

Jarrel E.

Python Mastery Unleashed

Advanced Programming Techniques

First published by Indy Pub 2023

Copyright © 2023 by Jarrel E.

All rights reserved. No part of this publication may be reproduced,
stored or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning, or otherwise

without written permission from the publisher. It is illegal to copy
this book, post it to a website, or distribute it by any other means

without permission.

Jarrel E. asserts the moral right to be identified as the author of
this work.

Jarrel E. has no responsibility for the persistence or accuracy of
URLs for external or third-party Internet Websites referred to in

this publication and does not guarantee that any content on such
Websites is, or will remain, accurate or appropriate.

First edition

Contents

Acknowledgment

Forward

Preface

Introduction

Computer Graphics

Python Turtle Graphics

Computer Generated Art

Introduction to Matplotlib

Graphing with Matplotlib pyplot

Graphical User Interfaces

The wxPython GUI Library

Events in wxPython User Interfaces

PyDraw wxPython Example Application

Introduction to Games Programming

Building Games with pygame

StarshipMeteors pygame

Introduction to Testing

PyTestTesting Framework

Mocking for Testing

Introduction to Files, Paths and IO

Reading and Writing Files

StreamIO

Working with CSV Files

Working with Excel Files

Regular Expressions in Python

Introduction to Databases

Python DB-API

PyMySQL Module

Introduction to Logging

Logging in Python

Advanced Logging

Introduction to Concurrency and Parallelism

Threading

Multiprocessing

Inter Thread/Process Synchronization

Futures

Concurrency with AsyncIO

Reactive Programming Introduction

RxPy Observables, Observers and Subjects

RxPy Operators

Introduction to Sockets and Web Services

Sockets in Python

Web Services in Python

Bookshop Web Service

References

Acknowledgment

As the author, I stand at the forefront of this project, but it is
essential to recognize the collective e�ort and support that
has been instrumental in bringing this book to fruition. The
world of Python programming is vast and ever-evolving, and
it is with the combined expertise and dedication of numerous
individuals that we present this comprehensive guide to
advanced Python techniques.

The Unsung Heroes: Editors and Reviewers

First and foremost, I extend my heartfelt gratitude to the
editorial team who diligently combed through the
manuscript, ensuring that every word was carefully placed,
every concept clearly explained, and every code example
meticulously tested. Their keen eye for detail and their
commitment to excellence have been indispensable in
crafting this book.

The Python Community

The Python community is a vibrant and generous one, where
knowledge is freely shared and open-source projects flourish.
I want to express my gratitude to the Python community at
large, from developers to educators and enthusiasts, for
fostering an environment of continuous learning and
collaboration.

My Family and Supporters

I owe a profound debt of gratitude to my family and friends,
who supported me throughout the writing process. Their
patience, encouragement, and understanding were the pillars
upon which this endeavor was built.

Forward

In the ever-evolving world of technology, Python stands as a
beacon of innovation and e�ciency. This book is dedicated to
those who have already embraced the fundamentals of
Python and are now poised to explore the deeper realms of
this versatile programming language.

The Power of Python Unveiled

Python is not just a language; it’s a tool for shaping the future
of computing. As we delve into the advanced techniques and
concepts within this book, you will find yourself equipped to
tackle challenges and create solutions that were previously
beyond your reach. Whether you are a professional developer
seeking to optimize your code, a data scientist diving deeper
into machine learning, or an enthusiast with a passion for
programming, this book is your gateway to Python
excellence.

The Journey Begins

Within the pages of “Python Mastery Unleashed,” you will
embark on a journey that takes you from proficiency to
mastery. This book is designed to be your guiding light
through the intricate paths of advanced Python
programming. By the time you reach the final chapter, you
will have acquired the skills and knowledge necessary to
tackle complex projects, optimize your code, and explore
domains like data science, web development, and more.

What to Expect

This book is not merely a collection of code snippets; it’s a
comprehensive exploration of the art and science of Python
programming. I encourage you to approach this book with an
open mind and a willingness to learn. Python’s adaptability
and power are at your disposal, but it’s up to you to harness
its full potential. “Python Mastery Unleashed” will be your
trusted companion on this journey, providing insights and
guidance that can elevate your programming skills to new
heights.

Preface

It is with great pleasure and enthusiasm that I present to you
“Python Mastery Unleashed: Advanced Programming
Techniques.” This book is the culmination of a diligent e�ort
to provide a comprehensive guide for individuals who aspire
to elevate their Python programming skills to an advanced
level. As a professional author with a profound passion for
Python, my mission is to empower you with the knowledge
and techniques required to produce professional-grade
Python applications.

Python has rapidly evolved from a beginner-friendly
language to a versatile and robust tool employed by
developers across the globe. Whether you are an experienced
programmer or someone just setting foot on the path of
Python, this book is meticulously crafted to cater to your
needs.

This book is replete with real-world examples, hands-on
exercises, and illuminating case studies designed to cement
your comprehension. Our intent is not merely to transform
you into a proficient Python programmer but to equip you

with the capacity to surmount intricate programming
challenges with unwavering confidence.

Python’s journey into advanced programming territory may
be arduous, yet it is profoundly gratifying. We invite you to
interact with this book, explore the provided code, and
employ the acquired knowledge in your projects. Python is a
vast canvas for your programming ingenuity, and this book
shall provide you with the tools to craft your digital
masterpieces.

Thank you for entrusting us with your pursuit of knowledge
in “Python Mastery Unleashed: Advanced Programming
Techniques.” Let’s embark on this transformative journey
together, with the aim of emerging as true Python masters.

Introduc�on

1.1 Introduction

I have heard many people over the years say that Python is an
easy language to lean and that Python is also a simple
language. To some extent both of these statements are true;
but only to some extent. While the core of the Python
language is easy to lean and relatively simple (in part thanks
to its consistency); the sheer richness of the language
constructs and flexibility available can be overwhelming. In
addition the Python environment, its Eco system, the range
of libraries available, the often competing options available
etc., can make moving to the next level daunting.

Once you have learned the core elements of the language such
as how classes and inheritance work, how functions work,
what are protocol sand Abstract Base Classes etc. Where do
you go next? The aim of this book is to delve into those next
steps. The book is organized into eight di�erent topics:

1. Computer Graphics. The book covers Computer Graphics
and Computer Generated Art in Python as well as
Graphical User Interfaces and Graphing/ Charting via
MatPlotLib.

2. Games Programming. This topic is covered using the
pygame library.

3. Testing and Mocking. Testing is an important aspect of
any software development; this book introduces testing
in general and the PyTest module in detail. It also
considers mocking within testing including what and
when to mock.

4. File Input/Output. The book covers text file reading and
writing as well as reading and writing CSV and Excel files.
Although not strictly related to file input, regulator
expressions are included in this section as they can be
used to process textual data held in files.

5. Database Access. The book introduces databases and
relational database in particular. It then presents the
Python DB-API database access standard and one
implementation of this standard, the PyMySQL module
used to access a MySQL database.

6. Logging. An often missed topic is that of logging.The
book therefore introduces logging the need for logging,
what to log and what not to log as well as the Python
logging module.

7. Concurrency and Parallelism. The book provides
extensive coverage of concurrency topics including

Threads, Processes and inter thread or process
synchronization. It also presents Futures and AsyncIO.

8. Reactive Programming. This section of the book
introduces Reactive Programming using the PyRx
reactive programming library.

9. Network Programming. The book concludes by
introducing socket and web service communications in
Python.

Each section is introduced by a chapter providing the
background and key concepts of that topic. Subsequent
chapters then cover various aspects of the topic.

For example, the first topic covered is on Computer Graphics.
This section has an introductory chapter on Computer
Graphics in general. It then introduces the Turtle Graphics
Python library which can be used to generate a graphical
display.

The following chapter considers the subject of Computer
Generated Art and uses the Turtle Graphics library to
illustrate these ideas. Thus several examples are presented
that might be considered art. The chapter concludes by
presenting the well known Koch Snowflake and the
Mandelbrot Fractal set.

This is followed by a chapter presenting the MatPlotLib
library used for generating 2D and 3D charts and graphs (such
as a line chart, bar chart or scatter graph). The section
concludes with a chapter on Graphical User Interfaces (or
GUIs) using the wxpython library. This chapter explores what
we mean by a GUI and some of the alternatives available in
Python for creating a GUI.

Subsequent topics follow a similar pattern.

Each programming or library oriented chapter also includes
numerous sample programs that can be downloaded from the
GutHub repository and executed. These chapters also include
one or more end of chapter exercises(with sample solutions
also in the GutHub repository).

The topics within the book can be read mostly independently
of each other. This allows the reader to dip into subject areas
as and when required. For example, the File Input/Output
section and the Database Access section can be read
independently of each other (although in this case assessing
both technologies may be useful in selecting an appropriate
approach to adopt for the long term persistent storage of data
in a particular system).

Within each section there are usually dependencies, for
example it is necessary to understand the pygame library

from the ‘Building Games with pygame’ introductory
chapter, before exploring the worked case study presented by
the chapter on the Star ship Meteors game. Similarly it is
necessary to have read the Threading and Multiprocessing
chapters before reading the Inter Thread/Process
Synchronization chapter.

Computer Graphics

Introduction to Computer Graphics

Computer Graphics are everywhere; they are on your TV, in
cinema adverts,the core of many films, on your tablet or
mobile phone and certainly on your PC or Mac as well as on
the dashboard of your car, on your smart watch and in
children’s electronic toys.

However what do we mean by the term Computer Graphics?
The term goes back to a time when many (most) computers
were purely textual in terms of their input and output and
very few computers could generate graphical displays let
alone handle input via such a display. However, in terms of
this book we take the term Computer Graphics to include the
creation of Graphical User Interfaces (or GUIs), graphs and
charts such as bar charts or line plots of data, graphics in
computer games (such as Space Invaders or Flight Simulator)
as well as the generation of 2D and 3D scenes or images.We
also use the term to include Computer Generated Art.

The availability of Computer Graphics is very important for
the huge acceptance of computer systems by non computer
scientists over the last 40 years. It is in part thanks to the
accessibility of computer systems via computer graphic
interfaces that almost everybody now uses some form of
computer system (whether that is a PC, a tablet, a mobile
phone or a smart TV).

A Graphical User Interface (GUI) can capture the essence of an
idea or a situation, often avoiding the need for a long passage
of text or textual commands. It is also because a picture can
paint a thousand words; as long as it is the right picture.

In many situations where the relationships between large
amounts of information must be conveyed, it is much easier
for the user to assimilate this graphically than textually.
Similarly, it is often easier to convey some meaning by
manipulating some system entities on screen, than by
combinations of text commands.

For example, a well chosen graph can make clear information
that is hard to determine from a table of the same data. In
turn an adventure style game can become engaging and
immersive with computer graphics which is in marked
contrast to the textual versions of the 1980s. This highlights
the advantages of a visual presentation compared to a purely
textual one.

Background

Every interactive software system has a Human Computer
Interface, whether it be a single text line system or an
advanced graphic display. It is the vehicle used by developers
for obtaining information from their user(s), and in turn,
every user has to face some form of computer interface in
order to perform any desired computer operation.

Historically computer systems did not have a Graphical User
Interface and rarely generated a graphical view. These
systems from the 60s, 70s and 80s typically focused on
numerical or data processing tasks. They were accessed via
green or grey screens on a text oriented terminal. There was
little or no opportunity for graphical output.

However, during this period various researchers at
laboratories such as Stanford, MIT, Bell Telephone Labs and
Xerox were looking at the possibilities that graphic systems
might o�er to computers. Indeed even as far back as 1963
Ivan Sutherland showed that interactive computer graphics
were feasible with his Ph.D. thesis on the Sketchpad system.

The Graphical Computer Era

Graphical computer displays and interactive graphical
interfaces became a common means of human–computer
interaction during the 1980s. Such interfaces can save a user
from the need to learn complex commands. They are less
likely to intimidate computer naives and can provide a large
amount of information quickly in a form which can be easily
assimilated by the user.

The widespread use of high quality graphical interfaces (such
as those provided by the Apple Macintosh and the early
Windows interface) led many computer users to expect such
interfaces to any software they use. Indeed these systems
paved the way for the type of interface that is now
omnipresent on PCs, Macs, Linux boxes, tablets and smart
phones etc. This graphical user interface is based on the
WIMP paradigm (Windows, Icons, Menus and Pointers)
which is now the prevalent type of graphical user interface in
use today.

The main advantage of any window-based system, and
particularly of a WIMP environment, is that it requires only a
small amount of user training. There is no need to learn
complex commands, as most operations are available either
as icons, operations on icons, user actions (such as swiping)
or from menu options, and are easy to use. (An icon is a small
graphic object that is usually symbolic of an operation or of a
larger entity such as an application program or a file). In

general, WIMP based systems are simple to learn, intuitive to
use, easy to retain and straightforward to work with.

These WIMP systems are exemplified by the Apple Macintosh
interface (see Goldberg and Robson as well as Tesler), which
was influenced by the pioneering work done at the Palo Alto
Research Center on the Xerox Star Machine. It was, however,
the Macintosh which brought such interfaces to the mass
market, and first gained acceptance for them as tools for
business, home and industry.This interface transformed the
way in which humans expected to interact with their
computers, becoming a defacto standard,which forced other
manufacturers to provide similar interfaces on their own
machines, for example Microsoft Windows for the PC.

This type of interface can be augmented by providing direct
manipulation graphics. These are graphics which can be
grabbed and manipulated by the user, using a mouse, to
perform some operation or action. Icons are a simple version
of this, the “opening” of an icon causes either the associated
application to execute or the associated window to be
displayed.

Interactive and Non Interactive Graphics

Computer graphics can be broadly subdivided into two
categories:

Non Interactive Computer Graphics
Interactive Computer Graphics.

In Non Interactive Computer Graphics (aka Passive Computer
Graphics) an image is generated by a computer typically on a
computer screen; this image can be viewed by the user
(however they cannot interact with the image). Examples of
non-interactive graphics presented later in this book include
Computer Generated Art in which an image is generated using
the Python Turtle Graphics library.Such an image can viewed
by the user but not modified. Another example might be a
basic bar chart generated using MatPlotLib which presents
some set of data.

Interactive Computer Graphics by contrast, involve the user
interacting with the image displayed in the screen in some
way, this might be to modify the data being displayed or to
change they way in which the image is being rendered etc. It
is typified by interactive Graphical User Interfaces (GUIs) in
which a user interacts with menus, buttons, input field,
sliders,scroll bars etc. However, other visual displays can also
be interactive. For example, a slider could be used with a
MatplotLib chart. This display could present the number of
sales made on a particular date; as the slider is moved so the
data changes and the chart is modified to show di�erent data
sets.

Another example is represented by all computer games which
are inherently interactive and most, if not all, update their
visual display in response to some user inputs. For example in
the classic flight simulator game, as the user moves the
joystick or mouse, the simulated plane moves accordingly
and the display presented to the user updates.

Pixels

A key concept for all computer graphics systems is the pixel.
Pixel was originally a word formed from combining and
shortening the words picture (or pix) and element.A pixel is a
cell on the computer screen. Each cell represents a dot on the
screen. The size of this dot or cell and the number of cells
available will vary depending upon the type, size and
resolution of the screen. For example, it was common for
early Windows PCs to have a 640 by 480 resolution display
(using a VGA graphics card). This relates to the number of
pixels in terms of the width and height. This meant that there
were 640 pixels across the screen with 480 rows of pixels
down the screen. By contrast today’s 4K TV displays have
4096 by 2160 pixels.

The size and number of pixels available a�ects the quality of
the images presented to a user. With lower resolution displays
(with fewer individual pixels) the image may appear blocky or

poorly defined; where as with a higher resolution it may
appear sharp and clear.

Each pixel can be referenced by its location in the display grid.
By filling a pixels on the screen with di�erent colors various
images/displays can be created. For example, in the following
picture a single pixel has been filled at position 4 by 4:

A sequence of pixels can form a line, a circle or any number of
di�erent shapes. However, since the grid of pixels is based on
individual points, a diagonal line or a circle may need to
utilize multiple pixels which when zoomed may have jagged
edges. For example, the following picture shows part of a
circle on which we have zoomed in:

Each pixel can have a color and a transparency associated
with it. The range of colors available depends on the display
system being used. For example, mono chrome displays only
allow black and white, where as a grey scale display only
allows various shades of grey to be displayed. On modern
systems it is usually possible to represent a wide range of
colors using the tradition RGB color codes (where R
represents Red, G represents Green and B represents Blue). In
this encoding solid Red is represented by a code such as [255,
0, 0] where as solid Green is represented by [0, 255, 0] and
solid Blue by [0, 0, 255]. Based on this idea various shades can
be represented by combination of these codes such as Orange
which might be represented by [255, 150, 50]. This is
illustrated below for a set of RGB colors using di�erent red,
green and blue values:

In addition it is possible to apply a transparency to a pixel.
This is used to indicate how solid the fill color should be. The
above grid illustrates the e�ect of applying a 75%, 50% and
25% transparency to colors displayed using the Python
wxPython GUI library.In this library the transparency is
referred to as the alpha opaque value. It can have values in the

range 0–255 where 0 is completely trans- parent and 255 is
completely solid.

Bit Map Versus Vector Graphics

There are two ways of generating an image/display across the
pixels on the screen. One approach is known as bit mapped
(or raster)graphics and the other is known as vector graphics.
In the bit mapped approach each pixel is mapped to the values
to be displayed to create the image. In the vector graphics
approach geometric shapes are described (such as lines and
points) and these are then rendered onto a display. Raster
graphics are simpler but vector graphics provide much more
flexibility and scalability.

Bu�ering

One issue for interactive graphical displays is the ability to
change the display as smoothly and cleanly as possible. If a
display is jerky or seems to jump from one image to another,
then users will find it uncomfortable. It is therefore common
to drawn the next display on some in memory structure; often
referred to as a bu�er. This bu�er can then be rendered on
the display once the whole image has been created. For
example Turtle Graphics allows the user to define how many
changes should be made to the display before it is rendered

(or drawn) on to the screen. This can significantly speed up
the performance of a graphic application.

In some cases systems will use two bu�ers; often referred to
as double bu�ering. In this approach one bu�er is being
rendered or drawn onto the screen while the other bu�er is
being updated. This can significantly improve the overall
performance of the system as modern computers can perform
calculations and generate data much faster than it can
typically be drawn onto a screen.

Python and Computer Graphics

In the remainder of this section of the book we will look at
generating computer graphics using the Python Turtle
Graphics library. We will also discuss using this library to
create Computer Generated Art. Following this we will explore
the MatPlotLib library used to generate charts and data plots
such as bar charts, scatter graphs, line plots and heat maps
etc. We will then explore the use of Python libraries to create
GUIs using menus, fields, tables etc.

Python Turtle Graphics

Introduction

Python is very well supported in terms of graphics libraries.
One of the most widely used graphics libraries is the Turtle
Graphics library introduced in this chapter. This is partly
because it is straight forward to use and partly because it is
provided by default with the Python environment (and this
you do not need to install any additional libraries to use it).

The chapter concludes by briefly considering a number of
other graphic libraries including PyOpen GL. The PyOpenGL
library can be used to create sophisticated 3D scenes.

The Turtle Graphics Library

The Turtle Module

This provides a library of features that allow what are known
as vector graphics to be created. Vector graphics refers to the
lines (or vectors) that can be drawn on the screen. The

drawing area is often referred to as a drawing plane or
drawing board and has the idea of x, y coordinates.

The Turtle Graphics library is intended just as a basic drawing
tool; other libraries can be used for drawing two and three
dimensional graphs (such as MatPlotLib) but those tend to
focus on specific types of graphical displays.

The idea behind the Turtle module (and its name) derives
from the Logo programming language from the 60s and 70s
that was designed to introduce programming to children. It
had an on screen turtle that could be controlled by commands
such as forward (which would move the turtle forward), right
(which would turn the turtle by a certain number of degrees),
left (which turns the turtle left by a certain number of
degrees) etc. This idea has continued into the current Python
Turtle Graphics library where commands such as
turtle.forward(10) moves the turtle (or cursor as it is now)
forward 10 pixels etc. By combining together these apparently
simple commands, it is possible to create intricate and quiet
complex shapes.

Basic Turtle Graphics

Although the turtle module is built into Python 3 it is
necessary to import the module before you use it:

import turtle

There are in fact two ways of working with the turtle module;
one is to use the classes available with the library and the
other is to use a simpler set of functions that hide the classes
and objects.In this chapter we will focus on the set of
functions you can use to create drawings with the Turtle
Graphics library.

The first thing we will do is to set up the window we will use
for our drawings; the TurtleScreen class is the parent of all
screen implementations used for whatever operating system
you are running on.

If you are using the functions provided by the turtle module,
then the screen object is initialized as appropriate for your
operating system. This means that you can just focus on the
following functions to configure the layout/display such as
this screen can have a title, a size, a starting location etc.

The key functions are:

setup(width, height, startx, starty) Sets the size and
position of the main window/screen. The parameters are:

– width—if an integer, a size in pixels, if a float, a fraction of
the screen;

default is 50% of screen.

– height—if an integer, the height in pixels, if a float, a
fraction of the screen; default is 75% of screen.

– startx—if positive, starting position in pixels from the
left edge of the screen, if negative from the right edge, if
None, center window horizontally.

– starty—if positive, starting position in pixels from the
top edge of the screen, if negative from the bottom edge, if
None, center window vertically.

title(title string) sets the title of the screen/window.
exitonclick() shuts down the turtle graphics
screen/window when the use clicks on the screen.
bye() shuts down the turtle graphics screen/window.
done() starts the main event loop; this must be the last
statement in a turtle graphics program.
speed(speed)the drawing speed to use, the default is 3.
The higher the value the faster the drawing takes place,
values in the range 0–10 are accepted.
turtle.tracer(n = None) This can be used to batch updates
to the turtle graphics screen. It is very useful when a
drawing become large and complex. By setting the
number (n) to a large number (say 600) then 600
elements will be drawn in memory before the actual
screen is updated in one go; this can significantly speed
up the generation of for example, a fractal picture.When
called without arguments, returns the currently stored
value of n.

turtle.update() Perform an update of the turtle screen;
this should be called at the end of a program when
tracer() has been used as it will ensure that all elements
have been drawn even if the tracer threshold has not yet
been reached.
pencolor(color) used to set the color used to draw lines on
the screen; the color can be specified in numerous ways
including using named colors set as ‘red’, ‘blue’, ‘green’
or using the RGB color codes or by specifying the color
using hexadecimal numbers. For more information on the
named colors and RGB color codes to use see
https://www.tcl.tk/man/tcl/TkCmd/colors.htm. Note all
color methods use American spellings for example this
method is pencolor (not pen colour).
fillcolor(color) used to set the color to use to fill in closed
areas within drawn lines. Again note the spelling of color!

The following code snippet illustrates some of these
functions:

import turtle

set a title for your canvas window turtle.title('My
Turtle Animation')
set up the screen size (in pixels)
set the starting point of the turtle (0, 0)
turtle.setup(width=200, height=200, startx=0, starty=0)
sets the pen color to red turtle.pencolor('red')

https://www.tcl.tk/man/tcl/TkCmd/colors.htm

...
Add this so that the window will close when clicked
on turtle.exitonclick()

We can now look at how to actually draw a shape onto the
screen.

The cursor on the screen has several properties; these include
the current drawing color of the pen that the cursor moves,
but also its current position (in the x, y coordinates of the
screen) and the direction it is currently facing. We have
already seen that you can control one of these properties
using the pencolor() method, other methods are used to
control the cursor (or turtle) and are presented below.

The direction in which the cursor is pointing can be altered
using several functions including:

right(angle) Turn cursor right by angle units.
left(angle) Turn the cursor left by angle units.
setheading(to_angle) Set the orientation of the cursor to
to_angle.

Where 0 is east, 90 is north, 180 is west and 270 is south. You
can move the cursor (and if the pen is down this will draw a
line) using:

forward(distance) move the cursor forward by the
specified distance in the direction that the cursor is
currently pointing. If the pen is down then draw a line.
backward(distance)move the cursor backward by
distance in the opposite direction that in which the cursor
is pointing.

And you can also explicitly position the cursor:

goto(x, y) move the cursor to the x, y location on the
screen specified; if the pen is down draw a line. You can
also usesteps and set position to do the same thing.
setx(x) sets the cursor’s x coordinate, leaves the y
coordinate unchanged.
sety(y) sets the cursor’s y coordinate, leaves the x
coordinate unchanged.

It is also possible to move the cursor without drawing by
modifying whether the pen is up or down:

penup() move the pen up—moving the cursor will no
longer draw a line.
pendown() move the pen down—moving the cursor will
now draw a line in the current pen color.

The size of the pen can also be controlled:

pensize(width) set the line thickness to width. The
method width() is an alias for this method.

It is also possible to draw a circle or a dot:

circle(radius, extent, steps) draws a circle using the given
radius.

The extent determines how much of the circle is drawn; if the
extent is not given then the whole circle is drawn.Steps
indicates the number of steps to be used to drawn the circle (it
can be used to draw regular polygons).

dot(size, color) draws a filled circle with the diameter of
size using the specified color.

You can now use some of the above methods to draw a shape
on the screen.For this first example, we will keep it very
simple, we will draw a simple square:

Draw a square
turtle.forward(50)
turtle.right(90)
turtle.forward(50)
turtle.right(90)
turtle.forward(50)
turtle.right(90)
turtle.forward(50)
turtle.right(90)

The above moves the cursor forward 50 pixels then turns 90°
before repeating these steps three times. The end result is
that a square of 50 50 pixels is drawn on the screen:

Note that the cursor is displayed during drawing (this can be
turned o� with turtle.hideturtle() as the cursor was originally
referred to as the turtle).

Drawing Shapes

Of course you do not need to just use fixed values for the
shapes you draw, you can use variables or calculate positions
based on expressions etc.

For example, the following program creates a sequences of
squares rotated around a central location to create an
engaging image:

import turtle
def setup():
""" Provide the config for the screen """ turtle.title('Multiple
SquaresAnimation') turtle.setup(100, 100, 0, 0)
turtle.hideturtle()
def draw_square(size):
""" Draw a squarein the currentdirection """
turtle.forward(size) turtle.right(90) turtle.forward(size)
turtle.right(90) turtle.forward(size) turtle.right(90)
turtle.forward(size)
setup()
for _ in range(0, 12):
draw_square(50)
Rotate the starting direction
turtle.right(120)
Add this so that the window will close when clickedon
turtle.exitonclick()

In this program two functions have been defined, one to
setup the screen or window with a title and a size and to turn
o� the cursor display. The second function takes a size
parameter and uses that to draw a square. The main part of
the program then sets up the window and uses a for loop to
draw 12 squares of 50 pixels each by continuously rotating
120° between each square. Note that as we do not need to

reference the loop variable we are using the ‘_’ format which
is considered an anonymous loop variable in Python.

The image generated by this program is shown below:

Filling Shapes

It is also possible to fill in the area within a drawn shape. For
example, you might wish to fill in one of the squares we have
drawn as shown below:

To do this we can use the begin_fill() and end_fill()
functions:

begin_fill() indicates that shapes should be filled with
the current fill col- our,this function should be called just
before drawing the shape to be filled.

end_fill() called after the shape to be filled has been
finished. This will cause the shape drawn since the last
call to begin_fill() to be filled using the current fill color.
filling() Return the current fill state (True if filling, False
if not).

The following program uses this (and the earlier
draw_square()function) to draw the above filled square:

turtle.title('Filled Square Example') turtle.setup(100, 100,
0, 0) turtle.hideturtle()
turtle.pencolor('red') turtle.fillcolor('yellow')
turtle.begin_fill()
draw_square(60)
turtle.end_fill()
turtle.done()

Other Graphics Libraries

Of course Turtle Graphics is not the only graphics option
available for Python; however other graphics libraries do not
come prepacked with Python and must be downloaded using
a tool such as Anaconda, PIP or PyCharm.

PyQtGraph. The PyQtGraph library is pure Python library
oriented towards mathematics, scientific and engineering
graphic applications as well as GUI applications. For more
information see http://www.pyqtgraph.org.
Pillow. Pillow is a Python imaging library (based on PIL
the Python Imaging library) that provides image

http://www.pyqtgraph.org/

processing capabilities for use in Python. For more
information on Pillow see
https://pillow.readthedocs.io/en/stable.
Pyglet. pyglet is another windowing and multimedia
library for Python. See
https://bitbucket.org/pyglet/pyglet/wiki/Home.

3D Graphics

Although it is certainly possible for a developer to create
convincing 3D images using Turtle Graphics; it is not the
primary aim of the library. This means that there is no direct
support for creating 3D images other than the basic cursor
moving facilities and the programmers skill.

However, there are 3D graphics libraries available for
Python.One such library is Panda3D
(https://www.panda3d.org) while another is VPython
(https://vpython.org) while a third is pi3d
(https://pypi.org/project/pi3d). However we will briefly look
at the PyOpenGL library as this builds on the very widely used
OpenGL library.

PyOpenGL

PyOpenGL his an open source project that provides a set of
bindings (or wrappings around) the OpenGL library.OpenGL

https://pillow.readthedocs.io/en/stable
https://bitbucket.org/pyglet/pyglet/wiki/Home
https://www.panda3d.org/
https://vpython.org/
https://pypi.org/project/pi3d

is the Open Graphics Library which is a cross language, cross
platform API for rendering 2D and 3D vector graphics.
OpenGL is used in a wide range of applications from games, to
virtual reality, through data and information visualization
systems to Computer Aided Design (CAD) systems. PyOpenGL
provides a set of Python functions that call out from Python
to the underlying OpenGL libraries. This makes it very easy to
create 3D vector based images in Python using the industry
standard OpenGL library. A very simple examples of an image
created using PyOpenGL is given below:

Computer Generated Art

Creating Computer Art

Computer Art is defined as any art that uses a computer.
However, in the context of this book we mean it to be art that
is generated by a computer or more specifically a computer
program. The following example, illustrates how in a very few
lines of Python code, using the Turtle graphics library, you
can create images that might be considered to be computer
art.

The following image is generated by a recursive function that
draws a circle at a given x, y location of a specified size. This
function recursively calls itself by modifying the parameters
so that smaller and smaller circles are drawn at di�erent
locations until the size of the circles goes below 20 pixels.

The program used to generate this picture is given below for
reference:

import turtle

WIDTH = 640
HEIGHT = 360
def setup_window():

#Set up the window
turtle.title('Circles in My Mind')
turtle.setup(WIDTH, HEIGHT, 0, 0)
turtle.colormode(255) # Indicates RGB numbers will be in the
range 0 to 255
turtle.hideturtle() # Batch drawing to the screen for faster
rendering
turtle.tracer(2000) # Speed up drawing process
turtle.speed(10)
turtle.penup()
def draw_circle(x, y, radius, red=50, green=255, blue=10,
width=7):
""" Draw a circle at a specific x, y location.
Then draw four smaller circles recursively"""
colour = (red, green, blue)
Recursively drawn smaller circles
if radius > 50:
Calculatecolours and line width for smaller circles
if red < 216:
red = red + 33 green = green - 42 blue = blue + 10
width -= 1
else:
red = 0 green = 255
Calculate the radius for the smaller circles
new_radius = int(radius / 1.3)
Drawn four circles
draw_circle(int(x + new_radius), y, new_radius, red, green,
blue, width)
draw_circle(x - new_radius, y, new_radius, red, green,
blue, width)
draw_circle(x, int(y + new_radius), new_radius, red, green,
blue, width)
draw_circle(x, int(y - new_radius), new_radius, red, green,
blue, width)
#Draw the original circle turtle.goto(x, y)
 turtle.color(colour)

 turtle.width(width)
 turtle.pendown()
 turtle.circle(radius)
 turtle.penup()
#Run the program print('Starting')
 setup_window()
 draw_circle(25,-100,200)
Ensure that all the drawingis rendered
turtle.update() print('Done')
turtle.done()

There are a few points to note about this program. It uses
recursion to draw the circles with smaller and smaller circles
being drawn until the radius of the circles falls below a certain
threshold (the termination point).

It also uses the turtle.tracer() function to speed up drawing
the picture as 2000 changes will be bu�ered before the screen
is updated.

Finally, the colors used for the circles are changed at each
level of recession; a very simple approach is used so that the
Red, Green and Blue codes are changed resulting in di�erent
color circles. Also a line width is used to reduce the size of the
circle outline to add more interest to the image

A Computer Art Generator

As another example of how you can use Turtle graphics to
create computer art, the following program randomly
generates RGB colors to use for the lines being drawn which
gives the pictures more interest. It also allows the user to
input an angle to use when changing the direction in which
the line is drawn. As the drawing happens within a loop even
this simple change to the angle used to draw the lines can
generate very di�erent pictures.

Lets play with some colours
import turtle
from random import randint
def get_input_angle():
""" Obtain input from user and convert to an int"""
message = 'Please provide an angle:'
value_as_string = input(message)
while not value_as_string.isnumeric(): print('The input must be
an integer!') value_as_string = input(message)
return int(value_as_string)
def generate_random_colour():
"""Generates an R,G,B values randomly in range
0 to 255 """
r = randint(0,
255)
g = randint(0,
255)
b = randint(0,
return r, g, b
255)
print('Set up Screen') turtle.title('Colourful pattern')
turtle.setup(640, 600) turtle.hideturtle()
turtle.bgcolor('black') # Set the background colour of the
screen

turtle.colormode(255) # IndicatesRGB numbers will be in the
range 0 to 255
turtle.speed(10)
angle = get_input_angle()
print('Start the drawing')
for i in range(0, 200): turtle.color(generate_random_colour())
turtle.forward(i)
turtle.right(angle)
print('Done')
turtle.done()

Some sample images generated from this program are given
below. The left most picture is generated by inputting an
angle of 38 degrees, the picture on the right uses an angle of
68 degrees and the bottom picture an angle of 98 degrees.

The following pictures below use angles of 118, 138 and 168
degrees respectively.

What is interesting about these images is how di�erent each
is; even though they use exactly the same program. This
illustrates how algorithmic or computer generated art can be
as subtle and flexible as any other art form. It also illustrates
that even with such a process it is still up to the human to
determine which image (if any) is the most aesthetically
pleasing.

Fractals in Python

Within the arena of Computer Art fractals are a very well
known art form. Fractals are recurring patterns that are
calculated either using an iterative approach (such as a for
loop) or a recursive approach (when a function calls itself but
with modified parameters). One of the really interesting
features of fractals is that they exhibit the same pattern (or
nearly the same pattern)at successive levels of granularity.
That is, if you magnified a fractal image you would find that
the same pattern is being repeated at successively smaller and
smaller magnifications. This is known as expanding

symmetry or unfolding symmetry; if this replication is
exactly the same at every scale, then it is called a�ne self-
similar.

Fractals have their roots in the world of mathematics starting
in the 17th century, with the term fractal being coined in the
20th century by mathematical Benoit Mandelbrot in 1975.
One often cited description that Mandelbrot published to
describe geometric fractals is a rough or fragmented
geometric shape that can be split into parts,each of which is
(at least approximately) a reduced-size copy of the whole.

Since the later part of the 20th century fractals have been a
commonly used way of creating computer art. One example of
a fractal often used in computer art is the Koch snowflake,
while another is the Mandelbrot set. Both of these are used in
this chapter as examples to illustrate how Python and the
Turtle graphics library can be used to create fractal based art.

The Koch Snowflake

The Koch snowflake is a fractal that begins with equilateral
triangle and then replaces the middle third of every line
segment with a pair of line segments that form an equilateral
bump. This replacement can be performed to any depth
generating finer and finer grained (smaller and smaller)
triangles until the overall shape resembles a snow flake.

The following program can be used to generate a Koch
snowflake with di�erent levels of recursion. The larger the
number of levels of recursion the more times each line
segment is dissected.

import turtle
Set up Constants
ANGLES = [60, -120, 60, 0] SIZE_OF_SNOWFLAKE = 300
def get_input_depth():
""" Obtain input from user and convert to an int"""
message = 'Please provide the depth (0 or a positive
interger):'
value_as_string = input(message)
while not value_as_string.isnumeric(): print('The input must be
an integer!') value_as_string = input(message)
return int(value_as_string)
def setup_screen(title, background='white', screen_size_x=640,
screen_size_y=320, tracer_size=800):
print('Set up Screen')
turtle.title(title) turtle.setup(screen_size_x, screen_size_y)
turtle.hideturtle()
turtle.penup()
turtle.backward(240)
Batch drawing to the screen for faster rendering
turtle.tracer(tracer_size)
turtle.bgcolor(background) # Set the background colour of the
screen
def draw_koch(size, depth):
if depth > 0:
for angle in ANGLES:
draw_koch(size / 3, depth - 1)
turtle.left(angle)
else:

turtle.forward(size)
depth = get_input_depth()
setup_screen('Koch Snowflake (depth ' + str(depth) + ')',
background='black',
screen_size_x=420, screen_size_y=420)
Set foreground colours
turtle.color('sky blue')
Ensure snowflake is centred turtle.penup()
turtle.setposition(-180,0) turtle.left(30) turtle.pendown()
Draw three sides of snowflake
for _ in range(3): draw_koch(SIZE_OF_SNOWFLAKE, depth)
turtle.right(120)
Ensure that all the drawing is rendered
turtle.update() print('Done') turtle.done()

Several di�erent runs of the program are shown below with
the depth set at 0, 1, 3 and 7.

Running the simple draw_koch() function with di�erent
depths makes it easy to see the way in which each side of a
triangle can be dissected into a further triangle like shape.
This can be repeated to multiple depths giving a more
detailed structured in which the same shape is repeated again
and again.

Mandelbrot Set

Probably one of the most famous fractal images is based on
the Mandelbrot set. The Mandelbrot set is the set of complex
numbers c for which the function z * z + c does not diverge
when iterated from z = 0 for which the sequence of functions

(func(0), func(func(0)) etc.) remains bounded by an absolute
value. The definition of the Mandelbrot set and its name is
down to the French mathematician Adrien Douady, who
named it as a tribute to the mathematician Benoit
Mandelbrot.

Mandelbrot set images may be created by sampling the
complex numbers and testing, for each sample point c,
whether the sequence func(0), func(func(0)) etc. ranges to
infinity (in practice this means that a test is made to see if it
leaves some predetermined bounded neighborhood of 0 after
a predetermined number of iterations). Treating the real and
imaginary parts of c as image coordinates on the complex
plane, pixels may then be colored according to how soon the
sequence crosses an arbitrarily chosen threshold, with a
special color (usually black) used for the values of c for which
the sequence has not crossed the threshold after the
predetermined number of iterations (this is necessary to
clearly distinguish the Mandelbrot set image from the image
of its complement).

The following image was generated for the Mandelbrot set
using Python and Turtle graphics.

The program used to generate this image is given below:

for y in range(IMAGE_SIZE_Y):
zy = y * (MAX_Y - MIN_Y) / (IMAGE_SIZE_Y - 1) +
MIN_Y
for x in range(IMAGE_SIZE_X):
zx = x * (MAX_X - MIN_X) / (IMAGE_SIZE_Y - 1) +
MIN_X
z = zx + zy * 1j c = z
for i in range(MAX_ITERATIONS):
if abs(z) > 2.0:
break

z = z * z + c
turtle.color((i % 4 * 64, i % 8 * 32, i % 16 *
16))
turtle.setposition(x - SCREEN_OFFSET_X,
 y - SCREEN_OFFSET_Y)
turtle.pendown()
turtle.dot(1)
turtle.penup()

Introduc�on to Matplotlib

Introduction

Matplotlib is a Python graphing and plotting library that can
generate a variety of di�erent types of graph or chart in a
variety of di�erent formats. It can be used to generate line
charts, scatter graphs, heat maps, bar charts, pie charts and
3D plots. It can even support animations and interactive
displays.

An example of a graph generated using Matplotlib is given
below. This shows a line chart used to plot a simple sign
wave:

Matplotlib is a very flexible and powerful graphing library. It
can support a variety of di�erent Python graphics platforms
and operating system windowing environments. It can also
generate output graphics in a variety of di�erent formats
including PNG, JPEG, SVG and PDF etc.

Matplotlib can be used on its own or in conjunction with other
libraries to provide a wide variety of facilities. One library that
is often used in conjunction with Matplotlib is NumPy which

is a library often used in Data Science applications that
provides a variety of functions and data structures (such as n-
dimensional arrays) that can be very useful when processing
data for display within a chart.

However, Matplotlib does not come pre built into the Python
environment; it is an optional module which must be added to
your environment or IDE.

In this chapter we will introduce the Matplotlib library, its
architecture, the components that comprise a chart and the
pyplot API. The pyplot API is the simplest and most common
way in which a programmer interacts with Matplotlib. We will
then explore a variety of di�erent types of chart and how they
can be created using Matplotlib, from simple line charts,
through scatter charts, to bar charts and pie charts. We will
finish by looking at a simple 3D chart.

Matplotlib

Matplotlib is a graph plotting library for Python. For simple
graphs Matplotlib is very easy to use, for example to create a
simple line graph for a set of x and y coordinates you can use
the matplotlib.pyplot.plot function:

import matplotlib.pyplot as pyplot
Plot a sequence of values

pyplot.plot([1, 0.25, 0.5, 2, 3, 3.75, 3.5])
Displaythe chart in a window
pyplot.show()

This very simple program generates the following graph:

In this example, the plot() function takes a sequence of values
which will be treated as the y axis values; the x axis values are
implied by the position of the y values within the list. Thus as
the list has six elements in it the x axis has the range 0–6. In

turn as the maximum value contained in the list is 3.75, then
the y axis ranges from 0 to 4.

Plot Components

Although they may seem simple, there are numerous
elements that comprise a Matplotlib graph or plot. These
elements can all be manipulated and modified
independently.It is therefore useful to be familiar with the
Matplotlib terminology associated with these elements, such
as ticks, legends, labels etc.

The elements that make up a plot are illustrated below:

The diagram illustrates the following elements:

Axes An Axes is defined by the matplotlib.axes.Axes class.
It is used to maintain most of the elements of a figure
namely the X and Y Axis, the Ticks, the Line plots, any
text and any polygon shapes.
Title This is the title of the whole figure.

Ticks (Major and Minor) The Ticks are represented by the
class matplotlib.axis.Tick. A Tick is the mark on the Axis
indicating a new value. There can be Major ticks which are
larger and may be labeled. There are also minor ticks which
can be smaller (and may also be labeled).

Tick Labels (Major and Minor) This is a label on a Tick.
Axis The maplotlib.axis.Axis class defines an Axis
object(such as an X or Y axis) within a parent Axes
instance. It can have for matters used to format the labels
used for the major and minor ticks. It is also possible to
set the locations of the major and minor ticks.
Axis Labels (X, Y and in some cases Z) These are labels
used to describe the Axis.
Plot types such as line and scatter plots. Various types of
plots and graphs are supported by Matplotlib including
line plots, scatter graphs, bar charts and pie charts.
Grid This is an optional grid displayed behind a plot,
graph or chart. The grid can be displayed with a variety of

di�erent line styles (such as solid or dashed lines), colors
and line widths.

Matplotlib Architecture

The Matplotlib library has a layered architecture that hides
much of the complexity associated with di�erent windowing
systems and graphic outputs.This architecture has three main
layers,the Scripting Layer, the Artist Layer and the Back end
Layer. Each layer has specific responsibilities and
components. For example,the Back end is responsible for
reading and interacting with the graph or plot being
generated. In turn the Artist Layer is responsible for creating
the graph objects that will be rendered by the Back end Layer.
Finally the Scripting Layer is used by the developer to create
the graphs.

This architecture is illustrated below:

Back end Layer

The Matplotlib back end layer handles the generation of
output to di�erent target formats. Matplotlib itself can be
used in many di�erent ways to generate many di�erent
outputs.

Matplotlib can be used interactively, it can be embedded in an
application (or graphical user interface), it may be used as

part of a batch application with plots being stored as PNG,
SVG, PDF or other images etc.

To support all of these use cases, Matplotlib can target
di�erent outputs, and each of these capabilities is called a
back end; the “frontend” is the developer facing code. The
Back end Layer maintains all the di�erent back ends and the
programmer can either use the default back end or select a
di�erent back end as required.

The back end to be used can be set via the matplotlib.use()
function. For example, to set the back end to render
Postscript use: matplotlib.use(‘PS’) this is illustrated below:

import matplotlib

if 'matplotlib.backends' not in sys.modules:
matplotlib.use('PS')

import matplotlib.pyplot as pyplot

It should be noted that if you use the matplotlib.use()
function, this must be done before importing
matplotlib.pyplot. Calling matplotlib.use ()after
matplotlib.pyplot has been imported will have no e�ect. Note
that the argument passed to the matplotlib.use() function is
case sensitive.

The default renderer is the ‘Agg’ which uses the Anti-Grain
Geometry C++ library to make a raster (pixel) image of the
figure. This produces high quality raster graphics based
images of the data plots.

The ‘Agg’ back end was chosen as the default back end as it
works on a broad selection of Linux systems as its supporting
requirements are quite small; other back ends may run on one
particular system, but may not work on another system. This
occurs if a particular system does not have all the
dependencies loaded that the specified Matplotlib back end
relies on.

The Backend Layer can be divided into two categories:

User interface back ends (interactive) that support
various Python windowing systems such as wxWidgets
(discussed in the next chapter), Qt, TK etc.
Hard copy Back ends (non interactive) that support raster
and vector graphic outputs.

The User Interface and Hard copy back ends are built upon
common abstractions referred to as the Back end base classes.

The Artist Layer

The Artist layer provides the majority of the functionality that
you might consider to be what Matplotlib actually does; that
is the generation of the plots and graphs that are rendered/
displayed to the user (or output in a particular format).

The artist layer is concerned with things such as the lines,
shapes, axis, and axes, text etc. that comprise a plot.

The classes used by the Artist Layer can be classified into one
of the following three groups; primitives, containers and
collections:

Primitives are classes used to represent graphical objects
that will be drawn on to a figures canvas.
Containers are objects that hold primitives. For example,
typically a figure would be instantiated and used to create
one or more Axes etc.
Collections are used to e�ciently handle large numbers
of similar types of objects.

Although it is useful to be aware of these classes; in many
cases you will not need to work with them directly as the
pyplot APIhides much of the detail. However, it is possible to
work at the level of figures, axes, ticks etc. if required.

The Scripting Layer

The scripting layer is the developer facing interface that
simplifies the task of working with the other layers.

Note that from the programmers point of view, the Scripting
Layer is represented by the pyplot module. Under the covers
pyplot uses module-level objects to track the state of the
data, handle drawing the graphs etc.

When imported pyplot selects either the default back end for
the system or the one that has been configured; for example
via the matplotlib.use() function.

It then calls a setup() function that:

creates a figure manager factory function, which when
called will create a new figure manager appropriate for
the selected back end,
prepares the drawing function that should be used with
the selected back end,

identifies the callable function that integrates with the
back end main loop function,
provides the module for the selected back end.

The pyplot interface simplifies interactions with the internal
wrappers by providing methods such as plot(), pie(), bar(),
title(), savefig(), draw() and figure() etc.

Most of the examples presented in the next chapter will use
the functions provided by the pyplot module to create the
required charts; thereby hiding the lower level details.

Graphing with Matplotlib pyplot

Introduction

In this chapter we will explore the Matplotlib pyplot API. This
is the most common way in which developers generate
di�erent types of graphs or plots using Matplotlib.

The pyplot API

The purpose of the pyplot module and the API it presents is to
simplify the generation and manipulation of Matplotlib plots
and charts.As a whole the Matplotlib library tries to make
simple things easy and complex things possible. The primary
way in which it achieves the first of these aims is through the
pyplot API as this API has high level functions such as bar(),
plot(), scatter() and pie() that make it easy to create bar
charts, line plots, scatter graphs and pie charts.

One point to note about the functions provided by the pyplot
API is that they can often take very many parameters;
however most of these parameters will have default values
that in many situations will give you a reasonable default

behavior/ default visual representation. You can therefore
ignore most of the parameters available until such time as
you actually need to do something di�erent; at which point
you should refer to the Matplotlib documentation as this has
extensive material as well as numerous examples.

It is of course necessary to import the pyplot module;as it is a
module within the Matplotlib (e.g. matplotlib.pyplot) library.
It is often given an alias within a program to make it easier to
reference. Common alias for this module are pyplot or plt.

A typical import for the pyplot module is given below:

import matplotlib.pyplot as pyplot

The plyplotAPI can be used to

construct the plot,
configure labels and axis,
manage color and line styles,
handles events/allows plots to be interactive,
display(show) the plot.

We will see examples of using the pyplot API in the following
sections.

Line Graphs

A Line Graph or Line Plot is a graph with the points on the
graph (often referred to as markers) connected by lines to
show how something changes in value as some set of values
(typically the x axis) changes; for example, over a series to
time intervals (also known as a time series). Time Series line
charts are typically drawn in chronological order; such charts
are known as run charts.

The following chart is an example of a run chart;it charts time
across the bottom (x axis) against speed (represented by the y
axis).

The program used to generate this chart is given below:

import matplotlib.pyplot as pyplot

Set up the data
x = [0, 1, 2, 3, 4, 5, 6]
y = [0, 2, 6, 14, 30, 43, 75]

Set the axes headings pyplot.ylabel('Speed', fontsize=12)
pyplot.xlabel('Time', fontsize=12)

Set the title
pyplot.title("Speed v Time")

Plot and display the graph
Using blue circles for markers ('bo')
and a solid line ('-') pyplot.plot(x, y, 'bo-') pyplot.show()

The first thing that this program does is to import the
matplotlib.pyplot module and give it an alias of pyplot (as this
is a shorter name it makes the code easier to read).

Two lists of values are then created for the x and y
coordinates of each marker or plot point.

The graph itself is then configured with labels being provided
for the x and y axis (using the pyplot functions xlabel() and
ylabel()). The title of the graph is then set (again using a
pyplot function).

After this the x and y values are then plotted as a line chart on
the graph. This is done using the pyplot.plot() function. This
function can take a wide range of parameters, the only
compulsory parameters being the data used to define the plot
points. In the above example a third parameter is provided;
this is a string ‘bo-‘. This is a coded format string in that each
element of the string is meaningful to the pyplot.plot()
function. The elements of the string are:

b—this indicates the color to use when drawing the line;
in this case the letter ‘b’ indicates the color blue (in the

same way ‘r’ would indicate red and ‘g’ would indicate
green).
o—this indicates that each marker (each point being
plotted) should be represented by a circle. The lines
between the markers then create the line plot.
‘–’—This indicates the line style to use. A single dash
(’-’) indicates a solid line, where as a double dash (’–’)
indicates a dashed line.

Finally the program then uses the show() function to render
the figure on the screen; alternatively savefig() could have
been used to save the figure to a file.

Coded Format Strings

There are numerous options that can be provided via the
format string, the following tables summarises some of
these:

The following color abbreviations are supported by the
format string:C

Di�erent ways of representing the markers (points on the
graph) connected by the lines are also supported including:

Finally, the format string supports di�erent line styles:

Some examples of formatting strings:

‘r’ red line with default markers and line style.
‘g-’ green solid line.
‘–’ dashed line with the default color and default
markers.
‘yo:’ yellow dotted line with circle markers.

Scatter Graph

A Scatter Graph or Scatter Plot is type of plot where individual
values are indicated using cartesian (or x and y) coordinates
to display values. Each value is indicated via a mark (such as a
circle or triangle)on the graph. They can be used to represent
values obtained for two di�erent variables; one plotted on the
x axis and the other plotted on the y axis.

An example of a scatter chart with three sets of scatter values
is given below

In this graph each dot represents the amount of time people
of di�erent ages spend on three di�erent activities.

The program that was used to generate the above graph is
shown below:

import matplotlib.pyplot as pyplot
Create data
riding = ((17, 18, 21, 22, 19, 21, 25, 22, 25, 24), (3, 6, 3.5,
4, 5, 6.3, 4.5, 5, 4.5, 4))

swimming = ((17, 18, 20, 19, 22, 21, 23, 19, 21, 24), (8, 9, 7,
10, 7.5, 9, 8, 7, 8.5, 9))
sailing = ((31, 28, 29, 36, 27, 32, 34, 35, 33, 39), (4, 6.3, 6,
3, 5, 7.5, 2, 5, 7, 4))
Plot the data
pyplot.scatter(x=riding[0], y=riding[1], c='red', marker='o',
label='riding')
pyplot.scatter(x=swimming[0], y=swimming[1], c='green',
marker='^', label='swimming') pyplot.scatter(x=sailing[0],
y=sailing[1], c='blue', marker='*', label='sailing')
Configuregraph pyplot.xlabel('Age') pyplot.ylabel('Hours')
pyplot.title('Activities Scatter Graph') pyplot.legend()
Display the chart
pyplot.show()

In the above example the plot.scatter() function is used to
generate the scatter graph for the data defined by the riding,
swimming and sailing tuples.

The colors of the markers have been specified using the
named parameter c.

This parameter can take a string representing the name of a
color or a two dimensional array with a single row in which
each value in the row represents an RGB color code. The
marker Indicates the marker style such as ‘o’ for a circle, a ‘^’
for a triangle and ‘*’ for a star shape. The label is used in the
chart legend for the marker.

Other options available on the pyplot.scatter() function
include:

alpha : indicates the alpha blending value, between 0
(transparent) and 1 (opaque).
linewidths : which is used to indicate the line width of the
marker edges.
edgecolors : indicates the color to use for the marker
edges if di�erent from the fill color used for the marker
(indicates by the parameter‘c’).

When to Use Scatter Graphs

A useful question to consider is when should a scatter plot be
used? In general scatter plats are used when it is necessary to
show the relationship between two variables. Scatter plots are
sometimes called correlation plots because they show how
two variables are correlated.

In many cases a trend can be discerned between the points
plotted on a scatter chart (although there may be outlying
values). To help visualize the trend it can be useful to draw a
trend line along with the scatter graph. The trend line helps to
make the relationship of the scatter plots to the general trend
clearer.

The following chart represents a set of values as a scatter
graph and draws the trend line of this scatter graph. As can be

seen some values are closer to the trend line than others.

The trend line has been created in this case using the numpy
function polyfit().

The polyfit() function performs a least squares polynomial fit
for the data it is given. A poly1d class is then created based on
the array returned by polyfit(). This class is a one-
dimensional polynomial class. It is a convenience class, used
to encapsulate “natural” operations on polynomials.The

poly1d object is then used to generate a set of values for use
with the set of x values for the function py- plot.plot().

import numpy as np
import matplotlib.pyplot as pyplot
x = (5, 5.5, 6, 6.5, 7, 8, 9, 10)
y = (120, 115, 100, 112, 80, 85, 69, 65)
Generate the scatter plot
pyplot.scatter(x, y)
Generate the trend line
z = np.polyfit(x, y, 1) p = np.poly1d(z) pyplot.plot(x, p(x),
'r')
Display the figure
pyplot.show()

Pie Charts

A Pie Chart is a type of graph in which a circle is divided into
sectors (or wedges) that each represent a proportion of the
whole. A wedge of the circle represents a category’s
contribution to the overall total. As such the graph resembles
a pie that has been cut into di�erent sized slices.

Typically, the di�erent sectors of the pie chart are presented
in di�erent colors and are arranged clockwise around the
chart in order of magnitude. However, if there is a slice that
does not contain a unique category of data but summarises

several, for example “other types” or “other answers”, then
even if it is not the smallest category, it is usual to display it
last in order that it does not detract from the named
categories of interest.

The following chart illustrates a pie chart used to represent
programming language usage within a particular
organization.

The pie chart is created using the pyplot.pie() function.

import matplotlib.pyplot as pyplot

labels = ('Python','Java','Scala','C#')
sizes = [45, 30, 15, 10]

pyplot.pie(sizes, labels=labels, autopct='%1.f%%',
counterclock=False, startangle=90)

pyplot.show()

The pyplot.pie() function takes several parameters, most of
which are optional. The only required parameter is the first
one that provides the values to be used for the wedge or
segment sizes.The following optional parameters are used in
the above example:

The labels parameter is an optional parameter that can
take a sequence of strings that are used to provide labels
for each wedge.
The auto pct parameter takes a string (or function) to be
used to format the numeric values used with each wedge.
The counterclockwise parameter. By default wedges are
plotted counter clockwise in pyplot and so to ensure that
the layout is more like the traditional clockwise approach
the counter clock parameter is set to False.
The start angle parameter. The starting angle has also
been moved 90° using the start angle parameter so that

the first segment starts at the top of the chart.

Expanding Segments

It can be useful to emphasis a particular segment of the pie
chart by exploding it; that is separating it out from the rest of
the pie chart. This can be done using the explode parameter of
the pie() function that takes a sequence of values indicating
how much a segment should be exploded by.

