of the term coefficients to zero which is evident in the summary results. The first and third
quartile are 0.00 and the mean is 0.0013.
summary(glmnet.coef$glmnet_coefficients)
Using subset along with length you identify the number of words that
have a positive and negative impact to being clickbait. Also, you visually see the coefficients being centered on zero, using a kernel density plot. As you mix the alpha parameter when training the model, more words will have non‐zero coefficients, so the number of positive and negative words, and the kernel density plot, will change. The kernel density plot is represented in Figure 6.8.
length(subset(glmnet.coef$glmnet_coefficients,
glmnet.coef$glmnet_coefficients>0))

202

Text Mining in Practice with R
8
6

ty 4

densi
2
0
–2
0
2

glmnet.coef$glmnet_coefficients
Figure 6.8 The kernel density plot for word coefficients.
length(subset(glmnet.coef$glmnet_coefficients,
glmnet.coef$glmnet_coefficients<0))
ggplot(glmnet.coef,
aes(x=glmnet.coef$glmnet_coefficients)) +
geom_line(stat='density', color='darkred',
size=1) + theme_gdocs()
Of course, reviewing coefficient distributions is not that insightful, but it helps illustrate how a lasso regression differs from a typical linear regression model. It is more impactful to identify the specific terms at the distribution extremes. The individual coefficients represent the impact of the term on being clickbait when all other inputs are held constant. Thus reviewing single coefficients can be insightful for finding the most clickbait or legitimate headlines.
Using the head and tail functions along with an integer will identify the terms with the highest and lowest coefficients. This is because the glmnet.coef data frame was ordered previously. In this example, the new data frame top.coef has 20 rows. The data frame consists of the top and bottom ten terms according to the lasso regression coefficients. In the second line a new vector named impact is created. Using an ifelse statement, each row is labeled “Positive” or “Negative”
representing the term’s relationship to a headline being clickbait.
top.coef<-rbind(head(glmnet.coef,10),
tail(glmnet.coef,10))
top.coef$impact<-ifelse(
top.coef$glmnet_coefficients>0,"Positive","Negative") A line segment plot can be constructed using the top.coef data frame.
Using ggplot, pass in the data frame then specify x and y aesthetics. The first

6 Document Classification: Finding Clickbait from Headlines 203
layer creates the line segments starting at the coefficient values and ending at 0. Each segment is arranged vertically by word along the y axis. The next layer adds a point at the beginning of each line segment. Each point is then color‐coded according to the impact “positive” or “negative.” Lastly theme_
few is applied to reduce visual clutter such as plot background. Changing the number of rows when constructing top.coef will change the number of
terms in the visual. In this example, the line segment plot is exemplified in Figure 6.9.
ggplot(top.coef, aes(x=glmnet_coefficients, y=words)) +
geom_segment(aes(yend=words), xend=0,
colour="grey50") +
geom_point(size=3, aes(colour=impact)) + theme_few()
A binomial regression calculates a logit not a probability. As a result, the coefficients themselves do not have much meaning. For example, having a −2
logit coefficient does not translate to −2 “clickbaits.” To examine an individual term’s impact for increasing or decreasing the probability of being clickbait, the coefficient value is transformed using the “inverse logit” function. This converts a continuous value to a range between 0 and 1. The input is the logit value and the outcome is the more meaningful probability.

Inverse Logit Function = ex
(1+ ex)
technology
india
brexit
email
4100
business
hermine
penge
s
stakes
impact
note
Negative
word
people
Positive
marijuana
armed
911
terrorists
saudi
information
dnc
shooting
brits
–2
0
2
glmnet_coefficients
Figure 6.9 Top and bottom terms impacting clickbait classifications.
c06.indd 203
5/8/2017 10:25:06 AM
204

Text Mining in Practice with R
The arm library has a function called invlogit. The code below uses the
invlogit function to transform logit coefficients to a probability between 0
and 1, while simultaneously adding a new vector. For comparison, this is
applied to all coefficients using glmnet.coef and top.coef data frames.
glmnet.coef$probability<-invlogit(
glmnet.coef$glmnet_coefficients)
top.coef$probability<-invlogit(
top.coef$glmnet_coefficients)
An experiment outcome probability is never negative. In this data, 50% of the headlines were clickbait, so the training and test partition will be evenly split, or close to it. The model learned a natural state where half of all observations are clickbait. For practical purposes, probabilities below 50% can be thought of as reducing the likelihood that a headline is clickbait. Examining the top.
coef data frame illustrates this point. All of the words labeled as negative according to beta sign have less than 0.50 probability but still higher than 0.
The complete top.coef data frame is represented in Table 6.3, due to parti-
tioning your results may vary.
Reviewing Table 6.3, having “brits” in a headline is a strong indication that the headline is clickbait. Conversely, a headline containing “technology” only increases the probability by 0.02.
To get a sense of the lasso effect on probability and where the top.coef
terms lie among all word probabilities, construct a scatter plot. Using the base plot function the x values contain all word probabilities from glmnet.
coef$probability. The y axis is captured as individual terms. Term prob-
abilities are shown as circles with blue outlines. Next, add additional points from the top.coef$probability data. These have a different shape and
are colored red. The final illustration is captured in Figure 6.10.
plot(glmnet.coef$probability,glmnet.coef$word,
col='blue')
points(top.coef$probability,top.coef$word, col='red',
pch=16)
In the Figure the vast majority of words have 0.50 probability. The lasso
regression penalized words resulting in 0.00 coefficients. The penalized terms have no probability impact on the outcome because the natural state is half
clickbait and half legitimate. Also, the outlier solid dots infer that the top.
coef data frame is capturing enough words to be insightful. This figure can
help you choose the appropriate number of top and bottom terms when con-
structing top.coef.

6 Document Classification: Finding Clickbait from Headlines 205
Table 6.3 The complete top.coef data, illustrating the negative words having a positive probability.
words
glmnet_coefficients
impact
probability
brits
2.49724
Positive
0.923948
shooting
1.847323
Positive
0.863812
dnc
1.788934
Positive
0.856797
information
1.776029
Positive
0.855206
saudi
1.628565
Positive
0.835973
terrorists
1.565807
Positive
0.827185
911
1.450905
Positive
0.810138
armed
1.385272
Positive
0.799836
marijuana
1.384973
Positive
0.799788
people
1.346696
Positive
0.793589
note
−1.50314
Negative
0.181957
stakes
−1.51377
Negative
0.180381
penge
−1.57527
Negative
0.171466
hermine
−1.6493
Negative
0.161203
business
−1.66078
Negative
0.159658
4100
−1.7356
Negative
0.149873
email
−1.77912
Negative
0.144412
brexit
−1.96833
Negative
0.122568
india
−2.86692
Negative
0.053813
technology
−3.50817
Negative
0.029081
5000
rd
4000
3000
2000
glmnet.coef$wo
0010
0
0.0
0.2
0.4
0.6
0.8
glmnet.coef$probability
Figure 6.10 The probability scatter plot for the lasso regression.
206

Text Mining in Practice with R
6.2.6 Case Study Wrap Up: Model Accuracy and Improving
Performance Recommendations
In the final step of the text mining workflow you revisit the original problem statement.
7) Reach an insight or recommendation. You will know the top terms signal-ing clickbait. Further, you will be able to recommend ways to improve the
algorithm’s accuracy.
The lasso regression model performed well with a small number of head-
lines. A test set accuracy above 0.70 shows that the method has merit. As a text miner, you should feel comfortable that the method has sound performance
but that it must be improved before being implemented. Possible methods to
improve the model include:
●
●
Feature engineering
 – create additional inputs for the number of characters or words per headline. Another piece of information could be a timestamp or
the source. (For educational purposes, source was omitted as an input
because the data was limited.)
●
●
Tokenization
 – experiment with bi‐gram and tri‐gram tokenization as model inputs. For example, the word “good” may have a beta coefficient but
negation words ahead of “good” would change the coefficient sign com-
pletely. Using bi‐grams would capture an input “not good” that may have
more explanatory power than “good.”
●
●
Alpha penalty
 – adjust the penalty parameter to balance the number of inputs and accuracy. If a model has more inputs, it will take longer to make a prediction. When implemented, at scale this can have a negative impact to
user experience.
●
●
Prediction stacking and ensemble modeling
 – combine more models using different methods such as lasso and naïve Bayes into a final more complex model. Machine learning books explain how to stack and ensemble so it
is not covered here.
●
●
More data
 – increase the number of headlines and sources. Adding more data increases modeling building time but will likely significantly improve
the results. This case study utilized 3000 headlines but model fitting using tens of thousands of headlines improves the information diversity.
In addition to these technical improvements you can confidently illustrate
the impact of specific words. Simply flagging headlines with the top words in Table 6.3 could be a short‐term solution to classifying clickbait in a non‐production environment. However, clickbait profiteers continually adjust tactics, and headlines change. As a result, you must continually retrain the model with current headlines.

6 Document Classification: Finding Clickbait from Headlines 207
6.3 Summary
In this chapter you learned a basic document classification approach. Document classification algorithms are in use every day to help protect against email spam and social media “clickbait,” but there are more applications including journalism and document archiving. Specifically you learned:
●
●
how to create a DTM from a training set and use it when constructing new
DTMs for new documents
●
●
what a sparse model matrix is
●
●
how to create a data partition for training and testing of the document classification algorithm
●
●
how to create a document classification algorithm
●
●
what lasso regression is and how it differs from linear regression
●
●
perform cross validated lasso regression
●
●
how to calculate the area under the curve (AUC) for the document
classifier
●
●
how to calculate the overall accuracy of the classifier on unseen headlines
●
●
how to identify the words most contributing to clickbait headlines.
209
7
Predictive Modeling: Using Text for Classifying
and Predicting Outcomes
In this chapter, you’ll learn
●
●
how classification is different from continuous prediction
●
●
how to create a DTM using text2vec instead of the tm package
●
●
how to apply the training set vocabulary to new text
●
●
how to create a classification algorithm for hospital readmissions, based on discharge text and patient information
●
●
how to create a continuous predictive model of social media shares based on
article text.
7.1 Classification vs Prediction
Chapter 7 extends the document classification approach of Chapter 6 in new
ways. First, you will learn to apply an elastic net linear model for patient outcome classes. Next the same algorithm will be fitted to movie reviews and
revenue. In the previous chapter, the elastic net (more specifically lasso) regression was applied to classify new document types. However, the outcomes in
Chapter 7 are not document types. Instead, the text is an input to an external, non‐document outcome.
There are many books devoted to machine learning. This book touches on
basic principles of machine learning in various sections. It should be noted that the topic of machine learning is large and varied beyond this chapter’s description. As you build your text mining skills, you will add new machine learning algorithms and practical use cases to your tool set. Chapters 6 and 7 are meant to give you a foundation to build upon. The elastic net algorithm was chosen for its simplicity and general applicability, but other methods and preprocessing steps can improve accuracy for your own text mining models.
In this chapter, you will employ both classification and continuous prediction examples using text as inputs. A simple way to understand the difference between classification and continuous prediction is that classification answers a question
210

Text Mining in Practice with R
from among specific choices. Asking “Will you finish this chapter?” requires a
“yes” or “no” answer. Similarly, “Will a customer buy product A, B or C?” can be answered with one of the three choices. Asking questions with defined “class”
outcomes represents classification. In contrast, prediction asks a different style of question. For example, “How many pages will you read?” requires a numeric answer. More specifically, the outcome, pages, is continuous. You could read 0 to some practical page limit. Another predictive outcome includes predicting how much a customer will spend. This contrasts the previous A, B, or C example,
because the dollars range from 0 to some limit of their income or credit.
Understanding the differences between classification and prediction is para-
mount to learning supervised learning. Training data and algorithm approaches are adjusted based on the classification or predictive outcome itself. If you choose an approach incorrectly, the outcome will be useless. For example, consider an algorithm answering “Will Cleveland or Golden State win the basket-
ball game?” This is a binary outcome with one of two teams being most likely to win represented as 0 and 1. If you incorrectly choose a continuous predictive algorithm, the output could be larger than 1! This makes no sense, because a team cannot have a win probability greater than 1 or win the same game twice.
The inverse is also true. If you were predicting the number of points that the Cleveland team was going to score in a game, choosing a classification algorithm would not make sense. The outcome of a classification algorithm would
be a probability. A team needs to score more than 0 to 1 points to win.
The distinction between classification and prediction is so important that
this chapter is unlike the previous ones. This chapter contains two mini case studies. The aim is to let you execute and learn both outcome types. Along the way, the chapter’s code snippets can be compared and contrasted. By using
code for both classification and prediction, you can identify the correct methods when modeling your own text mining projects.
7.2 Case Study I: Will This Patient Come Back
to the Hospital?
Hospitals are rightfully concerned about patient readmissions. According to
the Agency for Healthcare Research and Quality, over 11 months in 2011, hos-
pitals in the US spent $41 billion dollars treating patients within 30 days of an initial discharge. Further, both Medicare and Medicaid services fine hospitals if readmission rates are too high. From a patient advocacy perspective, hospital readmissions cause undue hardship and strain too. Thus, it is in everyone’s best interest to identify patients at the moment of discharge who are likely to come back within 30 days. Once likely readmission patients are identified, hospitals can review cases to understand the reasons behind readmission or, more practically, administrators can keep the most likely patients in the hospital for

7 Predictive Modeling: Using Text for Classifying and Predicting Outcomes 211
additional care, avoiding fines and extra costs and helping to the patients
recover more fully.
In this example, you will build a model using patient data from 8500 diabetic patients. The data was originally part of an academic study concerning readmission. The data has been organized and cleaned so that models can be built quickly, leaving you to learn the underlying text mining fundamentals.
7.2.1 Patient Readmission in the Text Mining Workflow
Although the workflow outlined in the book is specific to text mining projects, it can be coerced into a traditional machine learning workflow.
1) Define the problem and specific goals. Compare diabetic patient readmission models with and without discharge notes as inputs. Apply the best model to newly discharged patients to identify diabetic patients that are likely to revisit the hospital within 30 days.
2) Identify the text that needs to be collected. A sample of 8500 patient records has been collected, including discharge notes. This data represents
the training and validation data for model building.
Getting the Data
Please navigate to www.tedkwartler.com and follow the download link. For this analysis, please download “diabetes_subset_8500.csv.” The file is a sample of 8500 diabetic patient records from an academic study. (https://www.hindawi.
com/journals/bmri/2014/781670/cta/) The file contains 136 columns including
gender, race, patient weight and discharge information. The study’s raw inputs have been preprocessed as dummy variables and cleaned for missing values.
3) Organize the text. The discharge notes will be organized into a DTM. The matrix will be used for modeling and then will be combined with the other
patient data to fit a new model for comparison.
4) Extract Features. Elastic net models will be created to calculate a patient’s readmission likelihood.
5) Analyze. Modeling metrics with and without text inputs will be compared.
The best performing model will be selected.
6) Reach an insight or recommendation. Apply the best model to a new patient record, recommending if the new patient is a candidate for readmission.
7.2.2 Session and Data Set‐Up
In the last chapter, the vocabulary matching approach followed the
RTextTools method. In Chapter 6, you either corrected a typo in the
212

Text Mining in Practice with R
create_matrix function or applied a custom match.matrix function
that was provided. In this chapter, you will use the text2vec package to create the vocabulary and training DTM. The vocabulary is then applied to con-
struct a train set DTM and also the new patient data. You should be familiar with text2vec because a previous chapter covered vector distance
measures.
The text2vec’s text organization functions are illustrated to show another
text organization method that can be used for machine learning. Next caret
is used for data preparation. The tm package is added for preprocessing functions. Once again the glmnet library is loaded to fit the elastic net regression.
Finally, the pROC library helps to visualize model performance.
library(text2vec)
library(caret)
library(tm)
library(glmnet)
library(pROC)
The code below is another example of a custom preprocessing function.
Throughout the book, similar functions help reduce errors and make the code
more concise. Here only two functions are applied but you can add more if
needed.
diagnosis.clean<-function(x){
x<-removePunctuation(x)
x<-stripWhitespace(x)
return(x)
}
After reading in the patient data and reviewing you may notice the text
columns are held in diag_1_desc, diag_2_desc and diag_3_desc.
Each of these columns are actually high cardinality factors not truly natu-
ral language text. For instance, diag_1_desc contains 450 diagnosis
description levels among the 8500 patients. Rather than create hundreds
of dummy variables for each column another approach is to treat the many
factor levels as text. To do so, a new data feature called diag.text is
added to the diabetes object. The three columns are combined using
paste and then as.character converts the columns to strings instead
of factors.
diabetes<-read.csv('diabetes_subset_8500.csv')
diabetes$diag.text<-
as.character(paste(diabetes$diag_1_desc,
diabetes$diag_2_desc, diabetes$diag_3_desc, sep=’ ‘))

7 Predictive Modeling: Using Text for Classifying and Predicting Outcomes 213
The custom function diagnosis clean is applied to the final text vector.
diabetes$diag.text<-diagnosis.clean(
diabetes$diag.text)
Using caret’s createDataPartition 70% of the records are assigned to
train with the remaining patient rows becoming the test set.
train<-createDataPartition(diabetes$readmitted,p=.7,
list=F)
train.diabetes<-diabetes[train,]
test.diabetes<-diabetes[-train,]
Up to this point, the setup has been consistent with other chapters, but the text2vec library differs in DTM construction because of the use of an iterator.
An iterator is a method of applying functions in an object. The function is applied as the iterator winds its way through the object rather than to an entire object.
This means that an iterator can apply functions to large objects that may be too large to fit in memory. Here itoken iterates through diag.text. Along the
way tolower is applied along with another function word_tokenizer. The
word_tokenizer function wraps str_split to separate individual words.
iter.maker<-itoken(train.diabetes$diag.text,
preprocess_function = tolower, tokenizer =
word_tokenizer)
The iterator object is a set of instructions that are passed to another function create_vocabulary. Here v is a list of unique words and statistics from
the diagnosis text.
v <-
create_vocabulary(iter.maker,stopwords=stopwords('en'))
Next, the vocabulary object is passed to a “vectorizer.” The vectorizer ultimately lets you create a corpus object by instructing R to make a vector of terms.
vectorizer <- vocab_vectorizer(v)
The vectorizer is needed to construct a DTM using the text2vec
package. Another iterator is needed to create the DTM so itoken is used
again. The it object along with the original vectorizer is passed to the
create_dtm function to get a matrix.
it <- itoken(train.diabetes$diag.text,
preprocess_function = tolower,
tokenizer = word_tokenizer)
dtm <- create_dtm(it, vectorizer)
This may seem convoluted, so let’s deconstruct the steps. An iterator is
sometimes needed to learn statistics about text that is too large for in‐memory
214

Text Mining in Practice with R
analysis. So an iterator containing a set of instructions is created solely to explore the text’s vocabulary. The vocabulary information is held in a list but must be changed to a vector in order to construct a DTM. So the iterator is
“vectorized” using vocab_vectorizer. The first iterator is only used for
vocabulary construction. Then another iterator is needed to wind its way
through the text again. The second iterator is passed to create_dtm with the vectorized vocabulary from the first iterator’s analysis. The confusing part is the need for two iterators, but they are used for different purposes. The first is for vocabulary and the second for the matrix construction.
The dtm object is based on simple term frequency. When working on other
data you may need TF‐IDF weighting instead. The code below is not needed for the case study but demonstrates TF‐IDF weighting using text2vec. First
extract the inverse document frequency information using get_idf. Next
transform the dtm using transform_tfidf to change the DTM values.
idf<-get_idf(dtm)
dtm.tfidf<-transform_tfidf(dtm,idf)
7.2.3 Patient Modeling
The dtm can be used to fit an elastic net binomial regression. The cv.glmnet function needs inputs, then the outcome variable along with tuning and other parameters. In this case, the model inputs are solely constructed from the diagnosis text. The outcome variable, “readmitted”, contains two classes. As a result
“binomial” must be specified as the family. If the outcome had more than two class levels then the family would be “multinomial.” In this example, the alpha mixing parameter is 0.9 and the accuracy measure is AUC. This is consistent
with the ROC curve, but you could specify a different accuracy measurement.
As a cross validated model the number of folds must be specified. Finally, the y intercept is forced to zero because intercept=F.
text.cv<-cv.glmnet(dtm,y=as.factor(
train.diabetes$readmitted), alpha=0.9,family=’binomial’,
type.measure=’auc’, nfolds=5, intercept=F)
As shown in Chapter 6, the model performance can be visually inspected
using plot. Figure 7.1 shows the AUC information for text.cv. Review the
plot explanation in Chapter 6 to interpret this plot.
plot(text.cv)
In many cases, numeric and dummy inputs are more accurate than text
inputs. It is a best practice to compare models made of non‐text attributes. In this case, the non‐text patient information can be selected using the code
below. The training data is indexed to include all rows, but only the first 132
columns, thereby dropping all text columns.
no.text<-as.matrix(train.diabetes[,1:132])

7 Predictive Modeling: Using Text for Classifying and Predicting Outcomes 215
795 791 776 745 698 601 311 54 14 5 2 1
0.65
0.60
C
AU
0.55
0.50
−10
−8
−6
−4
−2
log(Lambda)
Figure 7.1 The text‐only GLMNet model accuracy results.
The no.text matrix is once again passed to the cv.glmnet function. The
dependent variable and other input parameters remain the same.
no.text.cv<-cv.glmnet(no.text, y=
as.factor(train.diabetes$readmitted), alpha=0.9,
family='binomial',type.measure='auc', nfolds=5,
intercept=F)
The no.text.cv model has a slightly improved the AUC. Reviewing
Figure 7.2, the AUC is above 0.75 on the training data.
plot(no.text.cv)
title("GLMNET No Text")
The results are not entirely surprising. The text inputs contain limited information from three columns while the non‐text columns have medical history and
patient demographics. The non‐text inputs simply contain more information for GLMNET No Text
118 117 113 105 87 61 31 9 3 2 1 1 1
0.70
C
AU
0.60
0.50
−8
−6
−4
−2
0
log(Lambda)
Figure 7.2 The numeric and dummy patient information has an improved AUC compared to the text only model.