The visual impact of the pie chart can also be enhanced in this
case by adding a shadow to the segments using the named
shadow boolean parameter. The e�ect of these are shown
below:

The program that generated this modified chart is given
below for reference:

import matplotlib.pyplot as pyplot
labels = ('Python','Java','Scala','C#')
sizes = [45, 30, 15, 10]
only "explode" the 1st slice (i.e. 'Python')
explode = (0.1, 0, 0, 0)
pyplot.pie(sizes, explode=explode, labels=labels,
autopct='%1.f%%', shadow=True, counterclock=False,

startangle=90)
pyplot.show()

When to Use Pie Charts

It is useful to consider what data can be/should be presented
using a pie chart. In general pie charts are useful for
displaying data that can be classified into nominal or ordinal
categories. Nominal data is categorized according to
descriptive or qualitative information such as program
languages, type of car, country of birth etc. Ordinal data is
similar but the categories can also be ranked,for example in a
survey people may be asked to say whether they classed
something as very poor, poor, fair, good, very good.

Pie charts can also be used to show percentage or
proportional data and usually the percentage represented by
each category is provided next to the corresponding slice of
pie.

Pie charts are also typically limited to presenting data for six
or less categories. When there are more categories it is
di�cult for the eye to distinguish between the relative sizes
of the di�erent sectors and so the chart becomes di�cult to
interpret.

Bar Charts

A Bar Chart is a type of chart or graph that is used to present
di�erent discrete categories of data. The data is usually
presented vertically although in some cases horizontal bar
charts may be used. Each category is represented by a bar
whose height (or length) represents the data for that
category.

Because it is easy to interpret bar charts, and how each
category relates to another, they are one of the most
commonly used types of chart. There are also several
di�erent common variations such as grouped bar charts and
stacked bar charts.

The following is an example of a typical bar chart. Five
categories of programming languages are presented along
the x axis while the y axis indicates percentage usage. Each
bar then represents the usage percentage associated with
each programming language.

The program used to generate the above figure is given below:

import matplotlib.pyplot as pyplot
Set up the data
labels = ('Python','Scala','C#','Java','PHP')
index = (1, 2, 3, 4, 5) # provideslocations on x axis sizes=
[45, 10, 15, 30, 22]
Set up the bar chart
pyplot.bar(index, sizes, tick_label=labels)
Configure the layout pyplot.ylabel('Usage')
pyplot.xlabel('Programming Languages')

Display the chart
pyplot.show()

The chart is constructed such that the lengths of the di�erent
bars are proportional to the size of the category they
represent. The x-axis represents the di�erent categories and
so has no scale. In order to emphasise the fact that the
categories are discrete, a gap is left between the bars on the
x-axis. The y-axis does have a scale and this indicates the
units of measurement.

Horizontal Bar Charts

Bar charts are normally drawn so that the bars are vertical
which means that the taller the bar, the larger the category.
However, it is also possible to draw bar charts so that the bars
are horizontal which means that the longer the bar, the larger
the category. This is a particularly e�ective way of presenting
a large number of di�erent categories when there is
insu�cient space to fit all the columns required for a vertical
bar chart across the page.

In Matplotlib the pyplot.barh() function can be used to
generate a horizontal bar chart:

In this case the only line of code to change from the previous
example is:

pyplot.barh(x_values, sizes, tick_label = labels)

Colored Bars

It is also common to color di�erent bars in the chart in
di�erent colours or using di�erent shades. This can help to
distinguish one bar from another. An example is given below:

The color to be used for each category can be provided via the
color parameter to the bar() (and barh()) function.This is a
sequence of the colors to apply. For example, the above
colored bar chart can be generated using:

pyplot.bar(x_values, sizes, tick_label=labels, color=('red',
'green', 'blue', 'yellow', 'orange'))

Stacked Bar Charts

Bar Charts can also be stacked. This can be a way of showing
total values (and what contributes to those total values)
across several categories. That is, it is a way of viewing overall
totals, for several di�erent categories based on how di�erent
elements contribute to those totals.

Di�erent colors are used for the di�erent sub-groups that
contribute to the overall bar. In such cases, a legend or key is
usually provided to indicate what sub-group each of the
shadings/colors represent. The legend can be placed in the
plot area or may be located below the chart.

For example, in the following chart the total usage of a
particular programming language is composed of its use in
games and web development as well as data science analytics.

From this figure we can see how much each use of a
programming language contributes to the overall usage of
that language. The program that generated this chart is given
below:

import matplotlib.pyplot as pyplot
Set up the data
labels = ('Python', 'Scala', 'C#', 'Java', 'PHP')
index = (1, 2, 3, 4, 5) web_usage = [20, 2, 5, 10, 14]
data_science_usage = [15, 8, 5, 15, 2] games_usage = [10, 1, 5,
5, 4]

Set up the bar chart
pyplot.bar(index, web_usage,tick_label=labels, label='web')
pyplot.bar(index, data_science_usage, tick_label=labels,
label='data science', bottom=web_usage)
web_and_games_usage = [web_usage[i] + data_science_usage[i]
for i in range(0,len(web_usage))] pyplot.bar(index, games_usage,
tick_label=labels, label='games', bottom=web_and_games_usage)
Configurethe layout pyplot.ylabel('Usage')
pyplot.xlabel('Programming Languages') pyplot.legend()
Display the chart
pyplot.show()

One thing to note from this example is that after the first set
of values are added using the pyplot.bar()function, it is
necessary to specify the bottom locations for the next set of
bars using the bottom parameter. We can do this just using
the values already used for web_usage for the second bar
chart; however for the third bar chart we must add the values
used for web_usage and data_- science_usage together (in
this case using a for list comprehension).

Grouped Bar Charts

Finally, Grouped Bar Charts are a way of showing information
about di�erent sub-groups of the main categories. In such
cases, a legend or key is usually provided to indicate what
sub-group each of the shadings/colors represent. The legend

can be placed in the plot area or may be located below the
chart.

For a particular category separate bar charts are drawn for
each of the subgroups. For example, in the following chart the
results obtained for two sets of teams across a series of lab
exercises are displayed. Thus each team has a bar for lab1,
lab2, lab3 etc. A space is left between each category to make it
easier to compare the sub categories.

The following program generates the grouped bar chart for
the lab exercises example:

import matplotlib.pyplot as pyplot
BAR_WIDTH = 0.35
set up groupedbar charts teama_results = (60, 75, 56, 62, 58)
teamb_results = (55, 68, 80, 73, 55)
Set up the index for each bar
index_teama = (1, 2, 3, 4, 5)
index_teamb = [i + BAR_WIDTH for i in index_teama]
Determine the mid point for the ticks
ticks = [i + BAR_WIDTH / 2 for i in index_teama]
tick_labels = ('Lab 1', 'Lab 2', 'Lab 3', 'Lab 4', 'Lab 5')
Plot the bar charts
pyplot.bar(index_teama, teama_results, BAR_WIDTH, color='b',
label='Team A')
pyplot.bar(index_teamb, teamb_results, BAR_WIDTH, color='g',
label='Team B')
Set up the graph pyplot.xlabel('Labs') pyplot.ylabel('Scores')
pyplot.title('Scores by Lab') pyplot.xticks(ticks, tick_labels)
pyplot.legend()

Display the graph
pyplot.show()

Notice in the above program that it has been necessary to
calculate the index for the second team as we want the bars
presented next to each other. Thus the index for the teams
includes the width of the bar for each index point, thus the
first bar is at index position 1.35, the second at index position
2.35 etc. Finally the tick positions must therefore be between
the two bars and thus is calculated by taking into account the
bar widths.

This program generates the following grouped bar chart:

Figure sand Subplots

A Matplotlib figure is the object that contains all the graphical
elements displayed on a plot. That is the axes, the legend, the
title as well as the line plot or bar chart itself. It thus
represents the overall window or page and is the top, out
graphical component.

In many cases the figure is implicit as the developer interacts
with the pyplot API; however the figure can be accessed
directly if required.

Thematplotlib.pyplot.figure() function generates a figure
object. This function returns a matplotlib.figure.Figure object.
It is then possible to interact directly with the figure object.
For example it is possible to add axes to the figure, to add sub
plots to a graph etc.

Working directly with the figure is necessary if you want to
add multiple sub- plots to a figure. This can be useful if what
is required is to be able to compare di�erent views of the
same data side by side. Each subplot has its own axes which
can coexist within the figure.

One or more subplots can be added to a figure using the
figure.addsubplot() method. This method adds an Axes to the
figure as one of a set of one or more subplots. A subplot can be
added using a 3-digit integer(or three separate integers)
describing the position of the subplot.The digits represent the
number of rows, columns and the index of the sub plot within
the resulting matrix.

Thus 2, 2, 1 (and 221) all indicate that the subplot will take the
1st index within a two by two grid of plots. In turn 2, 2, 3 (223)
indicates that the sub plot will be at index 3 which will be row

2 and column 1 within the 2 by 2 grid of plots. Where as 2, 2, 4
(or 224) indicates that the plot should be added as at index 4
or the fourth subplot within the grid (so position 2 by 2) etc.

For example, the following figure illustrates four subplots
presented within a single figure. Each subplot is added via the
figure.add_subplot() method.

This figure is generated by the following program:

import matplotlib.pyplot as pyplot
t = range(0,20)

s = range(30,10, -1)
Set up the grid of subplots to be 2 by 2
grid_size='22'
Initialize a Figure
figure = pyplot.figure()
Add first subplot
position = grid_size + '1'
print('Adding first subplot to position', position) axis1 =
figure.add_subplot(position) axis1.set(title='subplot(2,2,1)')
axis1.plot(t, s)
Add second subplot
position = grid_size + '2'
print('Adding second subplot to position', position) axis2 =
figure.add_subplot(position) axis2.set(title='subplot(2,2,2)')
axis2.plot(t, s, 'r-')
Add third subplot
position = grid_size + '3'
print('Adding third subplot to position', position) axis3 =
figure.add_subplot(position) axis3.set(title='subplot(2,2,3)')
axis3.plot(t, s, 'g-')
Add fourth subplot
position = grid_size + '4'
print('Adding fourth subplot to position', position) axis4 =
figure.add_subplot(position) axis4.set(title='subplot(2,2,4)')
axis4.plot(t, s, 'y-')
Display the chart
pyplot.show()

The console output from this program is given below:
Adding first subplot to position221
Adding second subplot to position222
Adding third subplot to position223
Adding fourth subplot to position224

Graphs

A three dimensional graph is used to plot the relationships
between three sets of values(instead of the two used in the
examples presented so far in this chapter). In a three
dimensional graph as well as the x and y axis there is also a z
axis.

The following program creates a simple 3D graph using two
sets of values generated using the numpy range function.
These are then converted into a coordinate matrices using the
numpy meshgrid() function. The z axis values are created
using the numpy sin() function. The 3D graph surface is
plotted using the plot_surface() function of the futures axes
object. This takes the x, y and z coordinates. The function is
also given a color map to use when rendering the surface (in
this case the Matplotlib cool to warm color map is used).

import matplotlib.pyplot as pyplot
Import matplotlib colour map
from matplotlib import cm as colourmap
Required for £D Projections
from mpl_toolkits.mplot3d import Axes3D
Provide access to numpy functions
import numpy as np
Make the data to be displayed x_values = np.arange(-6, 6, 0.3)
y_values = np.arange(-6, 6, 0.3)
Generate coordinate matrices from coordinate vectors

x_values, y_values= np.meshgrid(x_values, y_values)
Generate Z valuesas sin of x plus y values
z_values = np.sin(x_values + y_values)
Obtain the figure object
figure = pyplot.figure()
Get the axes object for the 3D graph
axes = figure.gca(projection='3d')
Plot the surface.
surf = axes.plot_surface(x_values, y_values, z_values,
cmap=colourmap.coolwarm)
Add a color bar which maps values to colors.
figure.colorbar(surf)
Add labels to the graph pyplot.title("3D Graph")
axes.set_ylabel('y values', fontsize=8) axes.set_xlabel('x
values', fontsize=8) axes.set_zlabel('z values', fontsize=8)
Display the graph
pyplot.show()

This program generates the following 3D graph:

One point to note about three dimensional graphs is that they
are not universally accepted as being a good way to present
data. One of the maxims of data visualization is keep it
simple/keep it clean. Many consider that a three dimensional
chart does not do this and that it can be di�cult to see what is
really being shown or that it can be hard to interpret the data
appropriately. For example, in the above chart what are the
values associated with any of the peaks? This is di�cult to
determine as it is hard to see where the peaks are relative to
the X, Y and Z axis. Many consider such 3D charts to be eye
candy; pretty to look at but not providing much information.
As such the use of a 3D chart should be minimized and only
used when actually necessary.

Graphical User Interfaces

A Graphical User Interface can capture the essence of an idea
or a situation, often avoiding the need for a long passage of
text. Such interfaces can save a user from the need to learn
complex commands. They are less likely to intimidate
computer users and can provide a large amount of
information quickly in a form which can be easily assimilated
by the user.

The widespread use of high quality graphical interfaces has
led many computer users to expect such interfaces to any
software they use. Most programming languages either
incorporate a Graphical User Interface (GUI) library or have
third party libraries available.

Python is of course a cross platform programming language
and this brings in additional complexities as the underlying
operating system may provide di�erent windowing facilities
depending upon whether the program is running on Unix,
Linux, Mac OS or Windows operating systems.

In this chapter we will first introduce what we mean by a GUI
and by WIMP based UIs in particular. We will then consider
the range of libraries available for Python before selecting
one to use. This chapter will then describe how to create rich
client graphical displays(desktop application)using one of
these GUI libraries. Thus in this chapter we consider how
windows, buttons, text fields and labels etc. are created,added
to windows, positioned and organized.

GUIs and WIMPS

GUIs (Graphical User Interfaces) and WIMP (Windows, Icons,
Mice and Pop-up Menus) style interfaces have been available
within computer systems for many years but they are still one
of the most significant developments to have occurred. These
interfaces were originally developed out of a desire to address
many of the perceived weaknesses of purely textual
interfaces.

The textual interface to an operating system was typified by a
peremptory prompt. In Unix/Linux systems for example, the
prompt is often merely a single character such as %, > or $,
which can be intimidating. This is true even for experienced
computer users if they are not familiar with the Unix/Linux
family of operating systems.

For example, a user wishing to copy a file from one directory
to another might have to type something like:

> cp file.pdf ~otheruser/projdir/srcdir/newfile.pdf

This long sequence needs to be entered with no mistakes in
order to be accepted. Any error in this command will cause
the system to generate an error message which might or
might not be enlightening. Even where systems attempt to be
more “user friendly’’ through features like command
histories, much typing of arrow keys and file names is
typically needed.

The main issue on both input and output is one of bandwidth.
For example, in situations where the relationships between
large amounts of information must be described, it is much
easier to assimilate this if output is displayed graphically than
if it is displayed as a tables of figures. On input, combinations
of mouse actions can be given a meaning that could otherwise
only be conveyed by several lines of text.

WIMP stands for Windows (or Window Managers), Icons,
Mice and Pop-up menus. WIMP interfaces allow the user to
overcome at least some of the weaknesses of their textual
counterparts—it is possible to provide a pictorial image of the
operating system which can be based on a concept the user

can relate to, menus can be used instead of textual commands
and information in general can be displayed graphically.

The fundamental concepts presented via a WIMP interface
were originally developed at XEROX’s Palo Alto Research
Center and used on the Xerox Star machine, but gained much
wider acceptance through first the Apple Macintosh and then
IBM PC implementations of WIMP interfaces.

Most WIMP style environments use a desktop analogy
(although this is less true of mobile devices such as phones
and tablets):

the whole screen represents a working surface (a
desktop),
graphic windows that can overlap represent sheets of
paper on that desktop,
graphic objects are used for specific concepts, for
example filing cabinets for disks or a waste bin for file
disposal (these could be regarded as desk accessories),
various application programs are displayed on the screen,
these stand for tools that you might use on your desktop.

In order to interact with this display, the WIMP user is
provided with a mouse (or alight pen or a touch sensitive
screen), which can be used to select icons and menus or to
manipulate windows.

The software basis of any WIMP style environment is the
window manager. It controls the multiple, possibly
overlapping windows and icons displayed on the screen. It
also handles the transfer of information about events which
occur in those windows to the appropriate application and
generates the various menus and prompts used.

A window is an area of the graphic screen in which a page or
piece of a page of information may be displayed; it may
display text, graphics or a combination of both. These
windows may be overlapping,and associated with the same
process, or they may be associated with separate processes.
Windows can generally be created, opened, closed, moved
and resized.

An icon is a small graphic object that is usually symbolic of an
operation or of a larger entity such as an application program
or a file. The opening of an icon causes either the associated
application to execute or the associated window to be
displayed.

At the heart of the users ability to interact with such WIMP
based programs is the event loop. This loop listens for events
such as the user clicking a button or selecting a menu item or
entering a text field. When such an event occurs it triggers the

associated behavior (such as running a function linked with a
button).

Windowing Frameworks for Python

Python is a cross platform programming language. As such
Python programs can be written on one platform (such as a
Linux box) and then run on that platform or another
operating system platform(such as Windows or Mac OS). This
can however generate issues for libraries that need to be
available across multiple operating system platforms. The
area of GUIs is particularly an issue as a library written to
exploit features available in the Microsoft Windows system
may not be available (or may look di�erent) on Mac OS or
Linux systems.

Each operating system that Python runs on may have one or
more windowing systems written for it and these systems
may or may not be available on other operating systems. This
makes the job of providing a GUI library for Python that much
more di�cult.

Developers of Python GUIs have taken one of two approaches
to handle this:

One approach is to write a wrapper that abstracts the
underlying GUI facilities so that the developer works at a
level above a specific windowing system’s facilities. The
Python library then maps (as best it can) the facilities to
the underlying system that is currently being used.
The other approach is to provide a closer wrapping to a
particular set of facilities on the underlying GUI system
and to only target systems that support those facilities.

Some of the libraries available for Python are listed below and
have been categorized into platform-independent libraries
and platform specific libraries:

Platform-Independent GUI Libraries

Tkinter. This is the standard built-in Python GUI
library.It is built on top of the Tcl/Tk widget set that has
been around for very many years for many di�erent
operating systems. Tcl stands for Tool Command
Language while Tk is the graphical user interface toolkit
for Tcl.
wxPython. wxWidgets is a free, highly portable GUI
library. Its is written in C++ and it can provide a native
look and feel on operating systems such as Windows, Mac
OS, Linux etc.wxPython is a set of Python bindings for
wxWidgets. This is the library that we will be using in this
chapter.

PyQT or PySide both of these libraries wrap the Qt toolkit
facilities. Qt is a cross platform software development
system for the implementation of GUIs and applications.

Platform-Specific GUI Libraries

PyObjc is a Mac OS specific library that provides an
Objective-C bridge too the Apple Mac Cocoa GUI libraries.
PythonWin provides a set of wrappings around the
Microsoft Windows foundation classes and can be used to
create Windows based GUIs.

The wxPython GUI Library

The wxPython Library

The wxPython library is a cross platform GUI library (or
toolkit) for Python. It allows programmers to develop highly
graphical user interfaces for their programs using common
concepts such as menu bars, menus, buttons, fields, panels
and frames.

In wxPython all the elements of a GUI are contained within
top level windows such as a wx.Frame or a wx.Dialog. These
windows contain graphical components known as widgets or
controls. These widgets/controls may be grouped together
into Panels (which may or may not have a visible
representation).

Thus in wxPython we might construct a GUI from:

Frames which provide the basic structure for a window:
borders, a label and some basic functionality (e.g.
resizing).
Dialogs which are like Frames but provide fewer border
controls.

Widgets/Controls that are graphical objects displayed in a
frame. Some other languages refer to them as UI
components. Examples of widgets are buttons,
checkboxes, selection lists, labels and text fields.
Containers are component that are made up of one or
more other components (or containers). All the
components within a container (such as a panel) can be
treated as a single entity.

Thus a GUI is constructed hierarchically from a set of widgets,
containers and one or more Frames (or in the case of a pop up
dialog then Dialogs). This is illustrated below for a window
containing several panels and widgets:

Windows such as Frames and Dialogs have a component
hierarchy that is used (amongst other things) to determine
how and when elements of the window are drawn and
redrawn. The component hierarchy is rooted with the frame,
within which components and containers can be added.

The above figure illustrates a component hierarchy for a
frame, with two container Panels and a few basic widgets/ui
components held within the Panels. Note that a panel can
contain another sub panel with di�erent widgets in.

wxPython Modules

The wxPython library is comprised of many di�erent
modules. These modules provide di�erent features from the
core wx module to the html oriented wx.html and wx.html2
modules. These modules include:

wx which holds the core widgets and classes in the wx
library.
wx.adv that provides less commonly used or more
advanced widgets and classes.
wx.grid contains widgets and classes supporting the
display and editing of tabular data.
wx.richtext consists of widgets and classes used for
displaying multiple text styles and images.
wx.html comprises widgets and supporting classes for a
generic html renderer.
wx.html2 provides further widget and supporting classes
for a native html renderer, with CSS and javascript
support.

Windows as Objects

In wxPython, Frames and Dialogs as well as their contents are
instances of appropriate classes (such as Frame, Dialog,
Panel, Button or Static Text). Thus when you create a window,
you create an object that knows how to display itself on the
computer screen. You must tell it what to display and then tell
it to show its contents to the user.

You should bear the following points in mind during your
reading of this chapter; they will help you understand what
you are required to do:

You create a window by instantiating a Frame or Dialog
object.
You define what the window displays by creating a widget
that has an appropriate parent component. This adds the
widget to a container, such as a type of panel or a frame.
You can send messages to the window to change its state,
perform an operation, and display a graphic object.
The window, or components within the window, can send
messages to other objects in response to user (or
program)actions.
Everything displayed by a window is an instance of a class
and is potentially subject to all of the above.
wx.App handles the main event loop of the GUI
application.

A Simple Example

An example of creating a very simple window using wxPython
is given below. The result of running this short program is
shown here for both a Mac and a Windows PC:

This program creates a top level window (the wx.Frame) and
gives it a title. It also creates a label (a wx.StaticText object) to
be displayed within the frame.

To use the wxPythonlibrary it is necessary to import the wx
module.

import wx
Createthe Application Object
app = wx.App()
Now createa Frame (representingthe window)
frame = wx.Frame(parent=None, title='Simple Hello World')
And add a text label to it
text = wx.StaticText(parent=frame, label= 'Hello Python')
Displaythe window (frame)
frame.Show()
Start the event loop
app.MainLoop()

The program also creates a new instance of the Application
Object called wx. App().

Every wxPython GUI program must have one Application
Object. It is the equivalent of the main() function in many
non-GUI applications as it will run the GUI application for
you. It also provides default facilities for defining startup and
shutdown operations and can be sub classed to create custom
behavior.

Thewx.StaticText class is used to create a single (or multiple)
line label. In this case the label shows the string ‘Hello
Python’. The StaticText object is constructed with reference
to its parent container. This is the container within which the
text will be displayed. In this case the StaticText is being
displayed directly within the Frame and thus the frame object
is its containing parent object. In contrast the Frame which is
a top level window, does not have a parent container.

Also notice that the frame must be shown (displayed) for the
user to see it. This is because there might be multiple
di�erent windows that need to be shown (or hidden) in
di�erent situations for an application.

Finally the program starts the applications’ main event loop;
within this loop the program listens for any user input (such

as requesting that the window is closed).

The wx.App Class
The wx.App class represents the application and is used to:

start up the wxPython system and initialize the
underlying GUI toolkit,
set and get application-wide properties,
implement the native windowing system main message
or event loop, and to dispatch events to window
instances.

Every wxPython application must have a single wx.App
instance. The creation of all of the UI objects should be
delayed until after the wx.App object has been created in
order to ensure that the GUI platform and wxWidgets have
been fully initialized.

It is common to subclass the wx.App class and override
methods such as OnPreInit and OnExit to provide custom
behavior. This ensures that the required behavior is run at
appropriate times. The methods that can be overridden for
this purpose are:

OnPreInit, This method can be overridden to define
behaviour that should be run once the application object
is created, but before the OnInit method has been called.
OnInit This is expected to create the applications main
window, display that window etc.

OnRun, This is the method used to start the execution of
the main program.
OnExit, This can be overridden to provide any behavior
that should be called just before the application exits.

As an example, if we wish to set up a GUI application such
that the main frame is initialized and shown after the wx.App
has been instantiated then the safest way is to override the
OnInit() method of the wx.App class in a suitable subclass.
The method should return True of False; where True is used
to indicate that processing of the application should continue
and False indicates that the application should terminate
immediately (usually as the result of some unexpected issue).

An example wx.App subclass is shown below:

class MainApp(wx.App):
def OnInit(self):
"""Initialise the main GUI Application"""
frame = WelcomeFrame()
frame.Show()
Indicatewhether processing should continue or not
return True
This class can now be instantiated and the MainLoop started, for
example:
Run the GUI application app = MainApp() app.MainLoop()

It is also possible to override the OnExit() to clean up
anything initialized in the OnInit() method.

Window Classes

The window or widget container classes that are commonly
used within a wxPython application are:

wx.Dialog A Dialog is a top level window used for popups
where the user has limited ability to interact with the
window. In many cases the user can only input some data
and/or accept or decline an option.
wx.Frame A Frame is a top level window whose size and
position can be set and can (usually) be controlled by the
user.
wx.Panel Is a container (non top level window) on which
controls/widgets can be placed. This is often used in
conjunction with a Dialog or a Frame to manage the
positioning of widgets within the GUI.

The inheritance hierarchy for these classes is given below for
reference:

As an example of using a Frame and a Panel, the following
application creates two Panels and displays them within a top
level Frame. The background color of the Frame is the default
grey; while the background color for the first Panel is blue
and for the second Panel it is red. The resulting display is
shown below:

The program that generated this GUI is given below:

import wx
class SampleFrame(wx.Frame):
def init (self):
super(). init (parent=None, title='Sample App', size=
(300, 300))
Set up the first Panel to be at position 1, 1
(The default)and of size 300 by 100

with a blue background self.panel1 = wx.Panel(self)
self.panel1.SetSize(300, 100)
self.panel1.SetBackgroundColour(wx.Colour(0, 0, 255))
Set up the second Panel to be at position1, 110
and of size 300 by 100 with a red background self.panel2 =
wx.Panel(self) self.panel2.SetSize(1, 110, 300, 100)
self.panel2.SetBackgroundColour(wx.Colour(255, 0, 0))
class MainApp(wx.App):
def OnInit(self):
""" Initialise the main GUI Application"""
frame = SampleFrame()
frame.Show()
return True
Run the GUI application app = MainApp() app.MainLoop()

The SampleFrame is a subclass of the wx.Frame class; it thus
inherits all of the functionality of a Top Level Frame
(window). Within the init() method of the SampleFrame the
super classes init() method is called. This is used to set the
size of the Frame and to give the Frame a title. Note that the
Frame also indicates that it does not have a parent window.

When the Panel is created it is necessary to specify the
window (or in this case Frame) within which it will be
displayed. This is a common pattern within wxPython.

Also note that the SetSize method of the Panel class also
allows the position to be specified and that the Color class is
the wxPython Color class.

Widget/Control Classes

Although there are very many widgets/controls available to
the developer, the most commonly used include:

wx.Button/wx.ToggleButton/wx.RadioButton These are
widgets that provide button like behavior within a GUI.
wx.TextCtrl This widget allows text to be displayed and
edited. I can be a single line or multiple line widget
depending upon configuration.
wx.StaticText Used to display one or more lines of read-
only text. In many libraries this widgets is known as a
label.
wx.StaticLine A line used in dialogs to separate groups of
widgets. The line may be vertical or horizontal.
wx.ListBox This widget is used to allow a user to select
one option from a list of options.
wx.MenuBar/wx.Menu/wx.MenuItem. The components
that can be used to construct a set of menus for a User
Interface.
wx.ToolBar This widget is used to display a bar of buttons
and/or other widgets usually placed below the menu bar
in a wx.Frame.

The inheritance hierarchy of these widgets is given below.
Note that they all inherit from the class Control (hence why

they are often referred to as Controls as well as Widgets or
GUI components).

Whenever a widget is created it is necessary to provide the
container window class that will hold it, such as a Frame or a
Panel, for example:

enter_button = wx.Button(panel, label=‘Enter’)

In this code snippet a wx.Button is being created that will
have a label ‘Enter’ and will be displayed within the given
Panel.

Dialogs

The generic wx.Dialog class can be used to build any custom
dialog you require. It can be used to create modal and
modeless dialogs:

A modal dialog blocks program flow and user input on
other windows until it is dismissed.

A modeless dialog behaves more like a frame in that
program flow continues, and input in other windows is
still possible.
The wx.Dialog class provides two versions of the show
method to support modal and modeless dialogs. The
ShowModal() method is used to display a modal dialog,
while the Show() is used to show a modeless dialog.

As well as the generic wx.Dialog class,the wxPython library
provides numerous prebuilt dialogs for common situations.
These pre built dialogs include:

wx.ColourDialog This class is used to generate a color
chooser dialog.
wx.DirDialog This class provides a directory chooser
dialog.
wx.FileDialog This class provides a file chooser dialog.
wx.FontDialog This class provides a font chooser dialog.
wx.MessageDialog This class can be used to generate a
single or multi-line message or information dialog. It can
support Yes, No and Cancel options.It can be used for
generic messages or for error messages.
wx.MultiChoiceDialog This dialog can be used to display a
lit of strings and allows the user to select one or more
values for the list.
wx.PasswordEntryDialog This class represents a dialog
that allows a user to enter a one-line password string
from the user.

wx.ProgressDialog If supported by the GUI platform, then
this class will provide the platforms native progress
dialog, otherwise it will use the pure Python
wx.GenericProgressDialog. The wx.
GenericProgressDialog shows a short message and a
progress bar.
wx.TextEntryDialog This class provides a dialog that
requests a one-line text string from the user.

Most of the dialogs that return a value follow the same
pattern. This pattern returns a value from the ShowModel()
method that indicates if the user selected OK or CANCEL
(using the return value wx.ID_OK or wx.ID_CANCEL). The
selected/entered value can then be obtained from a suitable
get method such as GetColourData() for the ColourDialog or
GetPath() for the DirDialog.

Arranging Widgets Within a Container

Widgets can be located within a window using specific
coordinates (such as 10 pixels down and 5 pixels across).
However, this can be a problem if you are considering cross
platform applications, this is because how a button is
rendered (drawn) on a Mac is di�erent to Windows and
di�erent again from the windowing systems on Linux/Unix
etc.

This means that di�erent amount of spacing must be given
on di�erent plat- forms. In addition the fonts used with text
boxes and labels di�er between di�erent platforms also
requiring di�erences in the layout of widgets.

To overcome this wxPython provides Sizers. Sizers work with
a container such as a Frame or a Panel to determine how the
contained widgets should be laid out. Widgets are added to a
sizer which is then set onto a container such as a Panel.

A Sizer is thus an object which works with a container and the
host windowing platform to determine the best way to
display the objects in the window. The developer does not
need to worry about what happens if a user resizes a window
or if the program is executed on a di�erent windowing
platform.

Sizers therefore help to produce portable, presentable
user interfaces. In fact one
Sizer can be placed within another Sizer to create
complex component layouts.

There are several sizers available including:

wx.BoxSizer This sizer can be used to place several
widgets into a row or column organization depending
upon the orientation. When the BoxSizer is created the

orientation can be specified using wx.VERTICAL or wx,
HORIZONTAL.
wx.GridSizer This sizer lays widgets out in a two
dimensional grid.Each cell within the grid has the same
size. When the GridSizer object is created it is possible to
specify the number of rows and columns the grid has. It is
also possible to specify the spacing between the cells both
horizontally and vertically.
wx.FlexGridSizer This sizer is a slightly more flexible
version of the GridSizer. In this version not all columns
and rows need to be the same size (although all cells in
the same column are the same width and all cells in the
same row are the same height).
wx.GridBagSizer is the most flexible sizer. It allows
widgets to be positioned relative to the grid and also
allows widgets to span multiple rows and/or columns.

To use a Sizer it must first be instantiated. When widgets are
created they should be added to the sizer and then the sizer
should be set on the container.

For example, the following code uses a GridSizer used with a
Panel to layout out four widgets comprised of two buttons, a
StaticText label and a TextCtrl input field:

Create the panel
panel = wx.Panel(self)
Create the sizer to use with 4 rows and 1 column

And 5 spacing around each cell grid = wx.GridSizer(4,
1, 5, 5)
Create the widgets
text = wx.TextCtrl(panel, size=(150, -1)) enter_button =
wx.Button(panel, label='Enter') label =
wx.StaticText(panel,label='Welcome')
message_button = wx.Button(panel, label='Show Message')
Add the widgets to the grid sizer
grid.AddMany([text, enter_button, label, message_button])
Set the sizer on the panel panel.SetSizer(grid)

The resulting display is shown below:

Drawing Graphics

In earlier chapters we looked at the Turtle graphics API for
generating vector and raster graphics in Python. The
wxPython library provides its own facilities for generating
cross platform graphic displays using lines, squares,
circles,text etc. This is provided via the Device Context.

A Device Context (often shortened to just DC) is an object on
which graphics and text can be drawn. It is intended to allow
di�erent output devices to all have a common graphics API
(also known as the GDI or Graphics Device Interface). Specific
device contexts can be instantiate depending on whether the
program is to use a window on a computer screen or some
other output medium (such as a printer).

There are several Device Context types available such as
wx.WindowDC, wx. PaintDC and wx.ClientDC:

The wx.WindowDC is used if we want to paint on the
whole window(Windows only). This includes window
decorations.
The wx.ClientDC is used to draw on the client area of a
window. The client area is the area of a window without
its decorations (title and border).
The wx.PaintDC is used to draw on the client area as well
but is intended to support the window refresh paint event
handling mechanism.

Note that the wx.PaintDC should be used only from a
wx.PaintEvent handler while the wx.ClientDC should never be
used from a wx.PaintEvent handler.

Whichever Device Context is used, they all support a similar
set of methods that are used to generate graphics, such as:

DrawCircle (x, y, radius)Draws a circle with the given
centreand radius.
DrawEllipse (x, y, width, height) Draws an ellipse
contained in the rectangle specified either with the given
top left corner and the given size or directly.
DrawPoint (x, y) Draws a point using the color of the
current pen.
DrawRectangle (x, y, width, height) Draws a rectangle
with the given corner coordinate and size.
DrawText (text, x, y) Draws a text string at the specified
point, using the current text font, and the current text
foreground and background colours.
DrawLine (pt1, pt2)/DrawLine (x1, y1, x2, y2) This method
draws a line from the first point to the second.

It is also important to understand when the device context is
refreshed/redrawn. For example, if you resize a window,
maximize it, minimize it, move it, or modify its contents the
window is redrawn.This generates an event, a PaintEvent. You
can bind a method to the PaintEvent (using wx.EVT_PAINT)
that can be called each time the window is refreshed.

This method can be used to draw whatever the contents of the
window should be. If you do not redraw the contents of the
device context in such a method than whatever you
previously drew will display when the window is refreshed.

The following simple program illustrates the use of some of
the Draw methods listed above and how a method can be
bound to the paint event so that the display is refreshed
appropriately when using a device context:

import wx
class DrawingFrame(wx.Frame):
def init (self, title):
super(). init (None, title=title, size=(300, 200))
self.Bind(wx.EVT_PAINT, self.on_paint)
def on_paint(self, event):
"""set up the device context (DC) for painting"""
dc = wx.PaintDC(self) dc.DrawLine(10, 10, 60, 20)
dc.DrawRectangle(20, 40, 40, 20) dc.DrawText("Hello World",
30, 70)dc.DrawCircle(130, 40, radius=15)
class GraphicApp(wx.App):
def OnInit(self):
""" Initialisethe GUI display""" frame =
DrawingFrame(title='PyDraw') frame.Show()
return True
Run the GUI application app = GraphicApp() app.MainLoop()

When this program is run the following display is generated:

Events in wxPython User Interfaces

Event Handling

Events are an integral part of any GUI; they represent user
interactions with the interface such as clicking on a button,
entering text into a field, selecting a menu option etc.

The main event loop listens for an event; when one occurs it
processes that event (which usually results in a function or
method being called) and then waits for the next event to
happen. This loop is initiated in wxPython via the call to the
MainLoop() method on the wx.App object.

This raises the question ‘what is an Event?’. An event object is
a piece of information representing some interaction that
occurred typically with the GUI (although an event can be
generated by anything). An event is processed by an Event
Handler. This is a method or function that is called when the
event occurs. The event is passed to the handler as a
parameter. An Event Binder is used to bind an event to an
event handler.

Event Definitions

It is useful to summarize the definitions around events as the
terminology used can be confusing and is very similar:

Event represents information from the underlying GUI
framework that describes something that has happened
and any associated data. The specific data available will
di�er depending on what has occurred. For example, if a
window has been moved then the associated data will
relate to the window’s new location. Where as a
CommandEvent generated by a selection action from a
ListBox provides the item index for the selection.
Event Loop the main processing loop of the GUI that
waits for an event to occur.When an event occurs the
associated event handler is called.
Event Handlers these are methods (or functions) that are
called when an event occurs.
EventBinders associate a type of event with an event
handler. There are di�erent event binders for di�erent
types of event.For example, the event binder associated
with the wx.MoveEvent is named wx.EVT_MOVE.

The relationship between the Event, the Event Handler via the
Event Binder is illustrated below:

The top three boxes illustrate the concepts while the lower 3
boxes provide a concrete example of binding a Move_Event
to an on_move() method via the EVT_MOVE binder.

Types of Events

There are numerous di�erent types of event including:

wx.CloseEvent used to indicate that a Frame or Dialog has
been closed.The event binder for this event is named
wx.EVT_CLOSE.
wx.CommandEvent used with widgets such as
buttons,list boxes, menu items, radio buttons, scroll bars,
sliders etc.Depending upon the type of widget that
generated the event di�erent information may be
provided. For example, for a Button a CommandEvent
indicates that a button has been clicked where as for a
ListBox it indicates that an option has been selected,etc.
Di�erent event binders are used for di�erent event
situations. For example, to bind a command event to a
event handler for a button then the wx.EVT_BUTTON

binder is used; while for a ListBox a
wx.EVT_LISTBOXbinder can be used.
wx.FocusEvent This event is sent when a window’s focus
changes (loses or gains focus). You can pick up a window
gaining focus using the wx. EVT_SET_FOCUS event
binder. The wx.EVT_KILL_FOCUS is used to bind an
event handler that will be called when a window loses
focus.
wx.KeyEvent This event contains information relating to
a key press or release.
wx.MaximizeEvent This event is generated when a top
level window is maximized.
wx.MenuEvent This event is used for menu oriented
actions such as the menu being opened or closed;
however it should be noted that this event is not used
when a menu item is selected (MenuItems generate
CommandEvents).
wx.MouseEvent This event class contains information
about the events generated by the mouse: this includes
information on which mouse button was pressed (and
released) and whether the mouse was double clicked etc.
wx.WindowCreateEvent This event is sent just after the
actual window is created.
wx.WindowDestoryedEvent This event is sent as early as
possible during the window destruction process.

Binding an Event to an Event Handler

An event is bound to an Event Handler using the Bind()
method of an event generating object (such as a button, field,
menu item etc.) via a named Event Binder.

For example:

button.Bind(wx.EVT_BUTTON, self.event_handler_method)

Implementing Event Handling

There are four steps involved in implementing event handling
for a widget or window, these are:

1. Identify the event of interest. Many widgets will generate
di�erent events in di�erent situations; it may therefore
be necessary to determine which event you are interested
in.

2. Find the correct Event Binder name, e.g. wx.EVT_CLOSE,
wx.EVT_MOVE or wx.EVT_BUTTON etc. Again you may
find that the widget you are interested in supports
numerous di�erent event binders which may be used in
di�erent situations (even for the same event).

3. Implement an event handler (i.e. a suitable method or
function) that will be called when the event occurs. The
event handler will be supplied with the event object.

4. Bind the Event to the Event Handler via the Binder Name
using the Bind() method of the widget or window.

To illustrate this we will use a simple example.

We will write a very simple event handling application. This
application will have a Frame containing a Panel. The Panel
will contain a label using the wx. StaticText class.

We will define an event handler called on_mouse_click() that
will move the StaticText label to the current mouse location
when the left mouse button is pressed. This means that we
can move the label around the screen.

To do this we first need to determine the widget that will be
used to generate the event. In this case it is the panel that
contains the text label. Having done this we can look at the
Panel class to see what events and Event Bindings it supports.
It turns out that the Panel class only directly defines support
for NavigationKeyEvents. This is not actually what we want;
however the Panel class extends the Window class.

The Window class supports numerous event bindings, from
those associated with setting the focus (wx.EVT_SET_FOCUS
and wx.EVT_KILL_FOCUS) to key presses
(wx.EVT_KEY_DOWN and wx.EVT_KEY_UP) as well as
mouse events. There are however numerous di�erent mouse

event bindings. These allow left, middle and right mouse
button clicks to be picked up, down clicks to be
identified,situations such as the mouse entering or leaving
the window etc. However, the binding we are interested in for
a MouseEvent is the wx. EVT_LEFT_DOWNbinding; this
picks up on the MoueEvent when the left mouse button is
pressed (there is also the wx.EVT_LEFT_UP binding which
can be used to pick up an event that occurs when the left
mouse button is released).

We now know that we need to bind the on_mouse_click()
event handler to the MouseEvent via the
wx.EVT_LEFT_DOWN event binder, for example:

self.panel.Bind(wx.EVT_LEFT_DOWN, self.on_mouse_click)

All event handler methods takes two parameters, self and the
mouse event. Thus the signature of the on_mouse_click()
method is:

def on_mouse_click(self, mouse_event):

The mouse event object has numerous methods defined that
allow information about the mouse to be obtained such as the
number of mouse clicks involved (GetClickCount()), which
button was pressed (GetButton()) and the current mouse
position within the containing widget or window (GetPosition

()). We can therefore use this last method to obtain the
current mouse location and then use the SetPosition(x, y)
method on the StaticText object to set its position.

The end result is the program shown below:

import wx
class WelcomeFrame(wx.Frame):
""" The Main Window / Frame of the application """
def init (self):
super(). init (parent=None, title='Sample App', size=(300, 200))
Set up panel within the frame and text label
self.panel = wx.Panel(self)
self.text = wx.StaticText(self.panel, label='Hello')
Bind the on_mouse_clickmethod to the
Mouse Event via the
left mouse click binder
self.panel.Bind(wx.EVT_LEFT_DOWN, self.on_mouse_click)
def on_mouse_click(self, mouse_event):
"""When the left mouse button is clicked This method is called.
It will obtain thecurrent mouse coordinates, and reposition the
text label
to this position. """
x, y = mouse_event.GetPosition() print(x, y)
self.text.SetPosition(wx.Point(x, y))
class MainApp(wx.App):
def OnInit(self):
""" Initialisethe main GUI Application"""
frame = WelcomeFrame()
frame.Show()
Indicate that processingshould continue
return True
Run the GUI application app = MainApp() app.MainLoop()

When this program is run; the window is displayed with the
‘Hello’ StaticText label in the top left hand corner of the
Frame(actually it is added to the Panel, however the Panel
fills the Frame in this example). If the user then clicks the left
mouse button anywhere within the Frame then the
‘Hello’label jumps to that location.

This is shown below for the initial setup and then for two
locations within the window.

An Interactive wxPython GUI

An example of a slightly larger GUI application, that brings
together many of the ideas presented in this chapter,is given
below.

In this application we have a text input field (a wx.TextCtrl)
that allows a user to enter their name. When they click on the
Enter button (wx.Button) the welcome label (a wx.StaticText)
is updated with their name.The ‘Show Message’ button is
used to display a wx.MessageDialog which will also contain
their name.

The initial display is shown below for both a Mac and a
Windows PC, note that the default background color for a
Frame is di�erent on a Windows PC than on a Mac and thus
although the GUI runs on both platforms, the look di�ers
between the two:

The code used to implement this GUI application is given
below:

import wx
class HelloFrame(wx.Frame):
def
 init (self, title):
super(). init (None, title=title, size=(300,200))
self.name = '<unknown>'
Create the BoxSizer to use for the Frame
vertical_box_sizer = wx.BoxSizer(wx.VERTICAL)
self.SetSizer(vertical_box_sizer)
Createthe panel to contain the widgets
panel = wx.Panel(self)
Add the Panel to the Frames Sizer
vertical_box_sizer.Add(panel,
wx.ID_ANY,
wx.EXPAND | wx.ALL,
20)
Create the GridSizerto use with the Panel
grid = wx.GridSizer(4, 1, 5, 5)
Set up the input field
self.text = wx.TextCtrl(panel, size=(150, -1))
Now configurethe enter button
enter_button = wx.Button(panel, label='Enter')
enter_button.Bind(wx.EVT_BUTTON, self.set_name)
Next set up the text label
self.label = wx.StaticText(panel, label='Welcome',
style=wx.ALIGN_LEFT)
Now configurethe Show Message button
message_button = wx.Button(panel, label='Show Message')
message_button.Bind(wx.EVT_BUTTON, self.show_message)
Add the widgetsto the grid sizer to handle layout
grid.AddMany([self.text, enter_button, self.label,
message_button])
Set the sizer on the panel
panel.SetSizer(grid)
Centre the Frame on the Computer Screen

self.Centre()
def show_message(self, event):
""" Event Handler to display the Message Dialog using the
current value of the name attribute. """ dialog =
wx.MessageDialog(None,
message='Welcome To Python ' + self.name, caption='Hello',
style=wx.OK)
dialog.ShowModal()
def set_name(self, event):
"""Event Handler for the Enter button.
Retrieves the text entered into the input field and sets the
self.name attribute. This is then used to set the text label """
self.name = self.text.GetLineText(0)
self.label.SetLabelText('Welcome ' + self.name)
class MainApp(wx.App):
def OnInit(self):
"""Initialise the GUI display"""
frame = HelloFrame(title='Sample App')
frame.Show()
Indicatewhether processing should continueor not
return True
def OnExit(self):
"""Executes when the GUI application shuts down"""
print('Goodbye')
Need to indicatesuccess or failure
return True
Run the GUI application app = MainApp() app.MainLoop()

If the user enters their name in the top TextCtrl field, for
example ‘Phoebe’, then when they click on the ‘Enter’ button
the welcome label changes to ‘Welcome Phoebe’:

If they now click on the ‘Show Message’ button then the wx.
MessageDialog (a specific type of wx.Dialog) will display a
welcome message to Phoebe:

Online Resources

There are numerous online references that support the
development of GUIs and of

Python GUIs in particular, including:

https://docs.wxpython.org for documentation on
wxPython.
https://www.wxpython.org wxPython home page.
https://www.wxwidgets.org For information on the
underlying wxWidgets

Cross platform GUI library.

Simple GUI Application

This exercise builds on the GUI you created in the last
chapter.

The application should allow a user to enter their name and
age. You will need to check that the value entered into the age
field is a numeric value (for example using is numeric()). If
the value is not a number then an error message dialog
should be displayed.

https://docs.wxpython.org/
https://www.wxpython.org/
https://www.wxwidgets.org/

A button should be provided labeled ‘Birthday’; when clicked
it should increment the age by one and display a Happy
Birthday message. The age should be updated within the GUI.

An example of the user interface you created in the last
chapter is given below:

As an example,the user might enter their name and age as
shown below:

When the user clicks on the ‘birthday’ button then the Happy
Birthday message dialog is displayed:

GUI Interface to a Tic Tac Toe Game

The aim of this exercise is to implement a simple Tic Tac Toe
game. The game should allow two users to play interactive
using the same mouse. The first user will have play as the ‘X’
player and the second user as the ‘0’ player.

When each user selects a button you can set the label for the
button to their symbol. You will need two check after each
move to see if someone has won (or if the game is a draw).

You will still need an internal representation of the grid so
that you can deter- mine who, if anyone, has won.

An example of how the GUI for the TicTacToe game might
look is given below:

You can also add dialogs to obtain the players names and to
notify them who won or whether there was a draw.

PyDraw wxPython Example Applica�on

Introduction

This chapter builds on the GUI library presented in the last
two chapters to illustrate how a larger application can be
built. It presents a case study of a drawing tool akin to a tool
such as Visio etc.

The PyDraw Application

The PyDraw application allows a user to draw diagrams using
squares, circles, lines and text. At present there is no select,
resize, reposition or delete option available (although these
could be added if required). PyDraw is implemented using the
wxPython set of components as defined in version 4.0.6.

When a user starts the PyDraw application, they see the
interface shown above (for both the Microsoft Windows and
Apple Mac operating systems). Depending on the operating
system it has a menu bar across the top (on a Mac this menu
bar is at the Top of the Mac display), a tool bar below the
menu bar and a scrollable drawing area below that.

The first button on the tool bar clears the drawing area. The
second and third buttons are only implemented so that they
print out a message into the Python console, but are intended
to allow a user to load and save drawings.

The tool bar buttons are duplicated on the menus defined for
the application, along with a drawing tool selection menu, as
shown below:

The Structure of the Application

The user interface created for the PyDraw application is made
up of a number of elements (see below): the PyDrawMenuBar,
the PyDrawToolbar containing a sequence of buttons across
the top of the window, the drawing panel, and the window
frame (implemented by the PyDrawFrame class).

The following diagram shows the same information as that
presented above, but as a containment hierarchy, this means
that the diagram illustrates how one object is contained
within another. The lower level objects are contained within
the higher level objects.

It is important to visualize this as the majority of wxPython
interfaces are built up in this way, using containers and
sizers.

The inheritance structure between the classes used in the
PyDraw application is illustrated below. This class hierarchy
is typical of an application which incorporates user interface
features with graphical elements.

Model, View and Controller Architecture

The application adopts the well established Model-View-
Controller(or MVC) design pattern for separating out the
responsibilities between the view element (e.g. the Frame or
Panel), the control element (for handling user input) and the
model element (which holds the data to be displayed).

This separation of concerns is not a new idea and allows the
construction of GUI applications that mirror the Model-
View-Controller architecture. The intention of the MVC
architecture is the separation of the user display, from the
control of user input, from the underlying information model
as illustrated below.

There are a number of reasons why this separation is useful:

re-usability of application and/or user interface
components,
ability to develop the application and user interface
separately,
ability to inherit from di�erent parts of the class
hierarchy.
ability to define control style classes which provide
common features separately from how these features
may be displayed.

This means that di�erent interfaces can be used with the
same application, without the application knowing about it. It
also means that any part of the system can be changed
without a�ecting the operation of the other. For example, the
way that the graphical interface (the look) displays the
information could be changed without modifying the actual
application or how input is handled (the feel). Indeed the
application need not know what type of interface is currently
connected to it at all.

PyDraw MVC Architecture

The MVC structure of the PyDraw application has a top level
controller class PyDrawController and a top level view class
the PyDrawFrame (there is no model as the top level MVC
triad does not hold any explicit data itself). This is shown
below:

At the next level down there is another MVC structure; this
time for the drawing element of the application. There is a
DrawingController, with a DrawingModel and a
DrawingPanel (the view) as illustrated below:

The DrawingModel, DrawingPanel and DrawingController
classes exhibit the classic MVC structure. The view and the
controller classes (DrawingPanel and DrawingController)
know about each other and the drawing model, whereas the
DrawingModel knows nothing about the view or the
controller. The view is notified of changes in the drawing
through the paint event.

Additional Classes

There are also four types of drawing object(of Figure): Circle,
Line, Square and Text figures. The only di�erence between

these classes is what is drawn on the graphic device context
within the on_paint() method.The Figure class, from which
they all inherit, defines the common attributes used by all
objects within a Drawing (e.g. point representing an x and y
location and size).

The PyDrawFrame class also uses a PyDrawMenuBar and a
PyDrawToolBar class. The first of these extends the
wx.MenuBar with menu items for use within the PyDraw
application.In turn the PyDrawToolBar extends the
wx.ToolBar and provides icons for use in PyDraw.

The final class is the PyDrawApp class that extends the
wx.App class.

Object Relationships

However, the inheritance hierarchy is only part of the story
for any object oriented application. The following figure
illustrates how the objects relate to one another within the
working application.

The PyDrawFrame is responsible for setting up the controller
and the DrawingPanel. The PyDrawController is responsible
for handling menu and tool bar user interactions. This
separates graphical elements from the behavior triggered by
the user.

TheDrawingPanel is responsible for displaying any figures
held by the DrawingModel. TheDrawingController manages
all user interactions with the DrawingPanel including adding

figures and clearing all figures from the model. The
DrawingModel holds list of figures to be displayed.

The Interactions Between Objects

We have now examined the physical structure of the
application but not how the objects within that application
interact. In many situations this can be extracted from the
source code of the application (with varying degrees of
di�culty). However, in the case of an application such as
PyDraw, which is made up of a number of di�erent
interacting components, it is useful to describe the system
interactions explicitly.

The diagrams illustrating the interactions between the
objects use the following conventions:

a solid arrow indicates a message send,
a square box indicates a class,
a name in brackets indicates the type of instance,
numbers indicate the sequence of message sends.

These diagrams are based on the collaboration diagrams
found in the UML (Unified Modelling Language) notation.

The PyDrawApp

When the PyDrawApp is instantiated the PyDrawFrame in
created and displayed using the OnInit() method. The
MainLoop() method is then invoked. This is shown below:

class PyDrawApp(wx.App):
def OnInit(self):
""" Initialisethe GUI display""" frame =
PyDrawFrame(title='PyDraw') frame.Show()
return True
Run the GUI application app = PyDrawApp() app.MainLoop()

The PyDrawFrame Constructor

The PyDrawFrame constructor method sets up the main
display of the UI application and also initializes the
controllers and drawing elements. This is shown below using
a collaboration diagram:

ThePyDrawFrame constructor sets up the environment for
the application. It creates the top level PyDrawController. It
creates the DrawingPanel and initializes the display layout. It
initializes the menu bar and tool bar. It binds the controllers
menu handler to the menus and centers itself.

Changing the Application Mode

One interesting thing to note is what happens when the user
selects an option from the Drawing menu. This allows the

mode to be changed to a square, circle,line or text. The
interactions involved are shown below for the situation where
a user selects the ‘Circle’ menu item on the Drawing menu
(using a collaboration diagram):

When the user selects one of the menu items the
command_menu_handler () method of the
PyDrawController is invoked. This method determines which
menu item has been selected; it then calls an appropriate
setter method (such as set_circle_mode() or
set_line_mode() etc.). These methods set the mode attribute
of the controller to an appropriate value.

Adding a Graphic Object

A user adds a graphic object to the drawing displayed by the
DrawingPanel by pressing the mouse button. When the user
clicks on the drawing panel, the DrawingController responds
as shown below:

The above illustrates what happens when the user presses
and releases a mouse button over the drawing panel, to create
a new figure. When the user presses the mouse button, a
mouse clicked message is sent to the DrawingController,
which decides what action to perform in response (see above).
In PyDraw, it obtains the cursor point at which the event was
generated by calling the GetPosition() method on the
mouse_event.

The controller then calls its own add() method passing in the
current mode and the current mouse location.The controller
obtains the current mode (from the PyDrawController using
the method callback provided when the DrawingController is

instantiated) and adds the appropriate type of figure to the
DrawingModel.

The add() method then adds a new figure to the drawing
model based on the specified mode.

The Classes

This section presents the classes in the PyDraw application.
As these classes build on concepts already presented in the
last few chapters, they shall be presented in their entirety
with comments highlighting specific points of their
implementations. Note that the code imports the wx module
from the wxPython library,e.g.

import wx

The PyDrawConstants Class

The purpose of this class is to provide a set of constants that
can be referenced in the remainder of the application. It is
used to provide constants for the IDs used with menu items
and toolbar tools. It also provides constants used to represent
the current mode (to indicate whether a line, square, circle or
test should be added to the display).

class PyDrawConstants: LINE_ID = 100
SQUARE_ID = 102
CIRCLE_ID = 103
TEXT_ID = 104
SQUARE_MODE = 'square'
LINE_MODE = 'line'
CIRCLE_MODE = 'circle'
TEXT_MODE = 'Text'

The PyDrawFrame Class

The PyDrawFrame class provides the main window for the
application. Note that due to the separation of concerns
introduced via the MVC architecture, the view class is only
concerned with the layout of the components:

class PyDrawFrame(wx.Frame):
""" Main Frame responsible for the layout of the UI."""
def init (self, title):
super(). init (None, title=title, size=(300, 200))
Set up the controller
self.controller = PyDrawController(self)
Set up the layout fo the UI self.vertical_box_sizer =
wx.BoxSizer(wx.VERTICAL) self.SetSizer(self.vertical_box_sizer)
Set up the menu bar
self.SetMenuBar(PyDrawMenuBar())
Set up the toolbar
self.vertical_box_sizer.Add(PyDrawToolBar(self), wx.ID_ANY,
wx.EXPAND | wx.ALL,)
Setup drawing panel
self.drawing_panel = DrawingPanel(self,

self.controller.get_mode)
self.drawing_controller = self.drawing_panel.controller
Add the Panel to the Frames Sizer
self.vertical_box_sizer.Add(self.drawing_panel, wx.ID_ANY,
wx.EXPAND | wx.ALL)
Set up the command event handling for the menu bar and tool
bar
self.Bind(wx.EVT_MENU, self.controller.command_menu_handler)
self.Centre()

The PyDrawMenuBar Class

The PyDrawMenuBar class is a subclass of the wx.MenuBar
class which defines the contents of the menu bar for the
PyDraw application. It does this by creating two wx.Menu
objects and adding them to the menu bar. Each wx.Menu
implements a drop down menu from the menu bar. To add
individual menu items the wx. MenuItem class is used. These
menu items are appended to the menu. The menus are
themselves appended to the menu bar. Note that each menu
item has an id that can be used to identify the source of a
command event in an event handler. This allows a single
event handler to deal with events generated by multiple menu
items.

class PyDrawMenuBar(wx.MenuBar):
def init (self): super(). init () fileMenu =
wx.Menu()
newMenuItem = wx.MenuItem(fileMenu, wx.ID_NEW, text="New",

kind=wx.ITEM_NORMAL)
newMenuItem.SetBitmap(wx.Bitmap("new.gif"))
fileMenu.Append(newMenuItem)
loadMenuItem = wx.MenuItem(fileMenu, wx.ID_OPEN, text="Open",
kind=wx.ITEM_NORMAL)
loadMenuItem.SetBitmap(wx.Bitmap("load.gif"))
fileMenu.Append(loadMenuItem)
fileMenu.AppendSeparator()
saveMenuItem = wx.MenuItem(fileMenu, wx.ID_SAVE, text="Save",
kind=wx.ITEM_NORMAL)
saveMenuItem.SetBitmap(wx.Bitmap("save.gif"))
fileMenu.Append(saveMenuItem)
fileMenu.AppendSeparator()
quit = wx.MenuItem(fileMenu, wx.ID_EXIT,
'&Quit\tCtrl+Q')
fileMenu.Append(quit)
self.Append(fileMenu, '&File')
drawingMenu = wx.Menu()
lineMenuItem = wx.MenuItem(drawingMenu,
PyDraw_Constants.LINE_ID, text="Line", kind=wx.ITEM_NORMAL)
drawingMenu.Append(lineMenuItem)
squareMenuItem = wx.MenuItem(drawingMenu,
PyDraw_Constants.SQUARE_ID, text="Square",
kind=wx.ITEM_NORMAL)
drawingMenu.Append(squareMenuItem)
circleMenuItem = wx.MenuItem(drawingMenu,
PyDraw_Constants.CIRCLE_ID, text="Circle",
kind=wx.ITEM_NORMAL)
drawingMenu.Append(circleMenuItem)
textMenuItem = wx.MenuItem(drawingMenu,
PyDraw_Constants.TEXT_ID, text="Text", kind=wx.ITEM_NORMAL)
drawingMenu.Append(textMenuItem)
self.Append(drawingMenu, '&Drawing')

The PyDrawToolBar Class

The DrawToolBar class is a subclass of wx.ToolBar. The
classes constructor initializes three tools that are displayed
within the toolbar. The Realize() method is used to ensure
that the tools are rendered appropriately. Note that
appropriate ids have been used to allow an event handler to
identify which tools generated a particular command event.
By reusing the same ids for related menu items and command
tools,a single handler can be used to manage events from
both types of sources.

class PyDrawToolBar(wx.ToolBar):
def init (self, parent): super(). init (parent)
self.AddTool(toolId=wx.ID_NEW, label="New",
bitmap=wx.Bitmap("new.gif"), shortHelp='Open drawing',
kind=wx.ITEM_NORMAL)
self.AddTool(toolId=wx.ID_OPEN, label="Open",
bitmap=wx.Bitmap("load.gif"), shortHelp='Open drawing',
kind=wx.ITEM_NORMAL)
self.AddTool(toolId=wx.ID_SAVE, label="Save",
bitmap=wx.Bitmap("save.gif"), shortHelp='Save drawing',
kind=wx.ITEM_NORMAL)
self.Realize()

The PyDrawController Class

This class provides the control element of the top level view.
It maintains the current mode and implements a handler that

can handle events from menu items and from the tool bar
tools.An id is used to identify each individual menu or tool
which allows a single handler to be registered with the frame.

class PyDrawController:
def init (self, view):
self.view = view
Set the initial mode
self.mode = PyDrawConstants.SQUARE_MODE
def set_circle_mode(self):
self.mode = PyDrawConstants.CIRCLE_MODE
def set_line_mode(self):
self.mode = PyDrawConstants.LINE_MODE
def set_square_mode(self):
self.mode = PyDrawConstants.SQUARE_MODE
def set_text_mode(self):
self.mode = PyDrawConstants.TEXT_MODE
def clear_drawing(self):
self.view.drawing_controller.clear()
def get_mode(self):
return self.mode
def command_menu_handler(self, command_event):
id = command_event.GetId()
if id == wx.ID_NEW:
print('Clear the drawing area')
self.clear_drawing()
elif id == wx.ID_OPEN:
print('Open a drawing file')
elif id == wx.ID_SAVE:
print('Save a drawing file')
elif id == wx.ID_EXIT:
print('Quite the application')
self.view.Close()
elif id == PyDrawConstants.LINE_ID: print('set drawing mode to

line') self.set_line_mode()
elif id == PyDrawConstants.SQUARE_ID: print('set drawing mode
to square') self.set_square_mode()
elif id == PyDrawConstants.CIRCLE_ID: print('set drawing mode
to circle') self.set_circle_mode()
elif id == PyDrawConstants.TEXT_ID: print('set drawing mode to
Text') self.set_text_mode()
else:
print('Unknown option', id)

The DrawingModel Class

The DrawingModel class has a contents attribute that is used
to hold all the figures in the drawing. It also provides some
convenience methods to reset the contents and to add a figure
to the contents.

class DrawingModel:
def init (self):
self.contents = []
def clear_figures(self):
self.contents = []
def add_figure(self, figure):
self.contents.append(figure)

The DrawingModel is a relatively simple model which merely
records a set of graphical figures in a List. These can be any
type of object and can be displayed in any way as long as they
implement the on_paint() method. It is the objects
themselves which determine what they look like when drawn.

The DrawingPanel Class

The DrawingPanel class is a subclass of the wx.Panel class. It
provides the view for the drawing data model. This uses the
classical MVC architecture and has a model (DrawingModel),
a view (the DrawingPanel) and a controller (the
DrawingController).

The DrawingPanel instantiates its own DrawingController to
handle mouse events.

It also registers for paint events so that it knows when to
refresh the display.

class DrawingPanel(wx.Panel):
def init (self, parent, get_mode): super(). init
(parent, -1) self.SetBackgroundColour(wx.Colour(255, 255, 255))
self.model = DrawingModel()
self.controller = DrawingController(self, self.model, get_mode)
self.Bind(wx.EVT_PAINT, self.on_paint)
self.Bind(wx.EVT_LEFT_DOWN, self.controller.on_mouse_click)
def on_paint(self, event):
"""set up the device context (DC) for painting"""
dc = wx.PaintDC(self)
for figure in self.model.contents:
figure.on_paint(dc)

The DrawingController Class

The DrawingController class provides the control class for the
top level MVC architecture used with the DrawingModel
(model) and DrawingPanel (view)classes. In particular
ithandles the mouse events in the DrawingPanel via the
on_mouse_click() method.

It also defines an add method that is used to add a figure to
the DrawingModel (the actual figure depends on the current
mode of the PyDrawController). A final method,the clear()
method, removes all figures from the drawing model and
refreshes the display.

class DrawingController:
def init (self, view, model, get_mode):
self.view = view self.model = model self.get_mode =
get_mode
def on_mouse_click(self, mouse_event): point =
mouse_event.GetPosition() self.add(self.get_mode(), point)
def add(self, mode, point, size=30):
if mode == PyDrawConstants.SQUARE_MODE:
fig = Square(self.view, point, wx.Size(size, size))
elif mode == PyDrawConstants.CIRCLE_MODE:
fig = Circle(self.view, point, size)
elif mode == PyDrawConstants.TEXT_MODE:
fig = Text(self.view, point, size)
elif mode == PyDrawConstants.LINE_MODE:
fig = Line(self.view, point, size)
self.model.add_figure(fig)
def clear(self): self.model.clear_figures() self.view.Refresh()

The Figure Class

The Figure class (an abstract super class of the Figure class
hierarchy)captures the elements which are common to
graphic objects displayed within a drawing. The point defines
the position of the figure, while the size attribute defines the
size of the figure. Note that the Figure is a subclass of a
wx.Panel and thus the display is constructed from inner
panels onto which the various figure shapes are drawn.

The Figure class defines a single abstract method
on_paint(dc) that must be implemented by all concrete sub
classes. This method should define how the shape is drawn on
the drawing panel.

class Figure(wx.Panel):
def init (self, parent, id=wx.ID_ANY, pos=None,
size=None, style=wx.TAB_TRAVERSAL):
wx.Panel. init (self, parent, id=id, pos=pos,
size=size, style=style)
self.point = pos self.size = size
@abstractmethod
def on_paint(self, dc):
Pass

The Square Class

This is a subclass of Figure that specifies how to draw a
square shape in a drawing. It implements the on_paint()
method inherited from Figure.

class Square(Figure):
def init (self, parent, pos, size):
super(). init (parent=parent, pos=pos, size=size)
def on_paint(self, dc):
dc.DrawRectangle(self.point, self.size)

The Circle Class

This is another sub class of Figure. It implements the
on_paint() method by drawing a circle. Note that the shape
will be drawn within the panel size defined via the Figure
class (using the call to super). It is therefore necessary to see
the circle to fit within these bounds. This means that the size
attribute must be used to generate an appropriate radius. Also
note that the DrawCircle() method of the device context takes
a point that is the center of the circle so this must also be
calculated.

class Circle(Figure):
def init (self, parent, pos, size):
super(). init (parent=parent, pos=pos,size=wx.Size(size,
size))
self.radius = (size - 10) / 2 self.circle_center =
wx.Point(self.point.x +
self.radius, self.point.y + self.radius)

def on_paint(self, dc):
dc.DrawCircle(pt=self.circle_center, radius=self.radius)

The Line Class

This is another subclass of Figure. In this very simple
example, a default end point for the line is generated.
Alternatively the program could look for a mouse released
event and pick up the mouse at this location and use this as
the end point of the line.

class Line(Figure):
def init (self, parent, pos, size):
super(). init (parent=parent, pos=pos,
size=wx.Size(size, size))
self.end_point = wx.Point(self.point.x + size, self.point.y
+ size)
def on_paint(self, dc):
dc.DrawLine(pt1=self.point, pt2=self.end_point)25.1.4

The Text Class

This is also a subclass of Figure. A default value is used for the
text to display; however a dialog could be presented to the
user allowing them to input the text they wish to display:

class Text(Figure):
def init (self, parent, pos, size):

super(). init__(parent=parent, pos=pos,size=wx.Size(size,
size))
def on_paint(self, dc):
dc.DrawText(text='Text', pt=self.point)

References

The following provides some background on the Model-
View-Controller architecture in user interfaces.

• G.E. Krasner,S.T. Pope, A cookbook for using the model-
view controller user interface paradigm in small talk-80.
JOOP 1(3), 26–49 (1988).

Try

You could develop the PyDraw application further by adding
the following features:

A delete option You can add a button labeled Delete to the
window. It should set the mode to “delete”.The
drawingPanel must be altered so that the mouseReleased
method sends a delete message to the drawing. The
drawing must find and remove the appropriate graphic
object and send the changed message to itself.
A resize option This involves identifying which of the
shapes has been selected and then either using a dialog to
enter the new size or providing some option that allows
the size fo the shape to be indicated using the mouse.

Introduc�on to Games Programming

Introduction

Games programming is performed by developers/coders who
implement the logic that drives a game.

Historically games developers did everything; they wrote the
code, designed the sprites and icons, handled the game play,
dealt with sounds and music, generated any animations
required etc. However, as the game industry has matured
games companies have developed specific roles including
Computer Graphics (CG) animators, artists, games developers
and games engine and physics engine developers etc.

Those involved with code development may develop a physics
engine, a games engine, the games themselves, etc. Such
developers focus on di�erent aspects of a game. For examples
a game engine developer focuses on creating the framework
within which the game will run. In turn a physics engine
developer will focus on implementing the mathematics
behind the physics of the simulated games world (such as the
e�ect of gravity on characters and components within that

world). In many cases there will also be developers working
on the AI engine for a game. These developers will focus on
providing facilities that allow the game or characters in the
game to operate intelligently.

Those developing the actual game play will use these engines
and frameworks to create the overall end result. It is they who
give life to the game and make it an enjoyable (and playable)
experience.

Games Frameworks and Libraries

There are many frameworks and libraries available that allow
you to create anything from simple games to large complex
role playing games with infinite worlds.

One example is the Unity framework that can be used with the
C# programming language. Another such framework is the
Unreal engine used with the C++ programming language.

Python has also been used for games development with
several well known games titles depending on it in one way or
another. For example, Battle field 2 by Digital Illusions CE is a
military simulator first person shooter game. Battle field
Heroes handles portions of the game logic involving game
modes and scoring using Python.

Other games that use Python include Civilization IV (for many
of the tasks), Pirates of the Caribbean Online and Over watch
(which makes its choices with Python).

Python is also embedded as a scripting engine within tools
such as Autodesk’s Maya which is a computer animation
toolkit that is often used with games.

Python Games Development

For those wanting to learn more about game development;
Python has much to o�er. There are many examples available
online as well as several game oriented frameworks.

The frameworks/libraries available for games development in
Python including:

Arcade. This is a Python library for creating 2D style video
games.
pyglet is a windowing and multimedia library for Python
that can also be used for games development.
Cocos2d is a framework for building2D games that is built
on top of pyglet.
pygame is probably the most widely used library for
creating games within the Python world.There are also
many extensions available for pygame that help to create
a wide range of di�erent types of games.

We will focus on pygame in the next two chapters in this
book. Other libraries of interest to Python games developers
include:

PyODE. This is an open-source Python binding for the
OpenDynamics Engine which is an open-source physics
engine.
pymunk Pymunk is a easy-to-use 2D physics library that
can be used whenever you need 2d rigid body physics with
Python. It is very good when you need 2D physics in your
game, demo or other application. It is built on top of the
2D physics library Chipmunk.
pyBox2D pybox2d is a 2D physics library for your games
and simple simulations. It’s based on the Box2D library
written in C++. It supports several shape types
(circle,polygon, thin line segments) as well as a number
of joint types (revolute, prismatic, wheel, etc.).
Blender. This is a open-source 3D computer graphics
software tool set used for creating animated films, visual
e�ects, art, 3D printed models, interactive 3D
applications and video games. Blender’s features include
3D modeling, texturing, raster graphics editing, rigging
and skinning,etc. Python can be used as a scripting tool
for creation,prototyping, game logic and more.
Quake Army Knife which is an environment for
developing 3D maps for games based on the Quake
engine. It is written in Delphi and Python.

Using Pygame

In the next two chapters we will explore the core pygame
library and how it can be used to develop interactive
computer games. The next chapter explores pygame itself and
the facilities it provides. The following chapter developers a
simple interactive game in which the user moves a star ship
around avoiding meteors which scroll vertically down the
screen.

Online Resources

For further information games programming and the
libraries mentioned in this chapter see:

https://unity.com/ the C# framework for games
development.
https://www.unrealengine.com for C++ games
development.
http://arcade.academy/ provides details on the Arcade
games framework.
http://www.pyglet.org/ for information on the piglet
library.
http://cocos2d.org/ is the home page for the Cocos2d
framework.
https://www.pygame.org for information on pygame.

https://unity.com/
https://www.unrealengine.com/
http://arcade.academy/
http://www.pyglet.org/
http://cocos2d.org/
https://www.pygame.org/

http://pyode.sourceforge.net/ for details of the PyODE
bindings to the Open Dynamics Engine.
http://www.pymunk.org/ provides information on
pymunk.
https://github.com/pybox2d/pybox2d which is a Git hub
repository for pyBox2d.
https://git.blender.org/gitweb/gitweb.cgi/blender.git Git
Hub repository for Blender.
https://sourceforge.net/p/quark/code SourceForge
repository for Quake Army Knife.
https://www.autodesk.co.uk/products/maya/overview for
information on Autodesks Maya computer animation
software.

http://pyode.sourceforge.net/
http://www.pymunk.org/
https://github.com/pybox2d/pybox2d
https://git.blender.org/gitweb/gitweb.cgi/blender.git
https://sourceforge.net/p/quark/code
https://www.autodesk.co.uk/products/maya/overview

Building Games with pygame

Introduction

pygame is a cross-platform, free and Open Source Python
library designed to make building multimedia applications
such as games easy. Development of pygame started back in
October 2000 with pygame version 1.0 being released six
months later. The version of pygame discussed in this chapter
is version 1.9.6.If you have a later version check to see what
changes have been made to see if they have any impact on the
examples presented here.

pygame is built on top of the SDL library. SDL (or Simple
Direct media Layer) is a cross platform development library
designed to provide access to audio, key- boards, mouse,
joystick and graphics hardware via OpenGL and Direct3D. To
promote portability, pygame also supports a variety of
additional back ends including WinDIB, X11, Linux Frame
Bu�er etc.

SDL o�cially supports Windows, Mac OS X, Linux, iOS and
Android (although other platforms are uno�cially

supported). SDL itself is written in C and pygame provides a
wrapper around SDL. However, pygame adds functionality
not found in SDL to make the creation of graphical or video
games easier. These functions include vector maths, collision
detection, 2D sprite scene graph management, MIDI support,
camera, pixel array manipulation, transformations, filtering,
advanced free type font support and drawing.

The remainder of this chapter introduces pygame, the key
concepts; the key modules, classes and functions and a very
simple first pygame application. The next chapter steps
through the development of a simple arcade style video game
which illustrates how a game can be created using pygame.

The Display Surface

The Display Surface (aka the display)is the most important
part of a pygame game. It is the main window display of your
game and can be of any size, however you can only have one
Display Surface.

In many ways the Display Surface is like a blank piece of
paper on which you can draw. The surface itself is made up of
pixels which are numbered from 0,0 in the top left hand
corner with the pixel locations being indexed in the x axis and
the y axis. This is shown below:

The above diagram illustrates how pixels within a Surface are
indexed. Indeed a Surface can be used to draw lines, shapes
(such as rectangles, squares, circles and ellipses), display
images, manipulate individual pixels etc. Lines are drawn
from one pixel location to another (for example from location
0,0 to location 9,0 which would draw a line across the top of
the above display surface). Images can be displayed within
the display surface given a starting point such as 1, 1.

The Display Surface is created by the
pygame.display.set_mode() function. This function takes a
tuple that can be used to specify the size of the Display
Surface to be returned. For example:

display_surface = pygame.display.set_mode((400, 300))

This will create a Display Surface (window) of 400 by 300
pixels.

Once you have the Display Surface you can fill it with an
appropriate back- ground color (the default is black) however
if you want a di�erent background color or want to clear
everything that has previously been drawn on the surface,
then you can use the surface’s fill() method:

WHITE = (255, 255, 255)
display_surface.fill(WHITE)

The fill method takes a tuple that is used to define a color in
terms of Red, Green and Blue (or RGB) colors. Although the
above examples uses a meaningful name for the tuple
representing the RGB values used for white; there is of course
no requirement to do this (although it is considered good
practice).

To aid in performance any changes you make to the Display
Surface actually happen in the background and will not be

rendered onto the actual display that the user sees until you
call the update() or flip() methods on the surface. For
example:

pygame.display.update()
pygame.display.flip()

The update() method will redraw the display with all changes
made to the display in the background. It has an optional
parameter that allows you to specify just a region of the
display to update (this is defined using a Rect which
represents a rectangular area on the screen). The flip()
method always refreshes the whole of the display (and as
such does exactly the same as the update() method with no
parameters).

Another method, which is not specifically a Display Surface
method,but which is often used when the display surface is
created,provides a caption or title for the top level window.
This is the pygame.display.set_caption() function. For
example:

pygame.display.set_caption('Hello World')

This will give the top level window the caption (or title) ‘Hello
World’.

Events

Just as the Graphical User Interface systems described in
earlier chapters have an event loop that allows the
programmer to work out what the user is doing (in those
cases this is typically selecting a menu item, clicking a button
or entering data etc.); pygame has an event loop that allows
the game to work out what the player is doing. For example,
the user may press the left or right arrow key. This is
represented by an event.

Event Types

Each event that occurs has associated information such as the
type of that event. For example:

Pressing a key will result in a KEYDOWN type of event,
while releasing a key will result in a KEYUP event type.
Selecting the window close button will generate a QUIT
event type etc.
Using the mouse can generate MOUSEMOTION events as
well as MOUSEBUTTONDOWN and MOUSEBUTTONUP
event types.
Using a Joystick can generate several di�erent types of
event including JOYAXISMOTION,
JOYBALLMOTION,JOYBUTTONDOWN and JOYBU
TTONUP.

These event types tell you what occurred to generate the
event. This means that you can choose which types of events
you want to deal with and ignore other events.

Event Information

Each type of event object provides information associated
with that event. For example a Key oriented event object will
provide the actual key pressed while a mouse oriented event
object will provide information on the position of the mouse,
which button was pressed etc. If you try an access an attribute
on an event that does not support that attribute, then an error
will be generated.

The following lists some of the attributes available for
di�erent event types:

KEYDOWN and KEYUP, the event has a key attribute and a
mod attribute (indicating if any other modifying keys
such as Shift are also being pressed).
MOUSEBUTTONUP and MOUSEBUTTONDOWN has an
attribute pos that holds a tuple indicating the mouse
location in terms of x and y coordinates on the underlying
surface. It also has a button attribute indicating which
mouse was pressed.
MOUSEMOTION has pos, rel and buttons attributes. The
pos is a tuple indicating the x and y location of mouse

cursor. The real attribute indicates the amount of mouse
movement and buttons indicates the state of the mouse
buttons.

As an example if we want to check for a keyboard event type
and then check that the key pressed was the space bar, then
we can write:

if event.type == pygame.KEYDOWN:
Check to see which key is pressed
if event.key == pygame.K_SPACE:
print('space')

This indicates that if it is a key pressed event and that the
actual key was the space bar; then print the string ‘space’.

There are many keyboard constants that are used to represent
the keys on the keyboard and pygame.K_SPACE constant
used above is just one of them.

All the keyboard constants are prefixed with ‘K_’ followed by
the key or the name of the key, for example:

K_TAB, K_SPACE, K_PLUS, K_0, K_1, K_AT, K_a, K_b,
K_z, K_DELTE, K_DOWN, K_LEFT, K_RIGHT, K_LEFT
etc.

Further keyboard constants are provided for modifier states
that can be combined with the above such as KMOD_SHIFT,
KMOD_CAPS, KMOD_CTRL and KMOD_ALT.

The Event Queue

Events are supplied to a pygame application via the Event
Queue. The Event Queue is used to collect together events as
they happen. For example, let us assume that a user clicks on
the mouse twice and a key twice before a program has a
chance to process them; then there will be four events in the
Event Queue as shown below:

The application can then obtain an iterable from the event
queue and process through the events in turn. While the
program is processing these events further events may occur
and will be added to the Event Queue. When the program has
finished processing the initial collection of events it can
obtain the next set of events to process.

One significant advantage of this approach is that no events
are ever lost; that is if the user clicks the mouse twice while
the program is processing a previous set of events; they will
be recorded and added to the event queue. Another advantage

is that the events will be presented to the program in the
order that they occurred.

The pygame.event.get() function will read all the events
currently on the Event Queue (removing them from the event
queue). The method returns an Event List which is an iterable
list of the events read. Each event can then be processed in
turn. For example:

for event in pygame.event.get():
if event.type == pygame.QUIT:
print('Received Quit Event:')
elif event.type == pygame.MOUSEBUTTONDOWN:
print('Received Mouse Event')
elif event.type == pygame.KEYDOWN:
print('Received KeyDown Event')

In the above code snippet an EventList is obtained from the
Event Queue containing the current set of events. The for loop
then processes each event in turn checking the type and
printing an appropriate message.

You can use this approach to trigger appropriate behavior
such as moving an image around the screen or calculating the
players score etc. However, be aware that if this behavior
takes too long it can make the game di�cult to play(although

the examples in this chapter and the next are simple enough
that this is not a problem).

A First pygame Application

We are now at the point where we can put together what we
have looked at so far and create a simple pygame application.

It is common to create a hello world style program when
using a new programming language or using a new
application framework etc. The intention is that the core
elements of the language or framework are explored in order
to generate the most basic form of an application using the
language or framework. We will therefore implement the
most basic application possible using pygame.

The application we will create will display a pygame window,
with a ‘Hello World’ title. We will then be able to quit the
game. Although technically speaking this isn’t a game, it does
possess the basic architecture of a pygame application.

The simple Hello World game will initialize pygame and the
graphical dis- play. It will then have a main game playing
loop that will continue until the user selects to quit the
application. It will then shut down pygame. The display
created by the program is shown below for both Mac and
Windows operating systems:

To quit the program click on the exit button for the
windowing system you are using.

The simple Hello World game is given below:

import pygame
def main():
print('Starting Game')
print('Initialising pygame')
pygame.init() # Requiredby every pygame application
print('Initialising HelloWorldGame')
pygame.display.set_mode((200,
100))pygame.display.set_caption('Hello World')
print('Update display')
pygame.display.update()
print('Starting main Game Playing Loop')
running = True while running:
for event in pygame.event.get():
if event.type == pygame.QUIT: print('Received Quit Event:',
event)running = False
print('Game Over')
pygame.quit()
if_name_=='_main_':
main()

There are several key steps highlighted by this example, these
steps are:

1. Import pygame. pygame is of course not one of the
default modules available within Python. You must first
import pygame into you code. The import pygame
statement imports the pygame module into your code and
makes the functions and classes in pygame available to
you (note the capitalization - pygame is not the same
module name as PyGame). It is also common to find that
programs import from pygame.locals import. This adds
several constants and functions into the namespace of
your pro- gram. In this very simple example we have not
needed to do this.

2. Initialize pygame. Almost every pygame module needs to
be initialized in some way and the simplest way to do this
is to call pygame.init(). This will do what is required to set
the pygame environment up for use. If you forget to call
this function you will typically get an error message such
as pygame.error: video system not initialized (or
something similar). If you get such a method checkto see
that you have called pygame.init(). Note that you can
initialize individual pygame modules (for example the
pygame.font module can be initialized using
pygame.font.init()) if required. However pygame.init() is
the most commonly used approach to setting up pygame.

3. Setup the display. Once you have initialized the pygame
framework you can setup the display.In the above code
example, the display is set up using the
pygame.display.set_mode() function. This function takes
a tuple specifying the size of the window to be created (in
this case 200 pixels wide by 100 pixels high). Note that if
you try and invoke this function by passing in two
parameters instead of a tuple, then you will get an error.
This function returns the drawing surface or
screen/window that can be used to display items within
the game such as icons, messages,shapes etc. As our
example is so simple we do not bother saving it into a
variable.However, anything more complex than this will
need to do so. We also set the window/frame’s caption (or
title). This is displayed in the title bar of the window.

4. Render the display. We now call the
pygame.display.update() function. This function causes
the current details of the display to be drawn. At the
moment this is a blank window. However, it is common in
games to perform a series of updates to the display in the
background and then when the program is ready to
update the display to call this function. This batches a
series of updates and the causes the display to be
refreshed. In a complex display it is possible to indicate
which parts of the display need to be redrawn rather than
redrawing the whole window. This is done by passing a
parameter into the update() function to indicate the

rectangle to be redrawn. However, our example is so
simple we are ok with redrawing the whole window and
therefore we do not need to pass any parameters to the
function.

5. Main game playing loop. It is common to have a main
game playing loop that drives the processing of user
inputs, modifies the state of the game and updates the
display. This is represented above by the while
running:loop. The local variable running is initialized to
True. This means that the while loop ensures that the
game continues until the user selects to quit the game at
which point the running variable is set to False which
causes the loop to exit. In many cases this loop will call
update() to refresh the display. The above example does
not do this as nothing is changed in the display. However
the example developed later in this chapter will illustrate
this idea.

6. Monitor for events that drive the game. As mentioned
earlier the event queue is used to allow user inputs to be
queued and then processed by the game.In the simple
example shown above this is represented by a for loop
that receives events using pygame.event.get() and then
checking to see if the event is a pygame.QUIT event. If it
is, then it sets the running flag to False. Which will cause
the main while loop of the game to terminate.

7. Quit pygame once finished. In pygame any module that
has an init() function also has an equivalent quit()

function that can be used to perform any cleanup
operations. As we called init() on the pygame module at
the start of our program we will therefore need to call
pygame.quit() at the end of the program to ensure
everything is tidied up appropriately.

The output generated from a sample run of this program is
given below:

pygame 1.9.6
Hello from the pygame community.
https://www.pygame.org/contribute.html Starting Game
Initialising pygame Initialising HelloWorldGame Update display
Starting main Game Playing Loop
Received Quit Event: <Event(12-Quit {})> Game Over

Further Concepts

There are very many facilities in pygame that go beyond what
we can cover in this book, however a few of the more common
are discussed below.

Surfaces are a hierarchy. The top level Display Surface may
contain other surfaces that may be used to draw images or
text. In turn containers such as Panels may render surfaces to
display images or text etc.

Other types of surface. The primary Display Surface is not the
only surface in pygame. For example, when an image, such as
a PNG or JPEG image is loaded into a game then it is rendered
onto a surface. This surface can then be displayed within
another surface such as the Display Surface. This means that
anything you can do to the Display Surface you can do with
any other surface such as draw on it, put text on it, color it,
add another icon onto the surface etc.

Fonts. The pygame.font.Font object is used to create a Font
that can be used to render text onto a surface. The render
method returns a surface with the text rendered on it that can
be displayed within another surface such as the Display
Surface. Note that you cannot write text onto an existing
surface you must always obtain a new surface (using render)
and then add that to an existing surface.The text can only be
displayed in a single line and the surface holding the text will
be of the dimensions required to render the text. For example:

text_font = pygame.font.Font('freesansbold.ttf', 18)
text_surface = text_font.render('Hello World',
antialias=True, color=BLUE)

This creates a new Font object using the specified font with
the specified font size (in this case 18). It will then render the
string ‘Hello World’ on to a new surface using the specified
font and font size in Blue. Specifying that anti alias is True

indicates that we would like to smooth the edges of the text
on the screen.

Rectangles (or Rects). The pygame.Rect class is an object used
to represent rectangular coordinates. A Rect can be created
from a combination of the top left corner coordinates plus a
width and height. For flexibility many functions that expect a
Rect object can also be given a Rect like list; this is a list that
contains the data necessary to create a Rect object. Rects are
very useful in a pygame Game as they can be used to define
the borders of a game object. This means that they can be
used within games to detect if two objects have collided.This
is made particularly easy because the Rect class provides
several collision detection methods:

pygame.Rect.contains() test if one rectangle is inside
another
pygame.Rect.collide point() test if a point is inside a
rectangle
pygame.Rect.colliderect() test if two rectangles overlap
pygame.Rect.collidelist() test if one rectangle in a list
intersects
pygame.Rect.collidelistall() test if all rectangles in a list
intersect
pygame.Rect.collidedict() test if one rectangle in a
dictionary intersects

pygame.Rect.collidedictall() test if all rectangles in a
dictionary intersect

The class also provides several other utility methods such as
move() which moves the rectangle and inflate() which can
grow or shrink the rectangles size.

Drawing shapes. The pygame.draw module has numerous
functions that can be used to draw lines and shapes onto a
surface, for example:

pygame.draw.rect(display_surface, BLUE, [x, y, WIDTH,
HEIGHT])

This will draw a filled blue rectangle(the default) onto the
display surface. The rectangle will be located at the location
indicated by x and y (on the surface).This indicates the top
left hand corner of the rectangle. The width and height of the
rectangle indicate its size. Note that these dimensions are
defined within a list which is a structure referred to as being
rect like (see below). If you do not want a filled rectangle (i.e.
You just want the outline)then you can use the optional width
parameter to indicate the thickness of the outer edge. Other
methods available include:

pygame.draw.polygon() draw a shape with any number of
sides
pygame.draw.circle() draw a circle around a point

pygame.draw.ellipse() draw a round shape inside a
rectangle
pygame.draw.arc() draw a partial section of an ellipse
pygame.draw.line() draw a straight line segment
pygame.draw.lines() draw multiple contiguous line
segments
pygame.draw.aaline() draw fine antialiased lines
pygame.draw.aalines() draw a connected sequence of
antialiased lines

Images. The pygame.image module contains functions for
loading, saving and transforming images.When an image is
loaded into pygame, it is represented by a Surface object. This
means that it is possible to draw, manipulate and process an
image in exactly the same way as any other surface which
provides a great deal of flexibility.

At a minimum the module only supports loading
uncompressed BMP images but usually also supports JPEG,
PNG, GIF (non-animated), BMP, TIFF as well as other
formats.

However, it only supports a limited set of formats when
saving images; these are BMP, TGA, PNG and JPEG.

An image can be loaded from a file using:

image_surface = pygame.image.load(filename).convert()

This will load the image from the specified file onto a surface.
One thing you might wonder at is the use of the convert()
method on the object returned from the pygame.image.load()
function. This function returns a Surface that is used to
display the image contained in the file. We call the method
convert() on this Surface, not to convert the image from a
particular file format (such as PNG, or JPEG) instead this
method is used to convert the pixel format used by the
Surface. If the pixel format used by the Surface is not the
same as the display format, then it will need to be converted
on the fly each time the image is displayed on the screen; this
can be a fairly time consuming (and unnecessary) process. We
therefore do this once when the image is loaded which means
that it should not hinder runtime performance and may
improve performance significantly on some systems.

Once you have a surface containing an image it can be
rendered onto another surface, such as the display surface
using the Surface.blit() method. For example:

display_surface.blit(image_surface, (x, y))

Note that the position argument is a tuple specifying the x
and y coordinates to the image on the display surface. Strictly
speaking the blit() method draws one surface (the source
surface)

onto another surface at the destination coordinates. Thus the
target surface does not need to be the top level display
surface.

Clock. A Clock object is an object that can be used to track
time. In particular it can be used to define the frame rate for
the game. That is the number of frames rendered per
second.This is done using the Clock.tick() method. This
method should be called once (and only once) per frame. If
you pass the optional frame rate argument to the tick() the
function, then pygame will ensure that the games refresh rate
is slower then the the given ticks per second. This can be used
to help limit the runtime speed of a game. By calling clock.tick
(30) once per frame, the program will never run at more than
30 frames per second.

A More Interactive pygame Application

The first pygame application we looked at earlier just
displayed a window with the caption ‘Hello World’. We can
now extend this a little by playing with some of the features
we have looked at above.

The new application will add some mouse event handling.
This will allow us to pickup the location of the mouse when

the user clicked on the window and draw a small blue box at
that point.

If the user clicks the mouse multiple times we will get
multiple blue boxes being drawn. This is shown below.

This is still not much of a game but does make the pygame
application more interactive.

The program used to generate this application is presented
below:

import pygame
FRAME_REFRESH_RATE = 30
BLUE = (0, 0, 255)
BACKGROUND = (255, 255, 255) # White
WIDTH = 10
HEIGHT = 10
def main():
print('Initialising PyGame')
pygame.init() # Required by every PyGame application
print('Initialising Box Game')
display_surface = pygame.display.set_mode((400, 300))
pygame.display.set_caption('Box Game') print('Update display')
pygame.display.update()
print('Setup the Clock')
clock = pygame.time.Clock()
Clear the screen of current contents
display_surface.fill(BACKGROUND)
print('Starting main Game Playing Loop')
running = True while running:
for event in pygame.event.get():
if event.type == pygame.QUIT: print('Received Quit Event:',
event) running = False
elif event.type == pygame.MOUSEBUTTONDOWN:
print('Received Mouse Event', event) x, y = event.pos
pygame.draw.rect(display_surface, BLUE, [x, y,
WIDTH, HEIGHT])
second
Update the display
pygame.display.update()
Defines the frame rate - the number of frames per
Should be called once per frame (but only once)
clock.tick(FRAME_REFRESH_RATE)
print('Game Over')
Now tidy up and quit Python
pygame.quit()

if_name_=='_main_':
main()

Note that we now need to record the display surface in a local
variable so that we can use it to draw the blue rectangles. We
also need to call the pygame.dis- play.update() function each
time round the main while loop so that the new rectangles we
have drawn as part of the event processing for loop are
displayed to the user.

We also set the frame rate each time round the main while
loop. This should happen once per frame (but only once) and
uses the clock object initialized at the start of the program.

Alternative Approach to Processing Input Devices

There are actually two ways in which inputs from a device
such as a mouse, joystick or the keyboard can be processed.
One approach is the Event based model described earlier. The
other approach is the State based approach.

Although the Event based approach has many advantages is
has two disadvantages:

Each event represents a single action and continuous
actions are not explicitly represented. Thus if the user
presses both theX key and the Z key then this will

generate two events and it will be up to the program to
determine that they have been pressed at the same time.
It is also up to the program to determine that the user is
still pressing a key (by noting that no KEYUP event has
occurred).
Both of these are possible but can be error prone.

An alternative approach is to use the State based approach. In
the state based approach the program can directly check the
state of a input device (such as a key or mouse or keyboard).
For example, you can use pygame.key.get_pressed() which
returns the state of all the keys. This can be used to determine
if a specific key is being pressed at this moment in time. For
example, pygame.key. get_pressed()[pygame.K_SPACE] can
be used to check to see if the space bar is being pressed.

This can be used to determine what action to take. If you keep
checking that the key is pressed then you can keep
performing the associated action. This can be very useful for
continues actions in a game such as moving an object etc.

However, if the user presses a key and then releases it before
the program checks the state of the keyboard then that input
will be missed.

pygame Modules

There are numerous modules provided as part of pygame as
well as associated libraries. Some of the core modules are
listed below:

pygame.display This module is used to control the display
window or screen. It provides facilities to initialize and
shutdown the display module. It can be used to initialize a
window or screen. It can also be used to cause a window
or screen to refresh etc.
pygame.event This module manages events and the event
queue. For example pygame.event.get() retrieves events
from the event queue, pygame.event.poll() gets a single
event from the queue and pygame.event.peek() tests to
see if there are any event types on the queue.
pygame.draw The draw module is used to draw simple
shapes onto a Surface. For example, it provides functions
for drawing a rectangle (pygame.draw.rect), a polygon, a
circle, an ellipse, a line etc.
pygame.font The font module is used to create and render
TrueType fonts into a new Surface object. Most of the
features associated with fonts are sup- ported by the
pygame.font.Font class. Free standing module functions
allow the module to be initialized and shutdown, plus
functions to access fonts such as
pygame.font.get_fonts() which provides a list of the
currently available fonts.

pygame.image This module allows images to be saved
and loaded. Note that images are loaded into a Surface
object (there is no Image class unlike many other GUI
oriented frameworks).
pygame.joystick The joystick module provides the
Joystick object and several supporting functions. These
can be used for interacting with joysticks, game pads and
trackballs.
pygame.key This module provides support for working
with inputs from the keyboard. This allows the input keys
to be obtained and modifier keys (such as Control and
Shift)to be identified. It also allows the approach to
repeating keys to be specified.
pygame.mouse This module provides facilities for
working with mouse input such as obtaining the current
mouse position, the state of mouse buttons as well as the
image to use for the mouse.
pygame.time This is the pygame module for managing
timing within a game. It provides the pygame.time.Clock
class that can be used to track time.

StarshipMeteors pygame

Creating a Spaceship Game

In this chapter we will create a game in which you pilot a
starship through a field of meteors. The longer you play the
game the larger the number of meteors you will encounter. A
typical display from the game is shown below for a Apple Mac
and a Windows PC:

We will implement several classes to represent the entities
within the game. Using classes is not a required way to
implement a game and it should be noted that many
developers avoid the use of classes. However, using a class
allows data associated with an object within the game to be
maintained in one place; it also simplifies the creation of

multiple instances of the same object(such as the meteors)
within the game.

The classes and their relationships are shown below:

This diagram shows that the Star ship and Meteor classes will
extend a class called GameObject. In turn it also shows that
the Game has a 1:1 relationship with the Starship class. That is
the Game holds a reference to one Starship and in turn the
starship holds a single reference back to the Game.

In contrast the Game has a 1 to many relationship with the
Meteor class. That is the Game object holds references to
many Meteors and each Meteor holds a reference back to the
single Game object.

The Main Game Class

The first class we will look at will be the Game class itself.
TheGame class will hold the list of meteors and the starship
as well as the main game playing loop. It will also initialize
the main window display (for example by setting the size and
the caption of the window).

In this case we will store the display surface returned by the
pygame.display.set_mode() function in an attribute of the
Game object called display_surface. This is because we will
need to use it later on to display the starship and the meteors.
We will also hold onto an instance of the pygame.time.Clock()
class that we will use to set the frame rate each time round
the main game playing while loop.

The basic framework of our game is shown below; this listing
provides the basic Game class and the main method that will
launch the game. The game also defines three global
constants that will be used to define the frame refresh rate
and the size of the display.

import pygame
Set up Global'constants'
FRAME_REFRESH_RATE = 30
DISPLAY_WIDTH = 600
DISPLAY_HEIGHT = 400
class Game:
""" Represents the game itself and game playing loop """
def init (self): print('Initialising PyGame') pygame.init()
Set up the display
self.display_surface =
pygame.display.set_mode((DISPLAY_WIDTH, DISPLAY_HEIGHT))
pygame.display.set_caption('Starship Meteors')
Used for timingwithin the program.
self.clock = pygame.time.Clock()
def play(self):
is_running = True
Main game playing Loop
while is_running:
Work out what the user wants to do
for event in pygame.event.get():
if event.type == pygame.QUIT:
is_running = False
elif event.type == pygame.KEYDOWN:
if event.key == pygame.K_q:
is_running = False
Update the display
pygame.display.update()
Definesthe frame rate
self.clock.tick(FRAME_REFRESH_RATE)
Let pygame shutdown gracefully
pygame.quit()
def main():
print('Starting Game') game = Game() game.play()
print('Game Over')

if_name_=='_main_':
main()

The main play() method of the Game class has a loop that will
continue until the user selects to quit the game. They can do
this in one of two ways, either by pressing the ‘q’ key
(represented by the event.key K_q) or by clicking on the
window close button. In either case these events are picked up
in the main event processing for loop within the main while
loop method.

If the user does not want to quit the game then the display is
updated (refreshed) and then the clock.tick() (or frame) rate
is set. When the user selects to quit the game then the main
while loop is terminated (the is_running flag is set to False)
and the pygame.quit() method is called to shut down pygame.

At the moment this not a very interactive game as it does not
do anything except allow the user to quit. In the next section
we will add in behavior that will allow us to display the space
ship within the display.

TheGameObject Class

The GameObject class defines three methods:

The load_image() method can be used to load an image to be
used to visually represent the specific type of game object.
The method then uses the width and height of the image to
define the width and height of the game object.

The rect() method returns a rectangle representing the
current area used by the game object on the underlying
drawing surface. This di�ers from the images own rect()
which is not related to the location of the game object on the
underlying surface. Rects are very useful for comparing the
location of one object with another (for example when
determining if a collision has occurred).

The draw() method draws the GameObjects’ image onto the
display_- surface held by the game using the GameObjects
current x and y coordinates. It can be overridden by sub
classes if they wish to be drawn in a di�erent way.

The code for the GameObject class is presented below:

class GameObject:
def load_image(self, filename):
self.image = pygame.image.load(filename).convert()
self.width = self.image.get_width()
self.height = self.image.get_height()
def rect(self):
""" Generates a rectanglerepresenting the objects location
and dimensions"""
return pygame.Rect(self.x, self.y, self.width, self.height)

def draw(self):
""" draw the game object at the current x, y coordinates """
self.game.display_surface.blit(self.image, (self.x,
self.y))

The GameObject class is directly extended by the Starship
class and the Meteor class.

Currently there are only two types of game elements, the
starship and the meteors; but this could be extended in future
to planets, comets,shooting stars etc.

Displaying the Starship

The human player of this game will control a starship that
can be moved around the display. The Starship will be
represented by an instance of the class Starship. This class
will extend the GameObject class that holds common
behaviors for any type of element that is represented within
the game.

The Starship class defines its own init ()method that takes a
reference to the game that the starship is part of. This
initialization method sets the initial starting location of the
Starship as half the width of the display for the x coordinate
and the display height minus 40 for the y coordinate (this
gives a bit of a bu�er before the end of the screen). It then
uses the load_image() method from the GameObject parent

class to load the image to be used to represent the Starship.
This is held in a file called starship.png. For the moment we
will leave the Starship class as it is (however we will return to
this class so that we can make it into a movable object in the
next section).

The current version of the Starship class is given below:

class Starship(GameObject):
""" Represents a starship"""
def init (self, game):
self.game = game
self.x = DISPLAY_WIDTH / 2 self.y = DISPLAY_HEIGHT - 40
self.load_image('starship.png')

In the Game class we will now add a line to the init ()method
to initialize the Starship object. This line is:

Set up the starship
self.starship = Starship(self)

We will also add a line to the main while loop within the
play() method just before we refresh the display.This line will
call the draw() method on the starship object:

Draw the starship self.starship.draw()

This will have the e�ect of drawing the starship onto the
windows drawing surface in the background before the
display is refreshed. When we now run this version of the
StarshipMeteor game we now see the Starship in the display:

Of course at the moment the starship does not move; but we
will address that in the next section.

Moving the Spaceship

We want to be able to move the Starship about within the
bounds of the display screen. To do this we need to change the

starships x and y coordinates in response to the user pressing
various keys.

We will use the arrow keys to move up and down the screen or
to the left or right of the screen. To do this we will define four
methods within the Starship class; these methods will move
the starship up, down, left and right etc.

The updated Starship class is shown below:

This version of the Starship class defines the various move
methods. These methods use a new global value
STARSHIP_SPEED to determine how far and how fast the
Starship moves. If you want to change the speed that the
Starship moves then you can change this global value.

Depending upon the direction intended we will need to
modify either the xor y coordinate of the Starship.

If the starship moves to the left then the x coordinate is
reduced by STARSHIP_SPEED,
if it moves to the right then the x coordinate is increased
by STARSHIP_SPEED,
in turn if the Starship moves up the screen then the y
coordinate is decremented by STARSHIP_SPEED,
but if it moves down the screen then the y coordinate is
increased by STARSHIP_SPEED.

Of course we do not want our Starship to fly o� the edge of
the screen and so a test must be made to see if it has reached
the boundaries of the screen. Thus tests are made to see if the
x or y values have gone below Zero or above the
DISPLAY_WIDTH or DISPLAY_HEIGHT values. If any of
these conditions are met then the x or y values are reset to an
appropriate default.

We can now use these methods with player input. This player
input will indicate the direction that the player wants to move
the Starship. As we are using the left, right, up and down
arrow keys for this we can extend the event processing loop
that we have already defined for the main game playing loop.
As with the letter q, the event keys are prefixed by the letter K
and an under bar, but this time the keys are named K_LEFT,
K_RIGHT, K_UP and K_DOWN.

When one of these keys is pressed then we will call the
appropriate move method on the starship object already held
by the Game object.

The main event processing for loop is now:

Work out what the user wants to do
for event in pygame.event.get():
if event.type == pygame.QUIT:
is_running = False
elif event.type == pygame.KEYDOWN:
Check to see which key is pressed
if event.key == pygame.K_RIGHT:
Right arrow key has been pressed
move the player right
self.starship.move_right()
elif event.key == pygame.K_LEFT:
Left arrow has been pressed
move the playerleft
self.starship.move_left()
elif event.key == pygame.K_UP:
self.starship.move_up()
elif event.key == pygame.K_DOWN:
self.starship.move_down()
elif event.key == pygame.K_q:
is_running = False

However, we are not quite finished. If we try and run this
version of the program we will get a trail of Starships drawn
across the screen; for example:

The problem is that we are redrawing the starship at a
di�erent position; but the previous image is still present.

We now have two choices one is to merely fill the whole
screen with black; e�ectively hiding anything that has been
drawn so far; or alternatively we could just draw over the area
used by the previous image position. Which approach is
adopted depends on the particular scenario represented by
your game. As we will have a lot of meteors on the screen once
we have added them; the easiest option is to over- write
everything on the screen before redrawing the starship. We
will therefore add the following line:

 # Clear the screen of current contents
self.display_surface.fill(BACKGROUND)

This line is added just before we draw the Starship within the
main game playing while loop. Now when we move the
Starship the old image is removed before we draw the new
image:

One point to note is that we have also defined another global
value BACKGROUND used to hold the background color of the
game playing surface. This is set to black as shown below:

Define default RGB colours
BACKGROUND = (0, 0, 0)

If you want to use a di�erent background color then change
this global value.

Adding a Meteor Class

The Meteor class will also be a subclass of the GameObject
class. However, it will only provide a move_down() method
rather than the variety of move methods of the Starship.

It will also need to have a random startingx coordinate so that
when a meteor is added to the game its starting position will
vary. This random position can be generated using the
random.randint() function using a value between 0 and the
width of the drawing surface. The meteor will also start at the
top of the screen so will have a di�erent initial coordinate to
the Starship. Finally, we also want our meteors to have
di�erent speeds; this can be another random number
between 1 and some specified maximum meteor speed. To
support these we need to add random to the modules being
imported and define several new global values, for example:

import pygame, random
INITIAL_METEOR_Y_LOCATION = 10
MAX_METEOR_SPEED = 5
We can nowdefinethe Meteor class:

class Meteor(GameObject):
"""represents a meteor in the game """
def init (self, game):
self.game = game
self.x = random.randint(0, DISPLAY_WIDTH)
self.y = INITIAL_METEOR_Y_LOCATION
self.speed = random.randint(1, MAX_METEOR_SPEED)
self.load_image('meteor.png')
def move_down(self):
"""Move the meteor down the screen """
self.y = self.y + self.speed
if self.y > DISPLAY_HEIGHT:
self.y = 5
')'
def str (self):
return 'Meteor('+ str(self.x) + ', ' + str(self.y) +

The init () method for the Meteor class has the same steps as
the Starship; the di�erence is that the x coordinate and the
speed are randomly generated. The image used for the Meteor
is also di�erent as it is ‘meteor.png’. We have also
implemented amove_down() method. This is essentially the
same as the Starships move_down().

Note that at this point we could create a subclass of
GameObject called MoveableGameObject (which extends
GameObject) and push the move operations up into that class
and have the Meteor and Starship classes extend that class.
However we don’t really want to allow meteors to move just
anywhere on the screen.

We can now add the meteors to the Game class.We will add a
new global value to indicate the number of initial meteors in
the game:

INITIAL_NUMBER_OF_METEORS = 8

Next we will initialize a new attribute for the Game class that
will hold a list of Meteors. We will use a list here as we want to
increase the number of meteors as the game progresses. To
make this process easy we will use a list comprehension
which allows a for loop to run with the results of an
expression captured by the list:

Set up meteors
self.meteors = [Meteor(self) for _ in range(0,

INITIAL_NUMBER_OF_METEORS)] We now have a list of
meteors that need to be displayed. We thus need to update the
while loop of the play() method to draw not only the starship
but also all the meteors:

Draw the meteorsand the starship
self.starship.draw()
for meteor in self.meteors:
meteor.draw()

The end result is that a set of meteor objects are created at
random starting locations across the top of the screen:

Moving the Meteors

We now want to be able to move the meteors down the screen
so that the Starship has some objects to avoid. We can do this
very easily as we have already implemented a move_down()
method in the Meteor class. We therefore only need to add a
for loop to the main game playing while loop that will move
all the meteors.For example:

Move the Meteors
for meteor in self.meteors:
meteor.move_down()

This can be added after the event processing for loop and
before the screen is refreshed/redrawn or updated. Now when
we run the game the meteors move and the player can
navigate the Starship between the falling meteors.

Identifying a Collision

At the moment the game will play for ever as there is no end
state and no attempt to identify if a Starship has collided with
a meteor. We can add Meteor/Starship collision detection

using PyGame Rects. As mentioned in the last chapter a Rect
is a PyGame class used to represent rectangular coordinates.
It is particularly useful as the pygame.Rect class provides
several collision detection methods that can be used to test if
one rectangle (or point) is inside another rectangle. We can
therefore use one of the methods to test if the rectangle
around the Starship intersects with any of the rectangles
around the Meteors.

The GameObject class already provides a method rect() that
will return a Rect object representing the objects’ current
rectangle with respect to the drawing surface (essentially the
box around the object representing its location on the screen).

Thus we can write a collision detection method for the Game
class using the GameObject generated rects and the Rect class
colliderect() method:

def _check_for_collision(self):
""" Checks to see if any of the meteors have collided with the
starship"""
result = False
for meteor in self.meteors:
if self.starship.rect().colliderect(meteor.rect()):
result = True break
return result

Note that we have followed the convention here of preceding
the method name with an under bar indicating that this

method should be considered private to the class. It should
therefore never be called by anything outside of the Game
class. This convention is defined in PEP 8 (Python
Enhancement Proposal) but is not enforced by the language.

We can now use this method in the main while loop of the
game to check for a collision:

Check to see if a meteor has hit the ship
if self._check_for_collision():
starship_collided = True

This code snippet also introduces a new local variable
starship_collided. We will initially set this to False and is
another condition under which the main game playing while
loop will terminate:

is_running = True
starship_collided = False

Main game playing Loop

while is_running and not starship_collided:

Thus the game playing loop will terminate if the user selects
to quit or if the starship collides with a meteor.

Identifying a Win

We currently have a way to loose the game but we don’t have
a way to win the game! However, we want the player to be
able to win the game by surviving for a specified period of
time.We could represent this with a timer of some sort.
However, in our case we will represent it as a specific number
of cycles of the main game playing loop. If the player survives
for this number of cycles then they have won. For example:

See if the player has won
if cycle_count == MAX_NUMBER_OF_CYCLES:
print('WINNER!')
break

In this case a message is printed out stating that the player
won and then the main game playing loop is terminated
(using the break statement). The
MAX_NUMBER_OF_CYCLES global value can be set as
appropriate, for example:

MAX_NUMBER_OF_CYCLES = 1000

Increasing the Number of Meteors

We could leave the game as it is at this point, as it is now
possible to win or loose the game. However, there are a few
things that can be easily added that will enhance the game
playing experience. One of these is to increase the number of

Meteors on the screen making it harder as the game
progresses. We can do this using a

NEW_METEOR_CYCLE_INTERVAL.
NEW_METEOR_CYCLE_INTERVAL = 40

When this interval is reached we can add a new Meteor to the
list of current Meteors; it will then be automatically drawn by
the Game class. For example:

Determineif new meteors should be added
if cycle_count % NEW_METEOR_CYCLE_INTERVAL == 0:
self.meteors.append(Meteor(self))

Now every NEW_METEOR_CYCLE_INTERVAL another
meteor will be added at a random x coordinate to the game.

Pausing the Game

Another feature that many games have is the ability to pause
the game. This can be easily added by monitoring for a pause
key (this could be the letter p represented by the event_key
pygame.K_p). When this is pressed the game could be paused
until the key is pressed again.

The pause operation can be implemented as a method
_pause() that will consume all events until the appropriate

key is pressed. For example:

def _pause(self):
paused = True while paused:
for event in pygame.event.get():
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_p:
paused = False break

In this method the outer while loop will loop until the paused
local variable is set too False. This only happens when the ‘p’
key is pressed. The break after the statement setting paused
to False ensures that the inner for loop is terminated allowing
the outer while loop to check the value of paused and
terminate.

The_pause() method can be invoked during the game playing
cycle by monitoring for the ‘p’ key within the event for loop
and calling the _pause() method from there:

elif event.key == pygame.K_p:
self._pause()

Note that again we have indicated that we don’t expect the
_pause() method to be called from outside the game by
prefixing the method name with an under bar (‘_’).

Displaying the Game Over Message

PyGame does not come with an easy way of creating a popup
dialog box to display messages such as ‘You Won’; or ‘You
Lost’ which is why we have used print statements so far.
However, we could use a GUI framework such as wxPython to
do this or we could display a message on the display surface
to indicate whether the player has won or lost.

We can display a message on the display surface using the
pygame.font. Font class. This can be used to create a Font
object that can be rendered onto a surface that can be
displayed onto the main display surface.