216

Text Mining in Practice with R
the model to learn from. However, a data scientist can often squeeze a bit more accuracy out of a model by combining numeric and text inputs into a model.
Use cBind to combine the no.text and dtm matrices. Recall that the dtm
is a dgcMatrix which is a sparse data object from the Matrix package. The
base cbind function will not work on a dcgMatrix so use the cBind ver-
sion instead. The resulting all.data sparse matrix has 5950 patient rows
with 1173 columns.
all.data<-cBind(dtm,no.text)
The new matrix is once again passed to cv.glmnet. The input parameters
are consistent with the previous two models.
all.cv<-cv.glmnet(all.data,y=as.factor(
train.diabetes$readmitted), alpha=0.9, family=’binomial’,
type.measure=’auc’, nfolds=5, intercept=F)
The combined plot shows an improved AUC in Figure 7.3. More model key
performance indicators (KPIs) are explored in the next section, but Figure 7.3
does demonstrate that adding text helps improve results.
7.2.4 More Model KPIs: AUC, Recall, Precision and F1
Although you can visually tell the difference, the three models need to be compared explicitly. Following R’s model predict function pass in the model,
text.cv, then the input matrix called dtm. The response type is “class” so
that the outcome class is returned instead of each patient’s exact probability.
The last parameter specifies a lambda value that minimizes the error instead of the most parsimonious one. The predict function will return each patient’s
class, True or False, as a string. The class values need to be changed from
GLMNET All Info
883 861 812 710 494 160 21 9 2 1 1 1 1
0.80
0.70
C
AU
0.60
0.50
−8
−6
−4
−2
0
log(Lambda)
Figure 7.3 The cross validated model AUC improves close to 0.8 with all inputs.

7 Predictive Modeling: Using Text for Classifying and Predicting Outcomes 217
strings to the logical classes strictly representing True or False. As a result, the class predictions are nested in as.logical.
text.preds<-as.logical(predict(text.cv,
dtm,type='class', s=text.cv$lambda.min))
Next let’s calculate the ROC and plot it. Using the pROC library’s roc func-
tion, pass in both the actual patient outcomes and the model predictions. Each has to be multiplied by 1 to change the factors to 1 or 0.
text.roc<-roc((train.diabetes$readmitted*1),
text.preds*1)
In this case, the text‐only model has an AUC of 0.637. Now the same code can be reused for the remaining two models. Remember that the no.text.cv
model was fit using only the numeric patient data. The last model all.cv was created with all information numeric and text and held in the all.data matrix.
no.text.preds<-as.logical(predict(no.text.cv,
no.text,type='class', s=no.text.cv$lambda.min))
no.text.roc<-roc((train.diabetes$readmitted*1),
no.text.preds*1)
all.data.preds<-as.logical(predict(all.cv,
all.data,type='class', s=all.cv$lambda.min))
all.data.roc<-roc((train.diabetes$readmitted*1),
all.data.preds*1)
The three AUC values are shown in Table 7.1. You should notice that the
weakest model is the text‐only inputs. The best model uses both numeric and
text thereby adding a bit more accuracy including discharge notes. Considering the staggering costs of hospital readmissions, a model maximizing AUC and
including text is worth the additional computational time.
Use the code below to visually compare the ROC curves. The first line cre-
ates the plot with the text model’s information. The next two add a new line in a different color and with different styles for comparison. Figure 7.4 shows the ROC curves for the models and the additional lift above random for each of the models.
Table 7.1 The AUC values for the three classification models.
ROC object name
AUC
text.roc
0.637
no.text.roc
0.6741
all.data.roc
0.728
218

Text Mining in Practice with R
BLUE = Text, RED = No Text, GREEN = All
01.
0.8
ty
0.6
Sensitivi
0.4
0.2
0.0
1.0
0.8
0.6
0.4
0.2
0.0
Specificity
Figure 7.4 The additional lift provided using all available data instead of throwing out the text inputs.
plot(text.roc,col="blue",main="BLUE = Text, RED = No
Text, GREEN=All",adj=0)
plot(no.text.roc, add=TRUE,col="red", lty=2)
plot(all.data.roc,add=TRUE,col="darkgreen", lty=3)
7.2.4.1 Additional Evaluation Metrics
There are additional KPIs for binary classification models. Popular ones
including recall, precision and the F1 score could have been calculated using the document classification model of Chapter 6. These KPIs were not covered
in Chapter 6, so that you could focus on the underlying basics of the model and the introduction of some machine learning principles. Now that you have
added sufficiently to your text mining skills it makes sense to cover recall, precision and F1 scores.
A great visual to understand recall and precision comes from Wikipedia and
is shared in Figure 7.5, where you are presented with an entire population represented as dots. Each dot could represent a patient from the data set. In this case, the best classification model, all.cv, makes an assessment of each
patient’s outcome. Sometimes the model correctly identifies the true success class which is not being readmitted. The model can also identify the true readmission which represents an unsuccessful hospital discharge. Still other times

7 Predictive Modeling: Using Text for Classifying and Predicting Outcomes 219
relevant elements
false negatives
true negatives
true positives false positives
selected elements
How many selected
How many relevant
items are relevant?
items are selected?
Precision =
Recall =
Figure 7.5 Wikipedia’s intuitive explanation for precision and recall.
the model classifies patients incorrectly, meaning that some patients are predicted not to readmit yet show up back at the hospital. Similarly, the model may predict that a group of patients will readmit but they go home never to be seen again (at the hospital).
In the case study, a False prediction is actually the success class because that means the patient did not come back to the hospital. Therefore the true positives are cases in which the model predicted False for readmission and the patient actually did not readmit. The subsequent explanation will make this less confusing.
220

Text Mining in Practice with R
The four outcome states in the visual can be captured in a confusion matrix
using the code below. Rather than use the table function, the confusion-
Matrix function is first applied to the predicted classes and then the actual classes. The confusion matrix appears in Table 7.2.
confusion<-confusionMatrix(all.data.preds,
train.diabetes$readmitted)
Reviewing the confusion matrix represented in Table 7.2, you should note
the four outcome states, which map to the various shaded areas in Figure 7.5.
The states are labeled true positives, false positives, false negatives, true negatives. Keep in mind that the true positive cases are patients that were predicted
not to readmit and actually did not. This may be counterintuitive because readmissions are labeled True.
The benefit of using confusionMatrix instead of table is that the func-
tion calculates evaluation metrics. To understand the formulas refer to Table 7.3, where the four states of the confusion matrix have been changed to example
variables. The example variables are part of the equations below for reference.
The sensitivity or recall metric is a ratio of true positive outcomes to all positive outcomes, in this case, patients that were not predicted to readmit divided by all patients that actually did not readmit. Remember that the success class is not coming back to the hospital. Using Table 7.3 as a guide, the sensitivity formula is below. At 0.92, this model can be said to be highly sensitive because it is mostly accurate at identifying non‐readmitted patients which is a successful outcome for the hospital.
Table 7.2 The best model’s confusion matrix for the training patient data.
Actual classes
F = not readmitted
T = readmitted
Predicted classes
F = not readmitted
3639
952
T = readmitted
288
1071
Table 7.3 The confusion matrix with example variables.
Actual classes
F = not readmitted
T = readmitted
Predicted classes
F = not readmitted
A = true positives
B = false negatives
T = readmitted
C = false positives
D = true negatives

7 Predictive Modeling: Using Text for Classifying and Predicting Outcomes 221

Sensitivity or

c
Re all

A
= (
)

A + C

The recall metric can be extracted from the confusion object using the fol-
lowing code snippet.
recall <- confusion$byClass['Sensitivity']
The next metric is called specificity or true negative rate. To calculate the metric, the true negative outcomes are divided by the sum of all negative outcomes. In this case, 1071 is divided by the sum of 952 and 1071. The model is less specific because the value is only 0.52. It is the probability of successfully being classified as readmitted, given all patient’s readmissions.

Specificity or TNN

D
=
(B + D)
Another important metric is prevalence, which is a measure of how often
non‐readmission occurs in the population or the sum of all success classes. The formula is the sum of true success class divided by the entire sum of the table.
In this example, the prevalence of non‐readmission (hospital success) is 0.66.
This is the probability of all patients for a successful outcome which is not coming back to the hospital.
(A+ C)

Prevalence =
(A+ B + C + D)
The positive predicted value (PPV) is also known as the precision. This value is represented in the next formula. This model is relatively precise at identifying the successful patient outcomes with a 0.79 result.

PPV or
(Sensitivity∗
)
=

Prevelance

Precision
((Sensitivity∗ Prevelannce)+(1− Specificity)∗(1− Prevelance)) To extract the precision, use the following code.
precision <- confusion$byClass['Pos Pred Value']
Another classification model performance indicator is called the F1 score,
which attempts to unify the recall and precision into a single metric. There are variations of the F1 score providing different weights to precision or recall.
This example is straightforward because precision and recall are equally
weighted and is called the F1 score. The formula for F1 is two times the ratio of Precision times Recall divided by Precision plus Recall:
222

Text Mining in Practice with R

Precision* Recall

F 1 = 2 *

Precision + Recall

The model’s F1 score is a respectable 0.85. It can be calculated using the R
code here.
f1.score <- 2 * ((precision * recall) / (precision +
recall))
There are other more sophisticated metrics produced by the confusion-
Matrix function. In practice the basic ones documented here serve as a good
foundation to understand a model’s effectiveness. When creating and choosing a machine learning model a good practice is to understand the effects of high precision with low recall or the opposite. Overall accuracy may not be the best success criterion, particularly with highly unbalanced classes, or when the outcome has significant monetary or human impact.
7.2.5 Apply the Model to New Patients
Thus far the all.cv model has been evaluated using the training set. Once
you have explored tuning parameters such as adjusting alpha, the model should be applied to test data to ensure consistency. To do so the terms of the DTM
from the training data must match the test set DTM. The text2vec library
conveniently employs another iterator, the original vectorizer object and a
function called create_dtm to recreate the DTM columns. This means that
the match.matrix function from Chapter 6 is not necessary.
The test.it iterator is applied to the test set text along with a preprocessing function and the standard word_tokenizer. The test.it object is
then passed to the create_dtm function. The second parameter of the cre-
ate_dtm function must refer to the original training set word vector so that the DTM terms match. If your training DTM was TF‐IDF weighted you would
apply the appropriate code to the DTM to ensure that the training and test
DTMs were weighted similarly. Although no TFIDF weighting is applied in this example, the code was previously illustrated.
test.it<-itoken(test.diabetes$diag.text,
preprocess_function = tolower,
tokenizer = word_tokenizer)
test.dtm<-create_dtm(test.it,vectorizer)
The test set DTM now has the same number of columns as the training set
DTM. The test.dtm can now be appended to the numeric test set data. As
before, the individual text columns are dropped, only leaving the numeric data.
Then the numeric test set data and test.dtm are bound using cBind.
test.no.text<-as.matrix(test.diabetes[,1:132])

7 Predictive Modeling: Using Text for Classifying and Predicting Outcomes 223
new.patients<-cBind(test.dtm,test.no.text)
With a similar model matrix, the predictions can be made on the new.
patients. Once again, predict is passed the all.cv model then the
model matrix. The response type is specified as class and the s value repre-
sents the lambda value that minimizes the error.
test.preds<-predict(all.cv,new.patients,
type='class',s=all.cv$lambda.min)
A quick assessment of the confusion matrix shows that this model is behav-
ing similarly compared to the training evaluation metrics. The code to create the test set confusion matrix and F1 score is below, and the test confusion
matrix is represented in Table 7.4.
test.confusion<-confusionMatrix(test.preds,
test.diabetes$readmitted)
test.precision <- test.confusion$byClass['Pos Pred
Value']
test.recall <- test.confusion$byClass['Sensitivity']
test.f1 <- 2 * ((test.precision * test.recall) /
(test.precision + test.recall))
Overall, the model is performing consistently with unseen data. Assuming
that the defined problem or ecosystem does not change, the model will behave as expected once implemented. The training set Precision was 0.79 compared
to the test Precision 0.77. Recall is consistent, moving from 0.92 on training to 0.91 for the test data. Likewise, the F1 score is stable moving from 0.85 to 0.83.
Depending on the use case, the model metrics may be acceptable but in significant outcomes, such as life and death implications, you may need to add more data or information to improve the model’s performance.
7.2.6 Patient Readmission Conclusion
Patient readmission is a costly problem in the US. Hospital administrators and academics review this issue in the hopes of improving financial and humanistic Table 7.4 The test set confusion matrix.
Actual classes
0 = not readmitted
1 = readmitted
Predicted classes

0 = not readmitted
1543
454
1 = readmitted
140
413
224

Text Mining in Practice with R
outcomes. In this example, you created a simple patient readmission model specific to diabetic patients. The data was collected from an academic study but was cleaned so you could focus on learning the text2vec method of DTM
construction for both train and test cases. With so much at stake, practitioners apply additional sophistication to improve accuracy. As you explore and tweak the code, keep in mind that you can use other algorithms, stack text predictions as an input to other information or ensemble models to improve accuracy.
In this example, text mining for classification outcomes could have a con-
structive impact on society. I encourage you to download the complete and raw data set at www.tedkwartler.com and explore ways to improve results. Along
the way you may add to your machine learning toolkit and could possibly positively affect others.
7.3 Case Study II: Predicting Box Office Success
In this exercise, you will predict a movie’s opening weekend revenue based on early reviews. Once a movie is created, early screenings are shared with prominent news outlets. The hope is that a positive review will result in additional
“buzz” and more ticket sales when the movie opens publicly. At this point, the movie has been created, so the production costs are sunk. However, the
reviews may indicate a surprising success requiring additional marketing dollars and wider release to additional theaters. In contrast, poor reviews may indicate that a movie could flop, meaning that the studio should reduce marketing spend and overall release. Your model’s inputs will be early screening reviews but in a real application additional inputs such as holiday releases and specific actors or directors are used to improve results. In both cases, the dependent variable is a continuous dollar amount from revenue on the opening weekend.
An interesting exercise, rumored to be used at Netflix, would be to text mine movie scripts for attributes and story arcs to predict viewership on the platform. As you perfect your predictive text mining capabilities remember that
the most prized model would be one that predicted commercial success from
a script, with expected directors, likely actors, and expected release dates prior to costly production.
Of course, other predictive text mining uses exist. Entire services are set up to understand and interpret text in the financial sector and elsewhere. For
example www.stocktwits.com is a Twitter‐like service specifically used for
financial and stock level dialogue. Using this service, people have collected the information and attempted to predict stock performance. In a related context, others have modeled daily bitcoin prices based on bitcoin forum dialogue. The following movie reviews example may seem unusual but is illustrative of the
techniques needed in more mainstream and impactful situations.

7 Predictive Modeling: Using Text for Classifying and Predicting Outcomes 225
7.3.1 Opening Weekend Revenue in the Text Mining Workflow
Although the workflow outlined in the book is specific to text mining projects it can be coerced into a traditional machine learning workflow.
1) Define the problem and specific goals. Predict a movie’s opening weekend revenue using a machine learning model.
2) Identify the text that needs to be collected.
Getting the Data
Please navigate to www.tedkwartler.com and follow the download link. For this analysis, please download “2k_movie_reviews.csv.” The file is a sample of 2000
movie reviews collected from a 2010 academic study. (http://www.cs.cmu.
edu/~ark/movie$‐data/) The file contains three columns including the movie
review, the original XML file indicating the film name and the opening weekend results.
3) Organize the text. Using the text2vec iterator you will create a training data DTM and a holdout test set DTM.
4) Extract Features. An elastic net model will be created to predict the continuous outcome opening_weekend variable.
5) Analyze. Modeling metrics, including MSE and MAE, will be examined for the training set.
6) Reach an insight or recommendation. Using the model recommend
opening_weekend revenue for holdout movie reviews.
7.3.2 Session and Data Set‐Up
Much of this script repeats the previous classification example. This is because the basic machine learning steps of partitioning and DTM construction are the same. Load the specific libraries into your R session. By now you are familiar with most of the packages. The Metrics package provides functions for
evaluating model performance. For the classification example the AUC was
calculated using pROC. Alternatively, the Metrics package also contains the
same AUC calculation. In contrast, the Metrics package has evaluation met-
rics used for continuous outcomes.
The rest of the packages include data.table, pbapply and text2vec
for data organization. The caret and glmnet libraries are used in data par-
titioning and model building. The text cleaning functions from qdap and tm
are once again used. Lastly the Metrics, tidyr and ggthemes packages are
used for output evaluation.
226

Text Mining in Practice with R
library(data.table)
library(pbapply)
library(text2vec)
library(caret)
library(glmnet)
library(qdap)
library(tm)
library(Metrics)
library(tidyr)
library(ggthemes)
To get started create move.data with fread on the “2k_movie_reviews.csv”
file. The movie.data object contains three attributes from 2000 movies.
movie.data<-fread('2k_movie_reviews.csv')
Before constructing a DTM, create a custom cleaning function. The text will
be passed into the review.clean function. Typical cleaning functions such
as removePunctuation, stripWhitespace, removeNumbers and
tolower are applied. Less common but still helpful for term aggregation
include replace_contraction and stemmer from qdap. The stemmer
is really a wrapper of stemDocument from tm and will perform the same
operations. The functions are applied in order to clean the text and return it.
review.clean<-function(x){
x<-replace_contraction(x)
x<-removePunctuation(x)
x<-stripWhitespace(x)
x<-removeNumbers(x)
x<-tolower(x)
x<-stemmer(x)
return(x)
}
The object clean.text represents a character vector with the cleaning func-
tions applied. In this case, 2000 reviews are cleaned in turn which can take some time, depending on your computer’s RAM. Notice that no stopwords have
been removed. This step will be applied later as part of a text2vec function.
clean.text<-review.clean(movie.data$train.movies)
Creating a separate object representing the dependent variable helps to keep the overall data processing clean and separated from the raw data as it was read in. Here y is created from the opening_weekend variable.
y<-movie.data$opening_weekend
Next, the clean data and dependent variable need to be partitioned. Although the elastic net model will be cross validated, the small number of reviews

7 Predictive Modeling: Using Text for Classifying and Predicting Outcomes 227
means it is a good idea to have a holdout. Using createDataPartition,
80% of the y variable is selected. Partitioning in this manner is more sophisticated than a simple random sample. If your y variable is categorical the function tries to balance the class distributions between the training and validation sets. In this case, the outcome is numeric so the sample is split into grouped sections based on percentiles, and sampling is done within these subgroups. In both cases, the createDataParition function works to ensure that the
test set mimics the training set. In contrast, a random sampling could yield a split that does not reflect all observations.
train<-createDataPartition(y,p=0.8,list=F)
train.movies<-clean.text[train]
train.y<-y[train]
test.movies<-clean.text[-train]
test.y<-y[-train]
You will create an iterator similar to the classification example earlier in this chapter. Once again, iter.maker is constructed using itoken. It is then
passed to the create_vocabulary function. However, this example devi-
ates slightly by employing a new stopwords list. The “SMART” stopwords list
was constructed from Massachusetts Institute of Technology (MIT) research.
The MIT list contains more words than the English list. The terms “movie” and
“movies” are concatenated to this larger stopwords list. The end result is a vocabulary with terms, term counts and document counts.
iter.maker<-itoken(train.movies, tokenizer =
word_tokenizer)
v <- create_vocabulary(iter.maker,
stopwords=c(stopwords('SMART'),'movie','movies'))
Compared to the classification example, the code below represents a new
step. The original vocabulary from 2000 movie reviews contains more than
43,000 unique terms after removing stopwords! Recall that we previously used removeSparseWords from tm to reduce the terms because the DTM is
extremely sparse. The text2vec package provides prune_vocabulary
for this purpose. Not only does prune_vocabulary remove infrequent
terms, but the function has the added benefit of also removing very frequent terms not accounted for in the stopwords that likely yield little explanatory power. This function accepts the vocabulary and parameters needed to reduce
the number of terms. Using term_count, an individual word must appear in
at least 10 documents. The terms are further limited because an individual
term cannot be in more than half of all documents because of the doc_pro-
portion_max parameter. These would represent a common and
228

Text Mining in Practice with R
non‐informative term. The last parameter, doc_proportion_min, further
limits the vocabulary. With 1602 documents in the training set a term must
appear in 1.6 (= 0.001*1602) or more reviews to be included – essentially two or more reviews. This means a term that appears in a single review would be
excluded altogether. This parameter is used to exclude outlier terms in a
vocabulary.
pruned.v<-prune_vocabulary(v, term_count_min = 10,
doc_proportion_max = 0.5, doc_proportion_min = 0.001)
The smaller vocabulary of 7427 terms will decrease the modeling construc-
tion time. The reduced time stems from the fact that the elastic net algorithm has fewer document attributes to assess. The new pruned vocabulary is passed to the vocab_vectorizer similarly to the classification example. Then
another iterator is constructed with the train.movie cleaned text. The it
object is then passed to create_dtm along with the vectorizer referenc-
ing the pruned 7427 terms. The final object, dtm, has 1602 rows correspond-
ing to each review in the training set. The DTM’s 7427 columns represent the unique terms found among all reviews in the training set.
vectorizer <- vocab_vectorizer(pruned.v)
it <- itoken(train.movies, tokenizer = word_tokenizer)
dtm <- create_dtm(it, vectorizer)
7.3.3 Opening Weekend Modeling
You can now fit a cross validated model using cv.glmnet with the dtm. You have used this function previously but the family, measure and intercept
parameters have changed. A “Gaussian” family ensures that the outcome is continuous. This contrasts with document classification and the patient readmission model, where the outcome was binary. Using intercept=T further instructs the function to allow an intercept value rather than force the linear starting point, β0, to be zero. This means that the y intercept will not be the origin when an x,y plot is constructed. Lastly, measure is now “mse” signifying “mean squared error.”
The “mse” is an average of all squared errors. To understand “mse,” perform all operations in reverse. First find the error by calculating the difference between an actual movie’s revenue and the predicted revenue. In this model an error represents the dollar difference between a movie’s predicted and actual opening weekend revenue. Next, square the error representing the predicted revenue
missed. This is squared so that positive and negative errors do not cancel each other out in the last step. Lastly an average is applied to all squared error values.
For example, consider three fictitious movies in Table 7.5.

7 Predictive Modeling: Using Text for Classifying and Predicting Outcomes 229
Table 7.5 Three actual and predicted values for example movies.
Actual revenue
Predicted revenue
$2,000,000
$2,100,000
$1,000,000
$900,000
$1,250,000
$1,250,000
Table 7.6 With error values calculated.
Actual revenue
Predicted revenue
Error
$2,000,000
$2,100,000
−$100,000
$1,000,000
$900,000
$100,000
$1,250,000
$1,250,000
$0
Table 7.7 With squared error terms.
Actual revenue
Predicted revenue
Error
Squared errors
$2,000,000
$2,100,000
−$100,000
$210,000,000,000
$1,000,000
$900,000
$100,000
$210,000,000,000
$1,250,000
$1,250,000
$0
$20
To calculate an error, subtract the actual values from the predicted values. In Table 7.6 a new column labeled “Error” has been added.
Without squaring the errors, the first two movie error values cancel each
other out. An average of the error terms is 0 ((−$100k + $100k +0) / 3). The numerator becomes 0 divided by 3. This example model was not perfect, so taking a straight average at this point is misleading. The error terms have to be squared in Table 7.7.
Now, a simple mean of $210,000,000 and $210,000,000 and $20 yields
$26,666,666,667. The mean squared error is now non‐zero, representing the
error the model predicts. It can be difficult to interpret the mse values but the metric is still popular. In this case, it may be counterintuitive that the mse is higher than any of the movies’ revenue. Generally the mse significantly penalizes predictions that are extremely different than the actual. This is due to the exaggerating impact of the squaring step.
Another popular metric is root mean squared error (RMSE) in which another
step is added to MSE. As you might expect the square root is added to the metric as the final step. In the example, the RMSE would be $81,649. This is the square root of $26,666,666,667. The benefit of RMSE is that the number scales back
towards an expected value closer to the errors themselves.

230

Text Mining in Practice with R
Still another popular evaluation technique is the mean absolute error. This
more straightforward metric deals with the positive and negative error values by taking the absolute value rather than the square root of the square. Then all absolute error values are averaged to arrive at a final evaluation metric. For the fictitious example, the MAE is 66666 because abs(100,000) + abs(−100,000) + 0
or 200,000 is divided by 3.
The cross validated model is built using MSE, but the next section demon-
strates how to calculate both RMSE and MAE for additional context.
text.cv<-cv.glmnet(dtm,train.y,alpha=1,family=
'gaussian', type.measure='mse', nfolds=5, intercept=T)
Once a model is fit you can construct the lambda and “mse” measure plot.
Previous sections of the book explain how to interpret the results in Figure 7.6.
plot(text.cv)
title("Movie Reviews predict Revenue")
The text.cv model contains cross validated information for lambda values
and term coefficients. The results of the model need to be evaluated in the next section before being applied to the test set. This helps to ensure that you are not overfitting.
Movie Reviews predict Revenue
4
1207 1100 955 858 741 624 488 372 258 167 92 53 28 21 17 13 7 7 5 3 2 1 1
1e+1
3
9e+1
3
or
8e+1
3
ed Err
7e+1
3
6e+1
Mean-Squar
3
5e+1
3
4e+1
11
12
13
14
15
log(Lambda)
Figure 7.6 Showing the minimum and “1 se” lambda values that minimize the model’s mse.

7 Predictive Modeling: Using Text for Classifying and Predicting Outcomes 231
7.3.4 Model Evaluation
The model was fit to minimize the MSE measure and had five‐fold cross validation. As a result, calculating and evaluating the model by MSE is redundant. The code below shows how to calculate the RMSE and MAE for training data. The
explanation for these measures was previously discussed. Remember that at this step you should adjust model hyper parameters like alpha before adding in the test data and reevaluating the MSE, RMSE and MAE. Adjusting the model parameters after the test set is added could jeopardize the model’s true effectiveness.
Using the common predict function, pass in the elastic net model then the
training set dtm. You need to also specify the lambda value explicitly.
text.preds<-predict(text.cv,dtm,s=text.cv$lambda.min)
I like to create a simple data frame with the actual training set outcomes and predictions. This is a (bad) habit and creates redundant data! Nonetheless,
I like to have a standalone data frame in case I want to export it.
train.dat<-data.frame(actual=train.y,
preds=text.preds[,1])
Using the train.dat object, calculate the RMSE by passing in the vector
of true values. The second input is a vector of predicted values. Keep in mind that the order and number of rows must match. In this case, movies are organized row‐wise and the lengths are equal. If you get an error, there is likely an issue with the way the text was organized and preprocessed. In this example, the RMSE is 3,179,086. Therefore, on average, the model predictions are ±$3m from the actual value. Remember that the distribution of actual movie revenues is non‐normal with some outliers.
rmse(train.dat$actual,train.dat$preds)
Calculating the MAE is also straightforward. The mae function accepts the
same data in the same order as rmse. In this example, the mean absolute error is 2,595,979.
mae(train.dat$actual,train.dat$preds)
To visualize the model effectiveness you can create a box plot of the distributions between actual and predicted values. An easy way to organize the data for visualization is to convert the train.dat data frame into a tidy format. This transforms the data from a row with prediction and actual revenue columns
into one row per combination. That is to say, one column contains a factor
“actual” or “preds” and the second column contains the value. With this tidy function, the data loses the association to a specific movie and instead is organized by class of actual or prediction. While the data object is actually redundant, this step demonstrates a quick method for visualization. Table 7.8 shows
232

Text Mining in Practice with R
Table 7.8 The original train.dat data frame.
Row
Actual
Preds
1
27,546
4,139,602
2
3,880,270
3,423,786
3
9,850
4,269,664
…
…
…
1600
12,401,900
15,586,575
1601
23,624,548
17,080,099
Table 7.9 The tidy format of the same table.
Key
Value
Actual
27,546
Actual
3,880,270
Actual
9850
…
…
Preds
4,123,685
Preds
13,080,178
Preds
4,551,006
a portion of the original train.dat. Table 7.9 is a tidy version of the same information.
train.tidy<-gather(train.dat)
Using the tidy version of the predicted and actual movie revenues, you can
construct a box plot to compare distributions. The code below refers to the
train.tidy data frame. To compare distributions make the key vector the x
value and y the revenue values. The other parameters apply a visual type and a default set of aesthetics. The box plot visual is captured in Figure 7.7.
ggplot(train.tidy, aes(x=key, y=value, fill=key)) +
geom_boxplot()+theme_gdocs()
In the box plot you can see that the model has a more narrow prediction
distribution. The mean values, represented as the dark horizontal line in the box, are at a similar level. This means that the model is predicting the average movies well, but failing to identify low revenue movies. In the case of outlier movies, the model appears to be under predicting revenue. There are likely
ways to improve the model accuracy for non‐average revenue. Some examples

7 Predictive Modeling: Using Text for Classifying and Predicting Outcomes 233
would be to create a separate model for identifying outlier movie revenue
based on new information such as actors, production budgets and directors.
Another visual that can aid in determining the relationship between a mod-
el’s predicted and actual values is a simple scatter plot. Ideally the scatter plot would show a 45° trend line between the values with less dispersion. Figure 7.8
is the scatter plot created using the ggplot code below. To retain the row‐
wise relationship to a single movie refer to the original train.dat data
1.0e+08
7.5e+07
key
5.0e+07
actual

value
preds
2.5e+07
0.0e+00
actual
preds

key
Figure 7.7 The box plot comparing distributions between actual and predicted values.
1.0e+08
7.5e+07
5.0e+07

edspr
2.5e+07
0.0e+00
0.0e+00
2.5e+07
5.0e+07
7.5e+07
1.0e+08

actual
Figure 7.8 The scatter plot between actual and predicted values shows a reasonable relationship.
234

Text Mining in Practice with R
frame. Instead of passing in the geom_boxplot layer the geom_point layer
is used along with stat_smooth for the trend line.
ggplot(train.dat, aes(x=actual, y=preds)) +
geom_point(color='darkred',shape=1) +
stat_smooth(method=lm) + theme_gdocs()
You should apply the model to test data once you are satisfied with the evaluation metrics and have tuned the model parameters to maximize the accuracy. The next section demonstrates how to apply the model to new movie reviews. As you learn more machine learning techniques the text organization and DTM matching is foundational no matter the supervised learning approach that is applied.
7.3.5 Apply the Model to New Movie Reviews
Suppose you are now comfortable with your model and would like to put it into production. As new movie reviews are written you would like to apply the
model and get a predicted opening weekend revenue To do so, each new review
needs to be cleaned in the same manner as the training text.
test.text<-review.clean(test.movies)
After the new movie reviews are cleaned you can create an iterator similar to before. The itoken function is from text2vec, and allows you to work on large corpora as the function iterates through the text rather than doing it all at once.
test.it<-itoken(test.text, preprocess_function =
tolower, tokenizer = word_tokenizer)
Next you create a new DTM using the iterator and the original training data
vectorizer. The create_dtm accepts the new text’s iterator information, and
the original vectorizer ensures that the terms are matched.
test.dtm<-create_dtm(test.it,vectorizer)
At this point, you can make predictions using the text.cv model applied
to the test.dtm matrix. Remember that in an elastic net you must also
specify a lambda parameter.
test.preds<-predict(text.cv,test.dtm,
s=text.cv$lambda.min)
In this test set example, you know the actual opening weekend revenue. For
truly new movie reviews you would have to wait to check the accuracy.
However, here you can compare the RMSE and MAE, using the code below.
One should expect the evaluation metrics to deteriorate slightly on unseen
observations but that the predictions are close and relatively stable. Your RMSE
and MAE values will vary slightly, based on the random training data split, but they are likely to be close to an RMSE of $6,479,658 and MAE equal to
$4,859,730. In this educational example, there is significant deterioration on

7 Predictive Modeling: Using Text for Classifying and Predicting Outcomes 235
5.0e+07

edspr 2.5e+07
0.0e+00
0.0e+00
2.5e+07
5.0e+07
7.5e+07
1.0e+08

actual
Figure 7.9 The test set actual and predicted values show a wider dispersion than with the training set.
the test set metrics, so you may want to explore ways to improve the data by including using more information.
rmse(test.y,test.preds)
mae(test.y,test.preds)
The code below visualizes the fact that the model performs less well on test data. In Figure 7.9, the relationship is still observed but the relationship between actual and predicted values has a wider dispersion. As a text miner, if you were still satisfied with the model you could proceed to put it into production know-ing that the predictions are slightly under predicting values. If you needed more accuracy, you would feature engineer more information such as release weekend or specific actors to improve the text‐only predictions.
test.dat<-data.frame(actual=test.y,
preds=test.preds[,1])
ggplot(test.dat, aes(x=actual, y=preds)) +
geom_point(color='darkred',shape=1) +
stat_smooth(method=lm) + theme_gdocs()
7.3.6 Movie Revenue Conclusion
This example demonstrates a way to extract and organize text to make continuous predictions. Movie production companies explore data science to identify good bets and avoid costly mistakes. The method shown here is simple yet
applies the principles of both text mining and machine learning in a clear
236

Text Mining in Practice with R
manner. If you were to pursue this model further you may want to stack predictions as inputs into a new model while incorporating other known or expected revenue impacting movie attributes.
7.4 Summary
In this chapter you learned how text mining can improve classification meth-
ods and also be used as inputs for predictive modeling. Beyond patient read-
mission, classification algorithms using text can be found in customer service, and fraud identification contexts. Predictive modeling techniques incorporating text are used in finance and marketing in addition to social media.
Specifically, in this chapter you learned:
●
●
how classification is different from continuous prediction
●
●
how to create a DTM using text2vec instead of the tm package
●
●
how to apply the training set vocabulary to new text
●
●
how to create a classification algorithm for hospital readmissions, based on discharge text and patient information
●
●
how to create a continuous predictive model of social media shares based on
article text.
237
8
The OpenNLP Project
In this chapter, you’ll learn
●
●
what is the OpenNLP Project
●
●
the basics of R’s OpenNLP package
●
●
an example of syntactic parsing
●
●
what is named entity recognition (NER)
●
●
to load NER libraries
●
●
to perform NER
●
●
to use an API to get latitude and longitude of recognized locations
●
●
to create a bar chart of recognized organizations
●
●
to use a heat map to understand the entity interactions
●
●
to apply polarity scoring to individual entities in a box and whisker plot
●
●
to chart document polarity over time for specific entities.
8.1 What is the OpenNLP project?
The OpenNLP library is a toolkit for supporting natural language processing
tasks. It is part of the Apache Software Foundation and is offered for free, much like R. The Apache Software Foundation supports public software creation
using defined processes, ensuring consensus among contributors and excep-
tional quality standards. The OpenNLP project is one of more than 350 pro-
jects covering various topics such as big data, databases and email.
The OpenNLP toolkit provides many tools for performing tasks that we have
reviewed in this book. For example, tokenization of words can be done in R and also using the OpenNLP Apache library. There are some tasks, however, that
OpenNLP performs that many other R text processing libraries do not usually
accomplish. The OpenNLP library can be used for part of speech tagging, and
named entity recognition. In Chapter 2, you learned about the contrasting
approaches between the bag of words and syntactic parsing text mining
238

Text Mining in Practice with R
methods. The OpenNLP project is able to perform many of the syntactic pars-
ing approaches.
However, the openNLP project is written in Java and is therefore not easily
accessible to R programmers. Luckily there is an R package that wraps the Java functions so that they can be called using R’s syntax in your R session.
8.2 R’s OpenNLP Package
Figure 8.1, repeated from Chapter 2 shows a simple sentence being broken down according to syntactic parsing methods. At the time, you learned how a sentence is recognized as a sentence and then broken down into another tag such as a
noun or verb phrase and so on. The OpenNLP project does not refer to the word classes as “tags” but as “annotations.” In the example below, an annotation model must be used at each level of the process to break down the sentence to its various parts. Annotation models are individually applied to a document for sen-
tences, phrasing, part of speech and named entity recognition.
The OpenNLP package contains only five functions representing the meth-
ods of annotating a sentence. The package is not overwhelming in scope but
the brief package documentation and lack of wide online usage makes it difficult to figure out for a novice R programmer. The five functions are listed in Table 8.1 along with a short description. The rest of the chapter will apply the functions to a corpus, with explanations so that you can apply the methods and add syntactic parsing to your text mining toolkit.
‘ sentence’
Lebron James hit a tough shot.
‘ noun phrase’
‘ tagged as a ‘verb phrase’
Lebron James
hit a tough shot.
‘ named entity’
‘ verb’
‘ article’
‘ adjective’
‘ noun’
Lebron James
hit
a
tough
shot.
Figure 8.1 A sentence parsed syntactically with various annotations.

8 The OpenNLP Project 239
Table 8.1 The five functions of the OpenNLP package.
Function name
Description
Maxent_
Text chunking identifies the noun or verb groups within a sentence.
Chunk_
Chunking classifies an entire chunk, not the structure within a chunk
Annotator
or its relationship to the sentence.
Maxent_
The name finder can detect named entities and numbers in text. Using
Entity_
the entity annotator requires a pre‐trained model specific to a
Annotator
language. Entity recognition needs to have sentence and word
annotations applied beforehand.
Maxent_POS_
The part of speech tagger marks word tokens with a class such as noun
Tag_Annotator or adjective. A token can have multiple POS tags, based on probability and relationship to other word tokens. The POS tag codes come from
the Penn Treebank Project, and are listed in Table 8.2.
Maxent_Sent_
The OpenNLP sentence detector detects punctuation marks to
Token_
determine the end of a sentence. This segments each individual
Annotator
sentence in a text so that other more granular annotation models can
be applied.
Maxent_Word_ This model segments characters into tokens, often words, numbers or Token_
punctuation marks.
Annotator
The POS tags come from the Penn Treebank Project. The project dates back
to the early 1990s and contains syntactic and semantic information on real text examples. The project created tag codes now used in the POS OpenNLP
model. The list below will help you decipher the tag codes if you perform POS
tagging as part of your project.
It is important that you apply the annotators in the correct order. If you do not, your results may vary from reality. For example consider two sentences
below.
His name is George. Washington is where he is from.
If you were to apply an entity extraction annotation model before a sentence annotation model, the model may identify George Washington in the text.
However, George is a separate individual from the meaning of Washington.
Washington is not used in the context of a last name. Instead sentence annotation is needed first to break up the individual sentences. Applying the sentence annotation model and then the entity recognition annotation will improve
results. This is because the entity annotator will identify George as part of the first sentence. It will also identify Washington as part of the second sentence representing some form of entity, possibly a location. The sentence annotation separates the words for the entity annotation so that two entities are split. As you progress through the example script and also explore on your own, remember that the order of annotators is important.
240

Text Mining in Practice with R
Table 8.2 The Penn Treebank POS tag codes.
POS
POS
Tag
Description
Tag
Description
CC
Coordinating conjunction
PRP$
Possessive pronoun
CD
Cardinal number
RB
Adverb
DT
Determiner
RBR
Adverb, comparative
EX
Existential there
RBS
Adverb, superlative
FW
Foreign word
RP
Particle
IN
Preposition or subordinating
SYM
Symbol
conjunction
JJ
Adjective
TO
To
JJR
Adjective, comparative
UH
Interjection
JJS
Adjective, superlative
VB
Verb, base form
LS
List item marker
VBD
Verb, past tense
MD
Modal
VBG
Verb, gerund or present
participle
NN
Noun, singular or mass
VBN
Verb, past participle
NNS
Noun, plural
VBP
Verb, non third person singular
present
NNP
Proper noun, singular
VBZ
Verb, third person singular
present
NNPS
Proper noun, plural
WDT
Whdeterminer
PDT
Predeterminer
WP
Whpronoun
POS
Possessive ending
WP$
Possessive whpronoun
PRP
Personal pronoun
WRB
Whadverb
Installing the OpenNLP package is straightforward using the code below.
However, the entity models require a different download location. For many
packages, using an official CRAN mirror can be done using the install.
packages function without specifying a server location. To download a spe-
cific named entity annotator you have to specify a location, because the models are not part of the CRAN repository. An existing model can be found at the
Vienna University of Economics and Business. The code below installs the
CRAN openNLP library and the Vienna University annotation model.
install.packages('openNLP')
install.packages("openNLPmodels.en",repos = "http://
datacube.wu.ac.at/",type = "source")

8 The OpenNLP Project 241
What is Maxent (maximum entropy)?
The annotation models use a method called maximum entropy to identify the
sentences, tokens, parts of speech and named entities. Maximum entropy is a
machine learning technique for classification. The dependent class is the annotation tag such as noun. The input features are patterns about the text that have been observed. However, maximum entropy is an information‐based technique,
not a probability‐based technique. Probability counts the individual occur-
rences of features, while information is based on the average pattern occurrence for a feature. This is well suited to natural language because of expression diversity. In natural language, there are many specific probability distributions so a tagging model has to be more generally applied to be useful. Maximum entropy allows you to be less specific but also less error prone than providing an explicit probability distribution for each noun, verb and so on.
Entropy is a measure of uncertainty in a distribution. Entropy measures an
event probability and the event’s “surprise,” given the prior observation’s average occurrence. In common terms, if you thought winning the lottery was
unlikely then your surprise would be very high if you had the winning ticket. In contrast, flipping a coin and getting “tails” is less surprising because you would expect a more likely chance of that outcome. The equation for entropy is as
follows.

x
=

Event

px
= Probability

Surprise = log 1
(/ px)

Entropy, E

xpectation over
Surprise = −

p
∑ xlog 2 px

x X
∈
For annotation models, entropy (uncertainty) is maximized, while still resembling the reference word distribution. Rather than having complete uncertainty and a useless model, the model uses average probability constraints to lower the entropy. The maximum entropy approach balances complete uncertainty
by applying constraints based on observed information.
For example, to define a sentence you need punctuation marks, capital letters and whitespace constraints. This model allows for uncertainty in the specific punctuation, letter or amount of whitespace to identify the sentence. Thus, the uncertainty is maximized given what you know about sentences but is not
explicitly defined using a period, capital “T” and two spaces afterwards because sentences can end in exclamation points, start with another letter or have a single blank space after.
Another common explanation leverages your own reading ability. In the text
below, you identify a word solely on the first and last letters. Your reading
242

Text Mining in Practice with R
“annotation model” uses the minimum characteristics of a word to identify
the word. In doing so, your mind’s algorithm allows for maximum entropy for
the other characters in the words.
“Raednig wrdos is esaeir tahn you tuohgt. Tnurs out, olny the fisrt and lsat lteters mttater. Yuor mnid is mxaizimnig the ucnectriatny to cpermohned the
wrods.”
Once itis installed you are ready to begin a case study examining hundreds of emails using syntactic parsing.
8.3 Named Entities in Hillary Clinton’s Email
Figure 8.1, repeated from Chapter 2, shows a simple sentence being broken down according to syntactic parsing. Now you are going to apply this approach to hundreds of emails. During the US presidential election, the Democratic Party nomi-nated Hillary Clinton. While she was the Secretary of State under Barack Obama, she used a personal email server. During her candidacy for president, the opposi-tion party launched an investigation into whether classified information was not properly secured, which constitutes a crime. As part of the government investigation, thousands of emails were released to the public. Regardless of political affiliation or feelings on this divisive issue, the emails pose an interesting corpus to demonstrate syntactic parsing and named entity recognition.
Following the text mining workflow, suppose you are a journalist looking to
understand the emails quickly. If this were the case, you would define the problem statement in an exploratory manner.
1) Define the problem and specific goals. Explore Hillary Clinton’s emails to automatically identify people, places and organizations. Then perform
polarity analysis on individual entities to understand how Hillary Clinton’s language changes among different entities.
2) Identify the text that needs to be collected. Some 25,000 individual emails were released to the public as official documents. These emails were released in chunks throughout the inquiry. In this case study, you will examine 551
emails released in Feb 2016. This is a small subset of the larger email collection but is enough for educational purposes. If you were performing the analysis on all emails it would require more RAM and likely take longer to analyze.
3) Organize the text. This analysis requires systematically reading individual files to construct a larger single corpus comprising 551 documents. As part
of the organization step, some rudimentary cleaning functions are applied.
If desired, you can apply more robust preprocessing methods learned in
earlier chapters.