We can therefore add a method _display_message() to the
Game class that can be used to display appropriate messages:

def _display_message(self, message):
"""Displays a message to the user on the screen """
print(message)
text_font = pygame.font.Font('freesansbold.ttf', 48)
text_surface = text_font.render(message, True, BLUE, WHITE)
text_rectangle = text_surface.get_rect() text_rectangle.center
= (DISPLAY_WIDTH / 2,
DISPLAY_HEIGHT / 2)
self.display_surface.fill(WHITE)
self.display_surface.blit(text_surface, text_rectangle)

Again the leading under bar in the method name indicates
that it should not be called from outside the Game class.

We can now modify the main loop such that appropriate
messages are displayed to the user, for example:

Check to see if a meteor has hit the ship
if self._check_for_collision(): starship_collided = True
self._display_message('Collision: Game Over')

The result of the above code being run when a collision occurs
is shown below:

The StarshipMeteors Game

The complete listing for the final version of the
StarshipMeteors game is given below:

import pygame, random, time
FRAME_REFRESH_RATE = 30
DISPLAY_WIDTH = 600
DISPLAY_HEIGHT = 400
WHITE = (255, 255, 255) BACKGROUND = (0, 0, 0)
INITIAL_METEOR_Y_LOCATION = 10
INITIAL_NUMBER_OF_METEORS = 8
MAX_METEOR_SPEED = 5
STARSHIP_SPEED = 10
MAX_NUMBER_OF_CYCLES = 1000
NEW_METEOR_CYCLE_INTERVAL = 40
class GameObject:
def load_image(self, filename):
self.image = pygame.image.load(filename).convert()
self.width = self.image.get_width()
self.height = self.image.get_height()
def rect(self):
""" Generates a rectangle representing the objects location
and dimensions """
return pygame.Rect(self.x, self.y, self.width, self.height)
def draw(self):
""" draw the game object at the current x, y coordinates """
self.game.display_surface.blit(self.image, (self.x,
self.y))
class Starship(GameObject):
""" Represents a starship"""
def init (self, game):
self.game = game
self.x = DISPLAY_WIDTH / 2 self.y = DISPLAY_HEIGHT - 40
self.load_image('starship.png')
def move_right(self):
""" moves the starship right across the screen """
self.x = self.x + STARSHIP_SPEED
if self.x + self.width > DISPLAY_WIDTH:
self.x = DISPLAY_WIDTH - self.width

def move_left(self):
""" Move the starship left across the screen """
self.x = self.x - STARSHIP_SPEED
if self.x < 0:
self.x = 0
def move_up(self):
""" Move the starship up the screen """
self.y = self.y - STARSHIP_SPEED
if self.y < 0:
self.y = 0
def move_down(self):
""" Move the starship down the screen """
self.y = self.y + STARSHIP_SPEED
if self.y + self.height > DISPLAY_HEIGHT:
self.y = DISPLAY_HEIGHT - self.height
')'
def str (self):
return 'Starship(' + str(self.x) + ', ' + str(self.y) +
class Meteor(GameObject):
""" represents a meteor in the game """
def init (self, game):
self.game = game
self.x = random.randint(0, DISPLAY_WIDTH)
self.y = INITIAL_METEOR_Y_LOCATION
self.speed = random.randint(1, MAX_METEOR_SPEED)
self.load_image('meteor.png')
def move_down(self):
""" Move the meteor down the screen """
self.y = self.y + self.speed
if self.y > DISPLAY_HEIGHT:
self.y = 5
')'
def str (self):
return 'Meteor(' + str(self.x) + ', ' + str(self.y) +
class Game:
""" Represents the game itself, holds the main game playing loop

"""
def init (self):
pygame.init()
Set up the display
self.display_surface =
pygame.display.set_mode((DISPLAY_WIDTH, DISPLAY_HEIGHT))
pygame.display.set_caption('Starship Meteors')
Used for timing within the program.
self.clock = pygame.time.Clock()
Set up the starship
self.starship = Starship(self)
Set up meteors
self.meteors = [Meteor(self) for _ in range(0,
INITIAL_NUMBER_OF_METEORS)]
def _check_for_collision(self):
""" Checks to see if any of the meteors have collided with the
starship """
result = False
for meteor in self.meteors:
if self.starship.rect().colliderect(meteor.rect()):
result = True
break return result
def _display_message(self, message):
""" Displays a message to the user on the screen """ text_font =
pygame.font.Font('freesansbold.ttf', 48) text_surface =
text_font.render(message, True, BLUE,
WHITE)
text_rectangle = text_surface.get_rect()
text_rectangle.center = (DISPLAY_WIDTH / 2,
DISPLAY_HEIGHT / 2) self.display_surface.fill(WHITE)
self.display_surface.blit(text_surface, text_rectangle)
def _pause(self): paused = True while paused:
for event in pygame.event.get():
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_p:
paused = False break

def play(self): is_running = True starship_collided = False
cycle_count = 0
Main game playing Loop
while is_running and not starship_collided:
Indicates how many times the main game loop has
been run
cycle_count += 1
See if the player has won
if cycle_count == MAX_NUMBER_OF_CYCLES:
self._display_message('WINNER!') break
Work out what the user wants to do
for event in pygame.event.get():
if event.type == pygame.QUIT:
is_running = False
elif event.type == pygame.KEYDOWN:
Check to see which key is pressed
if event.key == pygame.K_RIGHT:
Right arrow key has been pressed
move the player right
self.starship.move_right()
elif event.key == pygame.K_LEFT:
Left arrow has been pressed
move the player left
self.starship.move_left()
elif event.key == pygame.K_UP:
self.starship.move_up()
elif event.key == pygame.K_DOWN:
self.starship.move_down()
elif event.key == pygame.K_p:
self._pause()
elif event.key == pygame.K_q:
is_running = False
Move the Meteors
for meteor in self.meteors:
meteor.move_down()
Clear the screen of current contents

self.display_surface.fill(BACKGROUND)
Draw the meteors and the starship
self.starship.draw()
for meteor in self.meteors:
meteor.draw()
Check to see if a meteor has hit the ship
if self._check_for_collision(): starship_collided = True
self._display_message('Collision: Game Over')
Determine if new mateors should be added
if cycle_count % NEW_METEOR_CYCLE_INTERVAL == 0:
self.meteors.append(Meteor(self))
Update the display
pygame.display.update()
frames per once)
Defines the frame rate. The number is number of
second. Should be called once per frame (but only
self.clock.tick(FRAME_REFRESH_RATE)
time.sleep(1)
Let pygame shutdown gracefully
pygame.quit()
def main():
print('Starting Game') game = Game() game.play()
print('Game Over')
if_name_== '_main_':
main()

Try

Using the example presented in this chapter add the
following:

Provide a score counter. This could be based on the
number of cycles the player survives or the number of
meteors that restart from the top of the screen etc.
Add another type of GameObject, this could be a shooting
star that moves across the screen horizontally; perhaps
using an random starting y coordinate.
Allow the game di�culty to be specified at the start. This
could a�ect the number of initial meteors, the maximum
speed of a meteor, the number of shooting stars etc.

Introduc�on to Tes�ng

Introduction to Testing

This chapter considers the di�erent types of tests that you
might want to perform with the systems you develop in
Python. It also introduces Test Driven Development.

Types of Testing

There are at least two ways of thinking about testing:

1. It is the process of executing a program with the intent of
finding errors/bugs (see Glenford Myers, The Art of
Software Testing).

2. It is a process used to establish that software components
fulfill the requirements identified for them, that is that
they do what they are supposed to do.

These two aspects of testing tend to have been emphasized at
di�erent points in the software life cycle. Error Testing is an
intrinsic part of the development process, and an increasing

emphasis is being placed on making testing a central part of
software development (see Test Driven Development).

It should be noted that it is extremely di�cult—and in many
cases impossible— to prove that software works and is
completely error free. The fact that a set of tests finds no
defects does not prove that the software is error-free.
‘Absence of evidence is not evidence of absence!’. This was
discussed in the late 1960s and early 1970s by Dijkstra and
can be summarized as:

Testing shows the presence, not the absence of bugs

Testing to establish that software components fulfill their
contract involves checking operations against their
requirements. Although this does happen at development
time, it forms a major part of Quality Assurance (QA) and User
Acceptance testing. It should be noted that with the advent of
Test-Driven Development,the emphasis on testing against
requirements during development has become significantly
higher.

There are of course many other aspects to testing, for
example, Performance Testing which identifies how a system
will perform as various factors that a�ect that system change.
For example, as the number of concurrent requests increase,

as the number of processors used by the underlying hardware
changes, as the size of the database grows etc.

However you view testing, the more testing applied to a
system the higher the level of confidence that the system will
work as required.

What Should Be Tested?

An interesting question is ‘What aspects of your software
system should be subject to testing?’. In general, anything
that is repeatable should be subject to formal (and ideally
automated) testing. This includes(but is not limited to):

The build process for all technologies involved.
The deployment process to all platforms under
consideration.
The installation process for all runtime environments.
The upgrade process for all supported versions (if
appropriate).
The performance of the system/servers as loads increase.
The stability for systems that must run for any period of
time (e.g. 24 7 systems).
The backup processes.
The security of the system.
The recovery ability of the system on failure.
The functionality of the system.

The integrity of the system.

Notice that only the last two of the above list might be what is
commonly considered areas that would be subject to testing.
However, to ensure the quality of the system under
consideration, all of the above are relevant. In fact, testing
should cover all aspects of the software development life
cycle and not just the QA phase. During requirements
gathering testing is the process of looking for missing or
ambiguous requirements.

During this phase consideration should also be made with
regard to how the overall requirements will be tested, in the
final software system.

Test planning should also look at all aspects of the software
under test for functionality, usability, legal compliance,
conformance to regulatory constraints, security,
performance, availability, resilience, etc. Testing should be
driven by the need to identify and reduce risk.

Testing Software Systems

As indicated above there are a number of di�erent types of
testing that are commonly used within industry. These types
are:

Unit Testing, which is used to verify the behavior of
individual components.
Integration Testing that tests that when individual
components are combined together to provide higher-
level functional units, that the combination of the units
operates appropriately.
Regression Testing. When new components are added to
a system, or existing components are changed, it is
necessary to verify that the new functionality does not
break any existing functionality. Such testing is known as
Regression Testing.

Performance Testing is used to ensure that the systems’
performance is as required and, within the design
parameters, and is able to scale as utilization increases.
Stability Testing represents a style of testing which
attempts to simulate system operation over an extended
period of time. For example, for a online shopping
application that is expected to be up and running 24 7 a
stability test might ensure that with an average load that
the system can indeed run 24 hours a day for 7 days a
week.
Security Testing ensures that access to the system is
controlled appropriately given the requirements. For
example, for an online shopping system there may be
di�erent security requirements depending upon whether
you are browsing the store, purchasing some products or
maintaining the product catalogue.
Usability Testing which may be performed by a specialist
usability group and may involved filming users while they
use the system.
System Testing validates that the system as a whole
actually meets the user requirements and conforms to
required application integrity.
User Acceptance Testing is a form of user oriented testing
where users confirm that the system does and behaves in
the way they expect.
Installation, Deployment and Upgrade Testing. These
three types of testing validate that a system can be

installed and deployed appropriate including any upgrade
processes that may be required.
Smoke Tests used to check that the core elements of a
large system operate correctly. They can typically be run
quickly and in a faction of the time taken to run the full
system tests.

Key testing approaches are discussed in the remainder of this
section.

Unit Testing

A unit can be as small as a single function or as large as a
subsystem but typically is a class, object,self-contained
library (API) or web page. By looking at a small self-
contained component an extensive set of tests can be
developed to exercise the defined requirements and
functionality of the unit.

Unit testing typically follows a white box approach, (also
called Glass Box or Structural testing), where the testing
utilizes knowledge and understanding of the code and its
structure, rather than just its interface (which is known as the
black box approach).

In white box testing,test coverage is measured by the number
of code paths that have been tested. The goal in unit testing is

to provide 100% coverage: to exercise every instruction, all
sides of each logical branch,all called objects, handling of all
data structures, normal and abnormal termination of all
loops etc. Of course this may not always be possible but it is a
goal that should be aimed for. Many auto- mated test tools
will include a code coverage measure so that you are aware of
how much of your code has been exercised by any given set of
tests.

Unit Testing is almost always automated—there are many
tools to help with this, perhaps the best-known being the
xUnit family of test frameworks such as JUnit for Java and
PyUnit for Python. The framework allows developers to:

focus on testing the unit,
simulate data or results from calling another unit
(representative good and bad results)
create data driven tests for maximum flexibility and
repeatability,
rely on mock objects that represent elements outside the
unit that it must interact with.

Having the tests automated means that they can be run
frequently, at the very least after initial development and
after each change that a�ects the unit.

Once confidence is established in the correct functioning of
one unit, developers can then use it to help test other units

with which it interfaces, forming larger units that can also be
unit tested or, as the scale gets larger, put through
Integration Testing.

Integration Testing

Integration testing is where several units (or modules) are
brought together to be tested as an entity in their own right.
Typically, integration testing aims to ensure that modules
interact correctly and the individual unit developers have
interpreted the requirements in a consistent manner.

An integrated set of modules can be treated as a unit and unit
tested in much the same way as the constituent modules, but
usually working at a “higher” level of functionality.
Integration testing is the intermediate stage between unit
testing and full system testing.

Therefore, integration testing focuses on the interaction
between two or more units to make sure that those units work
together successfully and appropriately. Such testing is
typically conducted from the bottom up but may also be
conducted top down using mocks or stubs to represented
called or calling functions. An important point to note is that
you should not aim to test everything together at once (so
called Big Bang testing) as it is more di�cult to isolate bugs
in order that they can be rectified. This is why it is more

common to find that integration testing has been performed
in a bottom up style.

System Testing

System Testing aims to validate that the combination of all
the modules, units, data, installation, configuration etc.
operates appropriately and meets the requirements specified
for the whole system. Testing the system has a whole
typically involves testing the top most functionality or
behaviors of the system. Such Behavior Based testing often
involves end users and other stake holders who are less
technical. To support such tests a range of technologies have
evolved that allow a more English style for test descriptions.
This style of testing can be used as part of the requirements
gathering process and can lead to a Behavior Driven
Development (BDD) process. The Python module pytest-bdd
provides a BDD style extension to the core pytest framework.

Installation/Upgrade Testing

Installation testing is the testing of full, partial or upgrade
install processes. It also validates that the installation and
transition software needed to move to the new release for the
product is functioning properly. Typically, it

verifies that the software may be completely uninstalled
through its back-out process.
determines what files are added, changed or deleted on
the hardware on which the program was installed.
determines whether any other programs on the hardware
are a�ected by the new software that has been installed.
determines whether the software installs and operates
properly on all hardware platforms and operating
systems that it is supposed to work on.

Smoke Tests

A smoke test is a test or suite of tests designed to verify that
the fundamentals of the system work. Smoke tests may be run
against a new deployment or a patched deployment in order
to verify that the installation performs well enough to justify
further testing. Failure to pass a smoke test would halt any
further testing until the smoke tests pass. The name derives
from the early days of electronics: If a device began to smoke
after it was powered on, testers knew that there was no point
in testing it further. For software technologies, the
advantages of performing smoke tests include:

Smoke tests are often automated and standardized from
one build to another.
Because smoke tests validate things that are expected to
work, when they fail it is usually an indication that

something fundamental has gone wrong (the wrong
version of a library has been used) or that a new build has
introduced a bug into core aspects of the system.
If a system is built daily, it should be smoke tested daily.
It will be necessary to periodically add to the smoke tests
as new functionality is added to the system.

Automating Testing

The actual way in which tests are written and executed needs
careful consideration. In general, we wish to automate as
much of the testing process as is possible as this makes it
easy to run the tests and also ensures not only that all tests
are run but that they are run in the same way each time. In
addition,once an automated test is set up it will typically be
quicker to re-run that automated test than to manually
repeat a series of tests. However, not all of the features of a
system can be easily tested via an automated test tool and in
some cases the physical environment may make it hard to
automate tests.

Typically, most unit testing is automated and most
acceptance testing is manual. You will also need to decide
which forms of testing must take place. Most software
projects should have unit testing,integration testing, system
testing and acceptance testing as a necessary requirement.

Not all projects will implement performance or stability
testing, but you should be careful about omitting any stage of
testing and be sure it is not applicable.

Test Driven Development

Test Driven Development (or TDD) is a development
technique whereby developers write test cases before they
write any implementation code. The tests thus drive or dictate
the code that is developed. The implementation only provides
as much functionality as is required to pass the test and thus
the tests act as a specification of what the code does (and
some argue that the tests are thus part of that specification
and provide documentation of what the system is capable of).

TDD has the benefit that as tests must be written first, there
are always a set of tests available to perform unit, integration,
regression testing etc. This is good as developers can find that
writing tests and maintaining tests is boring and of less
interest than the actual code itself and thus put less emphasis
into the testing regime than might be desirable. TDD
encourages, and indeed requires,that developers maintain an
exhaustive set of repeatable tests and that those tests are
developed to the same quality and standards as the main body
of code.

There are three rules of TDD as defined by Robert Martin,
these are:

1. You are not allowed to write any production code unless it
is to make a failing unit test pass

2. You are not allowed to write any more of a unit test than
is su�cient to fail; and compilation failures are failures

3. You are not allowed to write any more production code
than is su�cient to pass the one failing unit test.

This leads to the TDD cycle described in the next section.

The TDD Cycle

There is a cycle to development when working in a TDD
manner. The shortest form of this cycle is the TDD mantra:

Red /Green /Refactor

Which relates to the unit testing suite of tools where it is
possible to write a unit test. Within tools such as PyCharm,
when you run a pyunit or pytest test a Test View is shown
with Red indicating that a test failed or Green indicating that
the test passed. Hence Red/Green, in other words write the
test and let it fail, then implement the code to ensure it
passes. The last part of this mantra is Refactor which
indicates once you have it working make the code cleaner,
better, fitter by Refactoring it. Refactoring is the process by

which the behavior of the system is not changed but the
implementation is altered to improve it.

The full TDD cycle is shown by the following diagram which
highlights the test first approach of TDD:

The TDD mantra can be seen in the TDD cycle that is shown
above and described in more detail below:

1. Write a single test.
2. Run the test and see it fail.
3. Implement just enough code to get the test to pass.
4. Run the test and see it pass.
5. Refactor for clarity and deal with any issue of reuse etc.
6. Repeat for next test.

Test Complexity

The aim is to strive for simplicity in all that you do within
TDD. Thus, you write a test that fails, then do just enough to
make that test pass (but no more). Then you refactor the
implementation code (that is change the internals of the unit
under test) to improve the code base. You continue to do this
until all the functionality for a unit has been completed. In
terms of each test, you should again strive for simplicity with
each test only testing one thing with only a single assertion
per test (although this is the subject of a lot of debate within
the TDD world).

Refactoring

The emphasis on refactoring within TDD makes it more than
just testing or Test First Development. This focus on
refactoring is really a focus on (re)design and incremental
improvement. The tests provide the specification of what is
needed as well as the verification that existing behavior is
maintained,but refactoring leads to better design software.
Thus, without refactoring TDD is not TDD!

Design for Testability

Testability has a number of facets

Configurability. Set up the object under test to an
appropriate configuration for the test
Controllability.Control the input (and internal state)
Observability.Observe its output
Verifiability. That we can verify that output in an
appropriate manner.

Testability Rules of Thumb

1. If you cannot test code then change it so that you can!
2. If your code is di�cult to validate then change it so that it

isn’t!
3. Only one concrete class should be tested per Unit test and

then Mock the Rest!
4. If you code is hard to reconfigure to work with Mocks

then make it so that you code can use Mocks!
5. Design your code for testability!

Book Resources

The Art of Software Testing, G.J. Myers, C. Sandlerand T.
Badgett, John Wiley & Sons, 3rd Edition (Dec 2011),
1118031962.

PyTestTes�ng Framework

Introduction

There are several testing frameworks available for Python,
although only one, unit test comes as part of the typical
Python installation. Typical libraries include Unit test, (which
is available within the Python distribution by default) and
PyTest.

In this chapter we will look at PyTest and how it can be used
to write unit tests in Python for both functions and classes.

What Is PyTest?

PyTest is a testing library for Python; it is currently one of the
most popular Python testing libraries (others include unit
test and doc test). PyTest can be used for various levels of
testing, although its most common application is as a unit
testing framework. It is also often used as a testing
framework within a TDD based development project. In fact,
it is used by Mozilla and Dropbox as their Python testing
framework.

PyTest o�ers a large number of features and great flexibility
in how tests are written and in how set up behavior is defined.
It automatically finds test based on naming conventions and
can be easily integrated into a range of editors and IDEs
including PyCharm.

Setting Up PyTest

You will probably need to set up PyTest so that you can use it
from within your environment. If you are using the PyCharm
editor, then you will need to add the PyTest module to the
current PyCharm project and tell PyCharm that you want to
use PyTest to run all tests for you.

A Simple PyTest Example

Something to Test

To be able to explore PyTest we first need something to test;
we will therefore define a simple Calculator class. The
calculator keeps a running total of the operations performed;
it allows a new value to be set and then this value can be
added to, or subtracted from, that accumulated total.

class Calculator:
def init (self): self.current = 0 self.total = 0

def set(self, value):
self.current = value
def add(self):
self.total += self.current
def sub(self):
self.total -= self.current
def total(self):
return self.total

Save this class into a file called calculator.py.

Writing a Test

We will now create a very simple PyTest unit test for our
Calculator class. This test will be defined in a class called
test_calculator.py. You will need to import the calculator
class we wrote above into your test_calculator.py file
(remember each file is a module in Python).

The exact import statement will depend on where you placed
the calculator file relative to the test class. In this case the two
files are both in the same directory and so we can write:

from calculator import Calculator

We will now define a test,the test should be pre-fixed with
test_ for PyTest to find them. In fact PyTest uses several
conventions to find tests, which are:

Search for test_*.py or*_test.py files.
From those files, collect test items:

– test_prefixed test functions,
– test_prefixed test methods inside Test prefixed test

classes (without an init method).

Note that we keep test files and the files containing the code
to be tested separate; indeed in many cases they are kept in
di�erent directory structures. This means that there is not
chance of developers accidentally using tests in production
code etc.

Now we will add to the file a function that defines a test. We
will call the function test_add_one; it needs to start with
test_ due to the above convention. However, we have tried to
make the rest of the function name descriptive, so that its
clear what it is testing. The function definition is given below:

from calculator import Calculator
def test_add_one():
calc = Calculator() calc.set(1) calc.add()
assert calc.total == 1

The test function creates a new instance of the Calculator
class and then calls several methods on it; to set up the value
to add, then the call to the add() method itself etc.

The final part of the test is the assertion. The assert verifies
that the behavior of the calculator is as expected. The PyTest
assert statement works out what is being tested and what it
should do with the result—including adding information to
be added to a test run report. It avoids the need to have to
learn a load of assert Something type methods (unlike some
other testing frameworks).

Note that a test without an assertion is not a test; i.e. it does
not test anything. Many IDEs provide direct support for
testing frameworks including PyCharm. For example,
PyCharm will now detect that you have written a function
with an assert statement in it and add a Run Test icon to the
grey area to the left of the editor. This can be seen in the
following picture where a green arrow has been added at line
4; this is the ‘Run Test’ button:

The developer can click on the green arrow to run the test.
They will then be presented with the Run menu that is
preconfigured to use PyTest for you:

If the developer now selects the Run option; this will use the
PyTest runner to execute the test and collect information
about what happened and present it in a PyTest output view
at the bottom of the IDE:

Here you can see a tree in the left-hand panel that currently
holds the one test defined in the test_calculator.py file. This
tree shows whether tests have passed or failed. In this case we
have a green tick showing that the test passed.

To the right of this tree is the main output panel which shows
the results of running the tests. In this case it shows that
PyTest ran only one test and that this was the test_add_one

test which was defined in test_calculator.py and that 1 test
passed.

If you now change the assertion in the test to check to see that
the result is 0 the test will fail. When run, the IDE display will
update accordingly.

The tree in the left-hand pane now shows the test as failed
while the right-hand pane provides detailed information
about the test that failed including where in the test the failed
assertion was defined. This is very helpful when trying to
debug test failures.

Working with PyTest

Testing Functions

We can test standalone functions as well as classes using
PyTest. For example, given the function increment below
(which merely adds one to any number passed into it):

def increment(x):
return x + 1
We can write a PyTest test for this as follows:
def test_increment_integer_3():
assert increment(3) == 4

The only real di�erence is that we have not had to make an
instance of a class:

Organizing Tests

Tests can be grouped together into one or more files; PyTest
will search for all files following the naming convention (file
names that either start or end with ‘test’) in specified
locations:

If no arguments are specified when PyTest is run then the
search for suitably named test files starts from the test
paths environment variable (if confugured) or the current
directory. Alternatively, command line arguments can be
used in any combination of directories or filenames etc.
PyTest will recursively search down into sub directories,
unless they match no recurs dirs environment variable.
In those directories, it will search for files that match the
naming conventions test_*.py or*_test.py files.

Tests can also be arranged within test files into Test
classes.Using test classes can be helpful in grouping tests

together and managing the setup and tear down behaviors of
separate groups of tests. However, the same e�ect can be
achieved by separating the tests relating to di�erent
functions or classes into di�erent files.

Test Fixtures

It is not uncommon to need to run some behavior before or
after each test or indeed before or after a group of tests. Such
behaviors are defined within what is commonly known as test
fixtures.

We can add specific code to run:

at the beginning and end of a test class module of test
code (setup_module/teardown_module)
at the beginning and end of a test class
(setup_class/teardown_class) or using the alternate
style of the class level fixtures (setup/teardown)
before and after a test function call
(setup_function/teardown_function)
before and after a test method call
(setup_method/teardown_method)

To illustrate why we might use a fixture, let us expand our
Calculator test:

def test_initial_value(): calc = Calculator() assert
calc.total== 0
def test_add_one():
calc = Calculator() calc.set(1) calc.add()
assert calc.total == 1
def test_subtract_one(): calc = Calculator() calc.set(1)
calc.sub()
assert calc.total == -1
def test_add_one_and_one(): calc = Calculator() calc.set(1)
calc.add() calc.set(1) calc.add()
assert calc.total == 2

We now have four tests to run (we could go further but this is
enough for now). One of the issues with this set of tests is that
we have repeated the creation of the Calculator object at the
start of each test. While this is not a problem in itself it does
result in duplicated code and the possibility of future issues in
terms of maintenance if we want to change the way a
calculator is created. It may also not be as e�cient as reusing
the Calculator object for each test.

We can however, define a fixture that can be run before each
individual test function is executed. To do this we will write a
new function and use the pytest.fixture decorator on that
function. This marks the function as being special and that it
can be used as a fixture on an individual function.

Functions that require the fixture should accept a reference to
the fixture as an argument to the individual test function. For

example, for a test to accept a fixture called calculator; it
should have an argument with the fixture name, i.e.
calculator. This name can then be used to access the object
returned. This is illustrated below:

import pytest
from calculator import Calculator
@pytest.fixture defcalculator():
"""Returns a Calculatorinstance"""
return Calculator()
def test_initial_value(calculator):
assert calculator.total == 0
def test_add_one(calculator): calculator.set(1) calculator.add()
assert calculator.total == 1
def test_subtract_one(calculator): calculator.set(1)
calculator.sub()
assert calculator.total == -1
def test_add_one_and_one(calculator):
calculator.set(1) calculator.add() calculator.set(1)
calculator.add()
assert calculator.total == 2

In the above code, each of the test functions accepts the
calculator fixture that is used to instantiate the Calculator
object. We have therefore de-duplicated our code; there is
now only one piece of code that defines how a calculator
object should be created for our tests. Note each test is
supplied with a completely new instance of the Calculator
object; there is therefore no chance of one test impacting on
another test.

It is also considered good practice to add a doc string to your
fixtures as we have done above. This is because PyTest can
produce a list of all fixtures available along with their doc
strings. From the command line this is done using:

> pytest fixtures

The PyTest fixtures can be applied to functions (as above),
classes, modules, packages or sessions. The scope of a fixture
can be indicated via the (optional) scope parameter to the
fixture decorator. The default is “function” which is why we
did not need to specify anything above. The scope determines
at what point a fixture should be run. For example, a fixture
with ‘session’ scope will be run once for the test session, a
fixture with module scope will be run once for the module
(that is the fixture and anything it generates will be shared
across all tests in the current module), a fixture with class
scope indicates a fixture that is run for each new instance of a
test class created etc.

Another parameter to the fixture decorator is auto use which
if set to True will activate the fixture for all tests that can see
it. If it is set to False (which is the default)then an explicit
reference in a test function(or method etc.) is required to
activate the fixture.

If we add some additional fixtures to our tests we can see
when they are run:

import pytest
from calculator import Calculator
@pytest.fixture(scope='session', autouse=True)
def session_scope_fixture():
print('session_scope_fixture')
@pytest.fixture(scope='module', autouse=True)
def module_scope_fixture():
print('module_scope_fixture')
@pytest.fixture(scope='class', autouse=True)
def class_scope_fixture():
print('class_scope_fixture')
@pytest.fixture def calculator():
"""Returns a Calculator instance""" print('calculator fixture')
return Calculator()
def test_initial_value(calculator):
assert calculator.total == 0
def test_add_one(calculator): calculator.set(1) calculator.add()
assert calculator.total == 1
def test_subtract_one(calculator): calculator.set(1)
calculator.sub()
assert calculator.total == -1
def test_add_one_and_one(calculator):
calculator.set(1) calculator.add() calculator.set(1)
calculator.add()
assert calculator.total == 2
If we run this version of the tests, then the output shows when
the various
fixtures are run:
session_scope_fixture module_scope_fixture class_scope_fixture
calculator fixture
.class_scope_fixture calculator fixture
.class_scope_fixture calculator fixture

.class_scope_fixture calculator fixture

Parameterised Tests

One common requirement of a test to run the same tests
multiple times with several di�erent input values. This can
greatly reduce the number of tests that must be defined. Such
tests are referred to as parametrised tests; with the parameter
values for the test specified using the
@pytest.mark.parametrize decorator.

@pytest.mark.parametrize decorator.

@pytest.mark.parametrize('input1,input2,expected', [(3, 1, 4),
(3, 2, 5),
])
def test_calculator_add_operation(calculator, input1,
input2,expected):
calculator.set(input1)
calculator.add() calculator.set(input2) calculator.add()
assert calculator.total == expected

This illustrates setting up a parametrised test for the
Calculator in which two input values are added together and
compared with the expected result. Note that the parameters
are named in the decorator and then a list of tuples is used to
define the values to be used for the parameters. In this case

mailto:@pytest.mark.parametrize

the test_ calculator_add_operation will be run two passing
in 3, 1 and 4 and then passing in 3, 2 and 5 for the parameters
input1, input2 and expected respectively.

Testing for Exceptions

You can write tests that verify that an exception was raised.
This is useful as testing negative behavior is as important as
testing positive behavior. For example, we might want to
verify that a particular exception is raised when we attempt to
withdraw money from a bank account which will take us over
our overdraft limit.

To verify the presence of an exception in PyTest use the with
statement and pytest.raises. This is a context manager that
will verify on exit that the specified exception was raised. It is
used as follows:

with pytest.raises(accounts.BalanceError):
current_account.withdraw(200.0)

Ignoring Tests

In some cases it is useful to write a test for functionality that
has not yet been implemented; this may be to ensure that the

testis not forgotten or because it helps to document what the
item under test should do. However, if the test is run then the
test suite as a whole will fail because the test is running
against behavior that has yet to be written.

One way to address this problem is to decorate a test with the
@pytest.- mark.skip decorator:

@pytest.mark.skip(reason='not implemented yet')
def test_calculator_multiply(calculator):
calculator.multiply(2, 3)
assert calculator.total == 6

This indicates that PyTest should record the presence of the
test but should not try to execute it. PyTest will then note that
the test was skipped, for example in PyCharm this is shown
using a circle with a line through it.

It is generally considered best practice to provide a reason
why the test has been skipped so that it is easier to track. This
information is also available when PyTest skips the test:

Try

Create a simple Calculator class that can be used for testing
purposes. This simple calculator can be used to add, subtract,
multiple and divide numbers.

This will be a purely command driven application that will
allow the user to specify

the operation to perform and
the two numbers to use with that operation.

The Calculator object will then return a result.The same
object can be used to repeat this sequence of steps. This

general behavior of the Calculator is illustrated below in flow
chart form:

You should also provide a memory function that allows the
current result to be added to or subtracted from the current
memory total. It should also be possible to retrieve the value
in memory and clear the memory. Next write a PyTest set of
tests for the Calculator class.

Think about what tests you need to write; remember you
can’t write tests for every value that might be used for an
operation; but consider the boundaries, 0, −1, 1, −10, +10 etc.

Of course you also need to consider the cumulative e�ect of
the behavior of the memory feature of the calculator; that is
multiple memory adds or memory subtractions and
combinations of these.

As you identify tests you may find that you have to update
your implementation of the Calculator class. Have you taken
into account all input options, for example dividing by zero—
what should happen in these situations.

Mocking for Tes�ng

Introduction

Testing software systems is not an easy thing to do; the
functions, objects,methods etc. That are involved in any
program can be complex things in their own right. In many
cases they depend on and interact with other functions,
methods and objects; very few functions and methods operate
in isolation. Thus the success of failure of a function or
method or the overall state of an object is dependent on other
program elements.

However, in general it is a lot easier to test a single unit in
isolation rather than to test it as part of a larger more
complex system. For example, let us take a Python class as a
single unit to be tested. If we can test this class on its own we
only have to take into account the state of the classes object
and the behavior defined for the class when writing our test
and determining appropriate outcomes.

However, if that class interacts with external systems such as
external services, databases, third party software, data
sources etc. Then the testing process becomes more complex:

It may now be necessary to verify data updates made to the
database,or information sent to a remote service etc. to
confirm that the operation of a class’s object is correct. This
makes not only the software being tested more complex but it
also makes the tests themselves more complex. This means
that there is greater chance that the test will fail, that the
tests will contain bugs or issues themselves and that the test
will be harder for someone to understand and maintain. Thus

a common objective when writing unit tests or subsystem
tests is to be able to test elements/ units in isolation.

The question is how to do this when a function or method
relies on other elements?

The key to decoupling functions, methods and objects from
other program or system elements is to use mocks. These
mocks can be used to decouple one object rom another, one
function from another and one system from another; thereby
simplifying the testing environment. These mocks are only
intended to be used for testing purposes, for example the
above scenario could be simplified by mocking out each of the
external systems as shown below:

Mocking is not a Python specific concept and there are many
mocking libraries available for may di�erent languages.
However, in this chapter we will be focusing on the
unites.mock library which has been part of the standard
Python distribution since Python 3.3.

Why Mock?

A useful first question to consider with regard to mocking, in
software testing, is ‘Why mock?’. That is, why bother with the
concept of a mock in the first place;

why not test with the real thing?

There are several answers to this, some of which are
discussed below:

Testing in isolation is easier. As mentioned in the
introduction, testing a unit (whether that is a class, a
function, a module etc.) is easier in isolation then when
dependent on external classes, functions, modules etc.

The real thing is not available. In many cases it is necessary to
mock out part of a system or an interface to another system
because the real thing is just not available. This could be for
several reasons including that it has not been developed
yet.In the natural course of software development some parts

of a system are likely to be developed and ready for testing
before other parts. If one part relies on another part for some
element of its operation then the system that is not yet
available can be mocked out. In other situations the
development team or test team may not have access to the
real thing. This may because it is only available within a
production context. For example, if a software development
house is developing one subsystem it may not have access to
another subsystem as it is proprietary and only accessible
once the software has been deployed within the client
organization.

Real elements can be time consuming. We want our tests to
run as quickly as possible and certainly within a Continuous
Integration (CI) environment we want them to run fast
enough that we can repeatedly test a system throughout the
day. In some situations the real thing may take a significant
amount of time to process the test scenario. As we want to
test our own code we may not be worried about whether a
system outside of our control operates correctly or not (at
least at this level of testing; it may still be a concern for
integration and system testing). We can therefore improve
the response times of our tests if we mock out the real system
and replace it with a mock that provides much faster response
times (possibly because it use scanned responses).

The real thing takes time to set up. In a Continuous
Integration (CI) environment, new builds of a system are
regularly and repeatedly tested (for example whenever a
change is made to their code base). In such situations it may
be necessary to configure and deploy the final system to a
suitable environment to perform appropriate tests. If an
external system is time consuming to configure, deploy and
initialize it may be more e�ective to mock that system out.

Di�cult to emulate certain situations. It can be di�cult
within a test scenario to emulate specific situations. These
situations are often related to error or exceptional
circumstances that should never happen within a correctly
functioning environment. However, it may well be necessary
to validate that if such a situation does occur, then the
software can deal with that scenario. If these scanners are
related to how external (the unit under test) system fail or
operate incorrectly then it may be necessary to mock out
these systems to be able to generate the scenarios.

We want repeatable tests. By their very nature when you run a
test you either want it to pass or fail each time it is run with
the same inputs. You certainly do not want tests that pass
sometimes and fail other times. This mean that there is no
confidence in the tests and people often start ignoring failed
tests. This situation can happen if the data provided by
systems that a test depends on do not supply repeatable data.

This can happen for several di�erent reason but a common
cause is because they return real data. Such real data may be
subject to change, for example consider a system that uses a
data feed for the current exchange rate between funds and
dollars. If the associated test confirms that a trade when
priced in dollars is correctly converted to funds using the
current exchange rate then that test is likely to generate a
di�erent result every time it is run. In this situation it would
lie better to mock out the current exchange rate service so
that a fixed/known exchange rate is used.

The Real System is not reliable enough. In some cases the real
system may not be reliable enough itself to allow for
repeatable tests. The Real System may not allow tests to be
repeated. Finally, the real system may not allow tests to be
easily repeated. For example, a test which involves lodging a
trade for a certain number of IBM shares with an Trade Order
management system may not allow that trade, with those
shares, for that customer to be run several times (as it would
then appear to be multiple trades). However, for the purposes
of testing we may want to test submitting such a trade in
multiple di�erent scenarios, multiple times.It may therefore
be necessary to mock out the real Order Management System
so that such tests can be written.

What Is Mocking?

The previous section gave several reasons to use mocks; the
next thing to consider then is what is a mock?

Mocks, including mock functions,methods and mock objects
are things that:

Possess the same interface as the real thing, whether they
are mock functions, methods or whole objects. They thus
take the same range and types of parameters and return
similar information using similar types.
Define behavior that in some way represents/mimics real
exemplar behavior but typically in very controlled ways.
This behavior may be hard coed, may really on a set of
rules or simplified behavior; may be very simplistic or
quiet sophisticated in its own right.

They thus emulate the real system and from outside of the
mock may actually appear to be the real system.

In many cases the term mock is used to cover a range of
di�erent ways in which the real thing can be emulated; each
type of mock has its own characteristics. It is therefore useful
to distinguish the di�erent types of mocks as this can help
deter- mine the style of mock to be adopted in a particular
test situation.

The are di�erent types of Mock including:

Test Stubs. A test stub is typically a hand coded function,
method or object used for testing purposes. The behavior
implemented by a test stub may rep- resent a limited sub
set of the functionality of the real thing.
Fakes.Fakes typically provide addition functionality
compared with a Test Stub. Fakes may be considered to be
a test specific version of the real thing, such as an in
memory database used for testing rather than the real
database. Such Fakes typically still have some limitations
on their functionality, for example when the tests are
terminated all data is purged from the in memory
database rather than stored permanently on disk.
Auto generated Test Mocks. These are typically generated
automatically using a supporting framework. As part of
the set up of the test the expectations associated with the
test mock. These expectations may specify the results to
return for specific inputs as well as whether the test mock
was called etc.
Test Mock Spy. If we are testing a particular unit and it
returns the correct result

we might decided that we do not need to consider the internal
behavior of the unit. However, it is common to want to
confirm that the test mock was invoked in the way we
expected. This helps verify the internal behavior of the unit
under test. This can be done using a test mock spy. Such a test
mock records how many times it was called and what the

parameters used where (as well as other information). The
test can then interrogate the test mock to validate that it was
invoked as expected/as many times as expected/with the
correct parameters etc.

Common Mocking Framework Concepts

As has been mentioned there are several mocking frameworks
around for not only Python but other languages such as Java,
C# and Scala etc. All of these frameworks have a common core
behavior. This behavior allows a mock function, method or
object to be created based on the interface presented by the
real thing. Of course unlike languages such as C# and Java
Python does not have a formal interface concept; however
this does not stop the mocking framework from still using the
same idea.

In general once a mock has been created it is possible to
define how that mock should appear to behave; in general this
involves specifying the return result to use fora function or
method. It is also possible to verify that the mock has been
invoked as expected with the parameters expected.

The actual mock can be added to a test or a set of tests either
programmatically or via some form of decorator. In either
case for the duration of the test the mock will be used instead
of the real thing.

Assertions can then be used to verify the results returned by
the unit under test while mock specific methods are typically
used to verify (spy on) the methods defined on the mock.

Mocking Frameworks for Python

Due to Python’s dynamic nature it is well suited to the
construction of mock functions, methods and objects.In fact
there are several widely used mocking frameworks available
for Python including:

unittest.mock The unittest.mock (included in the Python
distribution from Python 3.3 on wards). This is the default
mocking library provided with Python for creating mock
objects in Python tests.
pymox This is a widely used making framework. It is an
open source frame- work and has a more complete set of
facilities for enforcing the interface of a mocked class.
Mocktest This is another popular mocking framework. It
has its own DSL (Domain Specific Language) to support
mocking and a wide set of expectation matching behavior
for mock objects.

In the remainder of this chapter we will focus on the
unittest.mock library as it is provided as part of the standard
Python distribution.

The unittest.mock Library

The standard Python mocking library is the unittest.mock
library. It has been included in the standard Python
distribution since Python3.3 and provides a simple way to
define mocks for unit tests.

The key to the unittest.mock library is the Mock class and its
subclass MagicMock. Mock and MagicMock objects can be
used to mock functions, methods and even whole classes.
These mock objects can have canned responses defined so
that when they are involved by the unit under test they will
respond appropriately. Existing objects can also have
attributes or individual methods mocked allowing an object
to be tested with a known state and specified behavior.

To make it easy to work with mock objects, the library
provides the

@unittest.mock.patch() decorator. This decorator can be
used to replace real functions and objects with mock
instances. The function behind the decorator can also be used
as a context manager allowing it to be used in with-as
statements providing for fine grained control over the scope
of the mock if required.

Mock and Magic Mock Classes

mailto:@unittest.mock.patch

The unittest.mock library provides the Mock class and the
MagicMock class. The Mock class is the base class for mock
objects. The MagicMock class is a subclass of the Mock class.
It is called the MagicMock class as it provides default
implementations for several magic method such as . len (), .

str (), and . iter ().

As a simple example consider the following class to be tested:

class SomeClass():
def _hidden_method(self):
return 0
def public_method(self, x):
return self.hidden_method() + x

This class defines two methods; one is intended as part of the
public interface of the class (the public_method()) and one it
intended only for internal or private use (the
_hidden_method()). Notice that the hidden method uses the
convention of preceding its name by an underbar (‘_’).

Let us assume that we wish to test the behavior of the
public_method() and want to mock out the
_hidden_method().

We can do this by writing a test that will create a mock object
and use this in place of the real _hidden_method(). We could

probably use either the Mock class or the MagicMock class for
this; however due to the additional functionality provided by
the MagicMock class it is common practice to use that class.
We will therefore do the same.

The test to be created will be defined within a method within
a test class. The names of the test method and the test class
are by convention descriptive and thus will describe what is
being tested, for example:

from unittest.mock import *
from unittest import TestCase
from unittest import main
class test_SomeClass_public_interface(TestCase):
def test_public_method(self):
test_object = SomeClass()
Set up canned response on mock method
test_object._hidden_method = MagicMock(name =
'hidden_method')
test_object._hidden_method.return_value = 10
Test the object
result = test_object.public_method(5)
self.assertEqual(15, result, 'return value from public_method
incorrect')

In this case note that the class being tested is instantiated
first. The MagicMock is then instantiated and assigned to the
name of the method to be mocked. This in e�ect replaces that
method for the test_object. TheMagicMock. The MagicMock

object is given a name as this helps with treating any issues in
the report generated by the unites framework. Following this
the canned response from the mock version of the
_hidden_method() is defined; it will always return the value
10.

At this point we have set up the mock to be used for the test
and are now ready to run the test. This is done in the next line
where the public_method() is called on the test_object with
the parameter 5. The result is then stored.

The test then validates the result to ensure that it is correct;
i.e. that the returned value is 15.

Although this is a very simple example it illustrates how a
method can be mocked out using the MagicMock class.

The Patchers

The unittest.mock.patch(), unittest.mock.patch.object() and
unittest.patch.dict() decorators can be used to simplify the
creation of mock objects.

The patch decorator takes a target for the patch and
returns a MagicMock objectin its place. It can be used as a
TastCase method or class decorator. As a class decorator
it decorates each test method in the class automatically.It

can also be used as a context manager via the with and
with-as statements.
The patch.object decorator can be provided with either
two or three arguments. When given three arguments it
will replace the object to be patched, with a mock for the
given attribute/method name. When given two
arguments the object to be patched is given a default
MagicMock object for the specified attribute/function.
The patch.dict decorator patches a dictionary or
dictionary like object.

For example, we can rewrite the example presented in the
previous section using the @patch.object decorator to
provides the mock object for the _hid- den_method() (it
returns a MagicMock linked to SomeClass):

class test_SomeClass_public_interface(TestCase):
@patch.object(SomeClass, '_hidden_method')
def test_public_method(self, mock_method):
Set up cannedresponse
mock_method.return_value = 10
Createobject to be tested
test_object = SomeClass()
result = test_object.public_method(5)
self.assertEqual(15, result, 'return value from
public_methodincorrect')

In the above code the _hidden_method() is replaced with a
mock version for SomeClass within the
test_public_method() method. Note that the mock version of

mailto:@patch.object

the method is passed in as a parameter to the test method so
that the canned response can be specified. You can also use
the @patch() decorator to mock a function from a module.

For example, given some external module with a function
api_call, we can mock that function out using the @patch()
decorator:

@patch('external_module.api_call')
def test_some_func(self, mock_api_call):

This uses patch() as a decorator and passed the target object’s
path. The target path was ‘external_module.api_call’ which
consists of the module name and the function to mock.

Mocking Returned Objects

In the examples looked at so far the results returned from the
mock functions or methods have been simple integers.
However, in some cases the returned values must themselves
be mocked as the real system would return a complex object
with multiple attributes and methods.

The following example uses a MagicMock object to represent
an object returned from a mocked function. This object has
two attributes, one is a response code and the other is a JSON

mailto:@patch
mailto:@patch

string.JSON stands for the JavaScript Object Notation and is a
commonly used format in web services.

import external_module
from unittest.mock import *
from unittest import TestCase from unittest import main import
json
def some_func():
Calls out to external API - which we want to mock
response = external_module.api_call()
return responseclass test_some_func_calling_api(TestCase):
class test_some_func_calling_api(TestCase):
@patch('external_module.api_call')
def test_some_func(self, mock_api_call):
Sets up mock version of api_call
mock_api_call.return_value = MagicMock(status_code=200,
response=json.dumps({'key':'value'}))
Calls some_func() that calls the (mock) api_call()
function
result = some_func()
Check that the result returned from some_func() is what was
expected
self.assertEqual(result.status_code, 200, "returned status
code is not 200")
self.assertEqual(result.response, '{"key": "value"}',
"response JSON incorrect")

In this example the function being tested is some_func() but
some_func() calls out to the mocked function
external_module.api_call(). This mocked function returns a
MagicMock object with a pre-specified status_code and
response. The assertions then validate that the object

returned by some_func() contains the correct status code and
response.

Validating Mocks Have Been Called

Using unittest.mock it is possible to validate that a mocked
function or method was called appropriately using
assert_called(), assert_- called_with() or
assert_called_once_with() depending on whether the
function takes parameters or not.

The following version of the
test_some_func_with_params() test method verifies that
the mock api_call() function was called with the correct
parameter.

@patch('external_module.api_call_with_param')
def test_some_func_with_param(self, mock_api_call):
Sets up mock version of api_call
mock_api_call.return_value = MagicMock(status_code=200,
response=json.dumps({'age': '23'}))
result = some_func_with_param('Phoebe')
Check result returned from some_func() is what was expected
self.assertEqual(result.response, '{age": "23"}', 'JSON
result incorrect')
Verify that the mock_api_call was called with the correct
params
mock_api_call.api_call_with_param.assert_called_with('Phoebe')

If we wished to validate that it had only been called once we
could use the assert_called_once_with() method.

Mock and Magic Mock Usage

Naming Your Mocks

It can be useful to give your mocks a name. The name is used
when the mock appears in test failure messages. The name is
also propagated to attributes or methods of the mock:

mock = MagicMock(name='foo')

Mock Classes

As well as mocking an individual method on a class it is
possible to mock a whole class. This is done by providing the
patch() decorator with the name of the class to patch (with no
named attribute/method). In this case the while class is
replaced by a MagicMock object. You must then specify how
that class should behave.

import people
from unittest.mock import * from unittest import TestCase from
unittest import main
class MyTest(TestCase):
@patch('people.Person')
def test_one(self, MockPerson): self.assertIs(people.Person,
MockPerson) instance = MockPerson.return_value

instance.calculate_pay.return_value = 250.0 payroll =
people.Payroll()
result = payroll.generate_payslip(instance)
self.assertEqual('You earned 250.0', result, 'payslip
incorrect')

In this example the people.Person class has been mocked out.
This class has a method calculate_pay() which is being
mocked here. The Payroll class has a method
generate_payslip() that expects to be given a Person object. It
then uses the information provided by the person objects
calculate_pay() method to generate the string returned by
the generate_payslip() method.

Attributes on Mock Classes

Attributes on a mock object can be easily defined, for example
if we want to set an attribute on a mock object then we can
just assign a value to the attribute:

import people
from unittest.mock import *
from unittest import TestCase
class MyTest(TestCase):
@patch('people.Person')
def test_one(self, MockPerson): self.assertIs(people.Person,
MockPerson) instance = MockPerson.return_value instance.age=
24
instance.name = 'Adam'
self.assertEqual(24, instance.age, 'age incorrect')
self.assertEqual('Adam', instance.name, 'name incorrect')

In this case the attribute age and name have been added to the
mock instance of the people.Person class.

If the attribute itself needs to be a mock object then all that is
required is to assign a MagicMock (or Mock) object to that
attribute:

instance.address = MagicMock(name='Address')

Mocking Constants

It is very easy to mock out a constant; this can be done using
the @patch() decorator and proving the name of the constant
and the new value to use. This value can be a literal value such
as 42 or ‘Hello’ or it can be a mock object itself (such as a
MagicMock object). For example:

@patch('mymodule.MAX_COUNT', 10)
def test_something(self):
Test can now use mymodule.MAX_COUNT

Mocking Properties

It is also possible to mock Python properties. This is done
again using the @patch decorator but using the
unittest.mock.PropertyMock class and the new_callable
parameter. For example:

@patch('mymoule.Car.wheels', new_callable=mock.PropertyMock)
def test_some_property(self, mock_wheels):
mock_wheels.return_value = 6
Rest of test method

Raising Exceptions with Mocks

A very useful attribute that can be specified when a mock
object is created is the side_e�ect. If you set this to an
exception class or instance then the exception will be raised
when the mock is called, for example:

mock = Mock(side_effect=Exception('Boom!'))
mock()

This will result in the Exception being raised when the mock()
is invoked.

Applying Patch to Every Test Method

If you want to mock out something for every test in a test
class then you can decorate the whole class rather than each
individual method. The e�ect of decorating the class is that
the patch will be automatically applied to all test methods in
the class (i.e. To all methods starting with the word ‘test’).
For example:

import people
from unittest.mock import *
from unittest import TestCase
from unittest import main
@patch('people.Person')
class MyTest(TestCase):
def test_one(self, MockPerson):
self.assertIs(people.Person, MockPerson)
def test_two(self, MockSomeClass):
self.assertIs(people.Person, MockSomeClass)
def do_something(self):
return 'something'

In the above test class, the tests test_one and test_two are
supplied with the mock version of the Person class. However
the do_something() method is not a�ected.

Using Patch as a Context Manager

The patch function can be used as a context manager. This
gives fine grained control over the scope of the mock object.

In the following example the the test_one() method contains
a with-as statement that we used to patch (mock) the person
class as MockPerson. This mock class is only available within
the with-as statement.

import people
from unittest.mock import * from unittest import TestCase from
unittest import main
class MyTest(TestCase):
def test_one(self):
with patch('people.Person') as MockPerson:
self.assertIs(people.Person, MockPerson) instance =
MockPerson.return_value instance.calculate_pay.return_value =
250.0 payroll = people.Payroll()
result = payroll.generate_payslip(instance)
self.assertEqual('You earned 250.0', result,
'payslip incorrect')

Mock Where You Use It

The most common error made by people using the
unittest.mock library is mocking in the wrong place. The rule
is that you must mock out where you are going to use it; or to
put it another way you must always mock the real thing
where it is imported into, not where it’s imported from.

Patch Order Issues

It is possible to have multiple patch decorators on a test
method. However, the order in which you define the patch
decorators is significant. The key to understanding what the
order should be is to work backwards so that when the mocks
are passed into the test method they are presented to the
right parameters. For example:

@patch('mymodule.sys')
@patch('mymodule.os')
@patch('mymodule.os.path')
def test_something(self, mock_os_path, mock_os, mock_sys):
The rest of the test method

Notice that the last patch’s mock is passed into the second
parameter passed to the test_something() method (self is the
first parameter to all methods). In turn the first patch’s mock
is passed into the last parameter. Thus the mocks are passed
into the test method in the reverse order to that which they
are defined in.

How Many Mocks?

An interesting question to consider is how many mocks
should you use per test?

This is the subject or a lot of debate within the software
testing community. The general rules of thumb around this

topic are given below, however it should be borne in mind
that these are guidelines rather than hard and fast rules.

Avoid more than 2 or 3 mocks per test. You should avoid
more than 2–3 mocks as the mocks themselves the get
harder to manage. Many also consider that if you need
more then 2–3 mocks per test then there are probably
some underlying design issues that need to be considered.
For example, if you are testing a Python class then that
class may have too many dependencies. Alternatively the
class may have too many responsibilities and should be
broken down into several independent classes; each with
a distinct responsibility. Another cause might be that the
class’s behavior may not be encapsulated enough and
that you are allowing other elements to interact with the
class in more informal ways (i.e. The interface between
the class and other elements is not clean/exploit enough).
The result is that it may be necessary to refactor your
class before progressing with your development and
testing.
Only Mock you Nearest Neighbor. You should only ever
mock your nearest neighbor whether that is a
function,method or object. You should try to avoid
mocking dependencies of dependencies. If you find
yourself doing this then it will become harder to
configure, maintain, understand and develop. It is also

increasingly likely that you are testing the mocks rather
than your own function, method or class.

Mocking Considerations

The following provide some rules of thumb to consider when
using mocks with your tests:

Don’t over mock—if you do then you can end up just
testing the mocks themselves.
Decide what to mock, typical examples of what to mock
include those elements that are not yet available, those
elements that are not by default repeatable (such as live
data feeds) or those elements of the system that are time
consuming or complex.
Decide where to mock such as the interfaces for the unit
under test. You want to test the unit so any interface it
has with another system, function, class might be a
candidate for a mock.
Decide when to mock so that you can determine the
boundaries for the test.
Decide how you will implement your mocks. For example
you need to consider which mocking framework(s) you
will use or how to mock larger components such as a
database

Try

One of the reasons for mocking is to ensure that tests are
repeatable. In this exercise we will mock out the use of a
random number generate to ensure that our tests can bee
easily repeated.

The following program generates a deck of cards and
randomly picks a card from the deck:

import random
def create_suite(suite):
return [(i, suite) for i in range(1, 14)]
def pick_a_card(deck):
print('You picked')
position = random.randint(0, 52) print(deck[position][0],
"of", deck[position][1]) return (deck[position])
Set up the data
hearts = create_suite('hearts') spades =
create_suite('spades') diamonds = create_suite('diamonds')
clubs = create_suite('clubs')
Make the deck of cards
deck = hearts + spades + diamonds + clubs
Randomlypick from the deck of cards
card = pick_a_card(deck)
Each time the program is run a different card is picked, for
example in two con- secutive runs the followingoutput is
obtained:
You picked
13 of clubs
You picked
1 of hearts

We now want to write a test for the pick_a_card() function.
You should mock out the random.randint() function to do
this.