8 The OpenNLP Project 243
Getting the Data
Please navigate to www.tedkwartler.com and follow the download link. For this analysis, please download “C8_final_txts.zip”. The zipped file contains 551 individual emails from the Hillary Clinton investigation as plain text files. If desired, the other emails in the investigation can also be downloaded. The code in this chapter assumes that you have unzipped the file and placed all the text files in a single folder.
4) Extract features. The openNLP annotation models will identify individual sentences, words and ultimately persons, locations and organizations.
5) Analyze. In this case study, you will construct multiple visuals. First, you create a simple bar plot to identify the frequent organizations. Next is a
world map of recognized locations. Lastly, polarity scores add another layer to the entity exploration. In your own named entity project you can change
the entities to construct different plots and analyses such as word clouds or treemaps.
6) Reach an insight or recommendation. The goal is largely exploratory in this example. However, this method can be used by marketers to identify
named entities in social media text. In this case you are automatically identifying and quantifying various named elements and then focusing on how
Hillary Clinton’s language changes in relation to specific entities.
8.3.1 R Session Set‐Up
This is a complex analysis requiring multiple packages. After downloading the Vienna University annotation model you can call it using the code below. This section sets your working directory containing the folder with 551 individual text files. The code then sets global session options similar to previous examples. Next you load ggmap and ggthemes. The ggmap package provides
access to the Google Maps API for constructing ggplot2 visuals. The ggth-
emes library provides quick aesthetic palettes within ggplot2 illustrations.
When loading these packages ggplot2 will automatically load, so you do not
have to load it explicitly. After these packages, load openNLP and the Vienna University annotation model, openNLPmodels.en. Although specifying the
exact folder location of the annotation model may not be needed, the code
below uses an explicit file path. It is important to load the ggplot2 related packages before the openNLP library. Both share a function called annotate. If the order is reversed, the openNLP annotate function is overwritten and your code will not function. Next pbapply, the progress bar version of
the apply functions, is loaded. This is merely a convenience to understand the time it will take for some of the longer processing steps. The stringr
244

Text Mining in Practice with R
package provides string manipulation functions. Rvest is primarily used for
web scraping but is used here to select specific elements from a list. The doBy package provides group‐wise statistics functions that can be helpful when
working with many data elements. Once again the tm package is loaded.
Instead of using the package for a bag of words style analysis, the package is used for preprocessing functions. Lastly, cshapes provides shape files for
maps. In this case, the shape files are used for creating a world map.
options(stringsAsFactors = FALSE)
Sys.setlocale('LC_ALL','C')
library(gridExtra)
library(ggmap)
library(ggthemes)
library(NLP)
library(openNLP)
library("openNLPmodels.en", lib.loc="~/R/
win-library/3.2")
library(pbapply)
library(stringr)
library(rvest)
library(doBy)
library(tm)
library(cshapes)
At this point, your R session is set up with appropriate options and librar-
ies. Next you need to scan your working directory for the multiple files representing Hillary Clinton’s emails. To do so, use list.files along with a
pattern within the files. Pass in a wildcard (*) with “.txt” to get a string vector of any files names in the working directory that have the .txt file extension.
You can change the pattern to identify other file types or names. Once cre-
ated, the temp object of 551 file names is passed into an “if” statement. The
“if” statement uses a temporary variable “i” along with two functions,
assign and readLines. The “if” statement works by iterating from 1 to
the length of temp (551), assigning an object name corresponding to the
temp file name. Specifically, the assigned object name is created using
readLines which is the base R function for reading in text lines. For exam-
ple, the first file name, temp[1], is “C05758905.txt” This is passed to the “if”
statement into the other functions as assign(“C05758905.txt”),
readLines(“C05758905.txt”). The “if” statement then moves to
temp[2], C05758988.txt, passing the string into both functions and so
on for all 551 files. At this point, you have 551 individual objects in your R
session. This can be cumbersome to deal with, so the next line uses pblap-
ply along with get to organize the files into a single list with 551 elements.

8 The OpenNLP Project 245
There are more succinct ways of organizing multiple files into a single
object, but separating the if and pblapply functions makes learning the
procedures straightforward.
temp <- list.files(pattern='*.txt')
for (i in 1:length(temp)) assign(temp[i],
readLines(temp[i]))
all.emails<-pblapply(temp, get)
8.3.2 Minor Text Cleaning
The emails are well organized with few to no misspellings, emoticons or spe-
cial characters. Thus, the cleaning function can be fairly short. As you apply the txt.clean function in the next code section to other OpenNLP text
mining projects you should adjust the preprocessing functions. To begin, the txt.clean function accepts a character string and drops the first line. The
first line contains information that is not needed for a named entity analysis.
The first line has been added by investigators and is not part of the actual email.
An example first line is below.
UNCLASSIFIED U.S. Department of State Case No. F‐2014‐20439 Doc
No. C05758905 Date: 02/13/2016
txt.clean<-function(x){
x<-x[-1]
x<-paste(x,collapse= “ “)
x<-str_replace_all(x,
“[a-zA-Z0-9_.+-]+@[a-zAZ0-9-]+\\.[a-zA-Z0-9-.]+”, “”)
x<-str_replace_all(x,
“Doc No.”,””)
x<-str_replace_all(x,
“UNCLASSIFIED U.S. Department of State Case No.”,””)
x<-removeNumbers(x)
x<-as.String(x)
return(x)
}
After dropping the first line, each email is collapsed into a single text line representing the entire email. When using readLines each line break within
an email denotes a new row of the text vector. Collapsing the lines into a single line makes the analysis coincide with 551 emails instead of thousands of individual lines of the email corpus. Next a regular expression to remove email
addresses is applied. Using stringr’s str_replace_all function with [a‐
zA‐Z0‐9_.+‐]+@[a‐zA‐Z0‐9‐]+\\.[a‐zA‐Z0‐9‐.]+ will match
emails for pattern replacement. Emails follow a predictable pattern of letters
246

Text Mining in Practice with R
and/or numbers then the “@”, a domain made of letters or numbers and finally a .com, .net or some other domain pattern. The regular expression looks for
letters or numbers before and after the “@” along with a period followed by any other letters or numbers. Once recognized, the pattern is replaced with an
empty character because there is no space in between the quotation marks
following the regular expression. Additional string replacements are also performed for other terms that have been appended by the investigative team.
RemoveNumbers from tm is applied next. Sometimes, the named entity
models identify a year as an organization. This function simply removes the
numbers, but this may not always be appropriate in other use cases. Lastly, the function changes the email text from character to an object class “string” used by openNLP. The string class is used because it has the ability for subscripting by start and end character position similar to indexes in data frames.
Using pblapply along with the list of emails and the text cleaning function
will preprocess and change the class of the emails. The returned list is still called all.emails. At this point, the text is no longer in a raw state.
all.emails<-pblapply(all.emails,txt.clean)
To understand the string object class, the code below refers to the third
cleaned email from characters 2 to 8. The [2,8] is subscripting to the characters of the string. In this case, it is the word “Subject.”
all.emails[[3]][18,24]
If necessary, you can name the list elements representing individual emails.
Naming the list elements makes organization easier in a complex analysis. Pass the all.emails list into the names function along with the vector of names,
“temp.” Once it is named, you can refer to list elements by file name and the character start and stop subscripts such as "all.emails$C05759073.txt[2,8].”
names(all.emails)<-temp
You should remove the 551 text file objects from your workspace to free up
space. The individual files are redundant to the clean list elements within all.
emails. Do not remove the individual objects if you expect to later use the
unprocessed versions for other text mining methods. To remove multiple items in your workspace at once, employ rm, standing for remove, and passing in a
list of objects to remove. In this case, you supply the temp vector of file names.
rm(list=temp)
8.3.3 Using OpenNLP on a single email
To understand named entity recognition you will apply the openNLP functions
on a single email before the entire corpus. To begin, you need to call the annotation models. This is done using the function Maxent_Entity_Annotator

8 The OpenNLP Project 247
Table 8.3 The named entity models that can be used in openNLPmodels.en.
Kind
Description
Example entities
date
A named entity model to extract dates from text
Thursday
April 29, 2011
tomorrow
location
A named entity model to extract possible locations
United States
including proper nouns
Syria
The White House
money
A named entity model to identify currency amounts
$96.5 million
$6.18
organization A model to extract organizations by name or
National Security
acronym
Council
percentage
An algorithm to identify percent values including
75 per cent
numbers, words or using the % symbol.
83%
person
A method to identify proper nouns for people,
Tony Blair
primarily first and last name
Bill
along with the type of model. Table 8.3 lists the English annotation models
within the openNLPmodels.en library.
Each entity model such as “person” or “location” incorporates multiple fea-
tures of the individual token. For example, when reviewing the token “Syria,” 13
distinct features are used to identify it as a location. Each kind of entity has a different weight assigned to each of the 13 features. The weights concerning digits are stronger for currency compared to the model for locations. As a
result, Syria is not recognized as a currency. Instead, the feature weights for capital letters are made higher in the location model, and Syria is more likely to be a location. Each of the six models is an empirically weighted combination of weights with a binary classification outcome corresponding to the specific
entity. The feature list for named entity models includes:
1) token is lowercase
2) token is two digits
3) token is four digits
4) token contains a number and a letter
5) token contains a number and a hyphen
6) token contains a number and a backslash
7) token contains a number and a comma
8) token contains a number and a period
9) token contains a number
10) token is all caps, but is a single letter
248

Text Mining in Practice with R
11) token is all caps but is more than one letter
12) first letter of the token is a capital letter
13) token was tagged as “other” e.g. (a sentence).
It is time to apply the maxent annotations using the downloaded models.
The following code creates annotations for persons, locations and organiza-
tions. Also, individual models for sentences, words and parts of speech are also set up. These load the pre‐existing feature weights to be called by your R session, but they do not yet apply them to any text.
persons <- Maxent_Entity_Annotator(kind = 'person')
locations <- Maxent_Entity_Annotator(kind = 'location')
organizations <- Maxent_Entity_Annotator(kind =
'organization')
sent.token.annotator <-
Maxent_Sent_Token_Annotator(language = "en")
word.token.annotator <-
Maxent_Word_Token_Annotator(language = "en")
pos.tag.annotator <-
Maxent_POS_Tag_Annotator(language = "en")
You will apply these annotation models to a single email. The code below
applies the models using the annotate function. Pass in the third email using all.emails[[3]]. Then provide a list of the annotation models to be
applied in sequence. The sentence annotation model is first followed by the
word model and part of speech tagging model.
annotations <- annotate(all.emails[[3]],
list(sent.token.annotator,word.token.annotator,
pos.tag.annotator, persons,locations,organizations))
The annotations object is a list that is best changed to a data frame. The code below makes a data frame from each list element, and selects the second
through fifth columns. Then a new data frame vector, features, is added to
ann.df. The features vector contains the type of identified entity.
ann.df<-as.data.frame(annotations)[,2:5]
ann.df$features<-unlist(as.character(ann.df$features))
The resulting data frame can be examined using indexing, with accompany-
ing results printed below. The data frame contains the token type, start and end character positions and the specific feature or entity class.
ann.df[244:250,]
type start end features
244 entity 662 670 list(kind = "person")
245 entity 857 867 list(kind = "person")

8 The OpenNLP Project 249
246 entity 897 921 list(kind = "person")
247 entity 70 74 list(kind =
"organization")
248 entity 258 262 list(kind =
"organization")
249 entity 516 520 list(kind =
"organization")
250 entity 709 713 list(kind =
"organization")
At this point, the data frame contains the starting and ending character for each entity, but it is more useful to append a vector with the actual token. For a single document, you can use a “for” loop to migrate row by row in the data frame. The anno.chars object is created from the loop of one to the number
of rows in the data frame. In this sequence from 1 to 251, the loop uses substring on the third email and passes in a corresponding start and end integer from the ann.df data frame. For example, on the ninth entity row in the data frame the code would be substr(all.emails[[3]], ann.df[9,2],
ann.df[9,3])). In the loop, the changing row number is represented by i
as the sequence continues. This saves writing 251 individual lines of code. The final object is then added to the original data frame as a vector called ann.
df$words.
anno.chars<-NULL
for (i in 1:nrow(ann.df)) anno.chars[i]<-
((substr(all.emails[[3]],ann.df[i,2],ann.df[i,3])))
ann.df$words<-anno.chars
This final data frame contain not only does persons, locations and organiza-
tions, but also each detected sentence, word and part of speech. To complete the named entity analysis you may need to subset the data frame for specific features. The code below used the logical grepl as a subset parameter for
each entity class.
subset(ann.df$words,grepl("*person",
ann.df$features)==T)
subset(ann.df$words,grepl("*location",
ann.df$features)==T)
subset(ann.df$words,grepl("*organization",
ann.df$features)==T)
The third email in the collection does not contain any locations, but other
entity types are identified. For example, the subset results for “person” and
250

Text Mining in Practice with R
Table 8.4 Named people found in the third email.
Person
Jack
Jim
Mills
Jacob J
Steinberg
Alexander
Matt Spence
Alex Alex Pascal National
Table 8.5 Named organizations found in the third email.
Organization
Group
Group
Group
National Security Council
“organization” are contained in Tables 8.4 and 8.5 respectively. You will notice some additional data clean up must be performed on the results. The raw
results are non‐unique and in the case of “Alex Alex Pascal National” the algorithm concatenated two signatures in a row.
As an investigative journalist in this case study, you now would want to identify the specific part of an email containing an interesting entity. In this example, National Security Council pops out, so you need to identify the
line in the third email containing this organization. Remember that you are
only working on a single email at this point. Previously you removed all 551
individual emails so you must reload the third email referencing temp[[3]].
Reviewing the existing object all.emails[[3]] may not be useful because
you already applied some text cleaning processes to it. The grep command
will return the line number or numbers containing “National Security Council.”
The last line indexes the third email to only the line containing the pattern and will print it to the console.

8 The OpenNLP Project 251
third.email<-readLines(temp[[3]])
entity.pos<-grep("National Security Council",
third.email)
third.email[entity.pos]
The results are shown in the sentence below. It is a signature line from the email with Alex Pascal’s contact information.
"We apologize for the late notice. Please feel free to
contact me or Matt Spence with any questions. Thanks,
Alex Alex Pascal National Security Council apascal
(202) 456-9491 (main)"
8.3.4 Using OpenNLP on Multiple Documents
Now that you understand the principles of applying openNLP models to an
individual email, it is time to perform named entity recognition on a larger corpus. The principles are the same, but the code changes slightly. The code in this entire section supports identifying named entities within 551 Hillary
Clinton emails to make interesting visualizations.
To start, you need to set up a custom function that can be applied to the
entire list of emails. The annotate.entities function accepts an individ-
ual document and a “pipeline.” The pipeline is a list of the models you wish to employ on the document, but the list itself is defined later. Within the function, annotations are made on the doc using the pipeline, and then a new function
AnnotatedPlainTextDocument is called. The new function takes the
annotations and reapplies the identified tags to the original document. The
function will return the plain text document with annotations.
annotate.entities <- function(doc,
annotation.pipeline) {
annotations <- annotate(doc, annotation.pipeline)
AnnotatedPlainTextDocument(doc, annotations)
}
To define an annotation sequence you create a list with the specific openNLP
models. In this example, the sentence, word and part of speech annotation
models are the first elements of the list. Next the named entity models person, location and organization are added. You can change the model “kind” or add
new ones separated by commas from Table 8.3.
ner.pipeline <- list(
Maxent_Sent_Token_Annotator(),
Maxent_Word_Token_Annotator(),
252

Text Mining in Practice with R
Maxent_POS_Tag_Annotator(),
Maxent_Entity_Annotator(kind = "person"),
Maxent_Entity_Annotator(kind = "location"),
Maxent_Entity_Annotator(kind = "organization")
)
Now that you have an annotation function that individually calls the models, you need to apply them to the entire email list. Since all.emails is a list of 551 cleaned emails, you can use either lapply or pblapply to perform your
annotations. The progress bar version, pblapply, is helpful because named
entity modeling can be time‐consuming depending on the size of the corpus.
The pblapply function accepts the email list, all.emails, then the custom
function that returns annotated plain text documents called annotate.enti-
ties. Since the annotate.entities function also needs the named entity
models list you also pass in the ner.pipeline list separated by a comma.
all.ner<-pblapply(all.emails,annotate.entities,
ner.pipeline)
After completing the 551 separate annotations you can extract the useful
information and construct a data frame with entity information. The pluck
function can extract list elements by name or index. The code selects each annotation list from the 551 elements. Then each of the annotations is changed to a data frame. At this point all.ner is a list containing all named entities made of 551 elements. Each element of the list is a single data frame corresponding to the email order with a type vector, start and end character position and the specific feature identified. This mimics the single email data frame shown previously.
all.ner<-pluck(all.ner,"annotations")
all.ner<-pblapply(all.ner, as.data.frame)
Indexing all.ner allows you to review the results. The code reviews the
third email and the same rows shown in the single email example. The third
email’s data frame of annotations can be accessed using double brackets and 3.
Annotation rows 244 to 250 are selected along with all columns. The row
indexing is performed within single brackets. This exactly matches the single email with three person and four organization entities.
all.ner[[3]][244:250,]
The previous loop function will not work on all.ner and all.emails. The
next code constructs a single data frame with the same information as the previous loop, type, start, end, features and the actual token, but also adds a file name vector. With so many emails the “file” vector identifies where the entity was found.
Instead of a loop, the code now uses the Map function, which applies a func-
tion to corresponding elements of any vectors or lists it is supplied. Using Map,

8 The OpenNLP Project 253
the custom function below accepts text, features and an id object. The custom function uses cbind to create a data frame. The data frame vectors are defined inside the cbind function. The vectors include the original data frame, the
substring function to extract the token and the file name. The last part of the Map function contains the objects used within the custom function that are
being mapped. For example, all.emails[[1]] will be the “tex” input,
all.ner[[1]] represents the “fea” input and temp[[1]] is the “id.” The
first row of the data frame is mapped to be all.ner[[1]], the characters
from substring between all.ner[[1]]$start and all.ner[[1]]$end
and temp[[1]]. The temp[[1]] string is automatically repeated for the
length of the all.ner[[1]] data frame. This will be mapped over all 551
individual data frames. The result is still a list of 551 emails but with new vectors for the token and corresponding file.
all.ner<-Map(function(tex,fea,id) cbind(fea,
entity=substring(tex, fea$start,fea$end),file=id),
all.emails,all.ner,temp)
Although the Map function is complicated, the end result should be familiar.
Calling the third email and the same rows as before shows the additional information that was appended to the data frame. This includes the entity vector
with the word token and the corresponding file.
all.ner[[3]][244:250,]
type start end features entity file
244 entity 662 670 person Alexander
C05759013.txt
245 entity 857 867 person Matt
Spence C05759013.txt
246 entity 897 921 person Alex Alex
Pascal National C05759013.txt
247 entity 70 74 organization Group
C05759013.txt
248 entity 258 262 organization Group
C05759013.txt
249 entity 516 520 organization Group
C05759013.txt
250 entity 709 713 organization Group
C05759013.txt
Using do.call with rbind and all.ner will create a unified entity data
frame from the 551 individual data frame list elements. The features vector is actually a nested list class, so you must add code to flatten the vector. The extra step to change all.ner$features into a simple character vector makes
data manipulation easier.
254

Text Mining in Practice with R
all.ner<-do.call(rbind,all.ner)
all.ner$features<-unlist(as.character(
all.ner$features))
The all.ner object is a single large data frame. Each row represents an
annotation for the entire corpus. Each individual sentence, word and part of speech was identified in addition to people, locations and organizations. In this case study, the 551 emails contain 242,585 annotations. As a result, the all.
ner data frame has 242,585 rows and seven columns.
Indexing to only the data frame rows for particular entity classes will make the data more manageable. The grep function will return row integers matching a pattern and can be nested inside the all.ner indexing brackets. This
code creates three small data frames with seven columns. The three smaller
objects correspond to the person, location and organization model entities.
Remember to change the pattern if you are using a different entity model
such as “money.”
all.per<-all.ner[grep("person", all.ner$features),]
all.loc<-all.ner[grep("location", all.ner$features),]
all.org<-all.ner[grep("organization",
all.ner$features),]
8.3.5 Revisiting the Text Mining Workflow
Before moving on to the next section, let’s quickly revisit the text mining workflow. To this point, you have completed steps 1 through 4. Step 1, the problem statement and goal, has not changed and is restated here. To satisfy step 2, you downloaded the raw text identified for the case study. Your previous code
executed step 3 to organize the text into a list and performed some basic cleaning. Finally, in step 4 you ultimately extracted three objects that can be used for analysis.
1) Define the problem and specific goals. Explore Hillary Clinton’s emails to automatically identify people, places and organizations. Then perform sentiment polarity on individual entities to understand how Hillary Clinton’s
language changes among different entities.
2) Identify the text that needs to be collected. You downloaded 551 Hillary Clinton emails released in Feb 2016.
3) Organize the text. You have systematically read and organized the emails so that openNLP models can identify entities.
4) Extract features. All named entities for people, locations and organizations have been extracted from the text using the openNLP models. The entity
features are organized into individual data frames for people, locations and organizations.

8 The OpenNLP Project 255
8.4 Analyzing the Named Entities
One of the first things you may want to do is identify the unique entities in each of the three data frames. The unique function returns a vector, data frame, or list like the object it was passed. The difference is that the duplicate values, rows or elements are removed. Here, you create a vector of 370 unique locations from the all.loc$entity character vector.
uni.loc<-unique(all.loc$entity)
Another method for obtaining similar information is with the function
firstobs from the doBy package. The firstobs function identifies the
first instance of a unique value and returns its position. A similar function is lastobs, which will identify the position of the last unique observation. Used in the code below, the first unique observation indexes location entity vector.
Both methods result in 370 unique observations but firstobs identifies the
first mention of an entity. This can be helpful if your data is chronological and you want to know at a specific point that an entity is used. To explore different entities, change all.loc to another of the three entity data frames.
uni.loc<-all.loc[firstobs(~entity, data=all.loc),]
Another basic data exploration technique is to perform a frequency analysis.
A simple bar plot of the top unique terms can be insightful. A fast method to summarize the entity text is to create a table of the entity information. Table needs to be applied to a factor, not character string, so you must first change the vector to a categorical variable. The resulting object class also needs to be changed from table to matrix. All three functions are nested and applied to the organization entities below. Once again, change the data frame entity to explore persons or locations.
orgs<-as.matrix(table(as.factor(all.org$entity)))
Once created, the orgs matrix has 871 different organizations with a corre-
sponding frequency integer. You can explore the matrix by index position with the results in Table 8.6.
orgs[216:220,1]
A bar plot will be incomprehensible with 871 different values. One method
to reduce the information is to reorder the entire matrix using order and then select the most frequent terms. First, the code sorts the matrix in a decreasing manner. After reordering, the plot’s side margins are explicitly defined so that the text is not cut off. Adjust the integers accordingly in your own plot as text lengths vary. Next the base function barplot constructs the visual by accept-ing the matrix indexing the top 20 terms. The las parameter adjusts the bar
labels to be vertical. Finally, the resulting bar plot is illustrated in Figure 8.2.
256

Text Mining in Practice with R
Table 8.6 Example organizations that were identified and their corresponding frequency.
Organization
Frequency
Department of Justice
2
Department of State
2
Department of State All
1
Department of State Washington
2
Department of Treasury
1
80
60
40
20
0
y
X
y
e
US
FBI
ess
WH
UN
AID
TO
NSC
ECB
House
tment
tment
tment
easur
US
NA
ouncil
e House
Senat
ongr
C
Tr
Embass
hit
C
W
e Depar
e Depar
e Depar
dministrationA
Stat
T Stat
AR
ARRIVE Stat
DEP
Figure 8.2 The most frequent organizations identified by the named entity model.
orgs<-orgs[order(orgs[,1], decreasing=T),]
side.margins <- par(mar = c(11,2,1,1) + 0.3)
barplot(orgs[1:20], las = 2)
8.4.1 Worldwide Map of Hillary Clinton’s Location Mentions
After exploring the unique, first and last observed terms and frequency for the three entity classes, you may want to construct a world map and plot unique
locations. Once again using unique, creates a location character vector with the code below.

8 The OpenNLP Project 257
uni.loc<-unique(all.loc$entity)
To plot the locations, this code section uses the Google Geocoding API.
Geocoding is the process of identifying the geographic location for a specific place. The ggmap library provides automatic bindings for Google’s Geocoding
API service. You can use the service to obtain 2500 latitude and longitude pairs a day for free.
The geocode function accepts a character vector of places. Assuming that you have an Internet connection, you pass in the unique locations to obtain all the latitude and longitude pairs. If the API service fails to recognize a location, an error is returned for that record, but the function will continue to check other places.
Each response is formatted as JavaScript object notation (JSON) packets, but the geocode function conveniently handles parsing the information. The geocoding will be complete after a few moments and multiple updates to your R console.
uni.loc.geo<-geocode(uni.loc)
You will want to column bind the coordinate pairs to the original data. That way you can save it for later, without having to redo the time‐consuming geocoding. Using cbind, the uni.loc object contains the original location infor-
mation along with corresponding latitude and longitudes. If a location was not recognized the values will be “NA.”
uni.loc<-cbind(uni.loc,uni.loc.geo)
There are multiple methods to construct a worldwide map. One method is to
use the get_map function from ggmap. This queries the Google Map API ser-
vice and returns a static image to be used with ggplot2 functions. A different method is to use shape files defining the country boundaries on a map. Loading the cshapes package loads the functions and underlying data to construct a
simple worldwide map. The shape file method is used to construct this visual.
The innermost function in the code below is cshp, which is a that function
extracts the worldwide country data as of a particular date. The shape file data is passed to the fortify function from ggplot2. Fortify will construct a
data frame containing latitude and longitude points with grouping identification numbers. The polygon data will become the base layer for the worldwide map.
Note that the column names include long, lat and group, which will be used later.
world.data <- fortify(cshp(date=
as.Date("2015-06-30")))
To construct the base layer, call ggplot below. Pass in the world.data data
frame, and define the aesthetics with x,y and grouping. The aesthetics will correspond to longitude, latitude and country group, according to the data frame column names “long,” “lat” and “group.” The next line adds geom_polygon to apply a fill and border color with weight. The base map, Figure 8.3, is plotted with

258

Text Mining in Practice with R
50
lat
0
–50
–100
0
100
long
Figure 8.3 The base map with ggplot’s basic color and axes.
ggplot2’s basic aesthetics. The base map does not contain the location entities yet.
base.map <- ggplot(world.data,
aes(long,lat,group=group)) +
geom_polygon(fill="white", color="grey80",
size=0.25)
The email.locs layer adds geometric points using the uni.loc data.
Using geom_point treats the next layer like a simple scatter plot on top of a world map. As before, the aesthetics are defined with latitude and longitude, but the data frame names have changed to “lon” and “lat.” In this case, there is no grouping because the points are unique. Next define size, transparency and color for each point. To quickly change the ggplot default background and
axes, use a predefined theme from ggtheme. The code uses “theme_few”
because it is simple. Using predefined ggthemes is a quick way to change multiple aspects of any ggplot2 visual. Lastly, add a title using ggtitle and call the plot. The final map is shown in Figure 8.4.
email.locs<-base.map+geom_point(data = uni.loc,
aes(x = lon, y=lat, group=NA), size=2.0,
alpha=.5, colour="red")+
theme_few()+ggtitle("NER Locations")
email.locs

8 The OpenNLP Project 259
NER Locations
50
lat
0
–50
–100
0
100
long
Figure 8.4 The worldwide map with locations from 551 Hillary Clinton emails.
Using semi‐transparent dots by adjusting the alpha parameter allows your
audience to gauge the intensity of the location mentions. Nearby areas will
overlap and become darker while infrequent locations will have more transparent points.
Some locations are assigned a generic point representing a larger region by
the API service. For example, the location “Russia” is assigned coordinates in central Russia, although the Secretary of State would likely be talking about the Russian government based in Moscow. If the misplaced points materially affect your analysis, you should manually review the uni.loc character vector prior to geocoding and plotting.
Also, ggplot2 will automatically remove any locations that have NA for
longitude and latitude values. NA values are worth investigating because the locations may be misspelled and therefore unrecognized by Google’s API service. In this example, 17 locations were removed before plotting Figure 8.4.
8.4.2 Mapping Only European Locations
Another way to construct a map is to use Google’s static map API. The ggmap
library provides an easy way to obtain a map. Once you have the map, it is used as the base layer of a normal ggplot2 illustration. Once it is the bottom layer, you can plot points on top with the same code that was used in the world map.
One method to call the Google service is with get_googlemap. This code
uses Luxembourg as the map center because the nation is centrally located to the continent. If desired, change the location string to recenter the map. The next parameter ranges from 3 to 21. The default zoom is 10 which is the city level for a map. The last parameter contains the map type that is returned from

260

Text Mining in Practice with R
Google. The options are roadmap, satellite or hybrid. The static map information is stored in the object eu.map.
eu.map <-get_googlemap('Luxembourg', zoom=4,
maptype='roadmap')
The eu.map information is then plotted as the foundation for your visual. Use the function ggmap along with the returned API object. Adding “extent =
device” to the image extends the map to the edge of the graphics window and
removes latitude and longitude axes. Finally, add a layer of individual locations using geom_point with the same aesthetics as before. Once it is created, ggplot will produce a warning for any points that do not fit on the map or have NA values.
This is helpful since ggplot automatically omits the points that do not fit within the map. Figure 8.5 is Google’s European map with the email locations plotted.
Figure 8.5 The Google map of email locations.

8 The OpenNLP Project 261
ggmap(eu.map,extent = "device")+
geom_point(data = uni.loc,
aes(x = lon, y=lat, group=NA),
size=2.0, alpha=.5, colour="red")
Another function get_map allows you to change the map appearance fur-
ther. In the code below, the get_map function fetches Google’s Luxembourg
information. The additional parameters, source=’stamen’ and
maptype=’toner’, download black and white map tiles from www.stamen.
com. These tiles are assembled in order to produce the European continent.
After assembly, the same code adds the layer containing email locations. Figure 8.6 is the black and white version of the European map.
Figure 8.6 Black and white map of email locations.
262

Text Mining in Practice with R
bw.map <- get_map('Luxembourg',
zoom=4,source='stamen', maptype='toner', crop=F)
ggmap(bw.map,extent = "device")+
geom_point(data = uni.loc,
aes(x = lon, y=lat, group=NA),
size=2.0, alpha=.5,
colour="red")
8.4.3 Entities and Polarity: How Does Hillary Clinton Feel About
an Entity?
A potentially insightful visual could incorporate sentiment polarity distributions for specific named entities. Comparing the distributions may indicate the overall positive or negative attitude of an author in relation to other entities.
This section identifies some specific named entities, reloads the original
emails, applies qdap’s polarity function and ultimately creates a “box and
whisker” plot.
A box and whisker plot is a compact visualization to understand individual
distributions. The values of a distribution are illustrated vertically. Between the first and third quartile, a box is created, giving the illustration its name. A thick horizontal line is drawn within the box. The line represents the median value of the distribution. Another line extends from the top and bottom of the box.
These “whiskers” represent the maximum and minimum values excluding out-
lier values. Lastly, individual dots are placed beyond the whiskers representing any outliers. Outliers are usually defined as being 1.5 times the upper and lower quartiles. Box and whisker plots are a visual representation of the shape of a data set. Figure 8.7 shows a normal distribution and a box and whisker plot side by side. The box and whisker plot has been rotated so you can understand the relationship between the two.
Figure 8.7 is a single normal distribution. As a result, it is not very informative as a box and whisker plot. More exciting conclusions can be drawn when
there is more than one box and whisker plot representing a category and the
distributions are skewed.
As you become more familiar with the data you can identify interesting
named entities. Sometimes this is due to a large number of mentions or because you did not expect the entity in the corpus. For this example, you will create a bar plot for emails containing “Russia,” “Senate” and “White House.” As you
have seen before, using grep will identify the row positions of the specific patterns. The integers from the grep commands are then used to index the seventh column of the various person, location and organization entity data frames. In your own work, remember that the data frame used in the grep step must coincide with the index code. Otherwise the code will select the wrong emails. For

8 The OpenNLP Project 263
Figure 8.7 A normal distribution alongside a box and whisker plot with three outlier values.
example, using grep on all.org$entity, must be passed into the indexing
code as all.org[“grepped integers”,7].
senate<-grep("Senate", all.org$entity,ignore.case = T)
white.house<-grep("White House",
all.org$entity,ignore.case = T)
russia<-grep("Russia", all.loc$entity,ignore.case = T)
se.files<-all.org[senate,7]
wh.files<-all.org[white.house,7]
ru.files<-all.loc[russia,7]
The three entity file objects are concatenated into a single text vector. The vector now contains all file names for all three entities.
three.ent.files<-c(se.files,wh.files,ru.files)
At the beginning of the case study a loop was used on the temp object to load 551 individual emails. The same code can be applied to the smaller file name vector. The files are organized into a list using the get function with pblapply. Finally, the rm function removes the individual file objects.
for (i in 1:length(three.ent.files)) assign(
three.ent.files[i], readLines(three.ent.files[i]))
three.ent.emails<-pblapply(three.ent.files, get)
rm(list=three.ent.files)
Although it is inadvisable, the standard polarity subjectivity lexicon is applied to the emails. In practice, you should adjust the lexicon for common terms in emails that can skew results. For example, people often start correspondence with “Dear” and end with “Sincerely.” These terms appear in the standard
polarity dictionary. A previous chapter covers how to change the polarity table
264

Text Mining in Practice with R
in qdap called key.pol. If needed, refer to Chapter 4 to adjust specific terms in your analysis.
Calculating polarity can be time‐consuming on large corpora. The progress
bar list apply, pblapply, function is once again helpful as it updates the calculation output.
three.ent.polarity<-pblapply(
three.ent.emails,polarity)
The three.ent.polarity object is a list containing the original text and
data frames with polarity information for each email. Using pluck and data
frame name, select individual polarity data from each list element. The object is still a list, but no longer contains the original text. The polarity information is now a list of data frames for each email. Each of those data frames contains one row and six columns. The average polarity score for an email will become the distribution of the box plot. Within the next line, the apply function is passed double brackets and the name of the specific column “ave.polarity.” Since the data frames contain a single row, the single polarity value is selected. The apply function is nested inside unlist to convert the average polarity values to a numeric vector. This vector is the basis for the box plot distributions.
three.ent.polarity<-pblapply(
three.ent.emails,polarity)
score.list<-pluck(three.ent.polarity,"group")
scores<-unlist(pblapply(score.list, "[[",
'ave.polarity'))
Next organize the email polarity scores into a data frame to make the plot. The first column of the new data frame is the numeric vector “scores.” The second column, “group,” will contain the entity information. To this point, the code has been executed in sequence for all emails. The data needs to be correctly re‐associated to an entity. As a result, the “group” column will have three different character strings corresponding to “Senate,” “White House” and “Russia.” The rep function repeats a value or string a specific number of times. In the code below, the string “Senate” is repeated according to the length of the grep object “senate.”
Next “White House” is repeated 109 times referencing the white.house
object length. Lastly the same is done for “Russia.” In your own analysis be sure to change the repeated value to the correct entity name and perform the repetitions in the same order as the script executes. For instance, if the code repeated
“Russia” first, the polarity distributions would be inaccurate. Another best practice is to use the length function instead of a specific integer. This ensures the correct number of repeated values as you change the code for other entities.
scores.df<-data.frame(score=scores,
group=c(rep('Senate',length(senate)),

8 The OpenNLP Project 265
rep('White House', length(white.house)),
rep("Russia",length(russia))))
The last step is to pass the two column data frame to ggplot. Add the x, y
variables and define how the data is grouped in the first line. In this case, the
“group” vector contains three distinct values corresponding to entities. Once the data is loaded, use geom_boxplot along with fill=group to construct
the first layer of the graphic. The next layer calls a predefined palette mimicking Google Docs. In your own work, you can specify other themes or explicitly define palettes. The third layer directs ggplot to “jitter” the points. Jittering means to move the dots slightly from the exact y value. In this visualization, each point on the plot represents an email. Within an entity class, the polarity scores could be the same for different emails. Jitter ensures that the points do not completely overlap so the audience can distinguish each point’s polarity score. The last line adds a title to the box and whisker plot in Figure 8.8.
ggplot(scores.df, aes(x=group, y=score, group=group)) +
geom_boxplot(aes(fill=group)) +theme_gdocs() +
geom_jitter(colour="gray40",width=0.2,alpha=0.3) +
ggtitle("NER Polarity")
NER Polarity
0.10
group

e 0.05
Russia

scor
Senate
White House
0.00
–0.05
Russia
Senate
White House

group
Figure 8.8 A box and whisker plot of Hillary Clinton emails containing “Russia,” “Senate” and
“White House.”

266

Text Mining in Practice with R
Interestingly, one is led to believe that emails mentioning the Senate and
White House contain less positive language than emails mentioning Russia.
Upon deeper examination, two distinct negative clusters appear to skew the
distribution for both the Senate and White House emails. Despite this observation, the median values are similar among all entities. Finally, the jittered points help your audience understand that the number of White House emails is significantly higher than the other entities. This should inform any conclusions that can be drawn from this graphic.
8.4.4 Stock Charts for Entities
Stock charts are line charts plotted with the Y axis representing price and the X axis representing a unit of time. Stock chart views help traders understand historical prices and can illustrate a pricing trend. A stock chart graphs a share price as a time series. In fact, time series stock charts are so common that two lines of code below from the quantmod package create the basic plot in
Figure 8.9.
library(quantmod)
getSymbols("msft",src="google")
plot(MSFT)
If the corpus is arranged chronologically, a similar time series visual can be constructed. Instead of a share price, the Y axis can be the average polarity for a document or another continuous document attribute line nchar. To capture
the evolving polarity over time another column containing periodicity needs to be appended to the scores.df object. A text miner can add specific dates, or in this case a sequence of numbers for the X axis. Appending a number sequence
is easier, but is not as precise as using dates. A simple number sequence treats each email as a standalone incident like a stock’s closing price. Using dates can be more laborious to identify within raw text, but can be insightful to group by date to arrive at the average. Using the exact date can give you other
MSFT
50
40
30
20
Jan 03 2007 Jan 02 2008 Jan 02 2009 Jan 04 2010 Jan 03 2011 Jan 03 2012 Jan 02 2013 Jan 02 2014 Jan 02 2015 Jan 04 2016
Figure 8.9 The Quantmod’s simple line chart for Microsoft’s stock price.

8 The OpenNLP Project 267
information analogous to an “opening” or “closing” share price. This example uses the seq function to append a number in sequence in the “chronological_
order” column. Since you are examining three entities you need to create three unique sequences matching to the number of emails per entity. The first 22
rows will have a sequence of numbers 1 to 22, then row 23 will start with 1 and progress to 109, and finally row 132 will start with another sequence for the remainder of the data frame.
scores.df<-data.frame(scores.df,
chronological_order=
c(seq(1:length(senate)),
seq(1:length(white.house)),
seq(1:length(russia))))
For easier comparison the code below creates three separate objects. Each
object is a ggplot2 time series of the entity’s polarity. Pass in scores.df with the periodicity information and index the exact rows for each entity. In this example, the Senate was mentioned 22 times, the White House 109 and Russia
12. For each subsequent plot be sure to advance the row index by 1 as shown.
The rest of the code adds the line, uses the Google documents theme, removes the default legend and adds a title.
se.plot<-ggplot(data=scores.df[1:22,],
aes(x=chronological_order, y=score,
group=group, color=group)) +
geom_line() + theme_gdocs() +
theme(legend.position="none") +
ggtitle("Senate Polarity")
wh.plot<-ggplot(data=scores.df[23:131,],
aes(x=chronological_order, y=score,
group=group, color=group)) +
geom_line() + theme_gdocs() +
theme(legend.position="none") +
ggtitle("White House Polarity")
ru.plot<-ggplot(data=scores.df[132:143,],
aes(x=chronological_order, y=score,
group=group, color=group)) +
geom_line() + theme_gdocs() +
theme(legend.position="none") +
ggtitle("Russia Polarity")
The three objects can be plotted concisely using grid.arrange. This use-
ful function from gridExtra lets you place multiple ggplot2 visualizations
268

Text Mining in Practice with R
Senate Polarity

e 0.05
0.00

scor –0.050
5
10
15
20

Chronologial
White House Polarity
0.10

e 0.05

scor 0.00
–0.05
0
30
60
90

Chronologial
Russia Polarity
0.09

e 0.06
0.03

scor 0.00
–0.03
2.5
5.0
7.5
10.0
12.5

Chronologial
Figure 8.10 Entity polarity over time.
into a table. Within the function you can specify the number of rows and columns to place individual ggplots. However, the code below aligns the three
time series into a single column to create Figure 8.10. The lengths between
entities vary greatly so grid.arrange adjusts the X axis accordingly. To avoid any confusion, you may prefer to plot each time series separately.
grid.arrange(se.plot, wh.plot,ru.plot)
8.4.5 Reach an Insight or Conclusion About Hillary Clinton’s Emails
This case study demonstrates named entity recognition methods on multiple
emails. As a “journalist” you quickly identified people, places and organizations in the corpus. To a large extent, The Secretary of State mentions expected organizations. However, the organization data contains less frequent yet interesting entities. For example, “Egyptian Military Intelligence Service,” “National Libyan Army” and “European Court of Human Rights” could all prove to be
emails worthy of additional scrutiny.
Next, you plotted the identified locations on a map using Google’s geocoding service. The map reveals the significant amount of time the Secretary wrote
about Eastern US locations as well as Middle East affairs. A zoomed in map can provide more context as you explore the locations. For instance, the European map illustrates Secretary Clinton’s multiple mentions within the Netherlands as opposed to no mentions in Poland.

8 The OpenNLP Project 269
Using the polarity function you can also begin to understand the author’s
attitude towards entities. The box and whisker plot illustrates the overall polarity distribution of multiple entities. The box plot lets you see the distribution compared to other entities by placing information side by side. In contrast the line charts represent changing language throughout time similar to a stock
price chart. Using the line chart, an audience can gauge shifting attitudes
towards an entity if the corpus is arranged chronologically.
8.6 Summary
In this chapter you applied various openNLP techniques to identify proper
nouns such as people, locations and organizations from thousands of emails.
Specifically you learned:
●
●
what is the OpenNLP Project
●
●
the basics of R’s OpenNLP package
●
●
an example of syntactic parsing
●
●
what is named entity recognition (NER)
●
●
to load NER libraries
●
●
to perform NER
●
●
to use an API to get latitude and longitude of recognized locations
●
●
to create a bar chart of recognized organizations
●
●
to use a heat map to understand the entity interactions
●
●
to apply polarity scoring to individual entities in a box and whisker plot
●
●
to chart document polarity over time for specific entities.
271
9
Text Sources
In this chapter, you’ll learn
●
●
adjustable components of a URL
●
●
automatically constructing URLs for web scraping
●
●
to web scrape a single page
●
●
to web scrape an entire forum
●
●
using an API within an R package to retrieve text
●
●
to set up a connection with Twitter’s API to retrieve tweets
●
●
using R without a dedicated package to parse an API’s JSON response
●
●
to use the tm package plugin to retrieve a WebCorpus
●
●
to use XML to parse an RSS feed
●
●
simple methods for reading files types csv, .txt, MS Word and Excel
documents
●
●
to make a plain text document (.txt) from a PDF
●
●
to use a Microsoft API to identify text in an image file
●
●
two ways to read in multiple files in a folder.
9.1 Sourcing Text
When you are working on a text mining project, you may be confronted with
various data sources. For example, if social media text is needed and an application program interface (API) exists then the tools you use to collect the text are straightforward. Other times, you may need to scrape online text which is essentially a custom script for each site due to the HTML variations. As a
result, web scraping can be laborious, but it is necessary in some text mining projects. In other text mining pursuits, you may have text from organizational files such as Word documents or PDFs. The tools and approaches to organize
text in each case vary. This chapter should serve as a reference guide if you get stumped in your own text mining efforts.
272

Text Mining in Practice with R
9.2 Web Sources
Online growth has created communication mediums including changing text
usage. This section of the book encompasses common methods to obtain
online text for analysis. Two methods include web scraping and parsing structured feeds like APIs.
When scraping it is ethical to strictly abide by the terms of service and a
website’s domain crawling restrictions. When consuming an API it is also
important to follow the provider’s terms. Web content providers are justified in wanting some control over their content while also avoiding overloading web
servers. Thus, to avoid trouble, only scrape a web page or use a data feed after you have read and understood any restrictions.
There are many approaches to gathering online text, but this chapter focuses on the intuitive rvest package, APIs and extensible markup language (XML)
parsing. Figure 9.1 illustrates the online text sourcing breakdown that is exemplified in this chapter
9.2.1 Web Scraping a Single Page with rvest
To begin, you will use Hadley Wickam’s rvest package. Hadley Wickam cre-
ated the R package to mimic the python package “Beautiful Soup,” which col-
lects information from web pages. The package’s unusual name is because it is used to “ha‐rvest” web pages.
The easiest manner to learn web scraping with this intuitive library is on a single web page. It is best to start by examining the page. In this example, it is an amazon.com help forum webpage found at the link below. http://www.
amazon.com/gp/help/customer/forums/ref=cs_hc_g_tv?i.e.=UTF8&forumID
=Fx1SKFFP8U1B6N5&cdThread=Tx3JJLVOS6N6YSD
Figure 9.2 is a partial screenshot of this forum discussion on Prime movies.
For more information, navigate directly to the webpage.
Online Text
Web Scrape
Feed Processing
Parsing
APIs
Feeds
R package
R package
APIs without
“tm” package
R package
“rvest”
APIs
a package
Plugin
XML
Figure 9.1 The methodology breakdown for obtaining text exemplified in this chapter.