Introduc�on to Files, Paths and IO

Introduction

The operating system is a critical part of any computer
systems. It is comprised of elements that manage the
processes that run on the CPU, how memory is utilized and
managed, how peripheral devices are used (such as printers
and scanners), it allows the computer system to
communicate with other systems and it also provide support
for the file system used.

The File System allows programs to permanently store data.
This data can then be retrieved by applications at a later date;
potentially after the whole computer has been shut down and
restarted.

The File Management System is responsible for managing the
creation, access and modification of the long term storage of
data in files. This data may be stored locally or remotely on
disks, tapes, DVD drives, USB drives etc.

Although this was not always the case; most modern
operating systems organize files into a hierarchical structure,
usually in the form of an inverted tree. For example in the
following diagram the root of the directory structure is shown
as ‘/’. This root directory holds six sub directories. In turn the
Users sub directory holds 3 further directories and so on:

Each file is contained within a directory (also known as a
folder on some operating systems such as Windows). A
directory can hold zero or more files and zero or more
directories.

For any give directory there are relationships with other
directories as shown below for the directory jhunt:

The root directory is the starting point for the hierarchical
directory tree structure. A child directory of a given directory
is known as a sub directory. The directory that holds the given

directory is known as the parent directory. At any one time,
the directory within which the program or user is currently
working, is known as the current working directory.

A user or a program can move around this directory structure
as required. To do this the user can typically either issue a
series of commands at a terminal or command window. Such
as cd to change directory or pwd to print the working
directory. Alternatively Graphical User Interfaces (GUIs) to
operating systems usually include some form of file manager
application that allows a user to view the file structure in
terms of a tree. The Finder program for the Mac is shown
below with a tree structure displayed for a pycharm projects
directory. A similar view is also presented for the Windows
Explorer program.

File Attributes

A file will have a set of attributes associated with it such as
the date that it was created, the date it was last
updated/modified, how large the file is etc. It will also
typically have an attribute indicating who the owner of the
file is. This may be the creator of the file; however the
ownership of a file can be changed either from the command
line or through the GUI interface. For example, on Linux and
Mac OS X the command chown can be used to change the file
ownership.

It can also have other attributes which indicate who can read,
write or execute the file. In Unix style systems (such as Linux
and Mac OS X) these access rights can be specified for the file
owner, for the group that the file is associated with and for all
other users.

The file owner can have rights specified for reading, writing
and executing a file. These are usually represented by the
symbols ‘r’, ‘w’ and ‘x’ respectively. For example the
following uses the symbolic notation associated with Unix
files and indicates that the file owner is allowed to read, write
and execute a file:

-RWX-----

Here the first dash is left blank as it is to do with special files
(or directories), then the next set of three characters
represent the permissions for the owner, the following set of
three the permissions for all other users. As this example has
rwx in

the first group of three characters this indicates that the user
can read ‘r’, write ‘w’ and execute ‘x’ the file. However the
next six characters are all dashes indicating that the group
and all other users cannot access the file at all. The group that
a file belongs to is a group that can have any number of users

as members. A member of the group will have the access
rights as indicated by the group settings on the file. As for the
owner of a file these can be to read, write or execute the file.
For example, if group members are allowed to read and
execute a file, then this would be shown using the symbolic
notation as:

---r-x--

Now this example indicates that only members of the group
can read and execute the file; note that group members
cannot write the file (they therefore cannot modify the file).

If a user is not the owner of a file, nor a member of the group
that the file is part of, then their access rights are in the
‘everyone else’ category. Again this category can have read,
write or execute permissions. For example, using the
symbolic notation, if all users can read the file but are not
able to do anything else, then this would be shown as:

----r-

Of course a file can mix the above permissions together, so
that an owner may be allowed to read, write and execute a
file, the group may be able to read and execute the file but all
other users can only read the file. This would be shown as:

-rwx-xr--

In addition to the symbolic notation there is also a numeric
notation that is used with Unix style systems. The numeric
notation uses three digits to represent the permissions. Each
of the three rightmost digits represents a di�erent
component of the permissions: owner, group, and others.

Each of these digits is the sum of its component bits in the
binary numeral system. As a result, specific bits add to the
sum as it is represented by a numeral:

The read bit adds 4 to its total (in binary 100),
The write bit adds 2 to its total (in binary 010), and
The execute bit adds 1 to its total (in binary 001).
This the following symbolic notations can be represented
by an equivalent numeric notation:

A path is a particular combination of directories that can lead
to a specific sub directory or file.

This concept is important as Unix/Linux/Max OS X and
Windows file systems represent an inverted tree of directories

and files., It is thus important to be able to uniquely reference
locations with the tree.

For example, in the following diagram the
path/Users/jhunt/work-
spaces/pycharmprojects/furtherpython/chapter2 is
highlighted:

A path may be absolute or relative. An absolute path is one
which provides a complete sequence of directories from the
root of the file system to a specific sub directory or file.

A relative path provides a sequence from the current working
directory to a particular sub directory or file.

The absolute path will work wherever a program or user is
currently located within the directory tree. However, a
relative path may only be relevant in a specific location.

For example, in the following diagram, the relative path
pycharmprojects/furtherpython/chapter2 is only meaningful
relative to the directory workspace:

Note that an absolute path starts from the root directory
(represented by ‘/’) where as a relative path starts from a
particular sub directory (such as pycham projects).

File Input/Output

File Input/Output (often just referred to as File I/O) involves
reading and writing data to and from files. The data being
written can be in di�erent formats.

For example a common format used in Unix/Linux and
Windows systems is the ASCII text format. The ASCII format
(or American Standard Code for Information Interchange) is a
set of codes that represent various characters that is widely
used by operating systems. The following table illustrates
some of the ASCII character codes and what they represent:

ASCII is a very useful format to use for text files as they can be
read by a wide range of editors and browsers. These editors
and browsers make it very easy to create human readable
files. However, programming languages such as Python often
use a di�erent set of character encoding such as a Unicode
character encoding (such as UTF-8). Unicode is another
standard for representing characters using various codes.
Unicode encoding systems o�er a wider range of possible
character encoding than ASCII, for example the latest version
of Unicode in May 2019, Unicode 12.1, contains a repertoire of
137,994 characters covering 150 modern and historic scripts,
as well as multiple symbol sets and emojis.

However, this means that it can be necessary to translate
ASCII into Unicode (e.g. UTF-8) and vice versa when reading
and writing ASCII files in Python.

Another option is to use a binary format for data in a file. The
advantage of using binary data is that there is little or no
translation required from the internal representation of the
data used in the Python program into the format stored in the
file. It is also often more concise than an equivalent ASCII
format and it is quicker for a program to read and write and
takes up less disk space etc. However, the down side of a
binary format is that it is not in an easily human readable
format. It may also be di�cult for other programs,

particularly those written in other programming languages
such as Java or C#, to read the data in the files.

Sequential Access Versus Random Access

Data can be read from (or indeed written to) a file either
sequentially or via a random access approach.

Sequential access to data in a file means that the program
reads (or writes) data to a file sequentially, starting at the
beginning of a file and processing the data an item at a time
until the end of the file is reached.The read process only ever
moves forward and only to the next item of data to read.

Random Access to a data file means that the program can read
(or write) data anywhere into the file at any time. That is the
program can position itself at a particular point in the file (or
rather a pointer can be positioned within the file) and it can
then start to read (or write) at that point. If it is reading then
it will read the next data item relative to the pointer rather
than the start of the file. If it is writing data then it will write
data from that point rather than at the end of the file. If there
is already data at that point in the file then it will be over
written. This type of access is also known as Direct Access as
the computer program needs to know where the data is stored
within the file and thus goes directly to that location for the

data. In some cases the location of the data is recorded in an
index and thus is also known as indexed access.

Sequential file access has advantages when a program needs
to access information in the same order each time the data is
read. It is also is faster to read or write all the data
sequentially than via direct access as there is no need to move
the file pointer around.

Random access files however are more flexible as data does
not need to be written or read in the order in which it is
obtained. It is also possible to jump to just the location of the
data required and read that data (rather than needing to
sequentially read through all the data to find the data items of
interest).

Files and I/O in Python

In the remainder of this section of the book we will explore
the basic facilities provided for reading and writing files in
Python.We will also look at the underlying streams model for
file I/O. After this we will explore the widely used CSV and
Excel file formats and libraries available to support those.
This section concludes by exploring the Regular Expression
facilities in Python. While this last topic is not strictly part of
file I/O it is often used to parse data read from files to screen
out unwanted information.

Reading and Wri�ng Files

Introduction

Reading data from and writing data to a file is very common
within many programs. Python provides a large amount of
support for working with files of various types. This chapter
introduces you to the core file IO functionality in Python.

Obtaining References to Files

Reading from, and writing to, text files in Python is relatively
straightforward.The built in open() function creates a file
object for you that you can use to read and/ or write data from
and/ or to a file.

The function requires as a minimum the name of the file you
want to work with. Optionally you can specify the access
mode (e.g. read, write, append etc.). If you do not specify a
mode then the file is open in read-only mode. You can also
specify whether you want the interactions with the file to be
bu�ered which can improve performance by grouping data
reads together.

The syntax for the open() function is

file_object = open(file_name, access_mode, buffering)

Where

file_name indicates the file to be accessed.
access_mode The access_mode determines the mode in
which the file is to be opened, i.e. read, write, append, etc.
A complete list of possible values is given below in the
table.This is an optional parameter and the default file
access mode is read (r).
bu�ering If the bu�ering value is set to 0, no bu�ering
takes place. If the bu�ering value is 1, line bu�ering is
performed while accessing a file.

The access_mode values are given in the following table.

The file object itself has several useful attributes such as

file.closed returns True if the file has been closed (can no
longer be accessed because the close() method has been
called on it).
file.mode returns the access mode with which the file was
opened.
file.name The name of the file.

The file.close() method is used to close the file once you have
finished with it.This will flush any unwritten information to
the file (this may occur because of bu�ering) and will close
the reference from the file object to the actual underlying
operating system file. This is important to do as leaving a
reference to a file open can cause problems in larger
applications as typically there are only a certain number of
file references possible at one time and over a long period of
time these may all be used up resulting in future errors being
thrown as files can no longer be opened.

The following short code snippet illustrates the above ideas:

file = open('myfile.txt', 'r+') print('file.name:', file.name)
print('file.closed:', file.closed) print('file.mode:',
file.mode) file.close()
print('file.closed now:', file.closed)

The output from this is:
file.name: myfile.txt
file.closed: False
file.mode: r+
file.closed now: True

Reading Files

Of course, having set up a file object we want to be able to
either access the contents of the file or write data to that file

(or do both). Reading data from a text file is supported by the
read(), readline() and readlines() methods:

The read() method This method will return the entire
contents of the file as a single string.
The readline() method reads the next line of text from a
file. It returns all the text on one line up to and including
the newline character. It can be used to read a file a line at
a time.
The readlines() method returns a list of all the lines in a
file, where each item of the list represents a single line.

Note that once you have read some text from a file using one
of the above operations then that line is not read again. Thus
using readlines() would result in a further readlines()
returning an empty list whatever the contents of the file.

The following illustrates using the readlines() method to read
all the text in a text file into a program and then print each
line out in turn:

file = open('myfile.txt', 'r')
lines = file.readlines()
for line in lines:
print(line, end='')
file.close()

Notice that within the for loop we have indicated to the print
function that we want the end character to be ' ' rather than a

newline; this is because the line string already possesses the
newline character read from the file.

File Contents Iteration

As suggested by the previous example; it is very common to
want to process the contents of a file one line at a time. In fact
Python makes this extremely easy by making the file object
support iteration. File iteration accesses each line in the file
and makes that line available to the for loop. We can therefore
write:

file = open('myfile.txt', 'r')
for line in file:
print(line, end='')
file.close()

It is also possible to use the list comprehension to provide a
very concise way to load and process lines in a file into a list.
It is similar to the e�ect of readlines() but we are now able to
preprocess the data before creating the list:

file = open('myfile.txt', 'r')
lines = [line.upper() for line in file]
file.close()
print(lines)

Writing Data to Files

Writing a string to a file is supported by the write() method.
Of course, the file object we create must have an access mode
that allows writing (such as ‘w’). Note that the write method
does not add a newline character (represented as ‘\n’) to the
end of the string—you must do this manually.

An example short program to write a text file is given below:

print('Writing file')
f = open('my-new-file.txt', 'w') f.write('Hello from
Python!!\n')f.write('Working with files is easy...\n')
f.write('It is cool ...\n')
f.close()

This creates a new file called my-new-file.txt. It then writes
three strings to the file each with a newline character on the
end; it then closes the file.

The e�ect of this is to create a new file called myfile.txt with
three lines in it:

Using Files and with Statements

Like several other types where it is important to shut down
resources; the file object class implements the Context
Manager Protocol and thus can be used with the with
statement. It is therefore common to write code that will open
a file using the with as structure thus ensuring that the file
will be closed when the block of code is finished with, for
example:

with open('my-new-file.txt','r') as f:
lines = file.readlines()
for line in lines:
print(line, end='')

The File input Module

In some situations, you may need to read the input from
several files in one go. You could do this by opening each file
independently and then reading the contents and appending
that contents to a list etc. However, this is a common enough

requirement that the file input module provides a function
file input.input() that can take a list of files and treat all the
files as a single input significantly simplifying this process,
for example:

with fileinput.input(files=('spam.txt', 'eggs.txt')) as f:
for line in f:
process(line)

Features provided by the file input module include

Return the name of the file currently being read.
Return the integer “file descriptor” for the current file.
Return the cumulative line number of the line that has
just been read.
Return the line number in the current file. Before the first
line has been read this returns 0.
A boolean function that indicates if the current line just
read is the first line of its file

Some of these are illustrated below:

with fileinput.input(files=('textfile1.txt',
'textfile2.txt')) as f:
line = f.readline()
print('f.filename():', f.filename()) print('f.isfirstline():',
f.isfirstline()) print('f.lineno():',
f.lineno())print('f.filelineno():', f.filelineno()) for line in
f:
print(line, end='')

Renaming Files

A file can be renamed using the os.rename() function. This
function takes two arguments, the current filename and the
new filename. It is part of the Python os module which
provides methods that can be used to perform a range of file-
processing operations (such as renaming a file). To use the
module, you will first need to import it. An example of using
the rename function is given below:

import os
os.rename('myfileoriginalname.txt',' myfilenewname.txt')

Deleting Files

A file can be deleted using the os.remove() method. This
method deletes the file specified by the file name passed to it.
Again, it is part of the os module and therefore this must be
imported first:

import os
os.remove('somefilename.txt')

Random Access Files

All the examples presented so far suggest that files are
accessed sequentially, with the first line read before the

second and so on. Although this is (probably) the most
common approach it is not the only approach supported by
Python; it is also possible to use a random-access approach to
the contents within a file.

To understand the idea of random file access it is useful to
understand that we can maintain a pointer into a file to
indicate where we are in that file in terms of reading or
writing data. Before anything is read from a file the pointer is
before the beginning of the file and reading the first line of
text would for example, advance the point to the start of the
second line in the file etc. This idea is illustrated below:

When randomly accessing the contents of a file the
programmer manually moves the pointer to the location
required and reads or writes text relative to that pointer. This
means that they can move around in the file reading and
writing data.

The random-access aspect of a file is provided by the seek
method of the file object:

file.seek (o�set, whence) this method determines where
the next read or write operation (depending on the mode
used in the open() call) takes place.

In the above the o�set parameter indicates the position of the
read/ write pointer within the file. The move can also be
forwards or backwards (represented by a negative o�set). The
optional whence parameter indicates where the o�set is
relative to. The values used for whence are:

0 indicates that the o�set is relative to start of file (the
default).
1 means that the o�set is relative to the current pointer
position.
2 indicates the o�set is relative to end of file.

Thus, we can move the pointer to a position relative to the
start of the file, to the end of the file, or to the current

position.

For example, in the following sample code we create a new
text file and write a set of characters into that file. At this
point the pointer is positioned after the ‘z’ in the file.
However, we then use seek() to move the point to the 10th
character in the file and now write ‘Hello’, next we reposition
the pointer to the 6th character in the file and write out
‘BOO’. We then close the file. Finally,we read all the lines
from the file using a with as statement and the open()
function and from this we will see that the text is the file is
now abcdefBOOjHELLOpqrstuvwxyz:

f = open('text.txt',
'w')f.write('abcdefghijklmnopqrstuvwxyz\n') f.seek(10,0)
f.write('HELLO') f.seek(6, 0) f.write ('BOO') f.close()
with open('text.txt', 'r') as f:
for line in f:
print(line, end='')

Directories

Both Unix like systems and Windows operating systems are
hierarchical structures comprising directories and files. The
os module has several functions that can help with creating,
removing and altering directories. These include:

mkdir() This function is used to create a directory, it
takes the name of the directory to create as a parameter.
If the directory already exists FileExistsError is raised.
chdir() This function can be used to change the current
working directory. This is the directory that the
application will read from/ write to by default.
getcwd() This function returns a string representing the
name of the current working directory.
rmdir() This function is used to remove/ delete a
directory. It takes the name of the directory to delete as a
parameter.
listdir() This function returns a list containing the names
of the entries in the directory specified as a parameter to
the function (if no name is given the current directory is
used).

A simple example illustrates the use of some of these
functions is given below:

import os
print('os.getcwd(:', os.getcwd()) print('List contentsof
directory')print(os.listdir())
print('Create mydir')
os.mkdir('mydir')
print('List the updated contents of directory')
print(os.listdir())
print('Change into mydir directory')
os.chdir('mydir')print('os.getcwd(:', os.getcwd())
print('Change back to parent directory')
os.chdir('..')print('os.getcwd(:', os.getcwd()) print('Remove

mydir directory') os.rmdir('mydir')
print('List the resultingcontents of directory')
print(os.listdir())

Note that ‘..’ is a short hand for the parent directory of the
current directory and

‘.’ is short hand for the current directory.

An example of the type of output generated by this program
for a specific set up on a Mac is given below:

os.getcwd(:
/Users/Shared/workspaces/pycharm/pythonintro/textfiles
List contents of directory
['my-new-file.txt', 'myfile.txt', 'textfile1.txt',
'textfile2.txt']
Create mydir
List the updated contents of directory
['my-new-file.txt', 'myfile.txt', 'textfile1.txt',
'textfile2.txt', 'mydir']
Change into mydir directory
os.getcwd(:
/Users/Shared/workspaces/pycharm/pythonintro/textfiles/mydir
Change back to parent directory os.getcwd(:
/Users/Shared/workspaces/pycharm/pythonintro/textfiles
Remove mydir directory
List the resulting contents of directory
['my-new-file.txt', 'myfile.txt', 'textfile1.txt',
'textfile2.txt']

Temporary Files

During the execution of many applications it may be
necessary to create a temporary file that will be created at one
point and deleted before the application finishes. It is of
course possible to manage such temporary files yourself
however, the tempfile module provides a range of facilities to
simplify the creation and management of these temporary
files.

Within the tempfile module TemporaryFile,
NamedTemporaryFile, TemporaryDirectory, and
SpooledTemporaryFile are high-level file objects which
provide automatic cleanup of temporary files and directories.
These objects implement the Context Manager Protocol.

The tempfile module also provides the lower-level function
mkstemp() and mkdtemp() that can be used to create
temporary files that require the developer to management
them and delete them at an appropriate time.

The high-level feature for the tempfile module are:

TemporaryFile(mode=‘w+b’) Return an anonymous
gfile-like object that can be used as a temporary storage
area. On completion of the managed context (via a with
statement) or destruction of the file object, the temporary
file will be removed from the files ystem. Note that by

default all data is written to the temporary file in binary
format which is generally more e�cient.
NamedTemporaryFile(mode=‘w+b’) This function
operates exactly as TemporaryFile() does, except that the
file has s visible name in the file system.
SpooledTemporaryFile(max_size=0, mode=‘w+b’) This
function operates exactly as TemporaryFile() does,
except that data is spooled in memory until the file size
exceeds max_size, or until the file’s fileno () method is
called, at which point the contents are written to disk and
operation proceeds as with TemporaryFile().
TemporaryDirectory(su�x=None, prefix=None,
dir=None)

This function creates a temporary directory. On completion of
the context or destruction of the temporary directory object
the newly created temporary directory and all its contents are
removed from the file system.

The lower level functions include:

mkstemp() Creates a temporary file that is only readable
or writable by the user who created it.
mkdtemp() Creates a temporary directory. The directory
is readable, writable, andsearchable only by the creating
user ID.
gettempdir() Return the name of the directory used for
temporary files.

This defines the default value for the default temporary
directory to be used with the other functions in this module.

An example of using the TemporaryFile function is given
below. This code imports the tempfile module then prints out
the default directory used for temporary files. It then creates
a TemporaryFile object and prints its name and mode (the
default mode is binary but for this example we have
overwritten this so that plain text is used). We have then
written a line to the file. Using seek we are repositioning
ourselves at the start of the file and then reading the line we
have just written.

import tempfile
print('tempfile.gettempdir():', tempfile.gettempdir())
temp = tempfile.TemporaryFile('w+')print('temp.name:',
temp.name)print('temp.mode:', temp.mode)temp.write('Hello
world!')temp.seek(0)
line = temp.readline()
print('line:', line)
The output from this when run on an Apple Mac is:
tempfile.gettempdir():
/var/folders/6n/8nrnt9f93pn66ypg9s5dq8y80000gn/T
temp.name: 4 temp.mode: w+
line: Hello world!

Note that the file name is ‘4’ and that the temporary directory
is not a meaningful name!

Working with Paths

The path lib module provides a set of classes representing file
system paths; that is paths through the hierarchy of
directories and files within an operating systems file
structure. It was introduced in Python 3.4. The core class in
this module is the Path class.

A Path object is useful because it provides operations that
allow you to manipulate and manage the path to a file or
directory. The Path class also replicates some of the
operations available from the os module (such as mkdir,
rename and rmdir) which means that it is not necessary to
work directly with the os module.

A path object is created using the Path constructor function;
this function actually returns a specific type of Path
depending on the type of operating system being used such as
a WindowsPath or a PosixPath (for Unix style systems).

The Path() constructor takes the path to create for example
‘D:/mydir’ (on Windows) or ‘/Users/user1/mydir’ on a Mac or
‘/var/temp’ on Linux etc.

You can then use several di�erent methods on the Path object
to obtain information about the path such as:

exists() returns True of False depending on whether the
path points to an existing file or directory.
is_dir() returns True if the path points to a directory.
False if it references a file. False is also returned if the
path does not exist.
is_file() returns True of the path points to a file, it
returns False if the path does not exist or the path
references a directory.
absolute() A Path object is considered absolute if it has
both a root and (if appropriate) a drive.
is_absolute() returns a Boolean value indicating whether
the Path is absolute or not.

An example of using some of these methods is given below:

from pathlib import Path
print('Create Path object for current directory')
p = Path('.') print('p:', p) print('p.exists():',
p.exists()) print('p.is_dir():', p.is_dir())
print('p.is_file():', p.is_file())
print('p.absolute():', p.absolute())

Sample output produced by this code snippet is:

Create Path object for current directory p: .
p.exists(): True
p.is_dir(): Truep.is_file(): Falsep.absolute():
/Users/Shared/workspaces/pycharm/pythonintro/textfiles

There are also several methods on the Path class that can be
used to create and remove directories and files such as:

mkdir() is used to create a directory path if it does not
exist. If the path already exists, then a FileExistsError is
raised.
rmdir() remove this directory; the directory must be
empty otherwise an error will be raised.
rename(target) rename this file or directory to the given
target.
unlink() removes the file referenced by the path object.
joinpath(*other) appends elements to the path object e.g.
path.joinpath(‘/temp’).
with_name(new_name)return a new path object with
the name changed.
The ‘/’ operator can also be used to create new path
objects from existing paths for example path/ ‘test’/
‘output’ which would append the directories test and out
to the path object.

Two Path class methods can be used to obtain path objects
representing key directories such as the current working
directory (the directory the program is logically in at that
point) and the home directory of the user running the
program:

Path.cwd() return a new path object representing the
current directory.

Path.home() return a new path object representing the
user’s home directory.

An example using several of the above features is given below.
This example obtains a path object representing the current
working directory and then appends ‘text’ to this. The result
path object is then checked to see if the path exists (on the
computer running the program), assuming that the path does
not exist it is created and the exists() method is rerun.

p = Path.cwd()
print('Set up new directory')
newdir = p / 'test'
print('Check to see if newdir exists') print('newdir.exists():',
newdir.exists()) print('Create new dir')
newdir.mkdir()
print('newdir.exists():', newdir.exists())

The e�ect of creating the directory can be seen in the output:

Set up new directory
Check to see if newdir exists newdir.exists(): False
Create new dir newdir.exists(): True

A very useful method in the Path object is the glob(pattern)
method. This method returns all elements within the path
that meet the pattern specified.

For example path.glob(‘*.py’) will return all the files ending
.py within the current path.

Note that ‘**/*.py’ would indicate the current directory and
any sub directory. For example, the following code will return
all files where the file name ends with ‘.txt’ for a given path:

print('-' * 10)
for file in path.glob('*.txt'):
print('file:', file)
print('-' * 10)

An example of the output generated by this code is:

—————

file: my-new-file.txt
file: myfile.txt
file: textfile1.txt
file: textfile2.txt
—————

Paths that reference a file can also be used to read and write
data to that file. For example the open() method can be used
to open a file that by default allows a file to be read:

open(mode=‘r’) this can be used to open the file
referenced by the path object.

This is used below to read the contents of a file a line at a time
(note that with as statement is used here to ensure that the
file represented by the Path is closed):

p = Path('mytext.txt')
with p.open() as f:
print(f.readline())

However, there are also some high-level methods available
that allow you to easily write data to a file or read data from a
file. These include the Path methods write_text and
read_text methods:

write_text(data) opens the file pointed to in text mode
and writes the data to it and then closes the file.
read_text() opens the file in read mode, reads the text
and closes the file; it then returns the contents of the file
as a string.

These are used below

dir = Path('./test') print('Create new file') newfile = dir
/ 'text.txt'
print('Write some text to file')newfile.write_text('Hello Python
World!') print('Read the text back again')
print(newfile.read_text())
print('Remove the file')
newfile.unlink()

Which generates the following output:

Create new file

Write some text to file
Read the text back again
Hello Python World!
Remove the file

Try

The aim of this exercise is to explore the creation of, and
access to, the contents of a file.

You should write two programs,these programs are outlined
below:

1. Create a program that will write today’s date into a file –
the name of the file can be hard coded or supplied by the
user. You can use the datetime.today() function to obtain
the current date and time. You can use the str() function
to convert this date time object into a string so that it can
be written out to a file.

2. Create a second program to reload the date from the file
and convert the string into a date object. You can use the
datetime.strptime() function to convert a string into a
date time object (see https://docs.python.org/3/library/

https://docs.python.org/3/library/datetime.html#datetime.datetime.strptime

datetime.html#datetime.datetime.strptime for
documentation on this function).

This function stakes a string containing a date and time in it
and a second string which defines the format expected. If you
use the approach outlined in step 1 above to write the string
out to a file then you should find that the following defines an
appropriate format to parse the date_str so that a date time
object can be created:

datetime_object = datetime.strptime(date_str, '%Y-%m-%d
%H:%M:%S.%f')

https://docs.python.org/3/library/datetime.html#datetime.datetime.strptime

StreamIO

Introduction

In this chapter we will explore the Stream I/O model that
under pins the way in which data is read from and written to
data sources and sinks. One example of a data source or sink
is a file but another might be a byte array.

This model is actually what sits underneath the file access
mechanisms discussed in the previous chapter.

It is not actually necessary to understand this model to be
able to read and write data to and from a file, however in
some situations it is useful to have an under- standing of this
model so that you can modify the default behavior when
necessary.

The remainder of this chapter first introduces the Stream
model, discusses Python streams in general and then
presents the classes provided by Python. It then considers

what is the actual e�ect of using the open() function
presented in the last chapter.

What is a Stream?

Streams are objects which serve as sources or sinks of data. At
first this concept can seem a bit strange. The easiest way to
think of a stream is as a conduit of data flowing from or into a
pool. Some streams read data straight from the “source of the
data” and some streams read data from other streams. These
latter streams then do some “useful” processing of the data
such as converting the raw data into a specific format. The
following figure illustrates this idea.

In the above figure the initial FileIO stream reads raw data
from the actual data source (in this case a file). The
Bu�eredReader then bu�ers the data reading process for

e�ciency. Finally the TextIOW rapper handles string
encoding; that is it converts strings from the typical ASCII
representation used in a file into the internal representation
used by Python (which uses Unicode).

You might ask at this point why have a streams model at all;
after all we read and wrote data to files without needing to
know about streams in the last chapter? The answer is that a
stream can read or write data to or from a source of data
rather than just from a file. Of course a file can be a source of
data but so can a socket, a pipe,a string, a web service etc. It is
therefore a more flexible data I/O model.

Python Streams

The Python io module provides Python’s main facilities for
dealing with data input and output. There are three main
types of input/output these are text I/O, binary I/O and raw
I/.O. These categories can be used with various types of data
source/sinks.

Whatever the category, each concrete stream can have a
number of properties such as being read-only, write-only or
read-write. It can also support sequential access or random
access depending on the nature of the underlying data sink.
For example, reading data from a socket or pipe is inherently

sequential where as reading data from a file can be performed
sequentially or via a random access approach.

Whichever stream is used however, they are aware of the type
of data they can process. For example, attempting to supply a
string to a binary write-only stream will raise a TypeError. As
indeed will presenting binary data to a text stream etc.

As suggested by this there are a number of di�erent types of
stream provided by the Python io module and some of these
are presented below:

The abstract IOBase class is at the root of the stream IO class
hierarchy. Below this class are stream classes for unbu�ered
and bu�ered IO and for text orientedIO.

IOBase

This is the abstract base class for all I/O stream classes.The
class provides many abstract methods that sub classes will

need to implement.

The IOBase class (and its sub classes) all support the iterator
protocol.This means that an IOBase object (or an object of a
subclass) can iterate over the input data from the underling
stream.

IOBase also implements the Context Manager Protocol and
therefore it can be used with the with and with-as
statements.

The IOBase class defines a core set of methods and attributes
including:

close() flush and close the stream.
closed an attribute indicating whether the stream is
closed.
flush() flush the write bu�er of the stream if applicable.
readable() returns True if the stream can be read from.
readline(size=-1) return a line from the stream. If size is
specified at most size bytes will be read.
readline(hint=-1) read a list of lines. If hint is specified
then it is used to control the number of lines read.
seek(o�set[, whence]) This method moves the current
the stream position/pointer to the given o�set. The
meaning of the o�set depends on the whence parameter.
The default value for whence is SEEK_SET.

SEEK_SET or 0: seek from the start of the stream (the
default);o�set must either be a number returned by
TextIOBase.tell(), or zero. Any other o�set value produces
undefined behavior.
SEEK_CUR or 1: “seek” to the current position; o�set
must be zero, which is a no-operation (all other values
are unsupported).
SEEK_END or 2: seek to the end of the stream; o�set
must be zero (all other values
seekable() does the stream support seek().
tell() return the current stream position/pointer.
writeable() returns true if data can be written to the
stream.
writelines(lines) write a list of lines to the stream.

Raw IO/UnBu�ered IO Classes

Raw IO or unbu�ered IO is provided by the RawIOBase and
FileIO classes. RawIOBase This class is a subclass of IOBase
and is the base class for raw binary (aka unbu�ered) I/O. Raw
binary I/O typically provides low-level access to an
underlying OS device or API, and does not try to encapsulate it
in high-level primitives (this is the responsibility of the
Bu�ered I/O and Text I/O classes that can wrap a raw I/O
stream). The class adds methods such as:

read(size=-1) This method reads up to size bytes from the
stream and returns them. If size is unspecified or-1 then
all available bytes are read.
readall() This method reads and returns all available
bytes within the stream.
readint(b) This method reads the bytes in the stream into
a per-allocated, writable bytes-like object b (e.g. into a
byte array). It returns the number of bytes read.
write(b) This method writes the data provided by b (a
bytes -like object such as a byte array) into the
underlying raw stream.

FileIO The FileIO class represents a raw unbu�ered binary IO
stream linked to an operating system level file. When the
FileIO class is instantiated it can be given a file name and the
mode (such as ‘r’ or ‘w’ etc.). It can also be given a flag to
indicate whether the file descriptor associated with the
underlying OS level file should be closed or not.

This class is used for the low-level reading of binary data and
is at the heart of all file oriented data access (although it is
often wrapped by another stream such as a bu�ered reader or
writer).

Binary IO/Bu�ered IO Classes

Binary IO aka Bu�ered IO is a filter stream that wraps a lower
level RawIOBase stream(such as a FileIO stream). The classes
implementing bu�ered IO all extend the Bu�eredIOBase class
and are:

Bu�eredReader When reading data from this object, a larger
amount of data may be requested from the underlying raw
stream, and kept in an internal bu�er. The bu�ered data can
then be returned directly on subsequent reads.

Bu�eredWriter When writing to this object, data is normally
placed into an internal bu�er. The bu�er will be written out
to the underlying RawIOBase object under various conditions,
including:

when the bu�er gets too small for all pending data;
when flush() is called;
when the Bu�eredWriter object is closed or destroyed.

Bu�eredRandom A bu�ered interface to random access
streams. It supports seek() and tell() functionality.

Bu�eredRWPair A bu�ered I/O object combining two
unidirectional RawIOBase objects – one readable, the other
writeable—into a single bidirectional endpoint.

Each of the above classes wrap a lower level byte oriented
stream class such as the io.FileIO class, for example:

f = io.FileIO('data.dat')
br = io.BufferedReader(f)
print(br.read())

This allows data in the form of bytes to be read from the file
‘data.dat’. You can of course also read data from a di�erent
source, such as an in memory BytesIO object:

binary_stream_from_file =
io.BufferedReader(io.BytesIO(b'starship.png')) bytes =
binary_stream_from_file.read(4) print(bytes)

In this example the data is read from the BytesIO object by the
Bu�eredReader. The read() method is then used to read the
first 4 bytes, the output is:

b‘star’

Note the ‘b’ in front of both the string ‘starship.png’ and the
result ‘star’. This indicates that the string literal should
become a bytes literal in Python 3. Bytes literals are always
prefixed with ‘b’ or ‘B’; they produce an instance of the bytes
type instead of the str type. They may only contain ASCII
characters.

The operations supported by bu�ered streams include, for
reading:

peek(n) return up to n bytes of data without advancing
the stream pointer. The number of bytes returned may be
less or more than requested depending on the amount of
data available.
read(n) return n bytes of data as bytes, if n is not supplied
(or is negative) the read all available data.
readl(n) read up to n bytes of data using a single call on
the raw data stream

The operations supported by bu�ered writers include:

write(bytes) writes the bytes-like data and returns the
number of bytes written.
flush() This method forces the bytes held in the bu�er
into the raw stream.

Text Stream Classes

The text stream classes are the TextIOBase class and its two
sub classes TextIOWrapper and StringIO.

TextIOBase This is the root class for all Text Stream classes. It
provides a character and line based interface to Stream I/O.
This class provides several additional methods to that defined
in its parent class:

read(size=-1) This method will return at most size
characters from the stream as a single string. If size is
negative or None, it will read all remaining data.
readline(size=-1) This method will return a string
representing the current line (up to a newline or the end
of the data whichever comes first). If the stream is
already at EOF, an empty string is returned. If size is
specified, at most size characters will be read.
seek(o�set, [, whence]) change the stream
position/pointer by the specified o�set. The optional
whence parameter indicates where the seek should start
from:

– SEEK_SET or 0: (the default) seek from the start of the
stream.

– SEEK_CUR or1: seek to the current position; o�set must
be zero, which is a no operation.

– SEEK_END or 2: seek to the end of the stream; o�set
must be zero.

tell() Returns the current stream position/pointer as an
opaque number. The number does not usually represent a
number of bytes in the underlying binary storage.
write(s) This method will write the string s to the stream
and return the number of characters written.

TextIOWrapper. This is a bu�ered text stream that wraps a
bu�ered binary stream and is a direct subclass of TextIOBase.

When a TextIOWrapper is created there are a range of options
available to control its behavior:

io.TextIOWrapper(buffer, encoding=None, errors=None, newline=No
ne, line_buffering=False, write_through=False)

Where

bu�er is the bu�ered binary stream.
encoding represents the text encoding used such as UTF-
8.
errors defines the error handling policy such as strict or
ignore.
newline controls how line endings are handled for
example should they be ignored (None) or represented as
a linefeed, carriage return or a newline/carriage return
etc.
line_bu�ering if True then flush() is implied when a call
to write contains a new line character or a carriage return.
write_through if True then a call to write is guaranteed
not to be bu�ered.

The TextIOWrapper is wrapped around a lower level binary
bu�ered I/O stream, for example:

f = io.FileIO('data.txt')
br = io.BufferedReader(f)
text_stream = io.TextIOWrapper(br, 'utf-8')

StringIO This is an in memory stream for text I/O. The initial
value of the bu�er held by the StringIO object can be provided
when the instance is created, for example:

in_memory_text_stream = io.StringIO('to be or not to be that is
the question')
print('in_memory_text_stream', in_memory_text_stream)
print(in_memory_text_stream.getvalue())
in_memory_text_stream.close()

This generates:

in_memory_text_stream <_io.StringIOobject at
0x10fdfaee8>

To be or not to be that is the question

Note that the underlying bu�er (represented by the string
passed into the StringIO instance) is discarded when the
close() method is called. The getvalue() method returns a
string containing the entire contents of the bu�er. If it is
called after the stream was closed then an error is generated.

Stream Properties

It is possible to query a stream to determine what types of
operations it supports. This can be done using the readable(),
seekable() and writeable() methods. For example:

f = io.FileIO('myfile.txt')
br = io.BufferedReader(f)
text_stream = io.TextIOWrapper(br,encoding='utf-8')
print('text_stream', text_stream)
print('text_stream.readable():', text_stream.readable())
print('text_stream.seekable()', text_stream.seekable())
print('text_stream.writeable()', text_stream.writable())
text_stream.close()

The output from this code snippet is:

text_stream <_io.TextIOWrapper name=‘myfile.txt’
encoding=‘utf-8’>text_stream.readable(): True

text_stream.seekable() True
text_stream.writeable() False

Closing Streams

All opened streams must be closed. However, you can close
the top level stream and this will automatically close lower
level streams, for example:

f = io.FileIO('data.txt')
br = io.BufferedReader(f)
text_stream = io.TextIOWrapper(br, 'utf-8')
print(text_stream.read()) text_stream.close()

Returning to the open() Function

If streams are so good then why don’t you use them all the
time? Well actually in Python 3 you do! The core open
function (and indeed the io.open() function) both return a
stream object. The actual type of object returned depends on
the file mode specified, whether bu�ering is being used etc.
For example:

import io
Text stream
f1 = open('myfile.txt', mode='r', encoding='utf-8')
print(f1)
Binary IO aka Buffered IO
f2 = open('myfile.dat', mode='rb')
print(f2)
f3 = open('myfile.dat', mode='wb')
print(f3)
Raw IO aka Unbufferedf IO
f4 = open('starship.png', mode='rb', buffering=0)
print(f4)

When this short example is run the output is:
<_io.TextIOWrapper name=‘myfile.txt’ mode=‘r’

encoding=‘utf-8’>
<_io.Bu�eredReader name=‘myfile.dat’>
<_io.Bu�eredWriter name=‘myfile.dat’>
<_io.FileIO name=‘starship.png’ mode=‘rb’

closefd=True>

As you can see from the output,four di�erent types of object
have been returned from the open() function. The first is a
TextIOWrapper, the second a Bu�eredReader, the third a
Bu�eredWriter and the final one is a FileIO object. This
reflects the di�erences in the parameters passed into the
open (0 function. For example, f1 references a
io.TextIOWrapper because it must encode (convert) the input
text into Unicode using the UTF-8 encoding scheme. While f2
holds a io.Bu�eredReader because the mode indicates that we
want to read binary data while f3 holds a io.Bu�eredWriter
because the mode used indicates we want to write binary data.
The final call to open returns a FileIO because we have
indicated that we do not want to bu�er the data and thus we
can use the lowest level of stream object.

In general the following rules are applied to determine the
type of object returned based on the modes and encoding
specified:

Note that not all mode combinations make sense and thus
some combinations will generate an error.

In general you don’t therefore need to worry about which
stream you are using or what that stream does; not least
because all the streams extend the IOBase class and thus have
a common set of methods and attributes.

However, it is useful to understand the implications of what
you are doing so that you can make better informed choices.
For example, binary streams (that do less processing) are
faster than Unicode oriented streams that must convert from
ASCII into Unicode.

Also understanding the role of streams in Input and Output
can also allow you to change the source and destination of
data without needing to rewrite the whole of your application.
You can thus use a file or stdin for testing and a socket for
reading data in production.

Try

Use the underlying streams model to create an application
that will write binary data to a file. You can use the ‘b’ prefix
to create a binary literal to be written, for example b ‘Hello
World’.

Next create another application to reload the binary data from
the file and print it out.

Working with CSV Files

Introduction

This chapter introduces a module that supports the
generation of CSV (or Comma Separated Values) files.

CSVFiles

The CSV (Comma Separated Values)format is the most
common import and export format for spreadsheets and
databases. However, CSV is not a precise standard with
multiple di�erent applications having di�erent conventions
and specific standards.

The Python csv module implements classes to read and write
tabular data in CSV format. As part of this it supports the
concept of a dialect which is a CSV format used by a specific
application or suite of programs, for example,it supports an
Excel dialect.

This allows programmers to say, “write this data in the
format preferred by Excel,” or “read data from this file which

was generated by Excel,” without knowing the precise details
of the CSV format used by Excel.

Programmers can also describe the CSV dialects understood
by other applications or define their own special-purpose CSV
dialects.

The csv module provides a range of functions including:

csv.reader (csvfile, dialect=‘excel’, **fmtparams)
Returns a reader object which will iterate over lines in the
given csvfile. An optional dialect parameter can be given.
This may be an instance of a subclass of the Dialect class
or one of the strings returned by the list_dialects()
function. The other optional fmtparams keyword
arguments can be given to override individual formatting
parameters in the current dialect.
csv.writer (csvfile, dialect=‘excel’, **fmtparams) Returns
a writer object responsible for converting the user’s data
into delimited strings on the given csvfile. An optional
dialect parameter provided. The fmtparams keyword
arguments can be given to override individual formatting
parameters in the current dialect.
csv.list_dialects() Return the names of all registered
dialects. For example on a Mac OS X the default list of
dialects is [‘excel’, ‘excel-tab’, ‘unix’].

The CSV Writer Class

A CSV Writer is obtained from the csv.writer()function. The
csv writer supports two methods used to write data to the CSV
file:

csvwriter.writerow(row) Write the row parameter to the
writer’s file object, formatted according to the current
dialect.
csvwriter.writerows(rows) Write all elements in rows (an
iterable of row objects as described above) to the writer’s
file object, formatted according to the current dialect.
Writer objects also have the following public attribute:
csvwriter.dialect A read-only description of the dialect in
use by the writer.

The following program illustrates a simple use of the csv
module which creates a file called sample.csv.

As we have not specified a dialect, the default ‘excel’ dialect
will be used. The writerow() method is used to write each
comma separate list of strings to the CSV file.

print('Crearting CSV file')
with open('sample.csv', 'w', newline='') as csvfile: writer =
csv.writer(csvfile) writer.writerow(['She Loves You', 'Sept
1963'])
writer.writerow(['I Want to Hold Your Hand', 'Dec 1963'])

writer.writerow(['Cant Buy Me Love', 'Apr 1964'])
writer.writerow(['A Hard Days Night', 'July 1964'])

The resulting file can be viewed as shown below:

However, as it is a CSV file, we can also open it in Excel:

The CSV Reader Class

A CSV Reader object is obtained from the csv.reader()
function. It implements the iteration protocol.

If a csv reader object is used with a for loop then each time
round the loop it supplies the next row from the CSV file as a
list, parsed according to the current CSV dialect.

Reader objects also have the following public attributes:

csvreader.dialect A read-only description of the dialect in
use by the parser.
csvreader.line_num The number of lines read from the
source iterator.

This is not the same as the number of records returned, as
records can span multiple lines.

The following provides a very simple example of reading a
CSV file using a csv reader object:

print('Starting to read csv file')
with open('sample.csv', newline='') as csvfile:
reader = csv.reader(csvfile)
for row in reader:
print(*row, sep=', ')
print('Done Reading')

The output from this program, based on the sample.csv file
created earlier is:

Starting to read csv file

She Loves You, Sept 1963
I Want to Hold Your Hand, Dec 1963
Cant Buy Me Love, Apr 1964
A Hard Days Night, July 1964
Done Reading

The CSV DictWriter Class

In many cases the first row of a CSV file contains a set of
names (or keys) that define the fields within the rest of the
CSV. That is the first row gives meaning to the columns and
the data held in the rest of the CSV file. It is therefor every
useful to capture this information and to structure the data
written to a CSV file or loaded from a CSV file based on the
keys in the first row.

The csv.DictWriter returns an object that can be used to write
values into theCSV file based on the use of such named
columns. The file to be used with the DictWriter is provided
when the class is instantiated.

import csv
with open('names.csv', 'w', newline='') as csvfile:
fieldnames = ['first_name', 'last_name', 'result'] writer =
csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()

writer.writerow({'first_name': 'John',
'last_name': 'Smith',
'result' : 54})
writer.writerow({'first_name': 'Jane',
'last_name': 'Lewis',
'result': 63})
writer.writerow({'first_name': 'Chris',
'last_name': 'Davies',
'result' : 72})

Note that when the DictWriter is created a list of the keys
must be provided that are used for the columns in the CSV
file.

The method writeheader()is then used to write the header
row out to the CSV file.

The method writerow() takes a dictionary object that has keys
based on the keys defined for the DictWriter. These are then
used to write data out to the CSV (note the order of the keys in
the dictionary is not important).

In the above example code the result of this is that a new file
called names.csv is created which can be opened in Excel:

Of course, as this is a CSV file it can also be opened in a plain
text editor as well.

The CSV DictReader Class

As well as the csv.DictWriter there is a csv.DictReader. The file
to be used with the DictReader is provided when the class is
instantiated. As with the DictReader the DictWriter class takes
a list of keys used to define the columns in the CSV file. If the
headings to be used for the first row can be provided although
this is optional (if a set of keys are not provided, then the
values in the first row of the CSV file will be used as the field
names).

The DictReader class provides several useful features
including the field names property that contains a list of the
keys/headings for the CSV file as defined by the first row of
the file.

The DictReader class also implements the iteration protocol
and thus it can be used in a for loop in which each row (after
the first row) is returned in turn as a dictionary. The
dictionary object representing each row can then be used to
access each column value based on the keys defined in the
first row.

An example is shown below for the CSV file created earlier:

import csv
print('Starting to read dict CSV example')
with open('names.csv', newline='') as csvfile:
reader = csv.DictReader(csvfile)
for heading in reader.fieldnames:
print(heading, end=' ')
print('\n------------------------------')
for row in reader:
print(row['first_name'], row['last_name'],
row['result'])
print('Done')

This generates the following output:

Starting to read dict CSV example first_name last_name
result

———————————————
John Smith 54

Jane Lewis 63
Chris Davies 72
Done

Try

In this exercise you will create a CSV file based on a set of
transactions stored in a current account.

1. To do this first define a new Account class to represent a
type of bank account.

2. When the class is instantiated you should provide the
account number, the name of the account holder, an
opening balance and the type of account (which can be a
string representing ‘current’, ‘deposit’ or ‘investment’
etc.). This means that there must be an init method and
you will need to store the data within the object.

3. Provide three instance methods for the Account;
deposit(amount), withdraw(amount) and get_balance().
The behavior of these methods should be as expected,
deposit will increase the balance, withdraw will decrease
the balance and get_balance() returns the current
balance.

Your Account class should also keep a history of the
transactions it is involved in.

A Transaction is a record of a deposit or withdrawal along
with an amount. Note that the initial amount in an account
can be treated as an initial deposit.

The history could be implemented as a list containing an
ordered sequence to transactions. A Transaction itself could
be defined by a class with an action (deposit or withdrawal)
and an amount. Each time a withdrawal or a deposit is made a
new transaction record should be added to a transaction
history list. Next provide a function(which could be called
something like write_ac- count_transactions_to_csv())
that can take an account and then write each of the
transactions it holds out to a CSV file, with each transaction
type and the transaction amount separated by a comma.

The following sample application illustrates how this
function might be used:

Working with Excel Files

Introduction

This chapter introduces the open pyxl module that can be
used when working with Excel files. Excel is a software
application developed by Microsoft that allows users to work
with spreadsheets. It is a very widely used tool and files using
the Excel file format are commonly encountered within many
organizations. It is in e�ect the industry standard for
spreadsheets and as such is a very useful tool to have in the
developers toolbox.

Excel Files

Although CSV files are a convenient and simple way to handle
data;it is very common to need to be able to read or write
Excel files directly. To this end there are several libraries
available in Python for this purpose. One widely used library
is the OpenPyXL library. This library was originally written to
support access to Excel 2010 files. It is an open source project
and is well documented.

The OpenPyXL library provides facilities for

reading and writing Excel workbooks,
creating/accessing Excel worksheets,
creating Excel formulas,
creating graphs (with support from additional modules).

As OpenPyXL is not part of the standard Python distribution
you will need to install the library yourself using a tool such
as Anaconda or pip (e.g. pip install open pyxl). Alternatively,
if you are using PyCharm you will be able to add the Open
PyXL library to your project.

The key element in the Open PyXL library is the Workbook
class. This can be imported from the module:

from ope npyxl import Workbook

A new instance of the (in memory) Workbook can be created
using the Workbook class (note at this point it is purely a
structure within the Python program and must be saved
before an actual Excel file is created).

wb = Workbook()

The Openpyxl. Work Sheet Objects

A workbook is always created with at least one worksheet. You
can get hold of the currently active worksheet using the
Workbook.active property:

ws = wb.active

You can create additional worksheets using the workbooks’
create_sheet

() method:
ws = wb.create_sheet('Mysheet')
You can access or update the title of the worksheet using the
title property:
ws.title = 'New Title'

The background color of the tab holding this title is white by
default. You can change this providing an RRGGBB color code
to the worksheet. sheet_properties.tab Color attribute, for
example:

ws.sheet_properties.tabColor = "1072BA"

Working with Cells

It is possible to access the cells within a worksheet. A cell can
be accessed directly as keys on the worksheet, for example:

ws['A1'] = 42

or

cell = ws['A1']

This returns a cell object; you can obtain the value of the cell
using the value property, for example

print(cell.value)

There is also the Worksheet.cell() method. This provides
access to cells using row and column notation:

d = ws.cell(row=4, column=2, value=10)

A row of values can also be added at the current position
within the Excel file using append:

ws.append([1, 2, 3])

This will add a row to the Excel file containing 1, 2, and 3.
Ranges of cells can be accessed using slicing:

cell_range = ws['A1':'C2']

Ranges of rows or columns can also be obtained:

col = ws['C'] col_range = ws['C:D'] row10 = ws[10] row_range =
ws[5:10]

The value of a cell can also be an Excel formula such as

ws['A3'] = '=SUM(A1, A2)'

A workbook is actually only a structure in memory; it must be
saved to a file for permanent storage. These workbooks can be
saved using the save() method. This method takes a file name
and writes the Workbook out in Excel format.

workbook = Workbook()
... workbook.save('balances.xlsx')

Sample Excel File Creation Application

The following simple application creates a Workbook with
two worksheets.It also contains a simple Excel formula that
sums the values held in to other cells:

from openpyxl import Workbook
def main():
print('Starting Write Excel Example with openPyXL')
workbook = Workbook()
Get the currentactive worksheet
ws = workbook.active ws.title = 'my worksheet'
ws.sheet_properties.tabColor= '1072BA'
ws['A1'] = 42 ws['A2'] = 12
ws['A3'] = '=SUM(A1, A2)'
ws2 = workbook.create_sheet(title='my other sheet')
ws2['A1'] = 3.42 ws2.append([1, 2, 3]) ws2.cell(column=2,row=1,
value=15)
workbook.save('sample.xlsx')

print('Done Write Excel Example')
if _name == '_main_':
main()

The Excel file generated from this can be viewed in Excel as
shown below:

Loading a Workbook from an Excel File

Of course, in many cases it is necessary not just to create
Excel files for data export but also to import data from an
existing Excel file. This can be done using the OpenPyXL

load_workbook() function. This function opens the specified
Excel file (in read only mode by default)and returns a
Workbook object.

from openpyxl import load_workbook
workbook = load_workbook(filename='sample.xlsx')

You can now access a list of sheets, their names, obtain the
currently active sheet etc. using properties provided by the
workbook object:

workbook.active returns the active worksheet object.
workbook.sheet names returns the names (strings) of the
worksheets in this workbook.
workbook.worksheets returns a list of worksheet objects.

The following sample application reads the Excel file created
earlier in this chapter:

from openpyxl import load_workbook
def main():
print('Starting reading Excel file using openPyXL')
workbook = load_workbook(filename='sample.xlsx')
print(workbook.active) print(workbook.sheetnames)
print(workbook.worksheets)
print('-' * 10)
ws = workbook['my worksheet'] print(ws['A1'])
print(ws['A1'].value) print(ws['A2'].value)
print(ws['A3'].value)
print('-' * 10)
for sheet in workbook:
print(sheet.title)

print('-' * 10)
cell_range = ws['A1':'A3']
for cell in cell_range:
print(cell[0].value)
print('-' * 10)
print('Finished reading Excel file using openPyXL')
if _name == '_main_':
main()

The output from this application is illustrated below:

Starting readingExcel file using openPyXL
<Worksheet "my worksheet">
['my worksheet', 'my other sheet']
[<Worksheet "my worksheet">, <Worksheet "my other sheet">]

<Cell 'my worksheet'.A1>
42
12
=SUM(A1, A2)

my worksheet
my other sheet

42
12
=SUM(A1, A2)

Finished reading Excel file using openPyXL

Try

Using the Account class that you created in the last chapter;
write the account transaction information to an Excel file
instead of a CSV file.

To do this create a function called
write_account_transaction_to_excel() that takes the name
of the Excel file and the account to store. The function should
then write the data to the file using the excel format.

The following sample application illustrates how this
function might be used:

print('Starting')
acc = accounts.CurrentAccount('123', 'John', 10.05, 100.0)
acc.deposit(23.45)
acc.withdraw(12.33)
print('Writing AccountTransactions')
write_account_transaction_to_excel('accounts.xlsx', acc)
print('Done')

The contents of the Excel file would then be:

Regular Expressions in Python

Introduction

Regular Expression are a very powerful way of processing text
while looking for recurring patterns; they are often used with
data held in plain text files (such as log files), CSV files as well
as Excel files. This chapter introduces regular expressions,
discusses the syntax used to define a regular expression
pattern and presents the Python re module and its use.

What Are Regular Expressions?

A Regular Expression (also known as a regex or even just re)
is a sequence of characters (letters, numbers and special
characters) that form a pattern that can be used to search text
to see if that text contains sequences of characters that match
the pattern.

For example, you might have a pattern defined as three
characters followed by three numbers. This pattern could be
used to look for such a pattern in other strings. Thus, the

following strings either match (or contain) this pattern or
they do not:

Regular Expression are very widely used for finding
information in files, for example

finding all lines in a log file associated with a specific user
or a specific operation,
for validating input such as checking that a string is a
valid email address or postcode/ZIP code etc.

Support for Regular Expressions is wide spread within
programming languages such as Java, C#, PHP and
particularly Perl. Python is no exception and has the built-in
module re (as well as additional third-party modules) that
support Regular Expressions.

Regular Expression Patterns

You can define a regular expression pattern using any ASCII
character or number. Thus, the string ‘John’ can be used to
define a regex pattern that can be used to match any other
string that contains the characters ‘J’, ‘o’, ‘h’, ‘n’. Thus each
of the following strings will match this pattern:

• ‘John Hunt’
• ‘John Jones’

• ‘Andrew John Smith’
• ‘Mary Helen John’
• ‘John John John’
• ‘I am going to visit the John’
• ‘I once saw a film by John Wayne’

But the following strings would not match the pattern:
•‘Jon Davies’ in this case because the spelling of John is

di�erent.
• ‘john Williams’ in this case because the capital J does not

match the lowercase j.
• ‘David James’ in this case because the string does not

contain the string John!

Regular expressions (regexs) use special characters to allow
more complex patterns to be described. For example, we can
use the special characters ‘[]’ to define a set of characters that
can match. For example, if we want to indicate that the J may
be a capital or a lower-case letter then we can write ‘[Jj]’—
this indicates that either ‘J’ or ‘j’ can match the first.

[Jj]ohn—this states that the pattern starts with either a
capital J or a lowercase j followed by ‘ohn’.