9 Text Sources 273
Figure 9.2 An Amazon help forum thread mentioning Prime movies.
Like all web pages there are many elements. As a text miner you are probably only interested in the forum thread, authors and dates. So care must be taken to avoid collecting multitudes of unwanted information such as extraneous
links and header text. For example, the right‐hand side header “Frequently
asked questions” is a piece of text that rarely changes in the forum, so likely not the text you will want to extract.
The first step in scraping the post information is to load the rvest library, specify the web address and read the html source code of the webpage. The
code below demonstrates this basic first step by creating the url object and passing it to the read_html function. The url object is the text string
between quotes representing the web address.
library(rvest)
url<-'http://www.amazon.com/gp/help/customer/forums/
ref=cs_hc_g_tv?i.e.=UTF8&forumID=Fx1SKFFP8U1B6N5&cdThr
ead=Tx3JJLVOS6N6YSD'
page<-read_html(url)
The single forum page has been captured in your R session in the page
object. It contains all elements of the page so the interesting text must be extracted. An easy method is to select the cascading style sheet’s (CSS) class for the exact element needed. However, as an R programmer, you may not be able
to read CSS or HTML code. Luckily, there is an easy Chrome extension called
“SelectorGadget.” It is available at www.selectorgadget.com. Once it is installed, you will notice a small magnifying glass in the upper right section of your
Chrome browser. To identify the CSS section of an HTML document, you
press the magnifying glass icon and a popup will appear. As you navigate the webpage, shared CSS classes become highlighted. Once you have the item you
want to scrape highlighted, select it by pressing your mouse button. The popup

274

Text Mining in Practice with R
Figure 9.3 A portion of the Amazon forum page with SelectorGadget turned on and the thread text highlighted.
window will display the highlighted section’s CSS class. Figure 9.3 shows the previous web page with the text thread highlighted and the popup showing a
CSS class called “.thread‐body.”
Armed with the CSS class knowledge, extracting the thread text is straight-
forward. The code below passes in the page and a string of the CSS class to
easily extract sections of HTML code. In this example, you use the “.thread‐
body” that the SelectorGadget extension identified. Once the CSS element has been identified, the last line of code only extracts the text.
posts<-html_nodes(page, '.thread-body')
forum.posts<-html_text(posts)
The forum.posts object is a character vector and has correctly scraped
the four posts on this page, ignoring all the other text. In isolation, it may not be useful, so you may have to extract other text from the page. In this next code section, you switch from CSS class to using Xpath. The rvest package allows
you to pass in either a CSS or Xpath syntax to scrape HTML elements. Xpath
is a syntax to identify sections within extensible markup language (XML).
Xpath navigates XML documents, identifying specific nodes and in the context of web scraping can be used to save the specific text elements. Although Xpath is out of scope for this book, it is used here as a demonstration with basic explanation.
Specifically, XPath is used in the first code line. Instead of a CSS class, the html_nodes function now has xpath="//a". This line identifies a web link anywhere in the scraped document. The double slashes represent anywhere in the document. The “a” captures all links because links are defined
with the HTML “<a>” tag. However, this will capture more than 100 links on the webpage. So the next line of code uses grep to identify the index position of any link’s text matching “Permalink.” You know that the thread links have this text because you can see it above each forum post. The grep function uses regular expression wildcards, asterisks, for pattern matching. This lets grep

9 Text Sources 275
Table 9.1 Forum.posts and thread.urls using rvest.
Forum posts
Permalink
"Why,after paying for Amazon
www.amazon.com/gp/help/customer/forums/
Prime,are there so many movies
ref=cs_hc_g_pl?i.e.=UTF8&forumID=
and things like that,that I still have Fx1SKFFP8U1B6N5&cdThread=Tx3JJLVOS6N6YSD
to buy or rent instead of being
&cdPage=1&cdMsgId=Mx34N1XDE8MHZGL
able to watch them for free?"
#Mx34N1XDE8MHZGL
"Because the studios don’t want
www.amazon.com/gp/help/customer/forums/
their videos in the Prime
ref=cs_hc_g_pl?i.e.=UTF8&forumID=
program."
Fx1SKFFP8U1B6N5&cdThread=Tx3JJLVOS6N6YSD
&cdPage=1&cdMsgId=Mx3MZ3Z2ETIH48T
#Mx3MZ3Z2ETIH48T
"Still don’t understand why have www.amazon.com/gp/help/customer/forums/
to pay for movies with Amazon
ref=cs_hc_g_pl?i.e.=UTF8&forumID=
Prime."
Fx1SKFFP8U1B6N5&cdThread=Tx3JJLVOS6N6YSD
&cdPage=1&cdMsgId=Mx4K5HKP7XZ2R1
#Mx4K5HKP7XZ2R1
"Because not all movies are part
www.amazon.com/gp/help/customer/forums/
of the Prime subscription. You
ref=cs_hc_g_pl?i.e.=UTF8&forumID=
were advised, when you signed up Fx1SKFFP8U1B6N5&cdThread=Tx3JJLVOS6N6YSD
for Prime, that Prime allowed you &cdPage=1&cdMsgId=Mx3KBBGVAS0BC6X
to view eligible movies for free.
#Mx3KBBGVAS0BC6X
Eligible, as in the rightsholder
agreed to be part of Prime free
movies. Studios still want to make
money on their product. How
hard is that to understand? Do
you work for free?"
look anywhere in the links text. In this example, links 19, 26, 34 and 42 are
“Permalinks” among all 150. The next line of code selects the attributes of the links. The 150 links are subset by adding the bracketed thread.urls after
selecting the “href” attributes, thereby capturing the Permalinks. In HTML,
the “<href>” tag is the destination address of the post. These links can be used as unique identifiers because each forum post is assigned a specific address.
The last line of code adds “amazon.com” to the front of the scraped link
addresses, so they are complete. Table 9.1 indicates the four “Permalinks”
alongside the specific forum post.
links<-html_nodes(page,xpath='//a')
thread.urls<-grep("*Permalink*", links)
thread.urls<-html_attr(links,"href")[thread.urls]
thread.urls<-paste0('www.amazon.com',thread.urls)
276

Text Mining in Practice with R
Next, you may want to get the author name for each post. When you investi-
gate the page, you should note that each author’s name is actually a link to their profile page. An example public profile is here:
http://www.amazon.com/gp/profile/AD43H667F2BGW
Notice in the middle of the link is the word “profile.” To obtain profile link information, change the previous grep code to search for “profile” within all the links you already captured. However, instead of getting the HTML attributes, the author name is needed. To get author names, pass in the links, indexed by
“profile”, into “html_text.” The “authors” object extracts the author’s screen-name, since the name is the text associated with each link. You may also want to get the links themselves. If so, you now extract the link attributes using html_attr and append www.amazon.com.
profile<-grep("*profile*", links)
authors<-html_text(links[profile])
author.profiles<-html_attr(links,"href")[profile]
author.profiles<-paste0('www.amazon.com',author.
profiles)
The authors object is a character vector with the names “Greg Perkins,”
“**MeyaPaloozza**,” “Carol” and “Artist.” The author.profiles object
contains another character vector with respective profile URLs.
Lastly, the objects should be organized into a succinct data frame. This is
done with the following code.
final.df<-
data.frame(forum_post=forum.posts,author=authors,author_
urls=author.profiles,thread_urls=thread.urls)
9.2.2 Web Scraping Multiple Pages with rvest
The previous section may have seemed like a lot of work, but do not be over-
whelmed. This section creates functions to automate over the entire forum
rather than specifying individual pages. It is best to start with a single page so you can learn the page structure and identify the correct elements. Once you understand a single page you can write functions for iterating the web scraping process over hundreds of pages.
To scrape more than one page at a time, you load the rvest, pbapply and
data.tables packages. In the previous section you had exposure to rvest.
The pbapply library adds progress bars to R’s set of apply functions. Since you are scraping many hundreds of pages it is useful to visually understand the progress. The last package, data.table, extends the data frame functionality to work in a faster and more efficient manner. The data.table package has a
particularly useful function rbindlist used to organize the scraped pages.

9 Text Sources 277
library(rvest)
library(pbapply)
library(data.table)
After loading the packages, you should explore the first couple pages of the forum. In the link below, you can see forumID= and cdPage=. The ID parameter is the unique identifier to the specific forum. Amazon’s general retail forum ID is “Fx1SKFFP8U1B6N5.” A similar forum is devoted to Kindle products and
has a different ID, “Fx1FI6JDSFEQQ7V.” As you explore the page, you can see
40 individual pages of forum topics among other links. If you change the
cdPage=2 number, your browser will load the corresponding page pertaining to the unique forumID. Figure 9.4 is a screenshot of Amazon’s general help forum.
http://www.amazon.com/gp/help/customer/forums/ref=cs_hc_g_pg_pg40?
i.e.=UTF8&forumID=Fx1SKFFP8U1B6N5&cdPage=2
In order to scrape the entire forum, you must first scrape the 25 links in the
“Recent questions” section for each of the 40 pages. After that, you can scrape the actual conversations. As a result, scraping the specific conversations is a two‐step process. The two‐step workflow is presented in Figure 9.5.
From the original web address, you first construct links representing all
40 pages. In the code below, you use the paste0 command with the base for
each address. The page parameter is replaced with a sequence of numbers
from 1 to 40 using the seq function. The forum URLs for all 40 pages of the
forum are now a single character vector.
forum.urls<-paste0('http://www.amazon.com/gp/help/cus-
tomer/forums/ref=cs_hc_g_pg_pg40?i.e.=UTF8&forumID=Fx1
SKFFP8U1B6N5&cdPage=',seq(1:40))
Figure 9.4 A portion of Amazon’s general help forum.

278

Text Mining in Practice with R
Scrape 25 links
Organize
Scrape
Extract
Row bind into a
from 40 pages
URLs
pages
page elements
single table
L1 Element 1
L1
L1 Element 2
L2 Element 1
Element 1
Element 2
L2
L2 Element 2
25 Topic
L1 Value
L1 Value
URLs
Link 1
L2 Value
L2 Value
Link 2
Link 3
L3 Element 1
L3
L3 Value
L3 Value
...
L3 Element 2
Link n
... Value
... Value
... Element 1
Ln Value
Ln Value
...
... Element 2
Ln Element 1
Ln
Ln Element 2
Figure 9.5 The forum scraping workflow showing two steps requiring scraping information.
Each of the 40 pages contains 25 conversation threads. To automate the col-
lection process, create a custom function searching for the conversation thread links. The url.get function below uses similar syntax from the last section, but it is a function. The function is passed “x” which is a web URL. Then
read_html reads that individual page. Next the html nodes are examined
using Xpath, which will identify any table called “thread‐list‐table” and then cells in the table containing links. The SelectorGadget extension can be
used to identify the table name for entering in the code below. Then the Xpath identifies any cell (“//” and the html tag “<td>”) that contains the “<a>” and
“<href>” link tags. With this brief explanation, the Xpath syntax becomes identifiable. Once the “thread‐list‐table” cells with links are recognized, the text is extracted using html_text, which is a partial address so “http://www.
amazon.com” is pasted to the link text as the function’s output.
url.get<-function(x){
page<-read_html(x)
links<-html_nodes(page,xpath=
"//table[@class='a-bordered
thread-list-table']//td/a/@href")
links<-html_text(links)
links<-paste0('http://www.amazon.com',links)
}
To obtain all conversations in the forum, the url.get function is applied to each of the 40 previously constructed URLs. The function is applied using
pblapply and then unlisted to get a vector of all conversation links in the
entire forum. You could use lapply but the progress bar version is more
informative. After running the code below, you will have a vector of 1000 forum conversation links. This is because 25 links were identified for each of the 40 pages (25*40).

9 Text Sources 279
all.urls<-pblapply(forum.urls,url.get)
all.urls<-unlist(all.urls)
The next bit of code is another custom function. It is very similar to the
previous single web scrape code. The single page workflow is followed exactly, within the forum.scrape function. The function is passed one of the 1000
conversation URLs as “x”. The individual URL is read, and nodes for the
“.thread‐body” are identified. Next the html_text function extracts the post threads. Once again, link nodes are found using Xpath with “//a.” Then, URLs for each Permalink, author and author profile are extracted. Consult the previous section, which describes the elements in more detail if you need a full
explanation of grep, html_attr or html_text. The extracted elements of
each page are organized into a small data.table representing the entire
conversation on the URL. The data.table function was used instead of
data.frame because it is more memory efficient. The output of the function
is a data table with the information for the specific conversation thread.
forum.scrape<-function(x){
page<-read_html(x)
posts<-html_nodes(page, '.thread-body')
forum.posts<-html_text(posts)
links<-html_nodes(page,xpath='//a')
thread.urls<-grep("*Permalink*", links)
thread.urls<-html_attr(links,"href")[thread.urls]
thread.urls<-paste0('amazon.com',thread.urls)
profile<-grep("*profile*", links)
authors<-html_text(links[profile])
author.profiles<-html_attr(links,"href")[profile]
author.profiles<-paste0('amazon.com',author.
profiles)
final.df<-data.table(authors,author.profiles,forum.
posts,thread.urls)
return(final.df)
}
The forum scrape function is applied to the 1000 conversation URLs. Again,
pblapply is used to construct a large list with 1000 elements. Each element
is a data table representing a single page’s conversation specifics including text, author info and links. Figure 9.6 is a visual representation of the data after running the code. In this structure, each data table could have a different number of rows depending on the number of thread posts. However, each data table
has the same columns.
amzn.forum<-pblapply(all.urls,forum.scrape)

280

Text Mining in Practice with R
“amzn.forum” list
Conversation Link 1
Author
Author Profile
Forum Posts
Permalink URL
Post 1 Value Post 1 Value
Post 1 Value
Post 1 Value
Post 2 Value Post 2 Value
Post 2 Value
Post 2 Value
Post 3 Value Post 3 Value
Post 3 Value
Post 3 Value
Conversation Link ...
Author
Author Profile
Forum Posts
Permalink URL
Post 1 Value Post 1 Value
Post 1 Value
Post 1 Value
Post 2 Value Post 2 Value
Post 2 Value
Post 2 Value
Conversation Link 1000
Author
Author Profile
Forum Posts
Permalink URL
Post 1 Value Post 1 Value
Post 1 Value
Post 1 Value
Post 2 Value Post 2 Value
Post 2 Value
Post 2 Value
Post n Value Post n Value
Post n Value
Post n Value
Figure 9.6 A visual representation of the amzn.forum list.
The last step is to row bind the entire list into a single table. The data.
table package function rbindlist quickly performs row binds on large
lists. Once it is organized into a table you can begin your cleaning and text mining analysis. If needed, the Permalink value contains unique message and
conversation identifiers. Figure 9.7 illustrates the effect of “rbindlist” on the amzn.forum list.
amzn.forum<-rbindlist(amzn.forum, use.names=TRUE)
Most forums are constructed with different link and HTML structures. The
following code applies the same methodologies to scraping a new forum struc-
ture. Instead of a customer service forum, this forum is a bitcoin general discussion. An interesting analysis may be predicting daily bitcoin prices based on the text in this forum. In this example, the link construction and nodes are specific to the forum so the Amazon support forum code would not work.
Executing this code may seem redundant, but will demonstrate the changing
function parameters and introduce the pipe (%>%) operator.
Load rvest and pbapply.
library(rvest)
library(pbapply)

9 Text Sources 281
“amzn.forum” data table
Author
Author Profile
Forum Posts
Permalink URL
Post 1 Value
Post 1 Value
Post 1 Value
Post 1 Value
Post 2 Value
Post 2 Value
Post 2 Value
Post 2 Value
Post 3 Value
Post 3 Value
Post 3 Value
Post 3 Value
Post 1 Value
Post 1 Value
Post 1 Value
Post 1 Value
Post 2 Value
Post 2 Value
Post 2 Value
Post 2 Value
Post 1 Value
Post 1 Value
Post 1 Value
Post 1 Value
Post 2 Value
Post 2 Value
Post 2 Value
Post 2 Value
Post n Value
Post n Value
Post n Value
Post n Value
Figure 9.7 The row bound list resulting in a data table.
The following link will direct your browser to a page in the general discus-
sion forum at bitcointalk.org.
https://bitcointalk.org/index.php?topic=976903.4460
Notice the topic is “976903.4460” in the link. If you navigate to the next discussion page, the address changes slightly. In the new link below, you should notice that the last four digits have changed. It turns out that this forum has a topic number identifier followed by the post count. Each page loads 20 messages of the forum so the “4460” has changed to “4480.”
https://bitcointalk.org/index.php?topic=976903.4480
The code below constructs all web addresses for the specific topic. The
paste0 function is used to append the base of the link to a sequence of num-
bers. The number sequence increases by 20 instead of 1 because by= is a
sequence parameter. The sequence runs from 0 to 5040 but should be updated
to a larger number as the conversation increases over time.
all.urls<-paste0('https://bitcointalk.org/index.php?to
pic=976903.',seq(0,5040,by=20)
In this example, 253 unique web addresses were created. The next code sec-
tion creates a custom function called “forum.scrape.” One of the forum
addresses is passed to the function. It is read using read_html as before.
However, this function adds “Sys.sleep(1).” Interjecting this code into a function forces R to wait a full second before proceeding. As you iterate over hundreds of web pages this may keep your function from overloading servers or
being blocked. It may not be necessary or may need to be increased, depending
282

Text Mining in Practice with R
on the web site you are working on. The next line of code should look familiar but in a different, unaccustomed structure. The object “posts” is created by finding html_nodes with CSS class “.post.” In the previous example, the CSS
class was “.thread‐body.” Then the text is extracted. This code line uses the
“%>%” operator instead of having multiple code lines. The “%>%” is called the pipe operator, which simply forwards the object into another expression or
function. While a bit more confusing than the previous examples, the code is more compact. The “%>%” moves the object “x” in sequence to html_nodes,
html_text and then as.character rather than having three separate
lines. Lastly, the posts for each discussion are collapsed into a single large text using paste with collapse.
forum.scrape<-function(forum.url){
x<-read_html(forum.url)
Sys.sleep(1)
posts<-x%>%html_nodes(".post")%>%html_text()%>%as.
character()
posts<-paste(posts, collapse='')
return(posts)
}
Next the forum.scrape function is applied to all 253 bitcoin forum posts. Once again, the code employs the progress bar version of lapply. This applies the forum.scrape function in sequence from 1 to 253. Your R console will pause
for one second for each page because the custom function contains a system
sleep.
all.posts<-pblapply(all.urls,forum.scrape)
Lastly, the base R do.call with rbind is applied to the all.posts list. The
result is a matrix with 253 rows and one text column. Each row represents a
page of the forum with 20 posts collapsed into a single block of text.
bitcoin<-do.call(rbind,all.posts)
The text in this example may be too raw for meaningful exploration. You will need to improve on the custom function to capture authors and dates if you
want to attempt to predict bitcoin prices. However, this example does intro-
duce useful new concepts. It illustrate not only changing a CSS class, but also system sleep, the pipe operator and using do.call for binding a list.
9.2.3 Application Program Interfaces (APIs)
Application program interfaces (APIs) are the links between applications
allowing information to be shared. An API call is similar to calling the

9 Text Sources 283
telephone operator for information. You need to dial a specific number to
reach the operator. If you dial incorrectly you will not get a response. Once you reach the operator, you have be specific and structured in your information
request. The operator is unable to help you if your intent is not clear. If the operator understands the request, he or she responds with the information you need and then you can hang up. An API works in an analogous manner.
When performing an API call, your R console will connect to another applica-
tion. Your script will request information from the remote server. If the request is understood and within the API rate limits, the service will return some information that can be saved or analyzed in R. You will need to be connected to the Internet to make the API calls presented in this section. APIs represent an efficient way to gather text or other data. API data is structured and usually has other important metadata with it. As a result, APIs are a great way to access new text for analysis. To start, this section demonstrates R packages devoted to specific APIs. Next, you will learn how to make an API call without a dedicated package using a package called jsonlite. Lastly you will learn ways to consume standard web feeds like a Rich Site Summary (RSS) using XML.
9.2.4 Newspaper Articles from the Guardian Newspaper
The Guardian newspaper is an internationally recognized news organization.
The newspaper is headquartered in the United Kingdom with satellite offices
around the world. The newspaper has a long history of balanced and independ-
ent reporting dating back to 1821. The newspaper’s profits do not benefit a
media tycoon or shareholders. Instead the profits are redirected to support
journalism within the Scott Trust Limited company. The trust company was
formed to ensure the newspaper’s longevity and has an investment fund sup-
porting the newspaper’s annual losses.
The newspaper offers an API for developers. Through the API you can access
over 1.5 million pieces of newspaper content. According the API website, the newspaper hopes to shape the future of digital journalism by offering the service. To that end, the API’s blog explains various topics such as cloud computing or building a chat bot.
To access the API you need to obtain a developer key. A key is a long, cryptic character string that is sent along with your request to the newspaper’s servers.
This helps the newspaper track your specific usage and ensure that you are not abusing the system. You should keep your key private. Register for an API key with the link below or search online for “Guardian Newspaper API.” Submit the form to receive a key in your registered email inbox.
https://bonobo.capi.gutools.co.uk/register/developer
The rest of the Guardian API code assumes that you have obtained a developer key. First, load the GuardianR and qdap packages. The GuardianR package wraps API calls into simple R functions. At the time of writing, the package version
284

Text Mining in Practice with R
is 0.6. In subsequent versions, the code below may need to be changed slightly.
The “key” object below is the character string where you should paste in your unique key. The get_guardian function searches for the term “Brexit” within
a date range. You can change the search term and dates within the function to get different articles. The last parameter within the get_guardian function
passes in your API key. Keep in mind APIs change often so the code may vary.
library(GuardianR)
library(qdap)
key<-'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx'
text <- get_guardian("Brexit", from.date="2016-07-
01",to.date="2016-07-06",api.key=key)
At the time of writing, the API will return 208 Guardian articles mentioning
“Brexit” when you execute this code (with a proper API key). For context,
“Brexit” was the name of the United Kingdom referendum to exit the European
Union. In Britain, there was an impassioned debate leading up to the public
vote, so many articles were written on the subject.
The “text” object is created as a data frame. This makes retrieving text
straightforward because the function parses the API response, specifically the JavaScript object notation (JSON), for all 208 articles into a manageable data frame. The API response data frame has 208 rows with 27 columns. Table 9.2
Table 9.2 The Guardian API response data for the “text” object.
API data
Continued API data
id
Standfirst
sectionID
shortUrl
sectionName
Wordcount
webPublicationDate
Commentable
webTitle
allowUgc
webURL
isPremoderated
apiURL
Byline
newspaperPageNumber
publication
trailText
newspaperEditionDate
seadline
shouldHideAdverts
showInRelatedContent
liveBloggingNow
lastModified
commentCloseDate
hasStoryPackage
Body
score

9 Text Sources 285
lists the returned API data names. The upcoming code will focus on the
text$body and text$id. If you need other article information for your
analysis, consult the API documentation for attribute definitions.
The text$body vector contains the article text. In order to analyze the
article, you will need to change its encoding, remove any embedded links and eliminate HTML tags. The iconv function performs international character
string conversion. The API sends text to your R console as “latin1,” but R text mining is easier in “ASCII.” The iconv function below converts the
text$body to create the “body” object. Gsub is used next on the “body”
object along with a regular expression identifying “http.” Once http is found, an empty character is substituted in its place. In effect, this will remove all hyper-links. Lastly, you apply bracketX to remove any HTML tags within “<” and
“>.” As written, the bracketX function will remove text in between any brackets. The last line of code creates a simple data frame of clean article text with a unique identifier. With basic cleaned text, “text.body” data frame can be the basis of your text mining project.
body<-iconv(text$body, "latin1", "ASCII", sub="") body<-gsub('http\\S+\\s*', '', body)
body<-bracketX(body, bracket="all")
text.body<-data.frame(id=text$id,text=body)
9.2.5 Tweets Using the twitteR Package
Twitter is a micro‐blogging service letting people stream information in individual feeds. Millions of Twitter users send out 140 character “tweets” about any subject, organized by screen name and chronologically. Users sign up to
influential, interesting or celebrity feeds, and in turn can tweet, or retweet, information in 140 character messages. Most Twitter feeds are public, so the worldwide service is a great way to get social media text that is timely. The free API access is not the “full fire hose” of tweets, but it does provide enough text to make an interesting text mining project. Be aware that Twitter users tweet profanity, misspell words and use abbreviations, so the text can be challenging to clean. R has multiple packages to access the Twitter API. The simplest one is called “twitteR.” Once again remember APIs change so the code may vary.
To get developer access, you must be a Twitter user. First sign up for the
Twitter service as a consumer at www.Twitter.com. Then sign in and navigate
to the developer link below to create an application. On this page, there is a
“Create New App” button that navigates to a form. Fill out the form, accept the terms and click “Create Your Twitter App.”
https://apps.Twitter.com/
Once it is complete you will be taken to the application’s settings page. Click the “Keys and Access Tokens” link. For Twitter’s API, you need to get a consumer key and secret consumer key. Both are used for authentication in your R
286

Text Mining in Practice with R
console. After loading the twitteR library, copy and paste both keys into the code snippet below to authenticate your R session. The last line performs
“Open Authorization” (OAuth) between your R console and the Twitter API
service. The OAuth protocol is an open standard for identity authorization
without exposing passwords. The protocol is key‐based and used by many ser-
vices such as LinkedIn and Google.
library(twitteR)
consumer.key <- 'long_string_of_characters_from_
Twitter'
consumer.secret <- 'another_long_string_of_charac-
ters_from_Twitter'
setup_Twitter_oauth(consumer.key, consumer.secret)
The first time you run this code you will be prompted to save your authorization credentials, and a browser will open to confirm permissions. If you decide to save the small authorization credential file to your working directory, the browser pop‐up will only occur once.
Once you are authenticated, you have access to a range of interesting API
calls. A simple way to find tweets is to use a search term. The searchTwit-
ter function is passed a term, the number of tweets you are requesting and
the language. Here the tweets.one object is searching Twitter for 2000
AmazonHelp tweets in English. Previously the get_guardian function
called the service and automatically organized the response into a data frame.
The searchTwitter function does not do this. As a result, another function
twListToDF creates a data frame from the search results list. The tweets.
one.df object contains 2000 tweets mentioning AmazonHelp. This does not
mean that the tweets were made by AmazonHelp. If another user mentions or
replies to AmazonHelp, the tweets may show up in the search results. If you
need to capture only tweets from AmazonHelp, you can subset the data
frame by screen name equal to “AmazonHelp.” In doing so, the tweets data
frame is reduced to only tweets authored by “AmazonHelp.”
tweets.one<-searchTwitter("AmazonHelp",
n=2000,lang='en')
tweets.one.df<-twListToDF(tweets.one)
tweets.one.df<-subset(tweets.one.df,tweets.one.
df$screenName=="AmazonHelp")
An interesting Twitter phenomenon is the use of the “#” or hashtag followed
by a word. This succinctly conveys meaning, news trends or emotion in tweets.
If you want to examine hashtag trends, you need to identify the most used
hashtag at the time for a location.

9 Text Sources 287
Executing this code will print all worldwide trend location codes to your
console. The codes are “Where On Earth ID” (WOEID) identifiers. These are
reference codes for a specific location used by GeoPlanet and Yahoo developer APIs. The reference codes do not change, so they are used elsewhere in other APIs like Twitter.
availableTrendLocations()
Once you select a WOEID, you pass it to the getTrends function. Here the
worldwide code “1” is used. This returns the top 50 trends in a data frame at the time of the API call for the entire world.
world.wide.trends<-getTrends(1)
The data frame containing worldwide trends information can be examined
using this code. You can continue to change the first index number to examine the top hashtags or save the entire data frame.
world.wide.trends[1,1:4]
world.wide.trends[2,1:4]
In this example, the getTrends function is passed the USA WOEID number.
To review all hashtags without other information, use the next code line. This will print all 50 top hash tags in the USA at the time of your API call.
usa.trends<-getTrends(23424977)
usa.trends[,1]
At the time of this writing the top trend in the USA was “#PowerPremiere.” Once the trending hashtag is identified, you can pass a hashtag like “#PowerPremiere”
into the searchTwitter function to get tweets about the topic. This can be
particularly useful during a political crisis or major sporting event.
Another way to search for particular tweets is by user timeline. If you want to follow a specific user, celebrity or news feed, use the userTimeline function. Simply pass in the Twitter handle of the user and the number of tweets within userTimeline. This code is requesting 1000 tweets from the Twitter
handle “datacamp.” Once again, the twListToDF function changes the
returned list to a data frame. The free API access will limit the number of
tweets you receive in this API call. Thus, you may not get all 1000 tweets.
datacamp.com<-userTimeline('datacamp',n=1000)
datacamp.df<-twListToDF(datacamp.com)
9.2.6 Calling an API Without a Dedicated R Package
So far, you have learned how to use dedicated R packages to access APIs.
However, there are thousands of public APIs that you may want to use to gather
288

Text Mining in Practice with R
information. There are some useful packages that more broadly let you con-
sume APIs. Generally, modern APIs come in two response formats, JSON
and XML. A popular JSON package is jsonlite. For XML responses, you
can use the XML package. Mastering these packages will help you consume data outside of the dedicated API R packages.
9.2.7 Using Jsonlite to Access the New York Times
In addition to the Guardian newspaper, the New York Times offers an API
giving you access to articles. The New York Times was first published in 1851.
The newspaper covers worldwide events from its headquarters in the United
States. The newspaper’s API endpoints can be directly accessed from a web
address showing the raw JSON text. Sometimes, the most challenging part of
using an API is understanding the direct JSON web address structure. Perform an online search for New York Times API to find the developer webpage. After signing up for a developer key, you can access a direct API response using the link below or review the API’s documentation.
For the New York Times API, the address below will search for articles con-
taining “United States.” Notice how the terms are separated by “+.” In addition to the search terms, you need to pass in the API key after “key=.” Replace the
“x” characters with your own developer key.
http://api.nytimes.com/svc/search/v2/articlesearch.json?q=united+states&api-key=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
If you navigate to this page, your browser will load the JSON text.
Information encoded as JSON text is a lightweight way to pass information to your machine without using significant bandwidth. However, it is difficult for a human to read this information. The text must be parsed from JSON to an
organized state like a text vector or data frame. The jsonlite package is a
popular R package to change the text to a more useable form. First, load
jsonlite and then change the api.key object string to your developer key.
The code below uses a single search term, “brexit,” to create the search.
term object. You can change the string to any other interesting character
pattern. If needed, the prior link exemplifies the search structure for more than one term. The last line uses paste0 to construct the web address for
the API response.
library(jsonlite)
api.key<-'long_string_of_characters_from_NYT'
search.term<-'brexit'
url<-
paste0('http://api.nytimes.com/svc/search/v2/article-
search.json?q=',search.term,'&api-key=',api.key)

9 Text Sources 289
If needed, use the following code to add a time constraint to your API request.
The web address is similar but adds date parameters before closing with the
API key. The date format is year, month and then day.
start.date<-'20160701'
end.date<-'20160706'
url<-paste0('http://api.nytimes.com/svc/search/
v2/articlesearch.json?q=',search.term,'&begin_
date=',start.date,'&end_date=',end.date,'&api-
key=',api.key)
Next you invoke the fromJSON function by passing in either of the con-
structed web addresses. Your R session will navigate to the web page and read the lines of text. The JSON text is presented in sequence. This means that the first article and its metadata are presented, then the next article and so on. The sequential API responses are organized into a list.
ny.times<-fromJSON(url)
The multipart API response, now a list, can be examined using specific element names. Some interesting API responses are shown individually below. For example, the web page, publication date and headline elements are named list elements.
As a reminder, when working with a complicated object like this list response, you can access the object structure using str(ny.times). The names are nested in two list elements. Using names(ny.times$response$docs) will print the
article metadata and content names.
ny.times$response$docs$web_url
ny.times$response$docs$pub_date
ny.times$response$docs$headline$main
ny.times$response$docs$snippet
ny.times$response$docs$lead_paragraph
ny.times$response$docs$abstract
If you want to access other New York Times API endpoints, you can review
the API documentation. The structure and version can change so it is best to check the documentation if you get an error. The API response list is organized into a data frame for consistency with other chapter examples. The list index position is used to construct the data frame instead of element names.
ny.df<-data.frame(url=ny.times$response$docs[1],
date=ny.times$response$docs[11],
headline=ny.times$response$docs[9][[1]]
[[1]],
snippet=ny.times$response$docs[2],
290

Text Mining in Practice with R
lead_para=ny.times$response$docs[3],
abstract=ny.times$response$docs[4])
9.2.8 Using RCurl and XML to Parse Google Newsfeeds
Next you may encounter extensible markup language (XML) based APIs. As
with JSON based API responses, the text is presented in a lightweight text‐only HTML page. The text’s attributes are presented in a tree structure with parent and children nodes. This structure is similar to desktop file systems. The following example is not technically an API. Instead, it uses XML to consume a
Google News RSS feed. Consuming an RSS was chosen because JSON is more
popular, and an RSS feed does not require an API key making the code
straightforward.
First, you load a new library RCurl, which is used for hypertext transfer
protocol (HTTP) requests. The RCurl package allows you to generate web
server requests, such as posting to a form and processing results from a web server. In this case, RCurl downloads the information from the XML structured web page.
Next, load “XML” into your R session. The XML library provides tools for
parsing and creating XML structured information. After that, the qdap pack-
age is used for some additional text cleaning. Using qdap applies to this example and may not be needed for other XML text processing. Similar to the JSON
example, you are creating a search term to construct a specific web address.
library(RCurl)
library(XML)
library(qdap)
search.term<-'Amazon+echo'
Here is the link you will be downloading to get XML information.
https://news.google.com/news?hl=en&q=Amazon+echo&i.e.=
utf‐8&num=100&output=rss
Investigating the link, you should notice the “q=” followed by the search
term(s). The search term has two patterns “Amazon” and “echo.” Next the “utf‐8”
specifies the character encoding for the response. The maximum number of
returned google news articles is “100” for this type of query. The last part of the link asks the google server to return the information in an “RSS” format. Without this specification, the response will be a typical web page you would see in your browser. Figure 9.8 is a screen capture of the non‐RSS Google News webpage.
In contrast, the RSS version presents only text from the news articles. It
removes the left‐hand links and images. Using the RSS styled link, you use the paste0 function to construct the final URL for parsing. The url object is the web address representing the Google News feed for articles mentioning
Amazon and Echo. It is a best practice to copy the URL into a browser to ensure

9 Text Sources 291
Figure 9.8 A typical Google News feed for Amazon Echo.
that the link is constructed correctly. If it is not, your browser will not be able to load any information.
url<-paste0('https://news.google.
com/news?hl=en&q=',search.
term,'&i.e.=utf-8&num=100&output=rss')
Next, you use the getURL command from RCurl. This makes a request to
the server and allows your R session to download the text on the page. Since the RSS feed has an XML structure the next line is needed to parse it. The tree nodes of the XML document are contained in the document itself, so you have
to pass in another parameter “useInternalNodes=T.” At this point, the “rss”
object is a XML document organized as a tree containing news articles. You
still need to extract the parts of the tree based on node names to make the
data useful.
rss<-getURL(url)
rss<-xmlTreeParse(rss, useInternalNodes = TRUE)
The next code lines use XPath to extract the document values. In this tree
structure, each article is a parent node called “item.” So the code below is searching for any (“//”) “item” node. When it encounters an “item” node it will extract child nodes such as “/title” or “/link.” The xpathSapply function follows an easy‐to‐understand structure. First, pass in the XML document. Next, pass in the XPath and finally the criteria for the object. The rvest package
292

Text Mining in Practice with R
contains different functions to save node values or attributes. In this example, you are only collecting XML values. If you are consuming other XML documents the parent node name will not be “item.” Often using xmlRoot(rss)
can be helpful to identify the parent and children nodes of interest. This function will print the XML nodes making identification easier.
headline<- xpathSApply(rss,'//item/title',xmlValue)
link <- xpathSApply(rss,'//item/link',xmlValue)
date <- xpathSApply(rss,'//item/pubDate',xmlValue)
description <- xpathSApply(rss,'//item/
description',xmlValue)
In this example, the “description” node XML value will retrieve HTML in
addition to the text. A quick way to remove the HTML is to use qdap’s
bracketX. This is done before organizing the RSS feed into a data frame in
the final line.
description<-bracketX(description)
text<-data.frame(headline,link,date,description)
9.2.9 The tm Library Web‐Mining Plugin
Another package worth exploring is used in conjunction with the tm package.
Specifically, this package consumes newsfeeds and automatically constructs
VCorpus objects. The automatic link construction, web site parsing and corpus construction make integration into a text mining workflow efficient. However, this plugin can encounter issues, as the web page structures and limits change.
With so much automation, there is little flexibility to overcome errors. Still the web mining plugin can quickly gather text from specific web pages, so it is worth exploring. If you encounter errors, you should attempt to use rvest or XML
parsing to gather the information. Using either of these packages is more laborious, but gives you more flexibility to overcome errors.
To begin, you load both tm and tm.plugin.webmining. The tm.
plugin.webmining library function structures are consistent with tm func-
tions. The code below uses functions WebCorpus and GoogleFinanceSource.
These functions correspond to VCorpus and VectorSource from tm. The
plugin library has multiple source functions for different web services such as Yahoo News or Google Finance. The WebCorpus function gathers metadata and
the main text for the specified source. Then it constructs a VCorpus that can be used in a typical text mining workflow.
Here, the source is a Google Financial Newsfeed for the stock ticker “amzn.”
library(tm)
library(tm.plugin.webmining)

9 Text Sources 293
goog.fin <- WebCorpus(GoogleFinanceSource("NASDAQ:A
MZN"))
The resulting object has three object classes “WebCorpus,” “VCorpus” and
“Corpus.” This means that the object is immediately accepted into tm func-
tions. You can check using the “class” function shown here. Using the “sum-
mary” function will print the number of documents contained in the corpus.
class(goog.fin)
Like all VCorpus class objects, you can access different information with
indexing. The first article’s content can be accessed in the first line of code and the metadata in the second. To review another article change the double bracketed number.
goog.fin[[1]][1]
goog.fin[[1]][2]
Another example of the webmining plugin is shown below. This constructs
a corpus from a Yahoo news source for the search term “Cleveland.” There is no need to specify a specific market as was shown earlier. The different source functions may fail, as the underlying web pages change. If that occurs, use a different method for collecting the text.
yahoonews <- WebCorpus(YahooNewsSource("Cleveland"))
Once you have your corpus object, you can begin cleaning and analyzing it.
If you need to save the documents, you invoke the writeCorpus function,
which will save an individual plain text document corresponding to a corpus
document. The writeCorpus function is passed the VCorpus object. The
function also needs a directory path. Using the period will just write the files to the working directory. Next, the file names have to be specified. Since the
goog.fin corpus has 20 documents, the number sequence 1 to 20 is concat-
enated to goog.fin.txt. In the next section, you will learn how to read
multiple files in a directory for text processing. That will allow you to import the 20 individual files quickly to reconstruct the corpus.
writeCorpus(goog.fin, path = ".",filenames =
paste0(seq_along(goog.fin), "goog.fin.txt", sep = ""))
9.3 Getting Text from File Sources
This section is a good reference as you navigate the numerous file types during a text mining project. Each text mining project could present you with single or multiple file types. This section will serve as an aid so you can easily read files and start the more interesting text analysis. Example files can be downloaded
294

Text Mining in Practice with R
from www.tedkwartler.com download section. The files to be downloaded
include
●
●
bos_airbnb_1k.csv
●
●
hillary‐clinton‐emails‐august‐31‐release.txt
●
●
1‐email.docx
●
●
one_two_star_reviews.xlsx
●
●
turkish_ankara_1.rds
●
●
pdftotext.exe
●
●
hillary‐clinton‐emails‐august‐31‐release
●
●
IMG_3234.JPG
9.3.1 Individual CSV, TXT and Microsoft Office Files
You have already used the read.csv function but it is presented here for
reference. Parsing the common file extension, “.txt,” is also presented. The section also includes functions for loading Microsoft Office files such as Excel and Word. The last part of this section demonstrates saving and loading a single RDS file that can be used for any R object not just text.
The read.csv function reads in a comma separated value (CSV) table. The
function will create a data frame from the CSV file. The function accepts the file name within quotation marks, along with optional parameters. A common
parameter is “header” which can be True or False. Header will determine if the first row contains column names. Another common parameter is “sep,” which
is for explicitly defining the field separation character. A comma is used most often, but sometimes whitespace or another specific character denotes a new
separator. You can also add “stringsAsFactors=” along with a True or False.
This determines if character vectors should be strings or categorical variables.
The scripts in this book define this option globally for your R session instead of within the file reading step.
text<-read.csv('bos_airbnb_1k.csv', headr=T, sep=',')
Next to read a .txt file, you can use readLines. This function reads a file
line by line to construct a single character vector. You may encounter a warning stating “incomplete final line.” Many plain text files end with an end of line (EOL) marker. The warning is letting you know that the function did not
encounter one, and the file may be incomplete. This warning can often be
ignored after checking the final line. If you want to read a portion of the file, you can add an integer parameter “n=” to read a specific number of lines. The
“n” parameter is separated by a comma and includes the number of lines to
read. There are other less frequent parameters contained in the function documentation. Since the file was read line by line, the object will contain all the text separated by the EOL markers. If the file is a single document, you may need to use paste and collapse to concatenate the text.

9 Text Sources 295
emails <- readLines("hillary-clinton-emails-august-
31-release.txt")
emails<-paste(emails, collapse=" ")
The qdap library provides one way to gather text from a Microsoft Word
document. The read_docx function has two inputs. First, the file name to
import. The second, “skip=,” is an integer parameter similar to the readLines
“n” parameter. It defines the number of lines to skip when parsing the Word
document. The resulting object is a text vector for the document. The Word
document EOL markers define the length of the R character vector, so you can use paste to collapse the text.
library(qdap)
one.email <- read_docx('1-email.docx')
one.email<-paste(one.email, collapse=" ")
Another common file type is an Excel file. Excel files are called workbooks.
Each workbook can contain multiple worksheets with data. Multiple R func-
tions can read in Excel files. The read.xls function is from a popular data
manipulation library called gdata. In addition, functions from the XLConnect library are demonstrated to load an entire workbook or single worksheet.
Using gdata’s read.xls, you pass in a file name. Then you can pass in the
sheet to read. Without a specific sheet, the “read.xls” function will import the first worksheet. This function creates a temporary CSV file for the specific worksheet within the workbook. The temporary file is then read into R. As a
result, this function can be slow, especially if you need to load more than one worksheet.
library(gdata)
text <- read.xls("one_two_star_reviews.xlsx")
The XLConnect library works in a similar manner. Instead of read.xls use
readWorksheetFromFile. In this example, explicitly define the worksheet
using “sheet=” and a corresponding integer.
library(XLConnect)
text <- readWorksheetFromFile("one_two_star_reviews.
xlsx",sheet = 1)
A difference between the gdata and XLConnect package is that the
XLConnect library contains a function to load an entire workbook. Then you
can create an object for each worksheet within R without repeating code. This can be helpful if you are dealing with a workbook containing many worksheets.
However, since this package uses Java it is also memory intensive.
296

Text Mining in Practice with R
The loadWorkbook function is passed an Excel file. At this point, all the
data for the entire workbook is held in your R session. The readWorksheet
function extracts the individual worksheets from the larger workbook.
library(XLConnect)
reviews.workbook <- loadWorkbook("one_two_star_
reviews.xlsx")
one.stars <- readWorksheet(reviews.workbook,sheet=1)
two.stars <- readWorksheet(reviews.workbook,sheet=2)
The last single file you will learn in this section has an “RDS” extension. This file type is native to R and can be used for any R object. If you are dealing with non‐English texts like Arabic tweets, then you should save the object as an RDS
file. Saving the object directly from R without changing its character encoding helps ensure that the characters are properly formatted. If you save Arabic
tweets as a simple CSV, the characters will be changed. However, saving an
RDS file provides direct serialization of the object without altering the
characters.
To save any R object, use the saveRDS function, pass in the object and specify a file name ending in “.rds.” This will save the object directly to your working directory. Be sure not to overwrite any existing file names in your directory.
saveRDS(turk.tweets,'turkish_ankara_1.rds')
To load the file into your R console use readRDS along with the complete
file name. If you need to list all files in your working directory you can call the dir() function. This prints all files in the working directory to your console.
Then you can copy and paste the exact complete file name into “readRDS.”
dir()
turk.tweets<-readRDS('turkish_ankara_1.rds')
9.3.2 Reading Multiple Files Quickly
So far you have learned how to read common individual files. Yet, you will
often have more than one document to load for a text mining project. Reading in many files by copying lines of code and changing files names is tedious. The functions here present two methods for scanning and loading specific files in an efficient manner.
Both approaches use list.files to create a vector of file names. The
list.files function scans your working directory to identify any files that
match the specified pattern. The function is similar to using grep for keyword scanning. For example, you create the temp object by searching for any file that ends with “*.csv.” The asterisk represents a wildcard meaning a file can have any name, but must end with “.csv.” If you are not working with CSV files, you should adjust the pattern to match a different file extension like “*.docx.”