Now both ‘john Williams’ and ‘John Williams’ will match this
regex pattern

Pattern Metacharacters

There are several special characters (often referred to as
metacharacters) that have a specific meaning within a regex
pattern,these are listed in the following table:

Special Sequences

A special sequence is a combination of a ‘\’ (backslash)
followed by a character combination which then has a special
meaning. The following table lists the common special
sequences used in Regular Expressions:

Sets

A set is a sequence of characters inside a pair of square
brackets which have specific meanings. The following table
provides some examples.

The Python re Module

The Python re module is the built-in module provided by
Python for working with regular Expressions.

You might also like to examine the third party regex module
(see https://pypi. org/project/regex) which is backwards
compatible with the default re module but provides additional
functionality.

Working withPython Regular Expressions

Using Raw Strings

An important point to note about many of the strings used to
define the regular expression patterns is that they are
preceded by an ‘r’ for example r’/bin/sh$‘.

https://pypi.org/project/regex
https://pypi.org/project/regex

The ‘r’ before the string indicates that the string should be
treated as a raw string.

A raw string is a Python string in which all characters are
treated as exactly that; individual characters. It means that
backslash (‘\’) is treated as a literal character rather than as a
special character that is used to escape the next character.

For example, in a standard string ‘\n’ is treated as a special
character representing a newline, thus if we wrote the
following:

s = 'Hello \n world' print(s)
We will get as output:
Hello
World

However, if we prefix the string with an ‘r’ then we are telling
Python to treat it as a raw string. For example:

s = r'Hello \n world'
print(s)

The output is now

Hello \n world

This is important for regular expression as characters such as
backslash(‘\’) are used within patterns to have a special
regular expression meaning and thus we do not want Python
to process them in the normal way.

Simple Example

The following simple Python program illustrates the basic
use of the re module. It is necessary to import the re module
before you can use it.

import re
text1 = 'john williams' pattern = '[Jj]ohn'
print('looking in', text1, 'for the pattern', pattern)
if re.search(pattern, text1):
print('Match has been found')

When this program is run, we get the following output:

looking in john williams for the pattern [Jj]ohn Match has been
found

If we look at the code, we can see that the string that we are
examining contains ‘john williams’ and that the pattern used
with this string indicates that we are looking for a sequence of
‘J’ or ‘j’ followed by ‘ohn’. To perform this test we use the re.
search() function passing the regex pattern, and the text to
test, as parameters. This function returns either None (which

is taken as meaning False by the If statement) or a Match
Object (which always has a Boolean value of True). As of
course ‘john’ at the start of text1 does match the pattern, the
re.search() function returns a match object and we see the
‘Match has been found’ message is printed out.

Both the Match object and search() method will be described
in more detail below; however, this short program illustrates
the basic operation of a Regular Expression.

The Match Object

Match objects are returned by the search() and match()
functions. They always have a boolean value of True. The
functions match() and search() return None when there is no
match and a Match object when a match is found. It is
therefore possible to use a match object with an if statement:

import re
match = re.search(pattern, string)
if match:
process(match)

Match objects support a range of methods and attributes
including:

match.re The regular expression object whose match() or
search()method produced this match instance.

match.string The string passed to match() or search().
match.start([group])/ match.end([group]) Return the
indices of the start and end of the sub string matched by
group.
match.group() returns the part of the string where there
was a match.

The search() Function

The search() function searches the string for a match, and
returns a Match object if there is a match. The signature of
the function is:

re.search(pattern, string, flags=0)

The meaning of the parameters are:

pattern this is the regular expression pattern to be used in
the matching process.
string this is the string to be searched.
flags these (optional) flags can be used to modify the
operation of the search.

The re module defines a set of flags (or indicators)that can be
used to indicate any optional behaviors associated with the
pattern.These flags include:

If there is more than one match, only the first occurrence of
the match will be returned:

import re
line1 = 'The price is 23.55' containsIntegers = r'\d+'
if re.search(containsIntegers, line1):
print('Line 1 contains an integer')
else:
print('Line 1 does not contain an integer')

In this case the output is

Line 1 contains an integer

Another example of using the search() function is given
below. In this case the pattern to look for defines three
alternative strings (that is the string must contain either
Beatles, Adele or Gorillaz):

import re
Alternative words
music = r'Beatles|Adele|Gorillaz' request = 'Play some Adele'
if re.search(music, request):
print('Set Fire to the Rain')
else:
print('No Adele Available')

In this case we generate the output:

Set Fire to the Rain

The match() Function

This function attempts to match a regular expression pattern
at the beginning of a string. The signature of this function is
given below:

re.match(pattern, string, flags=0)

pattern this is the regular expression to be matched.

string this is the string to be searched.
flags modifier flags that can be used.

The re.match() function returns a Match object on success,
None on failure.

The Di�erence Between Matching and Searching

Python o�ers two di�erent primitive operations based on
regular expressions:

match() checks for a match only at the beginning of the
string,
search() checks for a match anywhere in the string.

The findall() Function

The findall() function returns a list containing all matches.
The signature of this function is:

re.findall(pattern, string, flags=0)

This function returns all non-overlapping matches of pattern
in string, as a list of strings.

The string is scanned left-to-right, and matches are returned
in the order found. If one or more groups are present in the
pattern, then a list of groups is returned; this will be a list of
tuples if the pattern has more than one group. If no matches
are found, an empty list is returned.

An example of using the findall() function is given below.
This example looks for a sub string starting with two letters

and followed by ‘ai’ and a single character. It is applied to a
sentence and returns only the sub string ‘Spain’ and ‘plain’.

import re
str = 'The rain in Spain stays mainly on the plain' results =
re.findall('[a-zA-Z]{2}ai.', str) print(results)
for s in results:
print(s)

The output from this program is

[‘Spain’, ‘plain’]
Spain
plain

The finditer() Function

This function returns an iterator yielding matched objects for
the regular expression pattern in the string supplied. The
signature for this function is:

re.finditer(pattern, string, flags=0)

The string is scanned left-to-right,and matches are returned
in the order found. Empty matches are included in the result.
Flags can be used to modify the matches.

The split() Function

The split() function returns a list where the string has been
split at each match. The syntax of the split() function is

re.split(pattern, string, maxsplit=0, flags=0)

The result is to split a string by the occurrences of pattern. If
capturing parentheses are used in the regular expression
pattern, then the text of all groups in the pattern are also
returned as part of the resulting list. If max split is nonzero,
at most max split splits occur, and the remainder of the string
is returned as the final element of the list. Flags can again be
used to modify the matches.

import re
str = 'It was a hot summer night' x =re.split('\s', str)
print(x)
The output is
['It', 'was', 'a', 'hot', 'summer', 'night']

The sub() Function

The sub() function replaces occurrences of the regular
expression pattern in the string with the repl string.

re.sub(pattern, repl, string, max=0)

This method replaces all occurrences of the regular
expression pat- tern in string with repl, substituting all
occurrences unless max is provided. This method returns the
modified string.

import re
pattern = '(England|Wales|Scotland)'
input = 'England for football, Wales for Rugby and Scotland for
the Highland games'
print(re.sub(pattern, 'England', input))

Which generates:

England for football, England for Rugby and England for the
Highland games

You can control the number of replacements by specifying the
count parameter: The following code replaces the first 2
occurrences:

import re
pattern = '(England|Wales|Scotland)'
input = 'England for football, Wales for Rugby and Scotland for
the Highland games'
x = re.sub(pattern, 'Wales', input, 2)
print(x)

which produces

Wales for football,Wales for Rugby and Scotland for the

Highland games

You can also find out how many substitutions were made
using the subn() function. This function returns the new
string and the number of substitutions in a tuple:

import re
pattern = '(England|Wales|Scotland)'
input = 'England for football, Wales for Rugby and Scotland for
the Highland games'
print(re.subn(pattern,'Scotland', input))
The output from this is:
('Scotland for football, Scotlandfor Rugby and Scotlandfor the
Highland games', 3)

The compile() Function

Most regular expression operations are available as both
module-level functions (as described above) and as methods
on a compiled regular expression object.

The module level functions are typically simplified or
standardized ways to use the compiled regular expression. In
many cases these functions are su�cient but if finer grained
control is required then a compiled regular expression may be
used.

re.compile(pattern, flags=0)

The compile() function compiles a regular expression pattern
into a regular expression object, which can be used for
matching using its match(), search() and other methods as
described below.

The expression’s behavior can be modified by specifying a
flags value. V The statements:

prog = re.compile(pattern)
result = prog.match(string)
are equivalent to
result = re.match(pattern,string)

but using re.compile() and saving the resulting regular
expression object for reuse is more e�cient when the
expression will be used several times in a single program.

Compiled regular expression objects support the following
methods and attributes:

Pattern.search(string, pos, end pos) Scan through string
looking for the first location where this regular
expression produces a match and return a corresponding
Match object. Return None if no position in the string
matches the pattern. Starting at pos if provided and

ending at end pos if this is provided (otherwise process
the whole string).
Pattern.match(string, pos, end pos)If zero or more
characters at the beginning of string match this regular
expression,return a corresponding match object. Return
None if the string does not match the pattern. The pos
and end pos are optional and specify the start and end
positions within which to search.
Pattern.split(string, maxsplit = 0)Identical to the
split()function, using the compiled pattern.
Pattern.find all(string[, pos[, end pos]])Similar to the
find all () function, but also accepts optional pos and end
pos parameters that limit the search region like for
search().
Pattern.finditer(string[, pos[, end pos]])Similar to the
find- iter() function, but also accepts optional pos and
end pos parameters that limit the search region like for
search().
Pattern.sub(repl, string, count = 0)Identical to the
sub()function, using the compiled pattern.
Pattern.subn(repl,string, count = 0)Identical to the
subn()function, using the compiled pattern.
Pattern.pattern the pattern string from which the pattern
object was compiled.

An example of using the compile() function is given below.
The pattern to be compiled is defined as containing 1 or more

digits (0 to 9):

import re
line1 = 'The price is 23.55' containsIntegers = r'\d+'
rePattern = re.compile(containsIntegers)
matchLine1 = rePattern.search(line1)
if matchLine1:
print('Line 1 containsa number')
else:
print('Line 1 does not contain a number')

The compiled pattern can then be used to apply methods such
as search() to a specific string (in this case held in line1). The
output generated by this is:

Line 1 contains a number

Of course the compiler pattern object supports a range of
methods in addition to search() as illustrated by the spilt
method:

p = re.compile(r'\W+') s = '20 High Street' print(p.split(s))
The output from this is
['20', 'High', 'Street']

Try

Write a Python function to verify that a given string only
contains letters (upper case or lower case) and numbers. Thus

spaces and under bars (‘_’) are not allowed. An example of
the use of this function might be:

print(contains_only_characters_and_numbers(‘John’)) #
True
print(contains_only_characters_and_numbers(‘John_Hun
t’)) # False

print(contains_only_characters_and_numbers(‘42’)) #
True
print(contains_only_characters_and_numbers(‘John42’))
True
print(contains_only_characters_and_numbers(‘John 42’))
False

Write a function to verify a UK Postcode format (call it
verify_postcode). The format of a Postcode is two letters
followed by 1 or 2 numbers, followed by a space, followed by
one or two numbers and finally two letters. An Example of a
postcode is SY23 4ZZ another postcode might be BB1 3PO and
finally we might have AA1 56NN (note this is a simplification
of the UK Postcode system but is suitable for our purposes).

Using the output from this function you should be able to run
the following test code:

True
print("verify_postcode('SY23 3AA'):", verify_postcode('SY23
33AA'))
True
print("verify_postcode('SY23 4ZZ'):", verify_postcode('SY23
4ZZ'))
True
print("verify_postcode('BB1 3PO'):", verify_postcode('BB1
3PO'))
False
print("verify_postcode('AA111 NN56'):",verify_postcode('AA111
NN56'))
True
print("verify_postcode('AA1 56NN'):", verify_postcode('AA1
56NN'))
False print("verify_postcode('AA156NN'):",
verify_postcode('AA156NN'))
False
print("verify_postcode('AA NN'):", verify_postcode('AA NN'))

Write a function that will extract the value held between two
strings or characters such as ‘<’ and ‘>’. The function should
take three parameters, the start character, the end character
and the string to process. For example, the following code
snippet:

print(extract_values(’<‘, ‘>‘, ‘<John>’))

print(extract_values(’<‘, ‘>‘, ‘<42>’))
print(extract_values(’<‘, ‘>‘, ‘<John 42>’))
print(extract_values(’<‘, ‘>‘, ‘The <town> was in the

<valley>’))

Should generate output such as:

[‘John’]
[‘42’]
[‘John 42’]
[‘town’, ‘valley’]

Introduc�on to Databases

Introduction

There are several di�erent types of database system in
common use today including Object databases, NoSQL
databases and (probably the most common) Relational
Databases. This chapter focuses on Relational Databases as
typified by database systems such as Oracle, Microsoft SQL
Server and MySQL. The database we will use in this book is
MySQL.

What Is a Database?

A database is essentially a way to store and retrieve data.
Typically, there is some form of query language used with the
database to help select the information to retrieve such as
SQL or Structured Query Language.

Inmost cases there is a structure defined that is used to hold
the data (although this is not true of the newer NoSQL or
non-relational unstructured databases such as CouchDB or
MongoDB).

In a Relational Database the data is held in tables, where the
columns define the properties or attributes of the data and
each row defines the actual values being held, for example:

In this diagram there is a table called students; it is being
used to hold information about students attending a meeting.
The table has 5 attributes (or columns) defined for id, name,
surname, subject and email.

In this case, the id is probably what is known as a primary
key. The primary key is a property that is used to uniquely
identify the student row; it cannot be omitted and must be
unique (within the table). Obviously names and subjects may
well be duplicated as there may be more than one student
studying Animation or Games and students may have the

same first name or surname. It is probable that the email
column is also unique as students probably don’t share an
email address but again this may not necessarily be the case.

You might at this point wonder why the data in a Relational
Database is called relational and not tables or tabular?The
reason is because of a topic known as relational algebra that
underpins Relational Database theory. Relational Algebra
takes its name from the mathematical concept known as a
relation. However, for the purposes of this chapter you don’t
need to worry about this and just need to remember that data
is held in tables.

Data Relationships

When the data held in one table has a link or relationship to
data held in another table then an index or key is used to link
the values in one table to another. This is illustrated below for
a table of addresses and a table of people who live in that
address. This shows for example, that ‘PhoebeGates’ lives at
address ‘addr2’ which is 12 Queen Street, Bristol, BS42 6YY.

This is an example of a many to one (often written as many:1)
relationship; that is there are many people who can live at one
address (in the above Adam Smith also lives at address
‘addr2’). In Relational Databases there can be several
di�erent types of relationship such as:

one:one where only one row in one table references one
and only one row in another table. An example of a one to
one relationship might be from a person to an order for a
unique piece of jewellery.
one:many this is the same as the above address example,
however in this case the direction of the relationship is
reversed (that is to say that one address in the addresses
table can reference multiple persons in the people table).

many:many This is where many rows in one table may
reference many rows in a second table. For example,
many students may take a particular class and a student
may take many classes. This relationship usually involves
an intermediate (join) table to hold the associations
between the rows.

The Database Schema

The structure of a Relational Database is defined using a Data
Definition Language or Data Description Language (a DDL).

Typically, the syntax of such a language is limited to the
semantics (meaning) required to define the structure of the
tables. This structure is known as the database schema.
Typically, the DDL has commands such as CREATETABLE,
DROP TABLE (to delete a table) and ALTER TABLE (to modify
the structure of an existing table).

Many tools provided with a database allow you to define the
structure of the database without getting too bound up in the
syntax of the DDL; however, it is useful to be aware of it and
to understand that the database can be created in this way.
For example, we will use the MySQL database in this chapter.
The MySQL Workbench is a tool that allows you to work with
MySQL databases to manage and query the data held within a

particular database instance. For references for mySQL and
the MySQL Workbench see the links at the end of this chapter.

As an example, within the MySQL Workbench we can create a
new table using a menu option on a database:

Using this we can interactively define the columns that will
comprise the table:

Here each column name, its type and whether it is the
primary key (PK), not empty(or Not Null NN) or unique (UQ)
have been specified. When the changes are applied, the tool
also shows you the DDL that will be used to create the
database:

When this is applied a new table is created in the database as
shown below:

The tool also allows us to populate data into the table; this is
done by entering data into a grid and hitting apply as shown
below:

SQL and Databases

We can now use query languages to identify and return data
held in the database often using specific criteria.

For example, let us say we want to return all the people who
have the surname Jones from the following table:

We can do this by specifying that data should be returned
where the surname equals ‘Jones’; in SQL this would look
like:

SELECT * FROM students where surname='Jones';

The above SELECT statement states that all the properties
(columns or attributes) in a row in the table students are to be
returned where the surname equals ‘Jones’. The result is that
two rows are returned:

Note we need to specify the table we are interested in and
what data we want to return (the ‘*’ after the select indicated
we want all the data). If we were only interested in their first
names then we could use:

SELECT name FROM students where surname='Jones';

This would return only the names of the students:

Data Manipulation Language

Data can also be inserted into a table or existing data in a
table can be updated. This is done using the Data
Manipulation Language (DML).

For example, to insert data into a table we merely need to
write an INSERT SQL statement providing the values to be
added and how they map to the columns in the table:

INSERT INTO 'students'('id', 'name', 'surname', 'subject',
'email') VALUES ('6', 'James', 'Andrews', 'Games',
'ja@my.com');

This would add the row 6 to the table students with the result
that the table would now have an additional row:

Updating an existing row is a little more complicated as it is
first necessary to identify the row to be updated and then the
data to modify. Thus an UPDATE statement includes a where
clause to ensure the correct row is modified:

UPDATE 'students' SET 'email'='grj@my.com' WHERE 'id'='2';

The e�ect of this code is that the second row in the students
table is modified with the new email address:

Transactions in Databases

Another important concept within a database is that of a
Transaction. A Transaction represents a unit of work
performed within a database management system (or similar
system) against a database instance,and is independent of
any other transaction.

Transactions in a database environment have two main
purposes

To provide a unit of work that allows recovery from
failures and keeps a database consistent even in cases of
system failure, when execution stops (completely or
partially). This is because either all the operations within
a transaction are performed or none of them are. Thus, if
one operation causes an error then all the changes being
made by the transaction thus far are rolled back and none
of them will have been made.
To provide isolation between programs accessing a
database concurrently. This means that the work being
done by one program will not interact with another
programs work.

A database transaction, by definition, must be atomic,
consistent, isolated and durable:

Atomic This indicates that a transaction represents an
atomic unit of work; that is either all the operations in the
transaction are performed or none of them are
performed.
Consistent Once completed the transaction must leave
the data in a consistent state with any data constraints
met (such as a row in one table must not reference an
non-existent row in another table in a one to many
relationship etc.).
Isolated This relates to the changes being made by
concurrent transactions; these changes must be isolated
from each other. That is, one transaction cannot see the
changes being made by another transaction until the
second transaction completes and all changes are
permanently saved into the database.
Durable This means that once a transaction completes
then the changes it has made are permanently stored into
the database (until some future transaction modifies that
data).

Database practitioners often refer to these properties of
database transactions using the acronym ACID (for Atomic,
Consistent, Isolated,Durable).

Not all databases support transactions although all
commercial, production quality databases such as Oracle,

Microsoft SQL Server and MySQL, do support transactions.

Further Reading

If you want to know more about databases and database
management systems here are some online resources:

https://en.wikipedia.org/wiki/Database which is the
wikipedia entry for data- bases and thus acts as a useful
quick reference and jumping o� point for other material.
https://en.wikibooks.org/wiki/Introduction_to_Comput
er_Information_Systems/Database which provides a
short introduction to databases.
https://www.techopedia.com/6/28832/enterprise/databa
ses/introduction-to-data-bases another useful starting
point for delving deeper into databases.
https://en.wikipedia.org/wiki/Object_database for
information on Object databases.
https://en.wikipedia.org/wiki/NoSQL for an introduction
to No SQL or non relational databases.
https://www.mysql.com/ for the MySQL Database.
https://dev.mysql.com/downloads/workbench The
MySQL Workbench home page.
https://www.mongodb.com/ for the home page of the
MongoDBsite.

https://en.wikipedia.org/wiki/Database
https://en.wikibooks.org/wiki/Introduction_to_Computer_Information_Systems/Database
https://www.techopedia.com/6/28832/enterprise/databases/introduction-to-databases
https://en.wikipedia.org/wiki/Object_database
https://en.wikipedia.org/wiki/NoSQL
https://www.mysql.com/
https://dev.mysql.com/downloads/workbench
https://www.mongodb.com/

http://couchdb.apache.org/ for the Apache Couch
Database.

If you want to explore the subject of database design (that is
design of the tables and links between tables in a
database)then these references may help:

https://en.wikipedia.org/wiki/Database_design the
wikipedia entry for database design.
https://www.udemy.com/cwdatabase-design-
introduction/ which covers most of the core ideas within
database design.
http://en.tekstenuitleg.net/articles/software/database-
design-tutorial/intro.html which provides another
tutorial that covers most of the core elements of data-
base design.

If you wish to explore SQL more then see:

https://en.wikipedia.org/wiki/SQL the wikipedia site for
SQL
https://www.w3schools.com/sql/sql_intro.asp which is
the W3 school material on SQL and as such an excellent
resource.
https://www.codecademy.com/learn/learn-sql which is a
codecademy site for

SQL.

http://couchdb.apache.org/
https://en.wikipedia.org/wiki/Database_design
https://www.udemy.com/cwdatabase-design-introduction
http://en.tekstenuitleg.net/articles/software/database-design-tutorial/intro.html
https://en.wikipedia.org/wiki/SQL
https://www.w3schools.com/sql/sql_intro.asp
https://www.codecademy.com/learn/learn-sql

Python DB-API

Accessing a Database from Python

The standard for accessing a database in Python is the Python
DB-API. This specifies a set of standard interfaces for
modules that wish to allow Python to access a specific
database. The standard is described in PEP 249
(https://www.python.org/ dev/peps/pep-0249)—a PEP is a
Python Enhancement Proposal.

Almost all Python database access modules adhere to this
standard. This means that if you are moving from one
database to another, or attempting to port a Python program
from one database to another, then the APIs you encounter
should be very similar (although the SQL processed by
di�erent database can also di�er). There are modules
available for most common databases such as MySQL, Oracle,
Microsoft SQL Server etc.

TheDB-API

There are several key elements to the DB_API these are:

https://www.python.org/dev/peps/pep-0249
https://www.python.org/dev/peps/pep-0249

The connect function. The connect() function that is used
to connect to a database and returns a Connection Object.
Connection Objects. Within the DB-API access to a
database is achieved through connection objects. These
connection objects provide access to cursor objects.
Cursor objects are used to execute SQL statements on the
database.
The result of an execution. These are the results that can
be fetched as a sequence of sequences (such a tuple of
tuples). The standard can thus be used to select, insert or
update information in the database.

These elements are illustrated below:

The standard specifies a set of functions and objects to be
used to connect to a database. These include the connection
function, the Connection Object and the Cursor object.

The above elements are described in more detail below.

The Connect Function

The connection function is defined as:

connect(parameters...)

It is used to make the initial connection to the database. The
connection returns a Connection Object. The parameters
required by the connection function are data- base
dependent.

The Connection Object

The Connection Object is returned by the connect() function.
The Connection object provides several methods including:

close() used to close the connection once you no longer
need it. The connection will be unusable from this point
on wards.
commit() used to commit a pending transaction.
rollback() used to rollback all the changes made to the
database since the last transaction commit (optional as

not all databases provide transaction support).
cursor() returns a new Cursor object to use with the
connection.

The Cursor Object

The Cursor object is returned from the connection.cusor()
method. A Cursor Object represents a database cursor, which
is used to manage the context of a fetch operation or the
execution of a database command. Cursors support a variety
of attributes and methods:

cursor.execute(operation, parameters) Prepare and
execute a database operation (such as a query statement
or an update command). Parameters may be provided as a
sequence or mapping and will be bound to variables in the
operation. Variables are specified in a database specific
notation.
cursor.row count a read-only attribute providing the
number of rows that the last cursor.execute() call
returned (for select style statements) or a�ected (for
update or insert style statements).
cursor.description a read only attribute providing
information on the columns present in any results
returned from a SELECT operation.
cursor.close() closes the cursor. From this point on the
cursor will not be usable.

In addition, the Cursor object also provides several fetch style
methods. These methods are used to return the results of a
database query. The data returned is made up of a sequence of
sequences (such as a tuple of tuples) where each inner
sequence represents a single row returned by the SELECT
statement. The fetch methods defined by the standard are:

cursor.fetchone() Fetch the next row of a query result set,
returning a single sequence, or None when no more data
is available.
cursor.fetchall()Fetch all (remaining) rows of a query
result, returning them as a sequence of sequences.
cursor.fetchman(size) Fetch the next set of rows of a
query result, returning a sequence of sequences (e.g. a
tuple of tuples). An empty sequence is returned when no
more rows are available. The number of rows to fetch per
call is specified by the parameter.

Mappings from Database Types to Python Types

The DB-API standard also specifies a set of mappings from
the types used in a database to the types used in Python. For a
full listing see the DB-API standard itself but the key
mappings include:

Generating Errors

The standard also specifies a set of Exceptions that can be
thrown in di�erent situations.

These are presented below and in the following table:

The above diagram illustrates the inheritance hierarchy for
the errors and warning associated with the standard. Note
that the DB-API Warning and Error both extend the
Exception class from standard Python; however, depending
on the specific implementation there may be one or more
additional classes in the hierarchy between these classes. For
example, in the PyMySQL module there is a MySQLError class
that extends Exception and is then extended by both

Warning and Error.

Also note that Warning and Error have no relationship with
each other. This is because Warnings are not considered
Errors and thus have a separate class hierarchies. However,
the Error is the root class for all database Error classes.

A description of each Warning or Error class is provided
below.

Row Descriptions

The Cursor object has an attribute description that provides a
sequence of sequences; each sub sequence provides a
description of one of the attributes of the data returned by a
SELECT statement. The sequence describing the attribute is
made up of up to seven items, these include:

name representing the name of the attribute,
type_code which indicates what Python type this
attribute has been mapped to,
display_size the size used to display the attribute,
internal_size the size used internally to represent the
value,
precision if a real numeric value the precision supported
by the attribute,
scale indicates the scale of the attribute,
null_ok this indicates whether null values are acceptable
for this attribute.

The first two items (name and type_code) are mandatory, the
other five are optional and are set to None if no meaningful
values can be provided.

Transactions in PyMySQL

Transactions are managed in PyMySQL via the database
connection object. This object provides the following method:

connection.commit()this causes the current transaction
to commit all the changes made permanently to the

database. A new transaction is then started.
connection.rollback() this causes all changes that have
been made so far (but not permanently stored into the
database i.e. Not committed) to be removed. A new
transaction is then started.

The standard does not specify how a database interface
should manage turning on and o� transaction (not least
because not all databases support transactions). However,
MySQL does support transactions and can work in two
modes; one supports the use of transactions as already
described; the other uses an auto commit mode. In auto
commit mode each command sent to the database (whether a
SELECT statement or an INSERT/UPDATE statement) is
treated as an independent transaction and any changes are
automatically committed at the end of the statement. This
auto commit mode can be turned on in PyMySQL using:

connection.autocommit(True) turn on auto commit
(False to turn o� auto commit which is the default).

Other associated methods include

connection.get_autocommit() which returns a boolean
indicating whether auto commit is turned on or not.
connection.begin() to explicitly begin a new transaction.

Online Resources

See the following online resources for more information on
the Python Database API:

https://www.python.org/dev/peps/pep-0249/ Python
Database API Specification V2.0.
https://wiki.python.org/moin/DatabaseProgramming
Database Programming in Python.
https://docs.python-guide.org/scenarios/db/ Databases
and Python.

https://www.python.org/dev/peps/pep-0249
https://wiki.python.org/moin/DatabaseProgramming
https://docs.python-guide.org/scenarios/db

PyMySQL Module

The PyMySQL Module

The PyMySQL module provides access to a MySQL database
from Python. It implements the Python DB-API v 2.0. This
module is a pure Python database interface implementation
meaning that it is portable across di�erent operating
systems; this is notable because some database interface
modules are merely wrappers around other
(native)implementations that may or may not be available on
di�erent operating systems. For example, a native Linux
based database inter- face module may not be available for
the Windows operating system. If you are never going to
switch between di�erent operating systems, then this is not a
problem of course.

To use the PyMySQL module you will need to install it on your
computer. This will involve using a tool such as Anaconda or
adding it to your PyCharm project. You can also use pip to
install it:

> pip install PyMySQL

Working with the PyMySQL Module

To use the PyMySQL module to access a database you will
need to follow these steps.

1. Import the module.
2. Make a connection to the host machine running the

database and to the database you are using.
3. Obtain a cursor object from the connection object.
4. Execute some SQL using the cursor.execute() method.
5. Fetch the result(s) of the SQL using the cursor object (e.g.

fetchall,fetchmany or fetchone).
6. Close the database connection.

These steps are essentially boiler plate, code that is you will
use them whenever you access a database via PyMySQL (or
indeed any DB-API compliant module).

We will take each of these steps in turn.

Importing the Module

As the PyMySQL module is not one of the built-in modules
provided by default with Python you will need to import the
module into your code, for example using

import pymsql

Be careful with thecase used here as the module name is
pymysql in the code (if you try to import PyMySQL Python
will not find it!).

Connect to the Database

Each database module will have their own specifics for
connecting to the database server; these usually involve
specifying the machine that the database is running on (as
databases can be quiet resource intensive, they are often run
on a separate physical computer), the user to use for the
connection and any security information required such as a
password and the database instance to connect to. In most
cases a database is looked after by a database management
system (a DBMS) that can manage multiple database
instances and it is therefore necessary to specify which
database instance you are interested in.

For MySQL, the MySQL database server is a DBMS that can
indeed look after multiple database instances. The
pymysql.connect function thus requires the following
information when connecting to the database is:

The name of the machine hosting the MySQL database
servere.g. dbserver. mydomain.com. If you want to
connect to the same machine as your Python program is
running on, then you can use localhost. This is a special

name reserved for the local machine and avoids you
needing to worry about the name of your local computer.

The user name to use for the connection. Most databases limit
access to their databases to named users. These are not
necessary users such as humans that log into a system but
rather entities that are allowed to connect to the database and
perform certain operations. For example,one user may only
be able to read data in the database where as another user is
allowed to insert new data into the database. These users are
authenticated by requiring them to provide a password.

• The password for the user.
• The database instance to connect to. As mentioned in the

previous chapter a Database

Management System (DMS) can manage multiple database
instances and thus it is necessary to say which database
instance you are interested in.

For example:

Open database connection connection =
pymysql.connect('localhost','username','password','uni-
database')

In this case the machine we are connecting to is ‘localhost’
(that is the same machine as the Python program itself is

running on), the user is represented by ‘username’ and
‘password’ and the database instance of interest is called
‘uni-database’.

This returns a Connection object as per the DB-API standard.

Obtaining the Cursor Object

You can obtain the cursor object from the connection using
the cursor() method:

prepare a cursor object using cursor() method cursor =
connection.cursor()

Using the Cursor Object

Once you have obtained the cursor object you can use it to
execute an SQL query or a DML insert, update or delete
statement. The following example uses a simple select
statement to select all the attributes in the students table for
all rows currently stored in the students table:

execute SQL query using execute() method.
cursor.execute('SELECT * FROM students')

Note that this method executes the SELECT statement but
does not return the set of results directly. Instead the execute

method returns an integer indicating the number of rows
either a�ected by the modification or returned as part of the
query. In the case of a SELECT statement the number
returned can be used to determine which type of fetch method
to use.

Obtaining Information About the Results

The Cursor Object can also be used to obtain information
about the results to be fetched such as how many rows there
are in the results and what the type is of each attribute in the
results:

cusor.rowcount() this is a read-only property that
indicates the number of rows returned for a SELECT
statement or rows a�ected for a UPDATE or INSERT
statement.
cursor.description()this is a read-only property that
provides a description of each attribute in the results set.
Each description provides the name of the attribute and
an indication of the type (via a type_code) as well as
further information on whether the value can be null or
not and for numbers scale, precision and size
information.

An example of using these two properties is given below:

print('cursor.rowcount', cursor.rowcount)
print('cursor.description', cursor.description)
A sample of the output generated by these lines is given below:
cursor.rowcount 6
cursor.description (('id', 3, None, 11, 11, 0, False),
('name', 253, None, 180, 180, 0, False), ('surname',
253, None, 180, 180, 0, False), ('subject', 253, None,
180, 180,
0, False), ('email', 253, None, 180, 180, 0, False))

Fetching Results

Now that a successful SELECT statement has been run against
the database, we can fetch the results. The results are
returned as a tuple of tuples. As mentioned in the last chapter
there are several di�erent fetch options available including
fetchone (), fetchmany(size) and fetchall(). In the following
example we use the fetchall() option as we know that there
are only up to six rows that can be returned.

Fetch all the rows and then iterate over the data
data = cursor.fetchall()
for row in data:
print('row:', row)

In this case we loop through each tuple within the data
collection and print that row out. However, we could just as
easily have extracted the information in the tuple into

individual elements. These elements could then be used to
construct an object that could then be processed within an
application, for example:

for row in data:
id, name, surname, subject, email = row
student = Student(id, name, surname, subject, email)
print(student)

Close the Connection

Once you have finished with the database connection it
should be closed.

disconnect from server
connection.close()

Complete PyMySQL Query Example

A complete listing illustrating connecting up to the database,
running a SELECT statement and printing out the results
using a Student class is given below:

import pymysql
class Student:
def init (self, id, name, surname, subject, email):
self.id = id
self.name = name

self.surname = surname
self.subject = subject
self.email = email
def str (self):
return 'Student[' + str(id) + '] ' + name + ' ' +
surname + ' - ' + subject + ' ' + email
Open database connection
connection = pymysql.connect('localhost',
'user',
'password',
'uni-database')
prepare a cursor object using cursor() method cursor =
connection.cursor()
execute SQL query using execute() method.
cursor.execute('SELECT * FROM students')
print('cursor.rowcount', cursor.rowcount)
print('cursor.description', cursor.description)
Fetch all the rows and then iterate over the data
data = cursor.fetchall()
for row in data:
student_id, name, surname, subject, email = row
student = Student(student_id, name, surname, subject,
email)
print(student)
disconnect from server connection.close()

The output from this program, for the database created in the
last chapter is shown here:

cursor.rowcount 6
cursor.description (('id', 3, None, 11, 11, 0, False),
('name', 253, None, 180, 180, 0, False), ('surname',
253, None, 180, 180, 0, False), ('subject', 253, None,
180, 180,

0, False), ('email', 253, None, 180, 180, 0, False))
Student[1] Phoebe Cooke - Animation pc@my.com
Student[2] Gryff Jones - Games grj@my.com
Student[3] Adam Fosh - Music af@my.com
Student[4]Jasmine Smith - Games js@my.com
Student[5] Tom Jones - Music tj@my.com
Student[6] James Andrews - Games ja@my.com

Inserting Data to the Database

As well as reading data from a database many applications
also need to add new data to the database. This is done via the
DML (Data Manipulation Language) INSERT statement. The
process for this is very similar to running a query against the
database using a SELECT statement; that is, you need to make
a connection, obtain a cursor object and execute the
statement. The one di�erence here is that you do not need to
fetch the results.

import pymysql
Open database connection connection =
pymysql.connect('localhost', 'user', 'password', 'uni-
database')
prepare a cursor object using cursor() methodcursor =
connection.cursor()
try:
Execute INSERT command
cursor.execute("INSERT INTO students (id, name, surname,
subject, email) VALUES (7, 'Denise', 'Byrne', 'History',
'db@my.com')")

Commit the changes to the database
connection.commit()
except:
Something went wrong
rollback the changes
connection.rollback()
Close the database connectionconnection.close()

The result of running this code is that the database is updated
with a seventh row for ‘Denise Byrne’. This can be seen in the
MySQL Workbench if we look at the contents of the students
table:

There are a couple of points to note about this code example.
The first is that we have used the double quotes around the
string defining the INSERT command— this is because a
double quotes string allows us to include single quotes within
that string. This is necessary as we need to quote any string
values passed to the database (such as ‘Denise’).

The second thing to note is that by default the PyMySQL
database interface requires the programmer to decide when
to commit or rollback a transaction. A transaction was
introduced in the last chapter as an atomic unit of work that
must either be completed or as a whole or rollback so that no
changes are made. However, the way in which we indicate
that a transaction is completed is by calling the commit()
method on the database connection. In turn we can indicate
that we want to rollback the current transaction by calling
rollback(). In either case, once the method has been invoked a
new transaction is started for any further database activity.

In the above code we have used a try block to ensure that if
everything succeeds, we will commit the changes made, but if
an exception is thrown (of any kind) we will rollback the
transaction—this is a common pattern.

Updating Data in the Database

If we are able to insert new data into the database, we may
also want to update the data in a database, for example to
correct some information. This is done using the UPDATE
statement which must indicate which existing row is being
updated as well as what the new data should be.

import pymysql
Open database connection

connection = pymysql.connect('localhost',
'user',
'password',
'uni-database')
prepare a cursor object using cursor() method cursor =
connection.cursor()
try:
Execute UPDATE command
cursor.execute("UPDATE students SET email =
'denise@my.com' WHERE id = 7")
Commit the changes to the database
connection.commit()
except:
rollback the changes if an exception / error
connection.rollback()
Close the database connection connection.close()

In this example we are updating the student with id 7 such
that their email address will be changed to ‘denise@my.com’.
This can be verified by examining the contents of the
students table in the MySQL Workbench:

Deleting Data in the Database

mailto:denise@my.com

Finally, it is also possible to delete data from a database, for
example if a student leaves their course. This follows the
same format as the previous two examples with the
di�erence that the DELETE statement is used instead:

import pymysql
Open database connection
connection = pymysql.connect('localhost',
'user',
'password',
'uni-database')
prepare a cursor object using cursor() method cursor =
connection.cursor()
try:
Execute DELETE command
cursor.execute("DELETE FROM studentsWHERE id = 7")
Commit the changes to the database connection.commit()
except:
rollback the changes if an exception / error
connection.rollback()
Close the database connection connection.close()

In this case we have deleted the student with id 7. We can see
that again in the MySQL Workbench by examining the
contents of the students table after this code has run:

Creating Tables

It is not just data that you can add to a database; if you wish
you can programmatically create new tables to be used with
an application. This process follows exactly the same pattern
as those used for INSERT, UPDATE and DELETE. The only
di�erence is that the command sent to the database contains
a CREATE statement with a description of the table to be
created. This is illustrated below:

import pymysql
Open database connection
connection = pymysql.connect('localhost',
'user',
'password',
'uni-database')
prepare a cursor object using cursor() method cursor =
connection.cursor()
try:
Execute CREATE command
cursor.execute("CREATE TABLE log (message VARCHAR(100) NOT
NULL)")

Commit the changes to the database connection.commit()
except:
rollback the changes if an exception / error
connection.rollback()
Close the database connection connection.close()

This creates a new table log within the uni-database; this can
be seen by looking at the tables listed for the uni-database
within the MySQL Workbench.

Online Resources

See the following online resources for more information on
the Python Database API:

https://pymysql.readthedocs.io/en/latest/ PyMySQL
Documentation site.

https://pymysql.readthedocs.io/en/latest

https://github.com/PyMySQL/PyMySQL Git hub
repository for the PyMySQL library.

Try

In this exercise you will create a database and tables based on
a set of transactions stored in a current account. You can use
the account class you created in the CSV and Excel chapter for
this.

You will need two tables, one for the account information and
one for the transaction history. The primary key of the
account information table can be used as the foreign key for
the transaction history table. Then write a function that takes
an Account object and populates the tables with the
appropriate data.

To create the account information table you might use the
following DDL:

CREATE TABLE acc_info (idacc_info INT NOT NULL, name
VARCHAR(255) NOT NULL, PRIMARY KEY (idacc_info))

While for the transactions table you might use:

CREATE TABLE transactions (idtransactions INT NOT NULL, type
VARCHAR(45) NOT NULL, amount VARCHAR(45) NOT NULL, account INT
NOT NULL, PRIMARY KEY (idtransactions))"

https://github.com/PyMySQL/PyMySQL

Remember to be careful with integers and decimals if you are
creating an SQL string such as:

statement = "INSERT into transactions (idtransactions,
type, amount, account) VALUES (" + str(id) + ", '" +
action + "', " + str(amount) + ", " +
str(account_number) + ")"

Introduc�on to Logging

Introduction

Many programming languages have common logging
libraries including Java and C# and of course Python also has
a logging module. Indeed the Python logging module has
been part of the built in modules since Python 2.3.

This chapter discusses why you should add logging to your
programs, what you should (and should not) log and why just
using the print() function is not su�cient.

Why Log?

Logging is typically a key aspect of any production
application; this is because it is important to provide
appropriate information to allow future investigation
following some event or issue in such applications. These
investigations include:

Diagnosing failures; that is why did an application
fail/crash.

Identifying unusual or unexpected behavior; which might
not cause the application to fail but which may leave it in
an unexpected state or where data may be corrupted etc.
Identifying performance or capacity issues; in such
situations the application is performing as expected by it
is not meeting some non-functional requirements
associated with the speed at which it is operating or its
ability to scale as the amount of data or the number of
users grows.
Dealing with attempted malicious behavior in which
some outside agent is attempting to a�ect the behavior of
the system or to acquire information which they should
not have access to etc. This could happen for example, if
you are creating a Python web application and a user tries
to hack into your web server.
Regulatory or legal compliance. In some cases records of
program execution may be required for regulatory or
legal reasons. This is particularly true of the financial
sector where records must be kept for many years in case
there is a need to investigate the organizations’ or
individuals’ behavior.

What Is the Purpose of Logging?

In general there are therefore two general reason to log what
an application is doing during it operation:

For diagnostic purposes so that recorded events/steps can
be used to analyze the behavior of the system when
something goes wrong.
Auditing purposes that allow for later analysis of the
behavior of the system for business, legal or regulatory
purposes. For example, in this case to determine who did
what with what and when.

Without such logged information it is impossible after the
event to know what happened. For example, if all you know is
that an application crashed (unexpectedly stopped executing)
how can you determine what state the application was in,
what functions, methods etc. were being executed and which
statements run?

Remember that although a developer may have been using an
IDE to run their applications during development and may
possibly been using the debugging facilities available that
allow you to see what functions or methods, statements and
even variable values are place; this is not how most
production systems are run. In general a production Python
system will be run either from a command line or possibly
through a short cut (on a Windows box) to simplify running
the program. All the user will know is that something failed or
that the behavior they expected didn’t occur—if in fact they
are aware of any issue at all!

Logs are therefore key to after the event analysis of failures,
unexpected behavior or for analysis of the operation of the
system for business reasons.

What Should You Log?

One question that you might be considering at this point is
‘what information should I log?’. An application should log
enough information so that post event investigators can
understand what was happening, when and where. In general
this means that you will want to log the time of the log
message, the module/filename, function name or method
name executing, potentially the log level being used (see
later) and in some cases the parameter values/state of the
environment, program or class involved.

In many cases developers log the entry (and to a lesser
extent) the exit from a function or method. However, it may
also be useful to log what happens at branch points within a
function or method so that the logic of the application can be
followed.

All applications should log all errors/exceptions. Although
care is needed to ensure that this is done appropriately. For
example if an exception is caught and then re thrown several
times it is not necessary to log it every time it is caught.
Indeed doing this can make the log files much larger, cause

confusion when the problem is being investigated and result
in unnecessary overheads. One common approach is to log an
exception where it is first raised and caught and not to log it
after that.

What Not to Log

The follow on question to consider is ‘what information
should I not log?’. One general area not to log is any personal
or sensitive information including any information that can
be used to identify an individual. This sort of information is
known as PII or Personally Identification Information.

Such information includes

user ids and passwords,
email addresses,
data of birth, birth place,
personally identifiable financial information such as bank
account details,credit card details etc.,
bio metric information,
medical/health information,
government issued personal information such as
passport details,drivers license number, social security
numbers, National Insurance numbers etc.,
o�cial organizational information such as professional
registrations and membership numbers,

physical addresses, phone (land-line) numbers, mobile
phone numbers,
verification elated information such as mother’s maiden
name, pets’ names, high school, first school, favorite
film, etc.,
it also increasing includes online information relating to
social media such as

Facebook or LinkedIn accounts.

All of the above is sensitive information and much of it can be
used to identify an individual; none of this information
should be logged directly.

That does not mean that you cannot and shouldn’t log that a
user logged in; you may well need to do that. However, the
information should at least be obfuscated and should not
include any information not required. For example you may
record that a user represented by some id attempted to log in
at a specific time and whether they were successful or not.
However, you should not log their password and may not log
the actual user id instead you may log an id that can be used
to map to their actual user id.

You should also be careful about directly logging data input
too an application directly into a log file. One way in which a
malicious agent can attack an application (particularly a web

application) is by attempting to send very large amounts of
data to it (as part of a field or as a parameter to an operation).
If the application blindly logs all data submitted to it, then the
log files can fill up very quickly. This can result in the file
store being used by the application filling up and causing
potential problems for all software using the same file store.
This form of attack is known as a log (or log file) injection
attack and is well documented (see https://
www.owasp.org/index.php/Log_Injection which is part of the
well respected Open Web Application Security Project).

Another point to note is that it is not merely enough to log an
error. This is not error handling; logging an error does not
mean you have handled it; only that you have noted it. An
application should still decide how it should manage the error
or exception.

In general you should also aim for empty logs in a production
system; that is only information that needs to be logged in a
production system should be logged (often information about
errors, exceptions or other unexpected behavior). However,
during testing much more detail is required so that the
execution of the system should be followed. It should
therefore be possible to select how much information is
logged depending on the environment the code is running in
(that is within a test environment or within a production
environment).

https://www.owasp.org/index.php/Log_Injection

A final point to note is that it is important to log information
to the correct place. Many applications (and organizations)
log general information to one log file, errors and exceptions
to another and security information to a third. It is therefore
important to know where your log information is being sent
and not to send information to the wrong log.

Why Not Just Use Print?

Assuming that you want to log information in your
application then next question is how should you do that?
Through this book we have been using the Python print()
function to print out information that indicates results
generated by our code but also at times what is happening
with a function or a method etc.

Thus we need to consider whether using the print() function
the best way to log information.

In actual fact, using print() to log information in a production
system is almost never the right answer, this is for several
reasons:

The print()function by default writes strings out to the
standard output (stdout) or standard error output
(stderr) which by default directs output to the console/

terminal. For example, when you run an application
within an IDE, the output is displayed in the Console
window. If you run an application from the command line
then the output is directed back to that
command/terminal window. Both of these are fine during
development, but what if the program is not run from a
command window, perhaps instead it is started up by the
operating system automatically (as is typical of
numerous services such as a print service or a web
server). In this case there is no terminal/console window
to send the data to; instead the data is just lost. As it
happens the stdout and stderr output streams can be
directed to a file (or files). However, this is typically done
when the program is launched and may be easily omitted.
In addition there is only the option of sending all stdout
to a specific file or all error output to the stderr.
Another issue with using the print()function is that all
calls to print will be output. When using most loggers it is
possible to specify the log level required. These di�erent
log levels allow di�erent amounts of information to be
generated depending upon the scenario. For example, in a
well tested reliable production system we may only want
error related or critical information to be logged. This will
reduce the amount of information we are collecting and
reduce any performance impact introduced by logging
into the application. However, during testing phases we
may want a far more detailed level of logging.

In other situations we may wish to change the log level
being used for a running production system without
needing to modify the actual code (as this has the
potential to introduced errors into the code). Instead we
would like to have the facility to externally change the
way in which the logging system behaves, for example
through a configuration file. This allows system
administrators to modify the amount and the detail of the
information being logged. It typically also allows the
designation of the log information to be changed.
Finally, when using the print()function a developer can
use whatever format they like, they can include a
timestamp on the message or not, they can include the
module or function/method name or not they can include
parameters of not. Using a logging system usually
standardizes the information generated along with the
log message. Thus all log messages will have (or not
have) a times- tamp,or all messages will include (or not
include) information on the function or method in which
they were generated etc.

Logging in Python

The Logging Module

Python has included a builtin logging module since Python
2.3. This module, the logging module, defines functions and
classes which implement a flexible logging framework that
can be used in any Python application/script or in Python
libraries/modules.

Although di�erent logging frameworks di�er in the specific
details of what they o�er; almost all o�er the same core
elements (although di�erent names are sometimes used).
The Python logging module is no di�erent and the core
elements that make up the logging framework and its
processing pipeline are shown below (note that a very similar
diagram could be drawn for login frameworks in Java, Scala,
C++ etc.).

The following diagram illustrates a Python program that uses
the built-in Python logging framework to log messages to a
file.

The core elements of the logging framework (some of which
are optional) are shown above and described below:

Log Message The is the message to be logged from the
application.
Logger Provides the programmers entry point/interface
to the logging system.

The Logger class provides a variety of methods that can be
used to log messages at di�erent levels.

Handler Handlers determine where to send a log
message, default handlers include file handlers that send
messages to a file and HTTP handlers that send messages
to a web server.
Filter This is an optional element in the logging pipeline.
They can be used to further filter the information to be
logged providing fine grained control of which log
messages are actually output (for example to a log file).

For matter These are used to format the log message as
required. This may involve adding timestamps, module
and function/method information etc. to the original log
message.
Configuration Information The logger (and associated
handlers, filters and for matters) can be configured either
programmatically in Python or through configuration
files. These configuration files can be written using key-
value pairs or in a YAML file (which is a simple mark up
language). YAML stands for Yet Another Markup
Language!

It is worth noting that much of the logging framework is
hidden from the developer who really only sees the logger;
the remainder of the logging pipeline is either configured by
default or via log configuration information typically in the
form of a log configuration file.

The Logger

The Logger provides the programmers interface to the
logging pipeline. A Logger object is obtained from the
getLogger() function defined in the logging module. The
following code snippet illustrates acquiring the default logger
and using it to log an error message. Note that the logging
module must be imported:

import logging
logger = logging.getLogger()
logger.error('This should be used with somethingunexpected'

The output from this short application is logged to the
console as this is the default configuration:

This should be used with something unexpected

Controlling the Amount of Information Logged

Log messages are actually associated with a log level.These
log levels are intended to indicate the severity of the message
being logged. There are six di�erent log levels associated with
the Python logging framework, these are:

NOTSET At this level no logging takes place and logging is
e�ectively turned o�.
DEBUG This level is intended to provide detailed
information, typically of interest when a developer is
diagnosing a bug or issues within an application.
INFO This level is expected to provide less detail than the
DEBUG log level as it is expected to provide information
that can be used to confirm that the application is
working as expected.
WARNING This is used to provide information on an
unexpected event or an indication of some likely problem

that a developer or system administration might wish to
investigate further.
ERROR This is used to provide information on some
serious issue or problem that the application has not been
able to deal with and that is likely to mean that the
application cannot function correctly.
CRITICAL This is the highest level of issue and is reserved
for critical situations such as ones in which the program
can no longer continue executing.

The log levels are relative to one another and defined in a
hierarchy. Each log level has a numeric value associated with
it as shown below (although you should never need to use the
numbers). Thus INFO is a higher log level than DEBUG, in
turn ERROR is a higher log level than WARNING, INFO,
DEBUG etc.

Associated with the log level that a message is logged with, a
logger also has a log level associated with it. The logger will
process all messages that are at the loggers log level or above
that level. Thus if a logger has a log level of WARNING then it
will log all messages logged using the warning, error and
critical log levels.

Generally speaking, an application will not use the DEBUG
level in a production system. This is usually considered
inappropriate as it is only intended for debug scenarios. The
INFO level may be considered appropriate for a production
system although it is likely to produce large amounts of
information as it typically traces the execution of functions
and methods. If an application has been well tested and
verified then it is only really warnings and errors which
should occur/be of concern. It is therefore not uncommon to
default to the WARNING level for production systems (indeed
this is why the default log level is set to WARNING within the
Python logging system).

If we now look at the following code that obtains the default
logger object and then uses several di�erent logger methods,
we can see the e�ect of the log levels on the output:

import logging
logger = logging.getLogger()
logger.debug('This is to help with debugging') logger.info('This
is just for information') logger.warning('This is a warning!')

logger.error('This should be used with something unexpected')
logger.critical('Something serious')

The default log level is set to warning, and thus only
messages logged at the warning level or above will be printed
out:

This is a warning!

This should be used with something unexpected
Something serious

As can be seen from this, the messages logged at the debug
and info level have been ignored.

However, the Logger object allows us to change the log level
programmatically using the setLevel() method, for example
logger.setLevel(logging. DEBUG) or via the
logging.basicConfig(level = logging.DEBUG) function; both of
these will set the logging level to DEBUG. Note that the log
level must be set before the logger is obtained.

If we add one of the above approaches to setting the log level
to the previous program we will change the amount of log
information generated:

import logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()

logger.warning('This is a warning!') logger.info('This is just
for information') logger.debug('This is to help with debugging')
logger.error('This should be used with something unexpected
logger.critical('Something serious')

This will now output all the log messages as debug is the
lowest logging level. We can of course turn o� logging by
setting the log level to NOTSET

logger.setLevel(logging.NOTSET)
Alternativelyyou can set the Loggers disabled attribute to True:
logging.Logger.disabled = True

Logger Methods

The Logger class provides a number of methods that can be
used to control what is logged including:

setLevel(level) Sets this loggers log level.
getE�ectiveLevel() Returns this loggers log level.
isEnabledFor(level) Checks to see if this logger is enabled
for the log level specified.
debug(message) logs messages at the debug level.
info(message) logs messages at the info level.
warning(message) logs messages at the warning level.
error(message) logs messages at the error level.
critical(message) logs messages at the critical level.

exception(message) This method logs a message at the
error level.

However, it can only be used within an exception handler and
includes a stack trace of any associated exception, for
example:

import logging
logger = logging.getLogger()
try:
print('starting')
x = 1 / 0 print(x)
except:
logger.exception('an exception message')
print('Done')

log(level, message) logs messages at the log level
specified as the first parameter.

In addition there are several methods that are used to manage
handlers and filters:

addFilter(filter) This method adds the specified filter
filter to this logger.
removeFilter(filter) The specified filter is removed from
this logger object.
addHandler(handler) The specified handler is added to
this logger.

removeHandler(handler) Removes the specified handler
from this logger.

Default Logger

A default (or root) logger is always available from the logging
framework. This logger can be accessed via the functions
defined in the logging module. These functions allow
messages to be logged at di�erent levels using methods such
as info(), error(), warning() but without the need to obtain a
reference to a logger object first. For example:

import logging
Set the root logger level
logging.basicConfig(level=logging.DEBUG)
Use root (default)logger
logging.debug('This is to help with debugging')
logging.info('This is just for information')
logging.warning('This is a warning!')
logging.error('This shouldbe used with something unexpected'
logging.critical('Something serious')

This example sets the logging level for the root or default
logger to DEBUG (the default is WARNING). It then uses the
default logger to generate a range of log messages at di�erent
levels (from DEBUG up to CRITICAL). The output from this
program is given below:

DEBUG:root:This is to help with debugging INFO:root:This
is just for informationWARNING:root:This is a warning!
ERROR:root:This should be used with something unexpected
CRITICAL:root:Something serious

Note that the format used by default with the root logger
prints the log level, the name of the logger generating the
output and the message. From this you can see that it is the
root longer that is generating the output.

Module Level Loggers

Most modules will not use the root logger to log information,
instead they will use a named or module level logger. Such a
logger can be configured independently of the root logger.
This allows developers to turn on logging just for a module
rather than for a whole application.This can be useful if a
developer wishes to investigate an issue that is located within
a single module.

Previous code examples in this chapter have used the
getLogger() function with no parameters to obtain a logger
object, for example:

logger = logging.getLogger()

This is really just another way of obtaining a reference to the
root logger which is used by the stand alone logging functions
such as logging.info(), logging.debug()function, thus:

logging.warning('my warning')
and
logger=logging.getlogger()
logger.warning('my warning'

Have exactly the same e�ect; the only di�erence is that the
first version involves less code.

However, it is also possible to create a named logger. This is a
separate logger object that has its own name and can
potentially have its own log level, handlers and formatters
etc. To obtain a named logger pass a name string into the
getLogger() method:

logger1 = logging.getLogger('my logger')

This returns a logger object with the name ‘my logger’. Note
that this may be a brand new logger object, however if any
other code within the current system has previously
requested a logger called ‘my logger’ then that logger object
will be returned to the current code. Thus multiple calls to
getLogger() with the same name will always return a
reference to the same Logger object.