9 Text Sources 297
temp <- list.files(pattern="*.csv")
The temp object is a character vector. For example, the temp object may
recognize three files matching the pattern such as “allstate_glassdoor.csv”,
“amzn_cs.csv” and “oct_delta.csv.”
Use the following code to load each file as an individual object. Each object is assigned a name corresponding to the file name from your directory. Keep
in mind, it will be difficult to call the objects in your console if the object name contains spaces. Thus, it is good practice to use dashes instead of spaces when naming files. The code below is a “for loop” using read.csv. If your
files have a different file extension change read.csv to an appropriate
importing function.
for (i in 1:length(temp)) assign(temp[i], read.
csv(temp[i]))
The “for loop” may look confusing because of the “i” variable. The “i” variable changes as the function loops through the temp character vector. So for numbers 1 to the total number of files identified in the temp object, assign the same object name while reading in the CSV. In this example, the function will perform three loops, individually inserting the three file names from the temp
object. Your console will now have three distinct data frames called “allstate_
glassdoor.csv”, “amzn_cs.csv” and “oct_delta.csv.”
Instead of an individual object per file the next example binds all files into a single data frame. The code uses the rbindlist function from data.table
and a progress bar version of lapply. The code still references the temp
object from above. Specifically, the code applies fread over the temp character vector. The fread function is a “fast file finagler” function that you have encountered earlier in the book to parse data tables. The resulting list of data tables is then row bound using rbindlist. Using the rbindlist function
along with fill=T, will match columns by name and, if data tables differ, will fill in “NA” for non‐matching columns. In this example, you will have a single data frame containing all three CSV files, “allstate_glassdoor.csv”, “amzn_
cs.csv” and “oct_delta.csv.”
library(data.table)
library(pbapply)
temp <- list.files(pattern="*.csv")
single.df<- rbindlist(pblapply(temp, fread),fill=T)
This solution works with CSV and .txt files that are organized as data tables.
You will not be able to change fread to read_docx (or similar) if you are
working with other file types. Instead, the code below can be adjusted for other read functions to create a single object containing all documents. Use list.
files again and then “pblapply” the appropriate read function to the temp
298

Text Mining in Practice with R
vector. The resulting list can be unlisted to collapse the lines of data into a single object. For example, if “temp” contains “1‐email.docx” with 10 lines and
“2‐email.docx” with 12 lines, the “single.doc.df” object will be a character vector with 22 lines.
temp <- list.files(pattern="*.docx")
doc.list<-pblapply(temp, read_docx)
single.doc.df<- unlist(doc.list)
9.3.3 Extracting Text from PDFs
The portable document file (PDF) file extension is a widely used Adobe prod-
uct. PDF files have embedded security and can be hard to edit. As a result, PDF
files are great for sending electronically. However, the file security means that extracting the text to analyze can be challenging in R. In fact, you have to load an additional executable program because R cannot do it natively.
To extract text from PDF files, navigate to www.tedkwartler.com, click the
“downloads” link and save the file named “pdftotext.exe.” This is a copy of the original open source executable file from http://www.foolabs.com/xpdf/download.
html. For this example, you can download the PDF named “hillary‐ clinton‐emails-august‐31‐release.pdf.” This is a large PDF containing approximately 7000 emails from Hillary Clinton’s time as Secretary of State in the US. Save pdftotext.exe in an easy‐to‐find directory because you will need to note its file path.
Once you have the executable and one or more pdf files you are ready to
extract text. Again use list.files to capture the PDF files, but add an additional parameter. The parameter full.names captures both the file path and
name. Next, for the pdf2text object, adjust the file path for your pdftotext.
exe download location. The last line of code executes a system level command.
Specifically, the small text extracting executable program is passed any files that are recognized from list.files. After using this code, the working
directory will contain the original PDF along with a single .txt file.
pdf.file <- list.files(pattern = "*.pdf", full.names
= TRUE)
pdf2text <- "C:/Users/TextMiner/Desktop/pdftotext.exe"
system(paste("\"", pdf2text, "\" \"", pdf.file, "\"", sep = ""), wait = F)
The previous code works for a single file, but needs to be adjusted to work on multiple PDF files in the directory. If your list.files function identifies
more than one PDF, an apply function is used to iterate over the multiple file paths. Using pblapply, multiple system level commands are generated for
each of the PDF files. Each command separately invokes the pdftotext.exe
application with a specific PDF file. The individual commands have the same

9 Text Sources 299
structure as the single file example. Now your working directory will contain multiple PDF and plain text files.
library(pbapply)
pdf.files <- list.files(pattern = "*.pdf", full.names
= TRUE)
pblapply(pdf.files, function(i) system(paste('"C:/
Users/Edward/Desktop/pdftotext.exe"', paste0('"', i,
'"')), wait = FALSE))
9.3.4 Optical Character Recognition: Extracting Text from Images
In rare instances, you may need to extract text from images. Manually tran-
scribing an image is the most accurate method for identifying text in an image.
If you do not have time or inclination for such as monotonous task, you can use an outside service for optical character recognition (OCR). OCR services have prebuilt algorithms for identifying letters at the pixel level. Often the algorithms are deep neural nets that are hard to create and computationally intensive. Microsoft provides one such service for automatic OCR with a free and
paid tier. Within the Microsoft Cognitive Services there is a computer vision API called Project Oxford. Microsoft’s Project Oxford OCR service can be
called with an API similar to prior examples. Instead of performing a “get”
request to a news service you are now using “post” to send an image for
processing. The Microsoft OCR service will provide the text back to your R
console although the text needs considerable processing.
To perform OCR using the Microsoft service you will need an API key.
Navigate to the Microsoft Cognitive Services webpage or search for Project
Oxford API. Then create an account and sign up for the Machine Vision API.
There is an R package, Roxford, in development working to integrate R and
Project Oxford. Since Roxford is not officially offered, this section’s code demonstrates an API file post using the “httr” library. This example mimics the Roxford developmental package found on www.github.com.
Load three packages to start. The httr package will let you post your file to the service. By now you should be familiar with pbapply, which provides
progress bar versions of the apply functions. Lastly, load the plyr library. The plyr package will help manipulate the API’s response.
library(httr)
library(pbapply)
library(plyr)
Next, create three objects. The first is a character string for the Machine
Vision API. This is the web address for posting the image file. The URL has two parameters. First, the URL has a True for “detectOrientation” because this
300

Text Mining in Practice with R
helps the algorithm accuracy. Second, the last two letters of the URL represent the language. This example uses English so the link contains “en.” If you are working with another language, you can consult the API documentation for
the correct abbreviation. Next, use “upload_file” with the image name. Lastly, replace the “x’ character string with your Microsoft API key.
msft.url <- "https://api.projectoxford.ai/vision/v1/
ocr?detectOrientation=true&language=en"
text.img <- upload_file("IMG_3234.JPG")
api.key <- 'long_string_from_MSFT'
Figure 9.9 is the example image to be posted. The image is a portion of a
Washington Post article from January 1, 2000. The image contains mostly text along with a portion of a fireworks picture. The API will identify the text and ignore the non‐text elements. You can download the file from www.tedkwartler.
com or use your own.
The important step in the OCR process is the API POST. The POST com-
mand uses the “msft.url”, “api.key” and “text.img” objects. Other inputs include the “octet‐stream” parameter and a specific header name. Octet‐stream dictates that the image file will be sent as a binary file attachment with the other POST information. The header “Ocp‐Apim‐Subscription‐Key” value is specific to Microsoft services and is the name given to your API key credentials.
oxford.response <- POST(url = msft.url,
content_type('application/octet-stream'), add_
headers(.headers = c('Ocp-Apim-Subscription-Key' =
api.key)),body = text.img, encode = 'multipart')
Executing this code will send the file, and your API key to the OCR service.
To check the results of the API call, type the response object, “oxford.response,”
into your console. If the file POST was successful, the status will be 200. If there was an issue, the status would be 400 meaning “bad request.” The code below
shows the console output of a successful API call.
oxford.response
#Response [https://api.projectoxford.ai/vision/v1/
ocr?detectOrientation=true]
Date: 2016-07-24 03:07
Status: 200
Content-Type: application/json; charset=utf-8
Size: 7.38 kB
Httr provides a function, “content,” to extract the API response. The api.content is a complicated nested list. Only the subset of the “regions” element

9 Text Sources 301
contains the text that was recognized and the pixel level box where the text was identified. However, the regions object is another complicated list. So the last line of code applies as.data.frame to the regions’ individual “lines” element. The multiple data frames are then row bound using plyr’s rbind.fill.
This final text.df object contains the recognized text. Unfortunately, the
data frame has coordinates for the located text and many “NA” values. As a
result, the single data frame needs to be manipulated further.
api.content <- content(oxford.response)
regions <- api.content$regions
text.df<- do.call("rbind.fill",
pblapply(regions[[1]]$lines, as.data.frame))
The last code section drops the bounding box coordinates and NAs and con-
catenates the image text. First the columns containing “Box” are dropped from the data frame. Within the index brackets, the grep command is searching for
“Box” among the column names. The columns are dropped because the grep
function is preceded with a minus. This removes the coordinate information.
However, the data frame contains factor levels instead of character strings.
Thus, the second line of code changes the data frame text to character strings using pbsapply and as.character. Third, all NA values need to be
removed. A simple method for NA removal is to use is.na to identify the NA
values along with an empty character ("") as shown. For the API text to match the image, the individual words need to be concatenated by row and then combined into a single plain text document. To perform the row‐wise character
concatenation use pbapply with 1. The 1 tells the function to apply the “paste”
row wise. Change the 1 to 2 if you need to apply a function column wise. The last line of code puts all text rows into a single document. Figure 9.10 is a screenshot of the final cleaned text for comparison to the article image in Figure 9.9.
final.text<-text.df[, -grep("*Box*", colnames(text.
df))]
final.text <- pbsapply(final.text, as.character)
final.text[is.na(final.text)] <- ""
final.text<-pbapply(final.text,1,paste,collapse=" ")
final.text<-paste(final.text, collapse=" ")
You may notice some extra whitespace and inconsistent spelling. For
example, the city “Washing‐ ton” incorrectly contains a dash. OCR algorithms perform character level recognition. The article used a dash within the characters of “Washington” due to space constraints of the newspaper. The OCR
service identified these characters, but did not predict the word in context.
Thus, further preprocessing steps may need to be applied to OCR text before
beginning your analysis.

302

Text Mining in Practice with R
Figure 9.9 A portion of a newspaper image to be sent to the OCR service.
Figure 9.10 The final OCR text containing the image text.
9.4 Summary
In this chapter you learned methods to extract text from web pages, APIs,
individual files and folders containing multiple files. This chapter is meant to illustrate some methods for various text sources, but is by no means exhaus-tive. The chapter should serve as an aid when confronted with difficult text sources.

9 Text Sources 303
Although it is not a case study, you can rely on the code in this chapter to serve you during a text mining project. Within the text mining workflow an
important step is identifying the appropriate text. The code in this chapter will let you analyze the plain text from many different sources and file types. In this chapter you learned
●
●
adjustable components of a URL
●
●
automatically constructing URLs for web scraping
●
●
to web scrape a single page
●
●
to web scrape an entire forum
●
●
using an API within an R package to retrieve text
●
●
to set up a connection with Twitter’s API to retrieve tweets
●
●
using R without a dedicated package to parse an API’s JSON response
●
●
to use the tm package plugin to retrieve a WebCorpus
●
●
to use XML to parse an RSS feed
●
●
simple methods for reading files types csv, .txt, MS Word and Excel
documents
●
●
to make a plain text document (.txt) from a PDF
●
●
to use a Microsoft API to identify text in an image file
●
●
two ways to read in multiple files in a folder.
305
Index

a

e
Adobe PDF see get data, pdf
emoji 108–113
application program interfaces
emoticons
(API) 282–289
punctuation based 106, 107
area under the curve (AUC) 194
Unicode 105–107
AUC see area under the curve (AUC)
Euclidean distance 69, 139, 145, 148,
170

b
bag of words 20

g
bar plot see visualization, bar plot
get data
box plot 263, 265
csv 294
doc or .docx 295

c
multiple files 296–298
challenges see text mining, challenges
pdf 298–299
commonality cloud see visualization,
txt 295
commonality cloud
xls or xlsx 295–296
comparison cloud see visualization,
comparison cloud

i
confusion matrix 195
inner join 122
corpus, volatile corpus 44
cosine distance 139, 177, 178

k
cross validation 192–193
k‐means clustering 130–138
csv file see get data, csv
k‐mediod clustering 144–145

d

l
data partition 185, 192–193
lasso regression 189–191
dendrogram see visualization,
latent Dirichlet allocation
dendrogram
(LDA) 155–156
document term matrix (DTM),
LDA see latent Dirilechet allocation
example 21
(LDA)
306

Index

m
string manipulation
machine learning 20
extraction 32
maximum entropy 241–242
keyword scanning grep 33
mean squared error 228–230
nchar 26
MS Excel document see get data, xls or
paste 30
xlsx
split 31
MS Word document see get data, doc
string counts 36
or docx
substitutions 28
subjectivity lexicon 89–91

n
supervised learning
named entity recognition (NER) 238,
document classification 181–183
242, 246–247
prediction 209–210
o
syntactic parsing 22
OCR see optical character recognition
(OCR)

t
open NLP project 237–238
term document matrix (TDM),
optical character recognition
example 21, 22
(OCR) 299–302
term frequency (TF) 47, 53
term frequency inverse document

p
frequency (TFIDF) 100–101
Plutchik’s wheel of emotion 86–87
text mining
polarity 93–96
challenges 6
precision 218–219
definition 1, 17
preprocessing functions 37–43
workflow 9
principle of least effort 91–92
TF see term frequency (TF)
pyramid plot, polarized tag cloud see

TFIDF see term frequency inverse
visualization, pyramid plot
document frequency (TFIDF)
tidy data format 120–121

r
tidytext, sentiment 118, 125
recall 218–219
tm definition see text mining,
receiver operator characteristics
definition
(ROC) 194–195
topic modeling 154–169
ridge regression 189–191
txt file see get data, txt

s

u
sentiment analysis, definition 85
unsupervised learning 129–130, 147,
sentiment word cloud see

154
visualization, sentiment word
cloud

v
Silhouette plot 138
visualization
skip gram method 174–175
bar plot 55–57
spell check 45–46
commonality cloud 75–78
spherical k‐means 139–144
comparison cloud 75–79
string distance 147–154
dendrogram 67–73

Index 307
pyramid plot 80–81
word cloud see visualization, word cloud
sentiment word cloud 96, 102
word network see visualization, word
treemap 168–169
network
word cloud 8, 73–83
word to vector 169–174
word network 59–67
workflow see text mining, workflow
Vox Populi, wisdom of crowds 4

x

w
XML 290–292
web scraping 272–282
wisdom of crowds see Vox Populi,

z
wisdom of crowds
Zipf’s law 91–93

Document Outline

	Contents
	Foreword
	What is Text Mining?
	What is it?
	Why We Care About Text Mining
	A Basic Workflow – How the Process Works
	What Tools Do I Need to Get Started with This?
	A Simple Example
	A Real World Use Case
	Summary

	Basics of Text Mining
	What is Text Mining in a Practical Sense?
	Types of Text Mining: Bag of Words
	The Text Mining Process in Context
	String Manipulation: Number of Characters and Substitutions
	Keyword Scanning
	String Packages stringr and stringi
	Preprocessing Steps for Bag of Words Text Mining
	Spellcheck
	Frequent Terms and Associations
	DeltaAssist Wrap Up
	Summary

	Common Text Mining Visualizations
	A Tale of Two (or Three) Cultures
	Simple Exploration: Term Frequency, Associations and Word Networks
	Simple Word Clusters: Hierarchical Dendrograms
	Word Clouds: Overused but Effective
	Summary

	Sentiment Scoring
	What is Sentiment Analysis?
	Sentiment Scoring: Parlor Trick or Insightful?
	Polarity: Simple Sentiment Scoring
	Emoticons – Dealing with These Perplexing Clues
	R’s Archived Sentiment Scoring Library
	Sentiment the Tidytext Way
	Airbnb.com Boston Wrap Up
	Summary

	Hidden Structures - Clustering, String Distance, Text Vectors & Topic Modeling
	What is clustering?
	Calculating and Exploring String Distance
	LDA Topic Modeling Explained
	Text to Vectors using text2vec
	Summary

	Document Classification - Finding Clickbait from Headlines
	What is Document Classification?
	Clickbait Case Study
	Summary

	Predictive Modeling - Using Text for Classifying & Predicting Outcomes
	Classification vs Prediction
	Case Study I: Will This Patient Come Back to the Hospital?
	Case Study II: Predicting Box Office Success
	Summary

	OpenNLP Project
	What is the OpenNLP project?
	R’s OpenNLP Package
	Named Entities in Hillary Clinton’s Email
	Analyzing the Named Entities
	Summary

	Text Sources
	Sourcing Text
	Web Sources
	Getting Text from File Sources
	Summary

	Index

Table of Contents
Contents
Foreword
What is Text Mining?
What is it?
Why We Care About Text Mining
A Basic Workflow – How the Process Works
What Tools Do I Need to Get Started with This?
A Simple Example
A Real World Use Case
Summary
Basics of Text Mining
What is Text Mining in a Practical Sense?
Types of Text Mining: Bag of Words
The Text Mining Process in Context
String Manipulation: Number of Characters and Substitutions
Keyword Scanning
String Packages stringr and stringi
Preprocessing Steps for Bag of Words Text Mining
Spellcheck
Frequent Terms and Associations
DeltaAssist Wrap Up
Summary
Common Text Mining Visualizations
A Tale of Two (or Three) Cultures
Simple Exploration: Term Frequency, Associations and Word Networks
Simple Word Clusters: Hierarchical Dendrograms
Word Clouds: Overused but Effective
Summary
Sentiment Scoring
What is Sentiment Analysis?
Sentiment Scoring: Parlor Trick or Insightful?
Polarity: Simple Sentiment Scoring
Emoticons – Dealing with These Perplexing Clues
R’s Archived Sentiment Scoring Library
Sentiment the Tidytext Way
Airbnb.com Boston Wrap Up
Summary
Hidden Structures - Clustering, String Distance, Text Vectors & Topic Modeling
What is clustering?
Calculating and Exploring String Distance
LDA Topic Modeling Explained
Text to Vectors using text2vec
Summary
Document Classification - Finding Clickbait from Headlines
What is Document Classification?
Clickbait Case Study
Summary
Predictive Modeling - Using Text for Classifying & Predicting Outcomes
Classification vs Prediction
Case Study I: Will This Patient Come Back to the Hospital?
Case Study II: Predicting Box Office Success
Summary
OpenNLP Project
What is the OpenNLP project?
R’s OpenNLP Package
Named Entities in Hillary Clinton’s Email
Analyzing the Named Entities
Summary
Text Sources
Sourcing Text
Web Sources
Getting Text from File Sources
Summary
Index

images/00069.jpg

images/00068.jpg

images/00070.jpg

images/00029.jpg

images/00028.jpg

images/00031.jpg

images/00030.jpg

images/00033.jpg

images/00032.jpg

images/00035.jpg

images/00034.jpg

cover.jpeg

images/00026.jpg

images/00025.jpg

images/00027.jpg

images/00058.jpg

images/00060.jpg

images/00059.jpg

images/00018.jpg

images/00062.jpg

images/00061.jpg

images/00020.jpg

images/00064.jpg

images/00019.jpg

images/00063.jpg

images/00022.jpg

images/00021.jpg

images/00024.jpg

images/00023.jpg

images/00067.jpg

images/00015.jpg

images/00014.jpg

images/00017.jpg

images/00016.jpg

images/00049.jpg

images/00048.jpg

images/00051.jpg

images/00050.jpg

images/00009.jpg

images/00053.jpg

images/00008.jpg

images/00052.jpg

images/00011.jpg

images/00055.jpg

images/00010.jpg

images/00054.jpg

images/00013.jpg

images/00057.jpg

images/00012.jpg

images/00056.jpg

images/00047.jpg

images/00038.jpg

images/00040.jpg

images/00039.jpg

images/00042.jpg

images/00041.jpg

images/00044.jpg

images/00043.jpg

images/00046.jpg

images/00045.jpg

images/00037.jpg

images/00036.jpg

images/00002.jpg

images/00001.jpg

images/00004.jpg

images/00003.jpg

images/00006.jpg

images/00005.jpg

images/00007.jpg