It is common practice to use the name of the module as the
name of the logger; as only one module with a specific name
should exist within any specific system. The name of the
module does not need to be hard coded as it can be obtained
using the name module attribute, it is thus common to see:

logger2 = logging.getLogger(name)

We can see the e�ect of each of these statements by printing
out each logger:

logger = logging.getLogger()
print('Root logger:', logger)
logger1 = logging.getLogger('my logger')
print('Named logger:', logger1)
logger2 = logging.getLogger(name)
print('Module logger:', logger2)
When the above code is run the output is:
Root logger: <RootLogger root (WARNING)> Named logger:
<Logger my logger (WARNING)>
Module logger: <Logger main
(WARNING)>

This shows that each logger has their own name (the code
was run in the main module and thus the module name was

main) and all three loggers have an e�ective log level of
WARNING (which is the default).

Logger Hierarchy

There is in fact a hierarchy of loggers with the root logger at
the top of this hierarchy. All named loggers are below the root
logger. The name of a logger can actually be a period-
separated hierarchical value such as util, util.lib and
util.lib.printer. Loggers that are further down the hierarchy
are children of loggers further up the logger hierarchy.

For example given a logger called lib, then it will be below the
root logger but above the logger with the name util.lib. This
logger will in turn be above the logger called util.lib.printer.
This is illustrated in the following diagram:

The logger name hierarchy is analogous to the Python
package hierarchy, and identical to it if you organize your
loggers on a per-module basis using the recommended
construction logging.getLogger(name).

This hierarchy is important when considering the log level. If
a log level has not been set for the current logger then it will
look to its parent to see if that logger has a log level set. If it
does that will be the log level used. This search back up the
logger hierarchy will continue until either an explicit log level
is found or the root logger is encountered which has a default
log level of WARNING.

This is useful as it is not necessary to explicitly set the log
level for every logger object used in an application. Instead it
is only necessary to set the root log level (or fora module
hierarchy an appropriate point in the module hierarchy). This
can then be overridden where specifically required.

For matters

The are two levels at which you can format the messages
logged, these are within the log message passed to a logging
method(such as info() or warn()) and via the top level
configuration that indicates what additional information may
be added to the individual log message.

Formatting Log Messages

The log message can have control characters that indicate
what values should be placed within the message, for
example:

logger.warning('%s is set to %d', 'count', 42)

This indicates that the format string expects to be given a
string and a number. The parameters to be substituted into
the format string follow the format string as a comm
separated list of values.

Formatting Log Output

The logging pipeline can be configured to incorporate
standard information with each log message. This can be
done globally for all handlers. It is also possible to
programmatically set a specific for matter on a individual
handler;this is discussed in the next section.

To globally set the output format for log messages use the
logging. basicConfig() function using the named parameter
format.

The format parameter takes a string that can contain
LogRecord attributes organized as you see fit. There is a
comprehensive list of LogRecord attributes which can be
referenced at https://docs.python.org/3/library/logging.
html#logrecord-attributes. The key ones are:

args a tuple listing the arguments used to call the
associated function or method.
asctime indicates the time that the log message was
created.
filename the name of the file containing the log
statement.
module the module name (the name portion of the
filename).

https://docs.python.org/3/library/logging.html#logrecord-attributes
https://docs.python.org/3/library/logging.html#logrecord-attributes

funcName the name of the function or method containing
the log statement.
levelname the log level of the log statement.
message the log message itself as provided to the log
method.

The e�ect of some of these are illustrated below.

import logging
logging.basicConfig(format='%(asctime)s %(message)s',
level=logging.DEBUG)
logger = logging.getLogger(name)
def do_something():
logger.debug('This is to help with debugging') logger.info('This
is just for information') logger.warning('This is a warning!')
logger.error('This should be used with something
unexpected')
logger.critical('Something serious')
do_something()

The above program generates the following log statements:

2019-02-20 16:50:34,084 This is to help with debugging

2019-02-20 16:50:34,084 This is just for information
2019-02-20 16:50:34,085 This is a warning!
2019-02-20 16:50:34,085 This should be used with

something unexpected
2019-02-20 16:50:34,085 Something serious

However, it might be useful to know the log level associated
with the log statements, as well as the function that the log
statements were called from. It is possible to obtain this
information by changing the format string passed to the
logging.basicConfig() function:

logging.basicConfig(format='%(asctime)s[%(levelname)s]
%(funcName)s: %(message)s', level=logging.DEBUG)

Which will now generate the output within log level
information and the function involved:

2019-02-20 16:54:16,250[DEBUG] do_something: This is to
help with debugging

2019-02-20 16:54:16,250[INFO] do_something: This is
just for information

2019-02-20 16:54:16,250[WARNING] do_something: This
is a warning!

2019-02-20 16:54:16,250[ERROR] do_something: This
should be used with something unexpected

2019-02-20 16:54:16,250[CRITICAL] do_something:
Something serious

We can even control the format of the date time information
associated with the log statement using the data fmt

parameter of the logging.basic Config() function:

logging.basicConfig(format='%(asctime)s %(message)s',
datefmt='%m/%d/%Y %I:%M:%S%p', level=logging.DEBUG)

This format string uses the formatting options used by the
datetime.strp- time() function (see
https://docs.python.org/3/library/datetime.html#strftime-
strptime-behavior) for information on the control
characters, in this case

%m—Month as a zero-padded decimal number e.g. 01,
11, 12.
%d—Day of the month as a zero-padded decimal number
e.g. 01, 12 etc.
%Y—Year with century as a decimal number e.g. 2020.
%I—Hour (12-h clock) as a zero-padded decimal number
e.g. 01, 10 etc.
%M—Minute as a zero-padded decimal number e.g. 0,
01, 59 etc.
%S—Second as a zero-padded decimal number e.g. 00,
01, 59 etc.
%p—Either AM or PM.

Thus the output generated using the above date fmt string is:

https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior
https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior

02/20/2019 05:05:18 PM This is to help with debugging
02/20/2019 05:05:18 PM This is just for information
02/20/2019 05:05:18 PM This is a warning!
02/20/2019 05:05:18 PM This should be used with

something unexpected
02/20/2019 05:05:18 PM Something serious

To set a for matter on an individual handler see the next
section.

Online Resources

For further information on the Python logging framework see
the following:

https://docs.python.org/3/library/logging.html The
standard library documentation on the logging facilities
in Python.
https://docs.python.org/3/howto/logging.html A how to
guide on logging from thePython standard library
documentation.
https://pymotw.com/3/logging/index.html Python
Module of the Week logging page.

https://docs.python.org/3/library/logging.html
https://docs.python.org/3/howto/logging.html
https://pymotw.com/3/logging/index.html

Advanced Logging

Introduction

In this chapter we go further into the configuration and
modification of the Python logging module. In particular we
will look at Handlers (used to determine the destination fo log
messages), Filters which can be used by Handlers to provide
finer grained control of log output and logger configuration
files. We conclude the chapter by considering performance
issues associated with logging.

Handlers

Within the logging pipeline, it is a handlers that send the log
message to their final destination. By default the handler is
set up to direct output to the console/terminal associated
with the running program. However, this can be changed to
send the log messages to a file, to an email service, to a web
server etc. Or indeed to any combination of these as there can
be multiple handlers configured for a logger. This is shown in
the diagram below:

In the above diagram the logger has been configured to send
all log messages to four di�erent handlers which allow a log
message to be written to the console,to a web server to a file
and to an email service. Such a behavior may be required
because:

The web server will allow developers access to a web
interface that allows them to seethe log files even if they
do not have permission to access a production server.
The log file ensures that all the log data is permanently
stored in a file within the file store.
An email message may be sent to a notification system so
that someone will be notified that there is an issue to be
investigated.

The console may still be available to the system
administrators who may wish to look at the log messages
generated.

The Python logging framework comes with several di�erent
handlers as suggested above and listed below:

logging.Stream Handler sends messages to outputs such
as stdout, stderr etc.
logging.FileHandler sends log messages to files. There are
several varieties of File Handler in addition to the basic
FileHandler, these include the
logging.handlers.RotatingFileHandler (which will rotate
log files based on a maximum file size) and
logging.handlers. TimeRotatingFileHandler (which
rotates the log file at specified time intervals e.g. daily).
logging.handlers.SocketHandler which sends messages to
a TCP/IP socket where it can be received by a TCP Server.
logging.handlers.SMTPHandler that sends messages by
the SMTP (Simple Mail Transfer Protocol) to a email
server.
logging.handlers.SysLogHandler that sends log messages
to a Unix syslog program.
logging.handlers.NTEventLogHandler that sends
message to a Windows event log.
logging.handlers.HTTPHandler which sends messages to
a HTTP server.

logging.NullHandler that does nothing with error
messages. This is often used by library developers who
want to include logging in their applications but expect
developers to set up an appropriate handler when they
use the library.
All of these handlers can be configured programmatically
or via a configuration file.

Setting the Root Output Handler

The following example, uses the logging.basicConfig()
function to set up the root logger to use a FileHandler that
will write the log messages to a file called ‘example.log’:

import logging
Sets a file handler on the root logger to
save log messages to the example.log file
logging.basicConfig(filename='example.log' ,level=logging.DEBUG)
If no handler is explicitly set on the name logger
it will delegate the messages to the parent logger to handle
logger = logging.getLogger(name)
logger.debug('This is to help with debugging')
logger.info('This is just for information')
logger.warning('This is a warning!')
logger.error('This shouldbe used with something unexpected')
logger.critical('Something serious')

Note that if no handler is specified for a named logger then it
delegates output to the parent (in this case the root) logger.

The file generated for the above program is shown below:

As can be seen from this the default for matter is now
configured for a File Handler. This File Handler adds the log
message level before the log message itself.

Programmatically Setting the Handler

It is also possible to programmatically create a handler and
set it for the logger. This is done by instantiating one of the
existing handler classes (or by sub classing an existing
handler such as the root Handler class or the FileHander etc.).
The instantiated handler can then be added as a handler to
the logger (remember the logger can have multiple handlers
this is why the method is called add Handler ()rather than
something such as setHandler).

An example of explicitly setting the FileHandler for a logger is
given below:

import logging
#Empty basic config turns off default console handler
logging.basicConfig()
logger = logging.getLogger(name)

logger.setLevel(logging.DEBUG)
#createfile handler which logs to the specifiedfile
file_handler = logging.FileHandler('detailed.log')
#Add the handler to the Logger
logger.addHandler(file_handler)
#'application' code
def do_something(): logger.debug('debug message')
logger.info('info message') logger.warning('warn message')
logger.error('error message') logger.critical('critical
message')
logger.info('Starting') do_something() logger.info('Done')

The result of running this code is that a log file is created with
the logged messages:

Given that this is a lot more code than using the basicConfig()
function; the question here might be ‘Why bother?’. The
answer is two fold:

You can have di�erent handlers for di�erent loggers
rather than setting the handler to be used centrally.
Each handler can have its own format set so that logging
to a file has a di�erent format to logging to the console.

We can set the format for the handler by instantiating the
logging. For matter class with an appropriate format string.
The for matter object can then be applied to a handler using
the set For matter() method on the handler object.

For example, we can modify the above code to include a for
matter that is then set on the file handler as shown below.

create file handler which logs to the specified file
file_handler = logging.FileHandler('detailed.log')
Create formatter for the file_handler
formatter = logging.Formatter('%(asctime)s - %(funcName)s -
%(message)s')
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)

The log file now generated is modified such that each
message includes a time stamp, the function name (or
module if at the module level) as well as the log message
itself.

Multiple Handlers

As suggested in the previous section we can create multiple
handlers to send log messages to di�erent locations; for
example from the console, to files and even email servers.
The following program illustrates setting up both a file
handler and a console handler for a module level logger.

To do this we create two handlers the file_handler and the
con- sole_handler. As a side e�ect we can also give them
di�erent log levels and di�erent for matters. In this case the
file_handler inherits the log level of the logger itself (which
is DEBUG) while the console_handler has its log level set
explicitly at WARNING. This means di�erent amounts of
information will be logged to the log file than the console
output.

We have also set di�erent for matters on each handler; in this
case the log file handler’s for matter provides more

information than the console handlers for matter.

Both handlers are then added to the logger before it is used.

MultipleHandlers and formatters
import logging
Set up the defaultroot logger to do nothing
logging.basicConfig(handlers=[logging.NullHandler()])
Obtain the module level logger and set level to DEBUG logger
= logging.getLogger(name)
logger.setLevel(logging.DEBUG)
Create file handler
file_handler = logging.FileHandler('detailed.log')
Create consolehandler with a higher log level console_handler
= logging.StreamHandler()
console_handler.setLevel(logging.WARNING)
Create formatterfor the file handler
fh_formatter = logging.Formatter(
%(name)s.%(funcName)s: %(message)s',
datefmt='%M-%d-%Y %I:%M:%S
%P')
file_handler.setFormatter(fh_formatter)
Create formatter for the console handler
console_formatter = logging.Formatter('%(asctime)s
%(funcName)s - %(message)s')-
console_handler.setFormatter(console_formatter)
Add the handlers to logger
logger.addHandler(console_handler)
logger.addHandler(file_handler)
'application' code
def do_something():
logger.debug('debug message')
logger.info('info message') logger.warning('warn message')

logger.error('error message') logger.critical('critical
message')
logger.info('Starting') do_something() logger.info('Done')

The output from this program is now split between the log
file and the console out, as shown below:

Filters

Filters can be used by Handlers to provide finer grained
control of the log output. A filter can be added to a logger
using the logger.addFilter() method. A Filter can be created by
extending the logging.Filter class and implementing the
filter() method. This method takes a log record. This log
record can be validated to determine if the record should be
output or not. If it should be output then True is returned, if
the record should be ignored False should be returned.

In the following example, a filter called MyFilter is defined
that will filter out all log messages containing the string
‘John’. It is added as a filter to the logger and then two log
messages are generated.

import logging
class MyFilter(logging.Filter):
def filter(self, record):
if 'John' in record.msg:
return False
else:
return True
logging.basicConfig(format='%(asctime)s %(message)s',
level=logging.DEBUG)
logger = logging.getLogger()
logger.addFilter(MyFilter())
logger.debug('This is to help with debugging')
logger.info('This is information on John')

The output shows that only the log message that does not
contain the string

‘John’ is output:

2019-02-20 17:23:22,650 This is to help with debugging

Logger Configuration

All the examples so far in this chapter have used
programmatic configuration of the logging framework. This

is certainly feasible as the examples show, but it does require
a code change if you wish to alter the logging level for any
particular logger, or to change where a particular handler is
routing the log messages.

For most production systems a better solution is to use an
external configuration file which is loaded when the
application is run and is used to dynamically configure the
logging framework. This allows system administrators and
others to change the log level, the log destination, the log
format etc. without needing to change the code.

The logging configuration file can be written using several
standard formats from JSON (the Java Script ObjectNotation),
to YAML (Yet Another Markup Language) format, or as a set
of key-value pairs in a conf file. For further information on
the di�erent options available see the Python logging module
documentation.

In this book we will briefly explore the YAML file format used
to configure loggers.

version: 1 formatters:
myformatter:
format: '%(asctime)s [%(levelname)s] %(name)s.%(funcName)s:
%(message)s'
handlers:
console:

class: logging.StreamHandler level: DEBUG
formatter: myformatter stream: ext://sys.stdout
loggers:
myLogger: level: DEBUG handlers: [console] propagate: no
root:
level: ERROR
handlers: [console]

The above YAML code is stored in a file called
logging.conf.yaml; however you can call this file anything
that is meaningful.

The YAML file always starts with a version number. This is an
integer value representing the YAML schema version
(currently this can only be the value 1). All other keys in the
file are optional, they include:

for matters—this lists one or more for matters; each for
matter has a name which acts as a key and then a format
value which is a string defining the format of a log
message.
filters—this is a lit of filter names and a set of filter
definitions.
handlers—this is a list of named handlers.Each handler
definition is made up of a set of key value pairs where the
keys define the class used for the filter (mandatory),the
log level of the filter (optional), the for matter to use with

the handler (optional) and a list of filters to apply
(optional).
loggers—provides one or more named loggers. Each
logger can indicate the log level (optional) and a list of
handlers (optional). The propagate option can be used to
stop messages propagating to a parent logger (by setting
it to False).
root—this is the configuration for the root logger.

This file can be loaded into a Python application using the
PyYAML module. This provides a YAML parser that can load a
YAML file as a dictionary structure that can be passed to the
logging.config.dictConfig() function. As this is a file it must
be opened and closed to ensure that the resource is handled
appropriately; it is therefore best managed using the with-as
statement as shown below:

with open('logging.config.yaml' , 'r')as f: config =
yaml.safe_load(f.read()) logging.config.dictConfig(config)

This will open the YAML file in read-only mode and close it
when the two statements have been executed. This snippet is
used in the following application that loads the logger
configuration from the YAML file:

import logging
import logging.config
import yaml
with open('logging.config.yaml', 'r') as f: config =

yaml.safe_load(f.read()) logging.config.dictConfig(config)
logger = logging.getLogger('myLogger')
'application' code
def do_something(): logger.debug('debug message')
logger.info('info message') logger.warning('warn message')
logger.error('error message') logger.critical('critical
message')
logger.info('Starting') do_something() logger.info('Done')

The output from this using the earlier YAML file is:

2019-02-21 16:20:46,466 [INFO] myLogger.<module>:
Starting

2019-02-21 16:20:46,466 [DEBUG]
myLogger.do_something: debug message

2019-02-21 16:20:46,466 [INFO]
myLogger.do_something: info message

2019-02-21 16:20:46,466 [WARNING]
myLogger.do_something: warn message

2019-02-21 16:20:46,466 [ERROR]
myLogger.do_something: error message

2019-02-21 16:20:46,466 [CRITICAL]
myLogger.do_something: critical message

2019-02-21 16:20:46,466 [INFO] myLogger.<module>:
Done

Performance Considerations

Performance when logging should always be a consideration.
In general you should aim to avoid performing any
unnecessary work when logging is disabled (or disabled for
the level being used). This may seem obvious but it can occur
in several unexpected ways.

One example is string concatenation. If a message to be
logged involves string concatenation; then that string
concatenation will always be performed when a log method is
being invoked. For example:

logger.debug('Count: ' + count + ', total:' + total)

This will always result in the string being generated for count
and total before the call is made to the debug function; even if
the debug level is not turned on. However using a format
string will avoid this. The formatting involved will only be
performed if the string is to be used in a log message. You
should therefore always use string formatting to populate log
messages. For example:

logger.debug(' Count: %d, total: %d ', count, 42)

Another potential optimization is to use the logger.is Enabled
For (level) method as a guard against running the log
statement. This can be useful insinuations where an
associated operation must be performed to support the

logging operation and this operation is expensive. For
example:

if logger.isEnabledFor(logging.DEBUG):
logger.debug('Message with %s,%s', expensive_func1(),
expensive_func2())

Now the two expensive functions will only be executed if the
DEBUG log level is set.

Try

Using the logging you dded to the Account class int he last
chapter, you should load the log configuration information
from a YAML file similar to that used in this chapter.

This should be loaded into the application program used to
drive the account classes.

Introduc�on to Concurrency and
Parallelism

Introduction

In this chapter we will introduce the concepts of concurrency
and parallelism. We will also briefly consider the related topic
of distribution. After this we will consider process
synchronization, why object oriented approaches are well
suited to con- currency and parallelism before finishing with
a short discussion of threads versus processes.

Concurrency

Concurrency is defined by the dictionary as two or more
events or circumstances happening or existing at the same
time. In Computer Science concurrency refers to the ability of
di�erent parts or units of a program, algorithm or problem to
be executed at the same time, potentially on multiple
processors or multiple cores.

Here a processor refers to the central processing unit (or CPU)
or a computer while core refers to the idea that a CPU chip can

have multiple cores or processors on it.

Originally a CPU chip had a single core. That is the CPU chip
had a single processing unit on it. However, over time, to
increase computer performance, hardware manufacturers
added additional cores or processing units to chips. Thus a
dual-core CPU chip has two processing units while a quad-
core CPU chip has four processing units. This means that as
far as the operating system of the computer is concerned, it
has multiple CPUs on which it can run programs.

Running processing at the same time, on multiple CPUs, can
substantially improve the overall performance of an
application.

For example, let us assume that we have a program that will
call three independent functions, these functions are:

make a backup of the current data held by the program,
print the data currently held by the program,
run an animation using the current data.

Let us assume that these functions run sequentially, with the
following timings:

the backup function takes 13 s,
the print function takes 15 s,
the animation function takes 10 s.

This would result in a total of 38 s to perform all three
operations. This is illustrated graphically below:

However, the three functions are all completely independent
of each other. That is they do not rely on each other for any
results or behavior; they do not need one of the other
functions to complete before they can complete etc. Thus we
can run each function concurrently.

If the underlying operating system and program language
being used support multiple processes, then we can
potentially run each function in a separate process at the
same time and obtain a significant speed up in overall
execution time.

If the application starts all three functions at the same time,
then the maximum time before the main process can
continue will be 15s, as that is the time taken by the longest
function to execute. However, the main program may be able
to continue as soon as all three functions are started as it also
does not depend on the results from any of the functions;
thus the delay may be negligible (although there will typically
be some small delay as each process is set up). This is shown
graphically below:

Parallelism

A distinction its often made in Computer Science between
concurrency and parallelism. In concurrency, separate
independent tasks are performed potentially at the same
time. In parallelism, a large complex task is broken down into
a set of sub tasks. The sub tasks represent part of the overall
problem.Each sub task can be executed at the same time.
Typically it is necessary to combine the results of the sub
tasks together to generate an overall result.These sub tasks
are also very similar if not functionally exactly the same
(although in general each sub task invocation will have been
supplied with di�erent data).

Thus parallelism is when multiple copies of the same
functionality are run at the same time, but on di�erent data.
Some examples of where parallelism can be applied include:

A web search engine. Such a system may look at many,
many web pages. Each time it does so it must send a
request to the appropriate web site, receive the result and
process the data obtained. These steps are the same
whether it is the BBC web site, Microsoft’s web site or the
web site of Cambridge University. Thus the requests can
be run sequentially or in parallel.
Image Processing. A large image maybe broken down into
slices so that each slice can be analyzed in parallel.

The following diagram illustrates the basic idea behind
parallelism; a main program fires o� three sub tasks each of
which runs in parallel. The main program then waits for all
the sub tasks to complete before combining together the
results from the sub tasks before it can continue.

Distribution

When implementing a concurrent or parallel solution, where
the resulting processes run is typically an implementation
detail. Conceptually these processes could run on the same
processor, physical machine or on a remote or distributed
machine. As such distribution, in which problems are solved
or processes executed by sharing the work across multiple
physical machines, is often related to concurrency and
parallelism.

However, there is no requirement to distribute work across
physical machines, indeed in doing so extra work is usually

involved.

To distribute work to a remote machine, data and in many
cases code, must be transferred and made available to the
remote machine. This can result in significant delays in
running the code remotely and may o�set any potential
performance advantages of using a physically separate
computer. As a result many concurrent/ parallel technologies
default to executing code in a separate process on the same
machine.

Grid Computing

Grid Computing is based on the use of a network of loosely
coupled computers, in which each computer can have a job
submitted to it, which it will run to completion before
returning a result.

In many cases the grid is made up of a heterogeneous set of
computers (rather than all computers being the same) and
may be geographically dispersed. These computers may be
comprised of both physical computers and virtual machines.

A Virtual Machine is a piece of software that emulates a whole
computer and runs on some underlying hardware that is
shared with other virtual machines. Each Virtual Machine
thinks it is the only computer on the hardware;however the
virtual machines all share the resources of the physical
computer. Multiple virtual machines can thus run
simultaneously on the same physical computer. Each virtual
machine provides its own virtual hardware,including CPUs,
memory, hard drives, network interfaces and other
devices.The virtual hardware is then mapped to the real

hardware on the physical machine which saves costs by
reducing the need for physical hardware systems along with
the associated maintenance costs, as well as reducing the
power and cooling demands of multiple computers.

Within a grid, software is used to manage the grid nodes and
to submit jobs to those nodes. Such software will receive the
jobs to perform (programs to run and information about the
environment such as libraries to use) from clients of the grid.
These jobs are typically added to a job queue before a job
scheduler submits them to a node within the grid. When any
results are generated by the job they are collected from the
node and returned to the client. This is illustrated below:

The use of grids can make distributing concurrent/parallel
processes amongst a set of physical and virtual machines
much easier.

Concurrency and Synchronization

Concurrency relates to executing multiple tasks at the same
time. In many cases these tasks are not related to each other
such as printing a document and refreshing the User
Interface. In these cases, the separate tasks are completely
independent and can execute at the same time without any
interaction.

In other situations multiple concurrent tasks need to interact;
for example, where one or more tasks produce data and one
or more other tasks consume that data. This is often referred
to as a producer-consumer relationship. In other situations,
all parallel processes must have reached the same point
before some other behaviour is executed.

Another situation that can occur is where we want to ensure
that only one concurrent task executes a piece of sensitive
code at a time; this code must therefore be protected from
concurrent access.

Concurrent and parallel libraries need to provide facilities
that allow for such synchronization to occur.

Object Orientation and Concurrency

The concepts behind object-oriented programming lend
themselves particularly well to the concepts associated with
concurrency. For example, a system can be described as a set

of discrete objects communicating with one another when
necessary. In Python, only one object may execute at any one
moment in time within a single interpreter. However,
conceptually at least, there is no reason why this restriction
should be enforced. The basic concepts behind object
orientation still hold, even if each object executes within a
separate independent process

Traditionally a message send is treated like a procedural call,
in which the calling object’s execution is blocked until a
response is returned. However, we can extend this model
quite simply to view each object as a concurrently executable
program, with activity starting when the object is created and
continuing even when a message is sent to another object
(unless the response is required for further processing). In
this model, there may be very many (concurrent) objects
executing at the same time. Of course, this introduces issues
associated with resource allocation, etc. but no more so than
in any concurrent system.

One implication of the concurrent object model is that objects
are larger than in the traditional single execution thread
approach, because of the overhead of having each object as a
separate thread of execution. Overheads such as the need for a
scheduler to handling these execution threads and resource
allocation mechanisms means that it is not feasible to have
integers, characters, etc. as separate processes.

Threads V Processes

As part of this discussion it is useful to understand what is
meant by a process. A process is an instance of a computer
program that is being executed by the operating system. Any
process has three key elements; the program being executed,
the data used by that program (such as the variables used by
the program) and the state of the process (also known as the
execution context of the program).

A (Python) Thread is a preemptive lightweight process.

A Thread is considered to be preemptive because every
thread has a chance to run as the main thread at some point.
When a thread gets to execute then it will execute until

completion,
until it is waiting for some form of I/O (Input/Output),
sleeps for a period of time,
it has run for 15 ms (the current threshold in Python 3).

If the thread has not completed when one of the above
situations occurs, then it will give up being the executing
thread and another thread will be run instead.This means that
one thread can be interrupted in the middle of performing a
series of related steps.

thread is a considered a lightweight process because it does
not possess its own address space and it is not treated as a
separate entity by the host operating system. Instead, it exists
within a single machine process using the same address
space.

It is useful to get a clear idea of the di�erence between a
thread (running within a single machine process) and a multi
process system that uses separate processes on the
underlying hardware.

Some Terminology

The world of concurrent programming is full of terminology
that you may not be familiar with. Some of those terms and
concepts are outlined below:

Asynchronous versus Synchronous invocations. Most of
the method, function or procedure invocations you will
have seen in programming represent synchronous
invocations. A synchronous method or function call is one
which blocks the calling code from executing until it
returns. Such calls are typically within a single thread of
execution. Asynchronous calls are ones where the flow of
control immediately returns to the caller and the caller is

able to execute in its own thread of execution. Allowing
both the caller and the call to continue processing.
Non-Blocking versus Blocking code. Blocking code is a
term used to describe the code running in one thread of
execution, waiting for some activity to complete which
causes one of more separate threads of execution to also
be delayed. For example, if one thread is the producer of
some data and other threads are the consumers of that
data, then the consumer treads cannot continue until the
producer generates the data for them to consume. In
contrast, non-blocking means that no thread is able to
indefinitely delay others.
Concurrent versus Parallel code. Concurrent code and
parallel code are similar, but di�erent in one significant
aspect. Concurrency indicates that two or more activities
are both making progress even though they might not be
executing at the same point in time. This is typically
achieved by continuously swapping competing processes
between execution and non-execution. This process is
repeated until at least one of the threads of execution
(Threads) has completed their task. This may occur
because two threads are sharing the same physical
processor with each is being given a short time period in
which to progress before the other gets a short time
period to progress. The two threads are said to be sharing
the processing time using a technique known as time
slicing. Parallelism on the other hand implies that there

are multiple processors available allowing each thread to
execute on their own processor simultaneously.

Online Resources

See the following online resources for information on the
topics in this chapter:

https://en.wikipedia.org/wiki/Concurrency_(computer_
science) Wikipedia page on concurrency.
https://en.wikipedia.org/wiki/Virtual_machine
Wikipedia page on Virtual Machines.
https://en.wikipedia.org/wiki/Parallel_computing
Wikipedia page on parallelism.
http://tutorials.jenkov.com/java-
concurrency/concurrency-vs-parallelism.html
Concurrency versus Parallelism tutorial.
https://www.redbooks.ibm.com/redbooks/pdfs/sg24677
8.pdf IBM Red Book on an Introduction to Grid
Computing.

https://en.wikipedia.org/wiki/Concurrency_(computer_science)
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Parallel_computing
http://tutorials.jenkov.com/java-concurrency/concurrency-vs-parallelism.html
https://www.redbooks.ibm.com/redbooks/pdfs/sg246778.pdf

Threading

Introduction

Threading is one of the ways in which Python allows you to
write programs that multitask; that is appearing to do more
than one thing at a time. This chapter presents the threading
module and uses a short example to illustrate how these
features can be used.

Threads

In Python the Thread class from the threading module
represents an activity that’s run in a separate thread of
execution within a single process. These threads of execution
are lightweight, preemptive execution threads. A thread is
lightweight because it does not possess its own address space
and it is not treated as a separate entity by the host operating
system; it is not a process. Instead, it exists within a single
machine process using the same address space as other
threads.

Thread States

When a thread object is first created it exists, but it is not yet
runnable; it must be started. Once it has been started it is then
runnable; that is, it is eligible to be scheduled for execution. It
may switch back and forth between running and being
runnable under the control of the scheduler. The scheduler is
responsible for managing multiple threads that all wish to
grab some execution time.

A thread object remains runnable or running until its run()
method terminates;

at which point it has finished its execution and it is now dead.
All states between unstated and dead are considered to
indicate that the Thread is alive (and therefore may run at
some point). This is shown below:

A Thread may also be in the waiting state; for example, when
it is waiting for another thread to finish its work before
continuing (possibly because it needs the results produced by
that thread to continue). This can be achieved using the join()
method and is also illustrated above. Once the second thread
completes the waiting thread will again become runnable.

The thread which is currently executing is termed the active
thread. There are a few points to note about thread states:

A thread is considered to be alive unless its run() method
terminates after which it can be considered dead.
A live thread can be running, runnable, waiting, etc.
The runnable state indicates that the thread can be
executed by the processor, but it is not currently
executing. This is because an equal or higher priority
process is already executing, and the thread must wait
until the processor becomes free. Thus the diagram
shows that the scheduler can move a thread between the
running and runnable state. In fact,this could happen
many times as the thread executes for a while, is then
removed from the processor by the scheduler and added
to the waiting queue, before being returned to the
processor again at a later date.

Creating a Thread

There are two ways in which to initiate a new thread of
execution:

Pass a reference to a callable object (such as a function or
method) into the Thread class constructor. This reference
acts as the target for the Thread to execute.
Create a subclass of the Thread class and redefine the
run() method to perform the set of actions that the thread
is intended to do.

We will look at both approaches.

As a thread is an object, it can be treated just like any other
object: it can be sent messages, it can have instance variables
and it can provide methods. Thus, the multi-threaded aspects
of Python all conform to the object-oriented model. This
greatly simplifies the creation of multi-threaded systems as
well as the maintain- ability and clarity of the resulting
software.

Once a new instance of a thread is created, it must be
started.Before it is started, it cannot run, although it exists.

Instantiating the Thread Class

The Thread class can be found in the threading module and
therefore must be imported prior to use. The class Thread

defines a single constructor that takes up to six optional
arguments:

class threading.Thread(group=None,
target=None,
name=None,
args=(),
kwargs={},
daemon=None)

The Thread constructor should always be called using
keyword arguments; the meaning of these arguments is:

group should be None; reserved for future extension
when a ThreadGroup class is implemented.
target is the callable object to be invoked by the run()
method. Defaults to None, meaning nothing is called.
name is the thread name. By default, a unique name is
constructed of the form“Thread-N” where N is an
integer.
args is the argument tuple for the target invocation.
Defaults to (). If a single argument is provided the tuple is
not required. If multiple arguments are provided then
each argument is an element within the tuple.
kwargs is a dictionary of keyword arguments for the
target invocation. Defaults to {}.
daemon indicates whether this thread runs as a daemon
thread or not. If not None, daemon explicitly sets whether

the thread is daemonic. If None (the default), the
daemonic property is inherited from the current thread.

Once a Thread is created it must be started to become eligible
for execution using the Thread.start() method. The following
illustrates a very simple program that creates a Thread that
will run the simple_worker() function:

from threading import Thread
def simple_worker():
print('hello')
Createa new thread and start it
The threadwill run the functionsimple_worker
t1 = Thread(target=simple_worker)
t1.start()

In this example, the thread t1 will execute the function
simple_worker. The main code will be executed by the main
thread that is present when the program starts; there are thus
two threads used in the above program; main and t1.

The Thread Class

The Thread class defines all the facilities required to create an
object that can execute within its own lightweight process.
The key methods are:

start() Start the thread’s activity. It must be called at
most once per thread object. It arranges for the object’s
run() method to be invoked in a separate thread of

control. This method will raise a RuntimeError if called
more than once on the same thread object.
run() Method representing the thread’s activity. You may
override this method in a subclass. The standard run()
method invokes the callable object passed to the object’s
constructor as the target argument, if any, with
positional and keyword arguments taken from the args
and kwargs arguments, respectively. You should not call
this method directly.
join(timeout= None) Wait until the thread sent this
message terminates.

This blocks the calling thread until the thread whose
join()method is called terminates. When the timeout
argument is present and not None, it should be a floating-
point number specifying a timeout for the operation in
seconds (or fractions thereof). A thread can be join()ed many
times.

name A string used for identification purposes only. It
has no semantics. Multiple threads may be given the
same name. The initial name is set by the constructor.
Giving a thread a name can be useful for debugging
purposes.
ident The ‘thread identifier’ of this thread or None if the
thread has not been started. This is a nonzero integer.
is_alive() Return whether the thread is alive. This
method returns True just before the run() method starts

until just after the run() method terminates. The module
function threading.enumerate() re- turns a list of all alive
threads.
daemon A boolean value indicating whether this thread is
a daemon thread (True) or not (False). This must be set
before start() is called, otherwise a Runtime Error is
raised. Its default value is inherited from the creating
thread. The entire Python program exits when no alive
non-daemon threads are left.

An example illustrating using some of these methods is given
below:

from threading import Thread
def simple_worker():
print('hello')
t1 = Thread(target=simple_worker)
t1.start()
print(t1.getName()) print(t1.ident) print(t1.is_alive())

This produces:

hello

Thread-1
123145441955840
True

The join() method can cause one thread to wait for another to
complete. For example, if we want the main thread to wait
until a thread completes before it prints the done message;
then we can make it join that thread:

from threading import Thread
from time import sleep
def worker():
for i in range(0,10):
print('.', end='', flush=True)
sleep(1)
print('Starting')
Createread object with referenceto worker function
t = Thread(target=worker)
Start the thread object
t.start()
Wait for the thread to complete
t.join()
print('\nDone')

Now the ‘Done’ message should not be printed out until after
the worker thread has finished as shown below:

Starting

……….
Done

The Threading Module Functions

There are a set of threading module functions which support
working with threads; these functions include:

threading.active_count() Return the number of Thread
objects currently alive. The returned count is equal to the
length of the list returned by enumerate().
threading.current_thread() Return the current Thread
object, cor- responding to the caller’s thread of control. If
the caller’s thread of control was not created through the
threading module, a dummy thread object with limited
functionality is returned.
threading.get_ident() Return the ‘thread identifier’ of
the current thread. This is a nonzero integer. Thread
identifiers may be recycled when a thread exits and
another thread is created.
threading.enumerate()Return a list of all Thread objects
currently alive. The list includes daemon threads, dummy
thread objects created by current_thread() and the main
thread. It excludes terminated threads and threads that
have not yet been started.
threading.main_thread()Return the main Thread object.

Passing Arguments to a Thread

Many functions expect to be given a set of parameter values
when they are run; these arguments still need to be passed to
the function when they are run via a separate thread. These

parameters can be passed to the function to be executed via
the args parameter, for example:

from threading import Thread
from time import sleep
def worker(msg):
for i in range(0,10):
print(msg, end='', flush=True)
sleep(1)
print('Starting')
t1 = Thread(target=worker,args='A') t2 = Thread(target=worker,
args='B') t3 = Thread(target=worker, args='C') t1.start()
t2.start()
t3.start()
print('Done')

In this example, the worker function takes a message to be
printed 10 times within a loop. Inside the loop the thread will
print the message and then sleep for a second. This allows
other threads to be executed as the Thread must wait for the
sleep timeout to finish before again becoming runnable.

Three threads t1, t2 and t3 are then created each with a
di�erent message. Note that the worker() function can be
reused with each Thread as each invocation of the function
will have its own parameter values passed to it.

The three threads are then started. This means that at this
point there is the main thread, and three worker threads that
are Runnable (although only one thread will run at a time).

The three worker threads each run the worker() function
printing out either the letter A,B or C ten times. This means
that once started each thread will print out a string,sleep for 1
s and then wait until it is selected to run again, this is
illustrated in the following diagram:

The output generated by this program is illustrated below:

Starting ABCDone

ABCACBABCABCCBAABCABCABCBAC

Notice that the main thread is finished after the worker
threads have only printed out a single letter each; however as
long as there is at least one non-daemon thread running the
program will not terminate; as none of these threads are
marked as a daemon thread the program continues until the
last thread has finished printing out the tenth of its letters.

Also notice how each of the threads gets a chance to run on
the processor before it sleeps again; thus we can see the
letters A, B and C all mixed in together.

Extending the Thread Class

The second approach to creating a Thread mentioned earlier
was to subclass the

Thread class. To do this you must

1. Define a new subclass of Thread.
2. Override the run() method.

3. Define a new init () method that calls the parent class init
()

method to pass the required parameters up to the Thread
class constructor.

This is illustrated below where the WorkerThread class passes
the name, target and daemon parameters up to the Thread
super class constructor.

Once you have done this you can create an instance of the new
WorkerThread class and then start that instance.

print('Starting')
t = WorkerThread()
t.start()
print('\nDone')

The output from this is:

Starting

. Done
………

Note that it is common to call any sub classes of the Thread
class, Something Thread, to make it clear that it is a subclass
of the Thread class and should be treated as if it was a Thread
(which of course it is).

Daemon Threads

A thread can be marked as a daemon thread by setting the
daemon property to true either in the constructor or later via
the access or property.

For example:

from threading import Thread
from time import sleep
def worker(msg):
for i in range(0,10):
print(msg, end='',flush=True)
sleep(1)
print('Starting')
Createa daemon thread
d = Thread(daemon=True, target=worker, args='C')
d.start()
sleep(5)
print('Done')

This creates a background daemon thread that will run the
function worker(). Such threads are often used for house
keeping tasks (such as background data backups etc.).

As mentioned above a daemon thread is not enough on its
own to keep the current program from terminating. This
means that the daemon thread will keep looping until the
main thread finishes. As the main thread sleeps for 5 s that
allows the daemon thread to print out about 5 strings before
the main thread terminates. This is illustrated by the output
below:

Starting

CCCCCDone

Naming Threads

Threads can be named; which can be very useful when
debugging an application with multiple threads.

In the following example,three threads have been created;
two have been explicitly given a name related to what they are
doing while the middle one has been left with the default
name. We then start all three threads and use the
threading.enumerate() function to loop through all the
currently live threads printing out their names:

The output from this program is given blow:

ABC MainThread worker Thread-1 daemon
ABCBACACBCBACBAABCCBACBACBA

As you can see in addition to the worker thread and the
daemon thread there is a MainThread (that initiates the
whole program) and Thread-1 which is the thread referenced
by the variable t2 and uses the default thread name.

Thread Local Data

In some situations each Thread requires its own copy of the
data it is working with; this means that the shared (heap)
memory is di�cult to use as it is inherently shared between
all threads.

To overcome this Python provides a concept known as
Thread-Local data. Thread-local data is data whose values
are associated with a thread rather than with the shared
memory. This idea is illustrated below:

To create thread-local data it is only necessary to create an
instance of threading. local (or a subclass of this) and store
attributes into it. The instances will be thread specific;

meaning that one thread will not see the values stored by
another thread.

For example:
from threading import Thread,local, currentThread
from random import randint
def show_value(data):
try:
val = data.value
except AttributeError:
print(currentThread().name, ' - No value yet')
else:
print(currentThread().name, ' - value =', val)
def worker(data):
show_value(data)
data.value = randint(1, 100)
show_value(data)
print(currentThread().name, ' - Starting')
local_data = local()
show_value(local_data)
for i in range(2):
t = Thread(name='W' + str(i),
target=worker, args=[local_data])
t.start()
show_value(local_data)
print(currentThread().name, ' - Done')

The output from this is

MainThread - Starting
MainThread - No value yet W0 - No value yet

W0 - value = 20
W1 - No value yet
W1 - value = 90
MainThread - No value yet
MainThread - Done

The example presented above defines two functions.

The first function attempts to access a value in the thread
local data object. If the value is not present an exception
is raised (AttributeError). The show_value() function
catches the exception or successfully processes the data.
The worker function calls show_value()twice, once
before it sets a value in the local data object and once
after. As this function will be run by separate threads the
current Thread name is printed by the show_value()
function.

The main function creates a local data object using the local()
function from the threading library. It then calls
show_value() itself. Next it creates two threads to execute the
worker function in passing the local_data object into them;
each thread is then started.Finally, it calls show_value()
again.

As can be seen from the output one thread cannot see the data
set by another thread in the local_data object (even when the
attribute name is the same).

Timers

The Timer class represents an action (or task) to run after a
certain amount of time has elapsed. The Timer class is a
subclass of Thread and as such also functions as an example
of creating custom threads.

Timers are started,as with threads, by calling their start()
method. The timer canbe stopped (before its action has
begun) by calling the cancel() method.The interval the timer
will wait before executing its action may not be exactly the
same as the interval specified by the user as another thread
may be running when the timer wishes to start.

The signature of the Timer class constructor is:

Timer(interval, function, args = None, kwargs =None)
An example of using the Timer class is given below:
from threading import Timer
def hello():
print('hello')
print('Starting')
t = Timer(5, hello)
t.start()
print('Done')

In this case the Timer will run the hello function after an
initial delay of 5 s.

The Global Interpreter Lock

The Global Interpreter Lock(or the GIL) is a global lock within
the underlying CPython interpreter that was designed to
avoid potential deadlocks between multiple tasks. It is
designed to protect access to Python objects by preventing
multiple threads from executing at the same time.

For the most part you do not need to worry about the GIL as it
is at a lower level than the programs you will be writing.
However, it is worth noting that the GIL is controversial
because it prevents multi threaded Python programs from
taking full advantage of multiprocessor systems in certain
situations.

This is because in order to execute a thread must obtain the
GIL and only one thread at a time can hold the GIL (that is the
lock it represents). This means that Python acts like a single
CPU machine; only one thing can run at a time. A Thread will
only give up the GIL if it sleeps, has to wait for something
(such as some I/O) or it has held the GIL for a certain amount
of time. If the maximum time that a thread can hold the GIL
has been met the scheduler will release the GIL from that
thread (resulting it stopping execution and now having to
wait until it has the GIL returned to it) and will select another
thread to gain the GIL and start to execute.

It is thus impossible for standard Python threads to take
advantage of the multiple CPUs typically available on modern
computer hardware. One solution to this is to use the Python
multiprocessing library described in the next chapter.

Mul�processing

Introduction

The multiprocessing library supports the generation of
separate (operating system level) processes to execute
behavior (such as functions or methods) using an API that is
similar to the Threading API presented in the last chapter.

It can be used to avoid the limitation introduced by the Global
Interpreter Lock (the GIL) by using separate operating system
processes rather than lightweight threads (which run within
a single process).

This means that the multiprocessing library allows
developers to fully exploit the multiple processor
environment of modern computer hardware which typically
has multiple processor cores allowing multiple
operations/behaviors to run in parallel; this can be very
significant for data analytics, image processing, animation
and games applications.

The multiprocessing library also introduces some new
features, most notably the Pool object for parallelising
execution of a callable object (e.g. functions and methods)
that has no equivalent within the Threading API.

The Process Class

The Process class is the multiprocessing library’s equivalent
to the Thread class in the threading library. It can be used to
run a callable object such as a function in a separate process.
To do this it is necessary to create a new instance of the
Process class and then call the start() method on it. Methods
such as join() are also available so that one process can wait
for another process to complete before continuing etc.

The main di�erence is that when a new Process is created it
runs within a separate process on the underlying operating
systems (such as Window, Linux or Mac OS). In contrast a
Thread runs within the same process as the original program.
This means that the process is managed and executed directly
by the operating system on one of the processors that are part
of the underlying computer hardware.

The up side of this is that you are able to exploit the
underlying parallelism inherent in the physical computer
hardware. The downside is that a Process takes more work to
set up than the lighter weight Threads. The constructor for

the Process class provides the same set of arguments as the
Thread class, namely:

class multiprocessing.Process(group=None,
 target=None,
name=None,
args=(),
kwargs={}, daemon=None)

group should always be None; it exists solely for
compatibility with the Threading API.
target is the callable object to be invoked by the run()
method. It defaults to None, meaning nothing is called.
name is the process name.
args is the argument tuple for the target invocation.
kwargs is a dictionary of keyword arguments for the
target invocation.
daemon argument sets the process daemon flag to True
or False.

If None (the default), this flag will be inherited from the
creating process.

As with the Thread class, the Process constructor should
always be called using keyword arguments.

The Process class also provides a similar set of methods to the
Thread class

start() Start the process’s activity. This must be called at
most once per process object. It arranges for the object’s
run() method to be invoked in a separate process.
join([timeout]) If the optional argument timeout is None
(the default), the method blocks until the joined process
terminates. If timeout is positive number, it blocks at
most timeout seconds. Note that the method returns
None if its process terminates or if the method times out.
is_alive() Return whether the process is alive.Roughly, a
process objectis alive from the moment the start()
method returns until the child process terminates.

The process class also has several attributes:

name The process’s name. The name is a string used for
identification purposes only. It has no semantics.
Multiple processes may be given the same name. It can be
useful for debugging purposes.
daemon The process’s daemon flag, a boolean value. This
must be set before start() is called. The default value is
inherited from the creating process. When a process
exits, it attempts to terminate all of its daemonic child
processes. Note that a daemonic process is not allowed to
create child processes.

pid Return the process ID. Before the process is spawned,
this will be None.
exit code The process exit code. This will be None if the
process has not yet terminated. A negative value -N
indicates that the child was terminated by signal N.

In addition to these methods and attributes, the Process class
also defines additional process related methods including:

terminate() Terminate the process.
kill() Same as terminate() except that on Unix the
SIGKILL signal is used instead of the SIGTERM signal.
close() Close the Process object, releasing all resources
associated with it.ValueError is raised if the underlying
process is still running. Once close() returns
successfully,most of the other methods and attributes of
the Process object will raise a ValueError.

Working with the Process Class

The following simple program creates three Process objects;
each runs the function worker(), with the string arguments A,
B and C respectively. These three process objects are then
started using the start() method.

from multiprocessing import Process
from time import sleep
def worker(msg):
for i in range(0,10):

print(msg, end='',flush=True)
sleep(1)
print('Starting')
t2 = Process(target=worker, args='A') t3=
Process(target=worker,args='B') t4 = Process(target=worker,
args='C')
t2.start() t3.start() t4.start()
print('Done')

It is essentially the same as the equivalent program for
threads but with the

Process class being used instead of the Thread class.

The output from this application is given below:
Starting Done ABCABCABCABCABCABCABCACBACBACB

The main di�erence between the Thread and Process versions
is that the Process version runs the worker function in
separate processes whereas in the Thread version all the
Threads share the same process.

Alternative Ways to Start a Process

When the start() method is called on a Process, three
di�erent approaches to starting the underlying process are
available. These approaches can be set using the
multiprocessing.set_start_method() which takes a string
indicating the approach to use. The actual process initiation

mechanisms available depend on the underlying operating
system:

‘spawn’ The parent process start a fresh Python
interpreter process. The child process will only inherit
those resources necessary to run the process objects run()
method. In particular, unnecessary file descriptors and
handles from the parent process will not be inherited.
Starting a process using this method is rather slow
compared to using fork or fork server. Available on Unix
and Windows. This is the default on Windows.
‘fork’ The parent process uses os.fork() to fork the
Python interpreter. The child process, when it begins, is
e�ectively identical to the parent process. All resources of
the parent are inherited by the child process. Available
only on Unix type operating systems. This is the default
on Unix, Linux and Mac OS.
‘fork server’ In this case a server process is started. From
then on, whenever a new process is needed, the parent
process connects to the server and requests that it fork a
new process.The fork server process is single threaded so
it is safe for it to use os.fork(). No unnecessary resources
are inherited. Available on Unix style platforms which
support passing file descriptors over Unix pipes.

The set_start_method() should be used to set the start
method (and this should only be set once within a program).

This is illustrated below, where the spawn start method is
specified:

from multiprocessing import Process
from multiprocessing import set_start_method
from time import sleep
import os
def worker(msg):
print('module name:', name) print('parent process:',
os.getppid()) print('process id:', os.getpid())
for i in range(0,10):
print(msg, end='', flush=True)
sleep(1)
def main():
print('Starting')
print('Root application process id:', os.getpid())
set_start_method('spawn')
t = Process(target=worker, args='A')
t.start()
print('Done')
if_name == '_main_':
main()

The output from this is shown below:
Starting
Root application process id: 6281
Done
module name: main
parent process: 6281 process id: 6283
AAAAAAAAAA

Note that the parent process and current process ids are
printed out for the worker () function, while the main()
method prints out only its own id. This shows that the main
application process id is the same as the worker process
parents’ id.

Alternatively, it is possible to use the get_context() method
to obtain a context object. Context objects have the same API
as the multiprocessing module and allow you to use multiple
start methods in the same program, for example:

ctx = multiprocessing.get_context('spawn')
q = ctx.Queue()
p = ctx.Process(target = foo, args = (q,))

Usinga Pool

Creating Processes is expensive in terms of computer
resources. It would therefore be useful to be able to reuse
processes within an application. The Pool class provides such
reusable processes.

The Pool class represents a pool of worker processes that can
be used to perform a set of concurrent, parallel operations.
The Pool provides methods which allow tasks to be o�oaded
to these worker processes.

The Pool class provides a constructor which takes a number
of arguments:

class multiprocessing.pool.Pool(processes,
initializer, initargs, maxtasksperchild, context)

These represent:

processes is the number of worker processes to use. If
processes is None then the number returned by
os.cpu_count() is used.
initializer If initializer is not None then each worker
process will call initializer(*initargs) when it starts.
maxtasksperchild is the number of tasks a worker process
can complete before it will exit and be replaced with a
fresh worker process, to enable unused resources to be
freed. The default max tasks per child is None, which
means worker processes will live as long as the pool.
context can be used to specify the context used for
starting the worker processes. Usually a pool is created
using the function multiprocessing. Pool(). Alternatively
the pool can be created using the Pool() method of a
context object.

The Pool class provides a range of methods that can be used
to submit work to the worker processes managed by the pool.
Note that the methods of the Pool object should only be called
by the process which created the pool.

The following diagram illustrates the e�ect of submitting
some work or task to the pool. From the list of available
processes, one process is selected and the task is passed to the
process. The process will then execute the task. On
completion any results are returned and the process is
returned to the available list. If when a task is submitted to
the pool there are no available processes then the task will be
added to a wait queue until such time as a process is available
to handle the task.

The simplest of the methods provided by the Pool for work
submission is the map method:

pool.map(func, iterable, chunksize=None)

This method returns a list of the results obtained by
executing the function in parallel against each of the items in
the iterable parameter.

The func parameter is the callable object to be executed
(such as a function or a method).
The iteratable is used to pass in any parameters to the
function.
This method chops the iterable into a number of chunks
which it submits to the process pool as separate tasks.
The (approximate) size of these chunks can be specified
by setting chunk size to a positive integer. The method
blocks until the result is ready.

The following sample program illustrates the basic use of the
Pool and the map() method.

from multiprocessing import Pool
def worker(x):
print('In worker with: ', x)
return x * x
def main():
with Pool(processes=4) as pool:
print(pool.map(worker, [0, 1, 2, 3, 4, 5]))

if name
main()
== ' main ':

Note that the Pool object must be closed once you have
finished with it; we are therefore using the ‘with as’
statement described earlier in this book to handle the Pool
resource cleanly (it will ensure the Pool is closed when the
block of code within the with as statement is completed).

The output from this program is

In worker with:0
In worker with:1
In worker with:2
In worker with:3
In worker with:4
In worker with:5 [0, 1, 4, 9, 16, 25]

As can be seen from this output the map() function is used to
run six di�erent instances of the worker() function with the
values provided by the list of integers. Each instance is
executed by a worker process managed by the Pool.

However, note that the Pool only has 4 worker processes, this
means that the last two instances of the worker function must
wait until two of the worker Processes have finished the work

they are doing and can be reused. This can act as a way of
throttling, or controlling, how much work is done in parallel.

A variant on the map() method is the imap_unordered()
method. This method also applies a given function to an
iterable but does not attempt to maintain the order of the
results. The results are accessible via the iterable returned by
the function. This may improve the performance of the
resulting program.

The following program modified the worker() function to
return its result rather than print it. These results are then
accessible by iterating over them as they are produced via a
for loop:

As the new method obtains results as soon as they are
available, the order in which the results are returned may be
di�erent, as shown below:

In worker with:0
In worker with:1
In worker with:3
In worker with:2
In worker with:4
In worker with:5
0
1
9
16
4
25

A further method available on the Pool class is the
Pool.apply_async() method. This method allows
operations/functions to be executed asynchronously allowing
the method calls to return immediately. That is as soon as the
method call is made, control is returned to the calling code
which can continue immediately. Any results to be collected
from the asynchronous operations can be obtained either by
providing a callback function or by using the blocking get()
method to obtain a result.

Two examples are shown below, the first uses the blocking
get() method. This method will wait until a result is available
before continuing. The second approach uses a callback
function. The callback function is called when a result is
available; the result is passed into the function.

from multiprocessing import Pool
def collect_results(result):
print('In collect_results: ', result)
def worker(x):
print('In worker with: ', x)
return x * x
def main():
with Pool(processes=2) as pool:
get based example
res = pool.apply_async(worker, [6])
print('Result from async: ', res.get(timeout=1))
with Pool(processes=2) as pool:
callback based example
pool.apply_async(worker, args=[4], callback=collect_results)
if_name_ == '_main_':
main()

The output from this is:
In worker with:6
Result from async: 36
In worker with:4
In collect_results: 16

Exchanging Data Between Processes

In some situations it is necessary for two processes to
exchange data. However, the two process objects do not share
memory as they are running in separate operating system
level processes. To get around this the multiprocessing
library provides the Pipe() function.

The Pipe() function returns a pair of connection.Connection
objects connected by a pipe which by default is duplex (two-
way). The two connection objects returned by Pipe()
represent the two ends of the pipe. Each connection object
has send() and recv() methods (among others). This allows
one process to send data via the send() method of one end of
the connection object. In turn a second process can receive
that data via the receive () method of the other connection
object. This is illustrated below:

Once a program has finished with a connection is should be
closed using close ().

The following program illustrates how pipe connections are
used:

The output from this Pipe example is:
Main - Starting, creating the Pipe
Main - Setting up the process
Main - Starting the process
Main - Wait for a response from the child process
Worker - started now sleeping for 1 second
Worker - sending data via Pipe
Worker - closing worker end of connection hello
Main - closing parent process end of connection
Main - Done

Note that data in a pipe may become corrupted if two
processes try to read from or write to the same end of the pipe
at the same time. However, there is no risk of corruption from
processes using di�erent ends of the pipe at the same time.

Sharing State Between Processes

In general, if it can be avoided, then you should not share
state between separate processes. However, if it is
unavoidable then the multiprocessing library provides two
ways in which state (data) can be shared, these are Shared
Memory (as supported by multiprocessing.Value and
multiprocessing.Array) and Server Process.

Process Shared Memory

Data can be stored in a shared memory map using a
multiprocessing.Value or multiprocessing.Array. This data
can be accessed by multiple processes.

The constructor for the multiprocessing.Value type is:

multiprocessing.Value
(typecode_or_type, *args, lock = True)

Where:

typecode_or_type determines the type of the returned
object:it is either a ctypes type or a one character type
code. For example, ‘d’ indicates a double precision float
and ‘i’ indicates a signed integer.
*args is passed on to the constructor for the type.
lock If lock is True (the default) then a new recursive lock
object is created to synchronize access to the value. If lock
is False then access to the returned object will not be
automatically protected by a lock, so it will not
necessarily be process-safe.

The constructor for multiprocessing.Array is

multiprocessing.Array
multiprocessing.Array(typecode_or_type,
size_or_initializer, lock=True)

Where:

typecode_or_type determines the type of the elements of
there turned array.
size_or_initializer If size_or_initializer is an
integer,then it determines the length of the array, and the
array will be initially zeroed. Otherwise,
size_or_initializer is a sequence which is used to

initialize the array and whose length determines the
length of the array.
If lock is True (the default) then a new lock object is
created to synchronize access to the value.If lock is False
then access to the returned object will not be
automatically protected by a lock, so it will not
necessarily be “process-safe”.

An example using both the Value and Array type is given
below:

from multiprocessing import Process,Value, Array
def worker(n, a):
n.value = 3.1415927
for i in range(len(a)):
a[i] = -a[i]
def main():
print('Starting')
num = Value('d', 0.0)
arr = Array('i', range(10))
p = Process(target=worker, args=(num, arr))
p.start() p.join() print(num.value) print(*arr) print('Done')
if_name_=='main':
main()

Try

Write a program that can find the factorial of any given
number. For example, find the factorial of the number 5
(often written as 5!) which is 1 * 2 * 3 * 4 * 5 and equals 120.

The factorials not defined for negative numbers and the
factorial of Zero is 1; that is 0! = 1.

Next modify the program to run multiple factorial
calculations in parallel. Collect all the results together in a list
and print that list out.

You an use whichever approach you like to running multiple
processes although a Pool could be a good approach to use.
Your program should compute the factorials of 5, 8, 10, 15, 3,
6, and 4 in parallel.

Inter Thread/Process Synchroniza�on

Introduction

In this chapter we will look at several facilities supported by
both the threading and multiprocessing libraries that allow
for synchronization and cooperation between Threads or
Processes.

In the remainder of this chapter we will look at some of the
ways in which Python supports synchronization between
multiple Threads and Processes.Note that most of the
libraries are mirrored between threading and multiprocessing
so that the same basic ideas hold for both approaches with, in
the main, very similar APIs. However, you should not mix and
match threads and processes. If you are using Threads then
you should only use facilities from the threading library. In
turn if you are using Processes than you should only use
facilities in the multiprocessing library. The examples given
in this chapter will use one or other of the technologies but
are relevant for both approaches.

Using a Barrier

Using a threading.Barrier (or multiprocessing.Barrier) is one
of the simplest ways in which the execution of a set of
Threads (or Processes) can be synchronized. The threads or
processes involved in the barrier are known as the parties that
are taking part in the barrier. Each of the parties in the barrier
can work independently until it reaches the barrier point in
the code.

The barrier represents an end point that all parties must
reach before any further behavior can be triggered. At the
point that all the parties reach the barrier it is possible to
optionally trigger a post-phase action (also known as the
barrier call- back). This post phase action represents some
behavior that should be run when all parties reach the barrier
but before allowing those parties to continue. The post-phase
action (the callback) executes in a single thread (or
process).Once it is completed then all the parties are
unblocked and may continue.

This is illustrated in the following diagram. Threads t1, t2 and
t3 are all involved in the barrier. When thread t1 reaches the
barrier it must wait until it is released by the barrier. Similarly
when t2 reaches the barrier it must wait. When t3 finally
reaches the barrier the callback is invoked. Once the callback

has completed the barrier releases all three threads which are
then able to continue.

An example of using a Barrier object is given below. Note that
the function being invoked in each Thread must also
cooperate in using the barrier as the code will run up to the
barrier.wait() method and then wait until all other threads
have also reached this point before being allowed to continue.

The Barrier is a class that can be used to create a barrier
object. When the Barrier class is instantiated, it can be
provided with three parameters:

where

parties the number of individual parties that will
participate in the Barrier.
action is a callable object (such as a function) which,
when supplied, will be called after all the parties have
entered the barrier and just prior to releasing them all.
timeout If a ‘timeout’ is provided, it is used as the default
for all subsequent wait() calls on the barrier.

Thus, in the following code

b = Barrier(3, action=callback)

Indicates that there will be three parties involved in the
Barrier and that the callback function will be invoked when all
three reach the barrier (however the timeout is left as the
default value None).

The Barrier object is created outside of the Threads (or
Processes) but must be made available to the function being
executed by the Thread (or Process). The easiest way to
handle this is to pass the barrier into the function as one of
the parameters; this means that the function can be used with
di�erent barrier objects depending upon the context.

An example using the Barrier class with a set of Threads is
given below:

from threading import Barrier, Thread
from time import sleep
from random import randint
def print_it(msg, barrier): print('print_it for:', msg) for i
in range(0, 10):
print(msg, end='', flush=True)
sleep(1)
sleep(randint(1, 6))
print('Wait for barrier with:', msg)
barrier.wait()
print('Returning from print_it:', msg)
def callback():
print('Callback Executing')
print('Main - Starting')
b = Barrier(3, callback)
t1 = Thread(target=print_it,args=('A', b)) t2 =
Thread(target=print_it,args=('B', b)) t3 =
Thread(target=print_it, args=('C', b)) t1.start()
t2.start()
t3.start()
print('Main - Done')
The output from this is:
Main - Starting print_it for: A print_it for: B print_it for: C
ABC
Main - Done
ABCACBACBABCACBCABACBACBBAC Wait for barrier with: B Wait
for barrier with: A Wait for barrier with: C Callback
Executing
Returning from print_it: A
Returning from print_it: B
Returning from print_it: C

From this you can see that the print_it()function is run three
times con- currently; all three invocations reach the

barrier.wait() statement but in a di�erent order to that in
which they were started. Once the three have reached this
point the callback function is executed before the print_it()
function invocations can proceed.

The Barrier class itself provides several methods used to
manage or find out information about the barrier:

A Barrier object can be reused any number of times for the
same number of Threads.

The above example could easily be changed to run using
Process by altering the import statement and creating a set of
Processes instead of Threads:

from multiprocessing import Barrier, Process
...
print('Main - Starting')
b = Barrier(3, callback)
t1 = Process(target=print_it, args=('A', b))

Note that you should only use threads with a
threading.Barrier. In turn you should only use Processes with

a multiprocessing.Barrier.

Event Signaling

Although the point of using multiple Threads or Processes is
to execute separate operations concurrently, there are times
when it is important to be able to allow two or more Threads
or Processes to cooperate on the timing of their behavior. The
Barrier object presented above is a relatively high-level way
to do this; however, in some cases finer grained control is
required. The threading.Event or multiprocessing.Event
classes can be used for this purpose.

An Event manages an internal flag that callers can either
set()or clear(). Other threads can wait() for the flag to be
set(), e�ectively blocking their own progress until allowed to
continue by the Event. The internal flag is initially set to False
which ensures that if a task gets to the Event before it is set
then it must wait.

You can in fact invoke wait with an optional timeout. If you do
not include the optional timeout then wait() will wait forever
while wait(timeout) will wait up to the timeout given in
seconds. If the time out is reached,then the wait method
returns False; otherwise wait returns True.

As an example,the following diagram illustrates two
processes sharing an event object. The first process runs a
function that waits for the event to be set. In turn the second
process runs a function that will set the event and thus
release the waiting process.

The following program implements the above scenario:

from multiprocessing import Process, Event
from time import sleep
def wait_for_event(event):
print('wait_for_event - Entered and waiting')
event_is_set = event.wait()
print('wait_for_event - Event is set: ', event_is_set)
def set_event(event):
print('set_event - Entered but about to sleep')

sleep(5)
print('set_event - Waking up and setting event')
event.set()
print('set_event - Event set')
print('Starting')
Create the event object
event = Event()
Start a Process to wait for the event notification p1
= Process(target=wait_for_event, args=[event]) p1.start()
Set up a process to set the event
p2 = Process(target=set_event, args=[event])
p2.start()
Wait for the first process to complete p1.join()
print('Done')

The output from this program is:

Starting
wait_for_event - Entered and waiting
set_event - Entered but about to sleep
set_event - Waking up and setting event
set_event - Event set
wait_for_event - Event is set: True
Done

To change this to use Threads we would merely need to
change the import and to create two Threads:

from threading import Thread, Event
... print('Starting') event = Event()
t1 = Thread(target=wait_for_event, args=[event])

t1.start()
t2 = Thread(target=set_event, args=[event])
t2.start()
t1.join()
print('Done')

Synchronizing Concurrent Code

It is not uncommon to need to ensure that critical regions of
code are protected from concurrent execution by multiple
Threads or Processes. These blocks of code typically involve
the modification of, or access to, shared data. It is therefore
necessary to ensure that only one Thread or Process is
updating a shared object at a time and that consumer threads
or processes are blocked while this update is occurring.

This situation is most common where one or more Threads or
Processes are the producers of data and one or more other
Threads or Processes are the consumers of that data. This is
illustrated in the following diagram.

In this diagram the Producer is running in its own Thread
(although it could also run in a separate Process) and places
data onto some common shared data container. Subsequently
a number of independent Consumers can consume that data
when it is available and when they are free to process the
data. However, there is no point in the consumers repeatedly
checking the container for data as that would be a waste of
resources (for example in terms of executing code on a
processor and of context switching between multiple Threads
or Processes).

We therefore need some form of notification or
synchronization between the Producer and the Consumer to
manage this situation.

Python provides several classes in the threading (and also in
the multi- processing) library that can be used to manage
critical code blocks. These classes include Lock, Condition
and Semaphore.

Python Locks

The Lock class defined (both in the threading and the
multiprocessing libraries) provides a mechanism for
synchronizing access to a block of code. The Lock object can
be in one of two states locked and unlocked (with the initial
state being unlocked). The Lock grants access to a single

thread at a time; other threads must wait for the Lock to
become free before progressing.

The Lock class provides two basic methods for acquiring the
lock (acquire()) and releasing (release()) the lock.

When the state of the Lock object is unlocked, then
acquire() changes the state to locked and returns
immediately.
When the state is locked, acquire() blocks until a call to
release() in another thread changes it to unlocked, then
the acquire() call resets it to locked and returns.
The release() method should only be called in the locked
state; it changes the state to unlocked and returns
immediately. If an attempt is made to release an unlocked
lock, a Runtime Error will be raised.

An example of using a Lock object is shown below:

from threading import Thread, Lock
class SharedData(object):
def init (self): self.value = 0 self.lock= Lock()
def read_value(self):
try:
print('read_value Acquiring Lock')
self.lock.acquire()
return self.value
finally:
print('read_value releasing Lock')
self.lock.release()
def change_value(self): print('change_value acquiring lock')

with self.lock:
self.value = self.value + 1 print('change_value lock released')

The SharedData class presented above uses locks to control
access to critical blocks of code, specifically to the
read_value() and the change_value() methods. The Lock
object is held internally to the ShareData object and both
methods attempt to acquire the lock before performing their
behavior but must then release the lock after use.

The read_value() method does this explicitly using try:
finally: blocks while the change_value() method uses a with
statement (as the Lock type supports the Context Manager
Protocol). Both approaches achieve the same result but the
with statement style is more concise.

The SharedData class is used below with two simple
functions. In this case the SharedData object has been defined
as a global variable but it could also have been passed into the
reader() and updater() functions as an argument. Both the
reader and updater functions loop, attempting to call the
read_value() and change_value() methods on the
shared_data object.

As both methods use a lock to control access to the methods,
only one thread can gain access to the locked area at a time.
This means that the reader() function may start to read data

before the updater() function has changed the data (or vice
versa).

This is indicated by the output where the reader thread
accesses the value ‘0’ twice before the updater records the
value ‘1’. However, the updater() function runs a second time
before the reader gains access to locked block of code which is
why the value 2 is missed. Depending upon the application
this may or may not be an issue.

shared_data = SharedData()
def reader():
while True:
print(shared_data.read_value())
def updater():
while True:
shared_data.change_value()
print('Starting')
t1 = Thread(target=reader)
t2 = Thread(target=updater)
t1.start()
t2.start()
print('Done')
The output from this is:
Starting
read_value Acquiring Lock read_value releasing Lock
0
read_value Acquiring Lock read_value releasing Lock
0
Done
change_valueacquiring lock change_value lock released

1
change_valueacquiring lock change_value lock released
change_value acquiring lock change_value lock released
3
change_valueacquiring lock change_value lock released
4

Lock objects can only be acquired once; if a thread attempts to
acquire a lock on the same Lock object more than once then a
Runtime Error is thrown.

If it is necessary to re-acquire a lock on a Lock object then the
threading. RLock class should be used. This is a Re-entrant
Lock and allows the same Thread (or Process) to acquire a
lock multiple times. The code must however release the lock
as many times as it has acquired it.

Python Conditions

Conditions can be used to synchronize the interaction
between two or more Threads or Processes. Conditions
objects support the concept of a notification model; ideal fora
shared data resource being accessed by multiple consumers
and producers.

A Condition can be used to notify one or all of the waiting
Threads or Processes that they can proceed(for example to

read data from a shared resource). The methods available that
support this are:

notify() notifies one waiting thread which can then
continue
notify_all() notifies all waiting threads that they can
continue
wait() causes a thread to wait until it has been notified
that it can continue

A Condition is always associated with an internal lock which
must be acquired and released before the wait() and notify()
methods can be called. The Condition supports the Context
Manager Protocol and can therefore be used via a with
statement (which is the most typical way to use a Condition)
to obtain this lock. For example, to obtain the condition lock
and call the wait method we might write:

with condition:
condition.wait()
print('Now we can proceed')

The condition object is used in the following example to
illustrate how a producer thread and two consumer threads
can cooperate. A DataResource class has been defined which
will hold an item of data that will be shared between a
consumer and a set of producers. It also (internally) defines a
Condition attribute. Note that this means that the Condition
is completely internalized to the DataResource class; external

code does not need to know, or be concerned with,the
Condition and its use. Instead external code can merely call
the consumer() and producer() functions in separate Threads
as required.

The consumer() method uses a with statement to obtain the
(internal) lock on the Condition object before waiting to be
notified that the data is available. In turn the producer()
method also uses a with statement to obtain a lock on the
condition object before generating the data attribute value
and then notifying anything waiting on the condition that
they can proceed. Note that although the consumer method
obtains a lock on the condition object; if it has to wait it will
release the lock and re obtain the lock once it is notified that it
can continue. This is a subtly that is often missed.

from threading import Thread, Condition, currentThread
from time import sleep
from random import randint
class DataResource:
def init (self):
print('DataResource - Initialising the empty data')
self.data = None
print('DataResource - Setting up the Condition object')
self.condition = Condition()
def consumer(self):
"""wait for the condition and use the resource"""
print('DataResource - Starting consumer method in',
currentThread().name)
with self.condition:

self.condition.wait()
print('DataResource - Resource is available to',
currentThread().name)
print('DataResource - Data read in',
currentThread().name, ':', self.data)
def producer(self):
"""set up the resource to be used by the consumer"""
print('DataResource - Starting producer method')
with self.condition:
print('DataResource - Producer setting data') self.data =
randint(1, 100) print('DataResource - Producer notifying all
waiting threads')
self.condition.notifyAll()
print('Main - Starting')
print('Main - Creating the DataResource object')
resource = DataResource()
print('Main - Create the Consumer Threads') c1 =
Thread(target=resource.consumer) c1.name = 'Consumer1'
c2 = Thread(target=resource.consumer)
c2.name = 'Consumer2'
print('Main - Create the Producer Thread')
p = Thread(target=resource.producer)
print('Main - Starting consumer threads')
c1.start()
c2.start()
sleep(1)
print('Main - Starting producer thread')
p.start()
print('Main - Done')

The output from an example run of this program is:

Main - Starting

Main - Creating the DataResource object DataResource -
Initializing the empty data DataResource - Setting up the
Condition object Main - Create the Consumer Threads

Main - Create the Producer Thread
Main - Starting consumer threads
DataResource - Starting consumer method in Consumer1
DataResource - Starting consumer method in Consumer2
Main - Starting producer thread DataResource - Starting

producer method DataResource - Producer setting data
Main - Done
DataResource - Producer notifying all waiting threads
DataResource - Resource is available to Consumer1
DataResource - Data read in Consumer1 : 36
DataResource - Resource is available to Consumer2
DataResource - Data read in Consumer2 : 36

Python Semaphores

The Python Semaphore class implements Dijkstra’s counting
semaphore model.

In general, a semaphore is like an integer variable, its value is
intended to represent a number of available resources of
some kind. There are typically two operations available on a
semaphore;these operations are acquire() and re- lease()
(although in some libraries Dijkstra’s original names of p()

and v() are used, these operation names are based on the
original Dutch phrases).

The acquire() operation subtracts one from the value of
the semaphore, unless the value is 0, in which case it
blocks the calling thread until the semaphore’s value
increases above 0 again.
The signal() operation adds one to the value, indicating a
new instance of the resource has been added to the pool.

Both the threading.Semaphore and the
multiprocessing.Semaphore classes also supports the Context
Management Protocol. An optional parameter used with the
Semaphore constructor gives the initial value for the internal
counter; it defaults to 1. If the value given is less than 0,
ValueError is raised.

The following example illustrates 5 di�erent Threads all
running the same worker() function. The worker() function
attempts to acquire a semaphore; if it does then it continues
into the with statement block; if it doesn’t, it waits until it can
acquire it. As the semaphore is initialized to 2 there can only
be two threads that can acquire the Semaphore at a time.

The sample program however, starts up five threads, this
therefore means that the first 2 running Threads will acquire
the semaphore and the remaining thee will have to wait to

acquire the semaphore. Once the first two release the
semaphore a further two can acquire it and so on.

from threading import Thread, Semaphore, currentThread
from time import sleep
def worker(semaphore):
with semaphore:
print(currentThread().getName() + " - entered")
sleep(0.5)
print(currentThread().getName() + " - exiting")
print('MainThread - Starting')
semaphore = Semaphore(2)
for i in range(0, 5):
thread = Thread(name='T' + str(i),
target=worker, args=[semaphore])
thread.start()
print('MainThread - Done')

The output from a run of this program is given below:

MainThread - Starting
T0 - entered T1 -
entered MainThread -
Done T0 -
exiting
T2 - entered
T1 - exiting
T3 - entered
T2 - exiting
T4 - entered
T3 - exiting
T4 - exiting

The Concurrent Queue Class

As might be expected the model where a producer Thread or
Process generates data to be processed by one or more
Consumer Threads or Processes is so common that a higher
level abstraction is provided in Python than the use of Locks,
Conditions or Semaphores; this is the blocking queue model
implemented by the threading.Queue or
multiprocessing.Queue classes.

Both these Queue classes are Thread and Process safe. That is
they work appropriately (using internal locks) to manage data
access from concurrent Threads or Processes.

An example of using a Queue to exchange data between a
worker process and the main process is shown below.

The worker process executes the worker() function sleeping,
for 2 s before putting a string ‘Hello World’ on the queue. The
main application function sets up the queue and creates the
process. The queue is passed into the process as one of its
arguments. The process is then started. The main process
then waits until data is available on the queue via the
(blocking) get() methods. Once the data is available it is
retrieved and printed out before the main process terminates.

from multiprocessing import Process, Queue
from time import sleep
def worker(queue):
print('Worker - going to sleep')
sleep(2)
print('Worker - woken up and putting data on queue')
queue.put('Hello World')
def main():
print('Main - Starting')
queue = Queue()
p = Process(target=worker, args=[queue])
print('Main - Starting the process')
p.start()
print('Main - waiting for data')
print(queue.get())
print('Main - Done')
if_name_== '_main_':
main()

The output from this is shown below:

Main - Starting
Main - Starting the process
Main - wait for data
Worker - going to sleep
Worker - woken up and putting data on queue
Hello World
Main – Done

However, this does not make it that clear how the execution
of the two processes interweaves. The following diagram

illustrates this graphically:

In the above diagram the main process waits for a result to be
returned from the queue following the call to the get()
method; as it is waiting it is not using any system resources.
In turn the worker process sleeps for two seconds before
putting some data onto the queue (via put(‘Hello World’)).
After this value is sent to the Queue the value is returned to
the main process which is woken up (moved out of the
waiting state) and can continue to process the rest of the
main function.

Futures

Introduction

A future is a thread (or process) that promises to return a
value in the future; once the associated behavior has
completed. It is thus a future value. It provides a very simple
way of firing o� behavior that will either be time consuming
to execute or which may be delayed due to expensive
operations such as Input/Output and which could slow down
the execution of other elements of a program. This chapter
discusses futures in Python.

The Need for a Future

In a normal method or function invocation, the method or
function is executed in line with the invoking code (the caller)
having to wait until the function or method (the caller)
returns. Only after this is the caller able to continue to the
next line of code and execute that. In many (most) situations
this is exactly what you want as the next line of code may
depend on a result returned from the previous line of code etc.

However, in some situations the next line of code is
independent of the previous line of code. For example, let us
assume that we are populating a User Interface (UI). The first
line of code may read the name of the user from some
external data source (such as a database)and then display it
within a field in the UI. The next line of code may then add
today’s data to another field in the UI. These two lines of code
are independent of each other and could be run
concurrently/in parallel with each other.

In this situation we could use either a Thread or a Process to
run the two lines of code independently of the caller, thus
achieving a level of concurrency and allowing the caller to
carry onto the third line of code etc. However, neither the
Thread or the Process by default provide a simple mechanism
for obtaining a result from such an independent operation.
This may not be a problem as operations may be self-
contained; for example they may obtain data from the
database or from today’s date and then updated a UI.
However, in many situations the calculation will return a
result which needs to be handled by the original invoking
code (the caller).This could involve performing a long
running calculation and then using the result returned to
generate another value or update another object etc.

A Future is an abstraction that simplifies the definition and
execution of such concurrent tasks. Futures are available in

many di�erent languages including Python but also Java,
Scala, C++ etc. When using a Future; a callable object(such as
a function) is passed to the Future which executes the
behavior either as a separate Thread or as a separate Process
and then can return a result once it is generated. The result
can either be handled by a call back function(that is invoked
when the result is available) or by using a operation that will
wait for a result to be provided.

Futures in Python

The concurrent.futures library was introduced into Python in
version 3.2 (and is also available in Python2.5 on wards). The
concurrent.futures library provides the Future class and a
high level API for working with Futures. The
concurrent.futures.Future class encapsulates the
asynchronous execution of a callable object (e.g. a function or
method). The Future class provides a range of methods that
can be used to obtain information about the state of the
future,retrieve results or cancel the future:

cancel() Attempt to cancel the Future. If the Future is
currently being executed and cannot be canceled then the
method will return False, otherwise the call will be
canceled and the method will return True.
canceled() Returns True if the Future was successfully
canceled.

running() Returns True if the Future is currently being
executed and cannot be canceled.
done() Returns True if the Future was successfully
canceled or finished running.
result(timeout=None) Return the value returned by the
Future. If the Future hasn’t yet completed then this
method will wait up to timeout seconds. If the call hasn’t
completed in timeout seconds, then a Timeout Error will
be raised. timeout can be an int or float. If timeout is not
specified or None, there is no limit to the wait time. If the
future is canceled before completing then the Canceled
Error will be raised. If the call raised, this method will
raise the same exception.

It should be noted however, that Future instances should not
be created directly, rather they should be created via the
submit method of an appropriate executor.

Future Creation

Futures are created and executed by Executors. An Executor
provides two methods that can be used to execute a Future (or
Futures) and one to shut down the executor.

At the root of the executor class hierarchy is the
concurrent.futures. Executor abstract class. It has two sub
classes:

the ThreadPoolExecutor and
the ProcessPoolExecutor.

The ThreadPoolExecutor uses threads to execute the futures
while the ProcessPoolExecutor uses separate processes. You
can therefore choose how you want the Future to be executed
by specifying one or other of these executors.

Simple Example Future

To illustrate these ideas, we will look at a very simple
example of using a Future. To do this we will use a simple
worker function; similar to that used in the previous
chapters:

from time import sleep
define function to be used with future
def worker(msg):
for i in range(0, 10):
print(msg, end='', flush=True)
sleep(1)
return i

The only di�erence with this version of worker is that it also
returns a result which is the number of times that the worker
printed out the message.

We can of course invoke this method inline as follows:

res = worker('A')
print(res)

We can make the invocation of this method into a Future. To
do this we use a ThreadPoolExecutor imported from the
concurrent.futures module. We will then submit the worker
function to the pool for execution. This returns a reference to
a Future which we can use to obtain the result:

from time import sleep
from concurrent.futures import ThreadPoolExecutor
print('Setting up the ThreadPoolExecutor')
pool = ThreadPoolExecutor(1)
Submit the function ot the pool to run
concurrently - obtain a future from pool print('Submitting the
worker to the pool') future =pool.submit(worker, 'A')
print('Obtained a reference to the future object', future)
Obtain the result from the future - wait if necessary
print('future.result():', future.result())
print('Done')

The output from this is:

Setting up the ThreadPoolExecutor
Submitting the worker to the pool
AAO btained a reference to the future object <Future at
0x1086ea8d0 state=running>
AAAAAAAA future.result(): 9
Done

Notice how the output from the main program and the worker
is interwoven with two‘A’s being printed out before the
message starting ‘Obtained a…’.

In this case a new ThreadPoolExecutor is being created with
one thread in the pool (typically there would be multiple
threads in the pool but one is being used here for illustrative
purposes). The submit() method is then used to submit the
function worker with the parameter ‘A’ to the
ThreadPoolExecutor for it to schedule execution of the
function. The submit() method returns a Future object.

The main program then waits for the future object to return a
result (by calling the result() method on the future). This
method can also take a timeout.

To change this example to use Processes rather than Threads
all that is needed is to change the pool executor to a
ProcessPoolExecutor:

from concurrent.futures import ProcessPoolExecutor
print('Setting up the ThreadPoolExecutor')
pool = ProcessPoolExecutor(1)
print('Submitting the worker to the pool')
future = pool.submit(worker, 'A')
print('Obtained a reference to the future object', future1)
print('future.result():', future.result())
print('Done')

The output from this program is very similar to the last one:

Setting up the ThreadPoolExecutor

Submitting the worker to the pool
Obtained a reference to the future object <Future at
0x109178630 state=running>
AAAAAAAAAAfuture.result(): 9
Done

The only di�erence is that in this particular run the message
starting ‘Obtained a..’ is printed out before any of the ‘A’s are
printed; this may be due to the fact that a Process initially
takes longer to set up than a Thread.

Running Multiple Futures

Both the ThreadPoolExecutor and the ProcessPoolExecutor
can be configured to support multiple Threads/Processes via
the pool. Each task that is submitted to the pool will then run
within a separate Thread/Process. If more tasks are submitted
than there are Threads/Processes available, then the
submitted task will wait for the first available Thread/Process
and then be executed. This can act as a way of managing the
amount of concurrent work being done.

For example, in the following example, the worker() function
is submitted to the pool four times, but the pool is configured
to use threads. Thus the fourth worker will need to wait until
one of the first three completes before it is able to execute:

from concurrent.futures import ThreadPoolExecutor

print('Starting...')
pool = ThreadPoolExecutor(3) future1 = pool.submit(worker, 'A')
future2 = pool.submit(worker, 'B') future3 = pool.submit(worker,
'C') future4 = pool.submit(worker, 'D')
print('\nfuture4.result():', future4.result())
print('All Done')

When this runs we can see that the Futures for A, B and C all
run concurrently but Dmust wait until one of the others
finishes:

Starting...
ABCACBCABCBABCACBACABCBACABCBADDDDDDDDDD
future4.result(): 9
All Done

The main thread also waits for future4 to finish as it requests
the result which is a blocking call that will only return once
the future has completed and generates a result.

Again, to use Processes rather than Threads all we need to do
is to replace the ThreadPoolExecutor with the
ProcessPoolExecutor:

from concurrent.futures import ProcessPoolExecutor

print('Starting...')
pool = ProcessPoolExecutor(3) future1 = pool.submit(worker, 'A')
future2 = pool.submit(worker, 'B') future3 = pool.submit(worker,
'C') future4 = pool.submit(worker, 'D')
print('\nfuture4.result():', future4.result())
print('All Done')

Waiting for All Futures to Complete

It is possible to wait for all futures to complete before
progressing. In the previous section it was assumed that
future4 would be the last future to complete; but in many
cases it may not be possible to know which future will be the
last to complete. In such situations it is very useful to be able
to wait for all the futures to complete before continuing. This
can be done using the concurrent.futures.wait function. This
function takes a collection of futures and optionally a timeout
and a return_when indicator.

wait(fs, timeout=None, return_when=ALL_COMPLETED)

where:

timeout can be used to control the maximum number of
seconds to wait before returning. timeout can be an int or
float. If timeout is not specified or None, there is no limit
to the wait time.
return_when indicates when this function should return.
It must be one of the following constants:

– FIRST_COMPLETED The function will return when any
future finishes or is canceled.

– FIRST_EXCEPTION The function will return when any
future finishes by raising an exception. If no future raises an
exception,then it is equivalent to ALL_COMPLETED.

– ALL_COMPLETED The function will return when all
futures finish or are canceled.

The wait() function returns two sets done and not_done. The
first set contains the futures that completed (finished or were
canceled) before the wait completed. The second set, the
not_dones, contains uncompleted futures.

We can use the wait() function to modify out previous
example so that we no longer rely on future4 finishing last:

from concurrent.futures import ProcessPoolExecutor
from concurrent.futures import wait from time import sleep
def worker(msg):
for i in range(0,10): print(msg,end='',flush=True) sleep(1)
return i
print('Starting...setting up pool') pool =
ProcessPoolExecutor(3) futures = []
print('Submitting futures')
future1 = pool.submit(worker, 'A')
futures.append(future1)
future2 = pool.submit(worker, 'B')
futures.append(future2)
future3 = pool.submit(worker, 'C')
futures.append(future3)
future4 = pool.submit(worker, 'D')
futures.append(future4)
print('Waiting for futures to complete')
wait(futures)
print('\nAll Done')

The output from this is:

Starting…setting up pool
Submitting futures
Waiting for futures to complete
ABCABCABCABCABCABCBCACBACBABCADDDDDDDDDD
All Done

Note how each future is added to the list of futures which is
then passed to the wait() function.

Processing Results as Completed

What if we want to process each of the results returned by our
collection of futures? We could loop through the futures list in
the previous section once all the results have been generated.
However, this means that we would have to wait for them all
to complete before processing the list.

In many situations we would like to process the results as
soon as they are generated without being concerned if that is
the first, third, last or second etc. The
concurrent.futures.as_completed() function does preciously
this; it will serve up each future in turn as soon as they are
completed; with all futures eventually being returned but
without guaranteeing the order (just that as soon as a future
is finished generating a result it will be immediately
available).

For example, in the following example, the is_even()
function sleeps for a random number of seconds(ensuring
that di�erent invocations of this function will take di�erent
duration) then calculates a result:

from concurrent.futures import ThreadPoolExecutor, as_completed
from time import sleep
from random import randint
def is_even(n):
print('Checking if', n , 'is even')

sleep(randint(1, 5))
return str(n) + ' ' + str(n % 2 == 0)
print('Started')
data = [1, 2, 3, 4, 5, 6]
pool = ThreadPoolExecutor(5)
futures = []
for v in data:
futures.append(pool.submit(is_even, v))
for f in as_completed(futures):
print(f.result())
print('Done')

The second for loop will loop through each future as they
complete printing out the result from each, as shown below:

Started
Checking if 1 is even
Checking if 2 is even
Checking if 3 is even
Checking if 4 is even
Checking if 5 is even
Checking if 6 is even
1 False
4 True
5 False
3 False
2 True
6 True
Done

As you can see from this output although the six futures were
started in sequence the results returned are in a di�erent
order (with the returned order being 1, 4, 5, 3, 2 and finally 6).

Processing Future Results Using a Callback

An alternative to the as_complete() approach is to provide a
function that will be called once a result has been generated.
This has the advantage that the main program is never
paused; it can continue doing whatever is required of it.

The function called once the result is generated is typically
known as a callback function; that is the future calls back to
this function when the result is available.

Each future can have a separate call back as the function to
invoke is set on the future using the add_done_callback()
method. This method takes the name of the function to
invoke.

For example, in this modified version of the previous
example, we specify a call back function that will be used to
print the futures result. This call back function is called
print_future_result(). It takes the future that has completed
as its argument:

from concurrent.futures import ThreadPoolExecutor
from time import sleep
from random import randint
def is_even(n):
print('Checking if', n, 'is even')
sleep(randint(1, 5))
return str(n) + ' ' + str(n % 2 == 0)
def print_future_result(future):
print('In callback Future result: ', future.result())
print('Started')
data = [1, 2, 3, 4, 5, 6]
pool = ThreadPoolExecutor(5)
for v in data:
future = pool.submit(is_even, v)
future.add_done_callback(print_future_result)
print('Done')

When we run this, we can see that the call back function is
called after the main thread has completed. Again, the order
is unspecified as the is_even() function still sleeps for a
random amount of time.

Started

Checking if 1 is even
Checking if 2 is even
Checking if 3 is even
Checking if 4 is even
Checking if 5 is even
Done
In callback Future result: 1 False

Checking if 6 is even
In callback Future result: 5 False
In callback Future result: 4 True
In callback Future result: 3 False
In callback Future result: 2 True
In callback Future result: 6 True

Concurrency with AsyncIO

Introduction

The Async IO facilities in Python are relatively recent
additions originally introduced in Python 3.4 and evolving up
to and including Python 3.7. They are comprised (as of Python
3.7) of two new keywords async and await (introduced in
Python 3.7) and the Async IO Python package.

In this chapter we first discuss Asynchronous IO before
introducing the async and await keywords. We then present
Async IO Tasks, how they are created used and managed.

Asynchronous IO

Asynchronous IO (or Async IO) is a language agnostic
concurrent programming model (or paradigm) that has been
implemented in several di�erent programming language
(such as C# and Scala) as well as in Python.

Asynchronous IO is another way in which you can build
concurrent applications in Python. It is in many ways an

alternative to the facilities provided by the Threading library
in Python. However, were as the Threading library is more
susceptible to issues associated with the GIL (The Global
Interpreter Lock) which can a�ect performance, the Async IO
facilities are better insulated from this issue.

The way in which Async IO operates is also lighter weight
then the facilities provide day the multiprocessing library
since the asynchronous tasks in Async IO run within a single
process rather than requiring separate processes to be
spawned on the underlying hardware.

Async IO is therefore another alternative way of
implementing concurrent solutions to problems. It should be
noted that it does not build on either Threading or Multi
Processing; instead Async IO is based on the idea of
cooperative multitasking. These cooperating tasks operate
asynchronously; by this we mean that the tasks:

are able to operate separately from other tasks,
are able to wait for another task to return a result when
required,
and are thus able to allow other tasks to run while they
are waiting.

The IO (Input/Output) aspect of the name Async IO is because
this form of concurrent program is best suited to I/O bound
tasks.

In an I/O bound task a program spends most of its time
sending data to, or reading data from, some form of external
device (for example a database or set of files etc.). This
communication is time consuming and means that the
program spends most of its time waiting for a response from
the external device.

One way in which such I/O bound applications can (appear to)
speed up is to overlap the execution of di�erent tasks; thus,
while one task is waiting for a database to respond with some
data, another task can be writing data to a log file etc.

AsyncIO Event Loop

When you are developing code using the Async IO facilities
you do not need to worry about how the internals of the Async
IO library work; however at least at the conceptual level it is
useful to understand one key concept; that of the Async IO
Event Loop; This loop control show and when each task gets
run. For the purposes of this discussion a task represents
some work that can be run independently of other pieces of
work.

The Event Loop knows about each task to be run and what the
state of the task currently is (for example whether it is
waiting for something to happen/complete). It selects a task
that is ready to run from the list of available tasks and
executes it. This task has complete control of the CPU until it
either completes its work or hands back control to the Event
Loop (for example, because it must now wait for some data to
be supplied from a database).

The Event Loop now checks to see if any of the waiting tasks
are ready to continue executing and makes a note of their
status. The Event Loop then selects another task that is ready
to run and starts that task o�. This loop continues until all the
tasks have finished. This is illustrated below:

An important point to note in the above description is that a
task does not give up the processor unless it decides to, for
example by having to wait for something else. They never get
interrupted in the middle of an operation; this avoids the

problem that two threads might have when being time sliced
by a separate scheduler as they may both be sharing the same
resource.This can greatly simplify your code.

The Async and Await Keywords

The async keyword, introduced in Python 3.7 is used to mark
a function as being something that uses the await keyword
(we will come back to this below as there is one other use of
the async keyword).A function that uses the await keyword
can be run as a separate task and can give up control of the
processor when it calls await against another async function
and must wait for that function to complete. The invoked
async function can then run as a separate task etc.

To invoke an async function it is necessary to start the Async
IO Event Loop and for that function to be treated as a task by
the Event Loop. This is done by calling the asyncio.run()
method and passing in the root async function.

The asyncio.run() function was introduced in Python 3.7
(older versions of Python such as Python 3.6 required you to
explicitly obtain a reference to the Event Loop and to run the
root async function via that). One point to note about this
function is that it has been marked as being provisional in
Python 3.7. This means that future versions of Python may or
may not support the function or may modify the function in

some way. You should therefore check the documentation for
the version of Python you are using to see whether the run
method has been altered or not.

Using Async and Await

We will examine a very simple Async IO program from the top
down. The main() function for the program is given below:

def main() :
print('Main - Starting')
asyncio.run(do_something())
print('Main - Done')
if_name_== '_main_':
main()

The main() function is the entry point for the program and
calls:

asyncio.run(do_something())

This starts the Async IO Event Loop running and results in the
do_some- thing() function being wrapped up in a Task that
is managed by the loop. Note that you do not explicitly create
a Task in Async IO; they are always created by some function
however it is useful to be aware of Tasks as you can interact
with them to check their status or to retrieve a result.

The do_something() function is marked with the keyword
async:

async def do_something():
print('do_something - will wait for worker')
result = await worker()
print('do_something - result:', result)

As previously mentioned this indicates that it can be run as a
separate Task and that it can use the keyword await to wait
for some other function or behavior to complete. In this case
the do_something() asynchronous function must wait for the
worker() function to complete.

The await keyword does more than merely indicate that the
do_something() function must wait for the worker to
complete. It triggers another Task to be created that will
execute the worker() function and releases the processor
allowing the Event Loop to select the next task to execute
(which may or may not be the task running the worker()
function). The status of the do_something task is now
waiting while the status of the worker() task is ready (to run).

The code for the worker task is given below:

async def worker():
print('worker - will take some time')
time.sleep(3)
print('worker - Done it')
return 42

The async keyword again indicates that this function can be
run as a separate task. However, this time the body of the
function does not use the await keyword. This is because this
is a special case known as an Async IO coroutine function.
This is a function that returns a value from a Task (it is
related to the idea of a standard Python coroutine which is a
data consumer).

Sadly, Computer Science has many examples where the same
term has been used for di�erent things as well as examples
where di�erent terms have been used for the same thing. In
this case to avoid confusion just stick with Async IO
coroutines are functions marked with async that can be run as
a separate task and may call await.

The full listing for the program is given below:

import asyncio
import time
async def worker():
print('worker - will take some time')
time.sleep(3)

print('worker - done it')
return 42
async def do_something():
print('do_something - will wait for worker')
result = await worker()
print('do_something - result:', result)
def main():
print('Main - Starting')
asyncio.run(do_something())
print('Main - Done')
if_name_== '_main_':
main()

When this program is executed the output is:

Main - Starting
do_something - will wait for worker worker - will take some

time
worker - done it do_something – result: 42
Main – Done

When this is run there is a pause between the two worker
printouts as it sleeps. Although it is not completely obvious
here, the do_something() function was run as one task, this
task then waited when it got to the worker() function which
was run as another Task. Once the worker task completed the
do_some- thing task could continue and complete its
operation. Once this happened the

Async IO Event Loop could then terminate as no further tasks
were available.

AsyncIO Tasks

Tasks are used to execute functions marked with the async
keyword concurrently. Tasks are never created directly
instead they are created implicitly via the keyword await or
through functions such as asyncio.run described above or
asyncio.create_task(), asyncio.gather() and asyncio.as_-
completed(). These additional task creation functions are
described below:

asyncio.create_task() This function takesa function
marked with async and wraps it inside a Task and
schedules it for execution by the Async IO Event Loop.
This function was added in Python 3.7.
asyncio.gather(*aws)This function runs all the async
functions passed to it as separate Tasks.It gathers the
results of each separate task together and returns them as
a list. The order of the results corresponds to the order of
the async functions in the aws list.
asyncio.as_completed(aws) Runs each of the async
functions passed to it.

A Task object supports several useful methods

cancel() cancels a running task. Calling this method will
cause the Task to throw a CancelledError exception.
cancelled() returns True if the Task has been canceled.
done() returns True if the task has completed, raised an
exception or was canceled.
result() returns the result of the Task if it is done. If the
Tasks result is not yet available, then the method raises
the InvalidState Error exception.
exception() return an exception if one was raised by the
Task. If the task was canceled then raises the Cancelled
Error exception. If the task is not yet done, then raises an
InvalidStateError exception.

It is also possible to add a callback function to invoke once the
task has completed (or to remove such a function if it has
been added):

add_done_callback(callback) Add a callback to be run
when the Task is done.
remove_done_callback(callback) Remove callback from
the call- backs list.

Note that the method is called ‘add’ rather than ‘set’
implying that there can be multiple functions called when the
task has completed (if required).

The following example illustrates some of the above:

import asyncio
async def worker():
print('worker - will take some time')
await asyncio.sleep(1) print('worker - Done it') return 42
def print_it(task):
print('print_it result:', task.result())
async def do_something():
print('do_something - create task for worker')
task = asyncio.create_task(worker()) print('do_something - add
a callback') task.add_done_callback(print_it)
await task
Information on task
print('do_something - task.cancelled():',
task.cancelled())
print('do_something - task.done():', task.done())
print('do_something - task.result():', task.result())
print('do_something - task.exception():',
task.exception())
print('do_something - finished')
def main() :
print('Main - Starting')
asyncio.run(do_something())
print('Main - Done')
if_name_== '_main_':
main()

In this example, the worker() function is wrapped within a
task object that is returned from the
asyncio.create_task(worker()) call.

A function (print_it()) is registered as a callback on the task
using the asyncio.create_task(worker()) function. Note that

the worker is passed the task that has completed as a
parameter. This allows it to obtain information from the task
such as any result generated.

In this example the async function do_something() explicitly
waits on the task to complete. Once this happens several
di�erent methods are used to obtain information about the
task (such as whether it was canceled or not).

One other point to note about this listing is that in the
worker() function we have added an await using the
asyncio.sleep(1) function; this allows the worker to sleep and
wait for the triggered task to complete; it is an Async IO
alternative to time.sleep(1).

The output from this program is:

Main - Starting

do_something - create task for worker do_something - add a
callback

worker - will take some time worker - Done it
print_it result: 42
do_something - task.cancelled(): False do_something -

task.done(): True do_something - task.result(): 42 do_something
- task.exception(): None do_something - finished

Main - Done

Running Multiple Tasks

In many cases it is useful to be able to run several tasks
concurrently. There are two options provided for this the
asyncio.gather()and the asyncio. as_completed() function;
we will look at both in this section.

Collating Results from Multiple Tasks

It is often useful to collect all the results from a set of tasks
together and to continue only once all the results have been
obtained.When using Threads or Processes this can be
achieved by starting multiple Threads or Processes and then
using some other object such as a Barrier to wait for all the
results to be available before continuing. Within the Async IO
library all that is required is to use the asyn-
cio.gather()function with a list of the async functions to run,
for example:

import asyncio
import random
async def worker():
print('Worker - will take some time')
await asyncio.sleep(1)
result = random.randint(1,10)
print('Worker - Done it')
return result
async def do_something():
print('do_something - will wait for worker')

Run three calls to worker concurrently and collect
results
results = await asyncio.gather(worker(), worker(), worker())
print('results from calls:', results)
def main() :
print('Main - Starting') asyncio.run(do_something()) print('Main
- Done')
if_name_== '_main_':
main()

In this program the do_something() function uses

results = await asyncio.gather(worker(), worker(), worker())

to run three invocations of the worker() function in three
separate Tasks and to wait for the results of all three to be
made available before they are returned as a list of values and
stored in the results variable.

This makes is very easy to work with multiple concurrent
tasks and to collate their results.

Note that in this code example the worker async function
returns a random number between 1 and 10.

The output from this program is:

Main - Starting

do_something - will wait for worker
Worker - will take some time Worker - will take some time

Worker - will take some time Worker - Done it
Worker - Done it
Worker - Done it
results from calls: [5, 3, 4] Main – Done

As you can see from this all three of the worker invocations
are started but then release the processor while they sleep.
After this the three tasks wake up and complete before the
results are collected together and printed out.

Handling Task Results as They Are Made Available

Another option when running multiple Tasks is to handle the
results as they become available, rather than wait for all the
results to be provided before continuing. This option is
supported by the asyncio.as_completed() function. This
function returns an iterator of async functions which will be
served up as soon as they have completed their work.

The for-loop construct can be used with the iterator
returned by the function; however within the for loop the
code must call await on the async functions returned so that
the result of the task can be obtained.For example:

async def do_something():
print('do_something - will wait for worker')
Run three calls to worker concurrently and collect
results
for async_func in asyncio.as_completed((worker('A'),
worker('B'), worker('C'))):
result = await async_func
print('do_something - result:', result)

Note that the asyncio.as_completed() function takes a
container such as a tuple of async functions.

We have also modified the worker function slightly so that a
label is added to the random number generated so that it is
clear which invocation of the worker function return which
result:

async def worker(label):
print('Worker - will take some time')
await asyncio.sleep(1)
result = random.randint(1,10)
print('Worker - Done it')
return label + str(result)

When we run this program

def main() :
print('Main - Starting')
asyncio.run(do_something())
print('Main - Done')

The output is

Main - Starting
do_something - will wait for worker
Worker - will take some time Worker - will take some time

Worker - will take some time Worker - Done it
Worker - Done it
Worker - Done it
do_something - result: C2 do_something - result: A1

do_something - result: B10
Main – Done

As you can see from this, the results are not returned in the
order that the tasks are created, task ‘C’ completes first
followed by ‘A’ and ‘B’. This illustrates the behavior of the
asyncio.as_completed() function.

Try

This exercise will use the facilities in the AsyncIOlibrary to
calculate a set of factorial numbers.

The factorial of a positive integer is the product of all positive
integers less than or equal to n. For example,

5! = 5 x 4 x 3 x 2 x 1 = 120

Note that the value of 0! is 1,

Create an application that will use the async and await
keywords to calculate the factorials of a set of numbers. The
factorial function should await for 0.1 of a second(using
asyncio.sleep(0.1)) each time round the loop used to calculate
the factorial of a number.

You can use with asyncio.as_completed() orasyncio.gather()
to collect the results up. You might also use a list
comprehension to create the list of calls to the factorial
function.

The main function might look like:

def main():
print('Main - Starting')
asyncio.run(calculate_factorials([5, 7, 3, 6]))
print('Main - Done')
if_name_== '_main_':
main()

Reac�ve Programming Introduc�on

Introduction

In this chapter we will introduce the concept of Reactive
Programming. Reactive programming is a way of write
programs that allow the system to reactive to data being
published to it. We will look at the RxPy library which
provides a Python implementation of the ReactiveX approach
to Reactive Programming.

What Is a Reactive Application?

A Reactive Application is one that must react to data; typically
either to the presence of new data, or to changes in existing
data. The Reactive Manifesto presents the key characteristics
of Reactive Systems as:

Responsive. This means that such systems respond in a
timely manner. Here of course timely will di�er
depending upon the application and domain; in one
situation a second may be timely in another it may be far
too slow.

Resilient. Such systems stay responsive in the face of
failure. The systems must therefore be designed to handle
failure gracefully and continue to work appropriately
following the failure.
Elastic. As the workload grows the system should
continue to be responsive.
Message Driven. Information is exchanged between
elements of a reactive system using messages. This
ensures loose coupling, isolation and location
transparency between these components.

As an example, consider an application that lists a set of
Equity Stock Trade values based on the latest market stick
price data. This application might present the current value of
each trade within a table. When new market stock price data
is published, then the application must update the value of
the trade within the table. Such an application can be
described as being reactive.

Reactive Programming is a programming style (typically
supported by libraries) that allows code to be written that
follow the ideas of reactive systems. Of course just because
part of an application uses a Reactive Programming library
does not make the whole application reactive; indeed it may
only be necessary for part of an application to exhibit reactive
behavior.

The ReactiveX Project

ReactiveX is the best known implementation of the Reactive
Programming paradigm. ReactiveX is based on the Observer-
Observable design pattern. However it is an extension to this
design pattern as it extends the pattern such that the
approach supports sequences of data and/or events and adds
operators that allow developers to compose sequences
together declaratively while abstracting away concerns
associated with low-level threads,synchronization,
concurrent data structures and non-blocking I/O.

The ReactiveX project has implementations for many
languages including RxJava, RxScala and RxPy; this last is the
version we are looking at as it is for the Python language.

RxPy is described as:

A library for composing asynchronous and event-based
programs using Observable collections and query operator
functions in Python

The Observer Pattern

The Observer Pattern is one of the Gang of Four set of Design
Patterns. The Gang of Four Patterns (as originally described

in Gamma et al. 1995) are so called because this book on
design patterns was written by four very famous authors
namely; Erich Gamma, Richard Helm, Ralph Johnson and
John Vlis sides.

The Observer Pattern provides a way of ensuring that a set of
objects is notified whenever the state of another object
changes. It has been widely used in a number of languages
(such as Small talk and Java) and can also be used with
Python.

The intent of the Observer Pattern is to manage a one to many
relationship between an object and those objects interested in
the state, and in particular state changes, of that object. Thus
when the objects’ state changes, the interested (dependent)
objects are notified of that change and can take whatever
action is appropriate.

There are two key roles within the Observer Pattern, these are
the Observable and the Observer roles.

Observable. This is the object that is responsible for
notifying other objects that a change in its state has
occurred
Observer. An Observer is an object that will be notified of
the change in state of the Observable and can take

appropriate action (such as triggering a change in their
own state or performing some action).

In addition the state is typically represented explicitly:

State. This role may be played by an object that is used to
share information about the change in state that has
occurred within the Observable. This might be as simple
as a String indicating the new state of the Observable or it
might be a data oriented object that provides more
detailed information.

These roles are illustrated in the following figure.

In the above figure, the Observable object publishes data to a
Data Stream.The data in the Data Stream is then sent to each
of the Observers registered with the Observable. In this way
data is broadcast to all Observers of an Observable.

It is common for an Observable to only publish data once
there is an Observer available to process that data. The
process of registering with an Observable is referred to as
subscribing. Thus an Observable will have zero or more
subscribers (Observers).

If the Observable publishes data at a faster rate than can be
processed by the Observer then the data is queued via the
Data Stream.This allows the Observer to process the data
receive done at a time at its own pace; without any concern
for data loss (as long as su�cient memory is available for the
data stream).

Hot and Cold Observables

Another concept that it is useful to understand is that of Hot
and Cold Observables.

Cold Observables are lazy Observables. That is, a Cold
Observable will only publish data if at least one Observer
is subscribed to it.
Hot Observables, by contrast, publish data whether there
is an Observer subscribed or not.

Cold Observables

A Cold Observable will not publish any data unless there is at
least one Observer subscribed to process that data. In addition
a cold Observable only provides data to an Observer when that
Observer is ready to process the data; this is because the
Observable-Observer relationship is more of a pull
relationship. For example,given an Observable that will
generate a set of values based on a range, then that
Observable will generate each result lazily when requested by
an Observer.

If the Observer takes some time to process the data emitted
by the Observable, then the Observable will wait until the
Observer is ready to process the data before emitting another
value.

Hot Observables

Hot Observables by contrast publish data whether there is an
Observer subscribed or not. When an Observer registers with
the Observable, it will start to receive data atthat point, as and
when the Observable publishes new data. If the Observable
has already published previous data items, then these will
have been lost and the Observer will not receive that data.

The most common situation in which a Hot Observable is
created is when the source producer represents data that may
be irrelevant if not processed immediately or may be

superseded by subsequent data. For example, data published
by a Stock Market Price data feed would fall into this category.
When an Observable wraps around this data feed it can
publish that data whether or not an Observer is subscribed.

Implications of Hot and Cold Observables

It is important to know whether you have a hot or cold
Observable because this can impact on what you can assume
about the data supplied to the Observers and thus how you
need to design your application.If it is important that no data
is lost then care is needed to ensure that the subscribers are in
place before a Hot Observable starts to publish data (where as
this is not a concern for a cold Observable).

Di�erences Between Event Driven Programming and
Reactive Programming

In Event Driven programming, an event is generated in
response too something happening; the event then
represents this with any associated data. For example, if the
user clicks the mouse then an associated MouseClickEvent
might be generated. This object will usually hold information
about the x and y coordinates of the mouse along with which
button was clicked etc. It is then possible to associate some
behavior (such as a function or a method) with this event so

that if the event occurs, then the associated operation is
invoked and the event object is provided as a parameter. This
is certainly the approach used in the wxPython library
presented earlier in this book:

From the above diagram,when a MoveEvent is generated the
on_move() method is called and the event is passed into the
method.

In the Reactive Programming approach, an Observer is
associated with an Observable. Any data generated by the
Observable will be received and handled by the Observer. This
is true whatever that data is, as the Observer is a handler of
data generated by the Observable rather than a handler of a
specific type of data (as with the Event driven approach).

Both approaches could be used in many situations. For
example, we could have a scenario in which some data is to be
processed whenever a stock price changes.

This could be implemented using a StockPriceChangeEvent
associated with a StockPriceEventHandler. It could also be
implemented via Stock PriceChangeObserverable and a

StockPriceChangeObserver. In either case one element
handles the data generated by another element. However, the
RxPy library simplifies this process and allows the Observer
to run in the same thread as, or a separate thread from, the
Observable with just a small change to the code.

Advantages of Reactive Programming

There are several advantages to the use of a Reactive
Programming library these include:

It avoids multiple callback methods. The problems
associated with the use of callbacks are sometimes
referred to as callback hell. This can occur when there are
multiple callbacks, all defined to run in response to some
data being generated or some operation completing. It
can be hard to understand, maintain and debug such
systems.
Simpler asynchronous, multi threaded execution. The
approach adopted by RxPy makes it very easy to execute
operations/ behavior within a multi threaded
environment with independent asynchronous functions.
Available Operators. The RxPy library comes pre built
with numerous operators that make processing the data
produced by an Observable much easier.
Data Composition. It is straight forward to compose new
data streams (Observables) from data supplied by two or

more other Observables for asynchronous processing.

Disadvantages of Reactive Programming

Its easy to over complicate things when you start to chain
operators together. If you use too many operators, or too
complex a set of functions with the operators,it can become
hard to understand what is going on.

Many developers think that Reactive programming is
inherently multi-threaded; this is not necessarily the case; in
fact RxPy (the library explored in the next two chapters) is
single threaded by default. If an application needs the
behavior to execute asynchronously then it is necessary to
explicitly indicate this.

Another issue for some Reactive programming frameworks is
that it can become memory intensive to store streams of data
so that Observers can processes that data when they are
ready.

TheRxPy Reactive Programming Framework

The RxPy library is a part of the larger ReactiveX project and
provides an implementation of ReactiveX for Python. It is
built on the concepts of Observables, Observers, Subjects and
operators. In this book we use RxPy version 3.

In the next chapter we will discuss Observables, Observers,
Subjects and subscriptions using the RxPy library.The
following chapter will explore various RxPy operators.

Reference

For more information on the Observer Observable design
pattern see the “Patterns” book by the Gang of Four

E. Gamma, R. Helm, R. Johnson, J. Vlissades, Design
patterns: elements of reusable object-oriented software,
Addison-Wesley (1995).

RxPy Observables, Observers and
Subjects

Introduction

In this chapter we will discuss Observables,Observers and
Subjects. We also consider how observers may or may not run
concurrently.

In the remainder of this chapter we look at RxPy version 3
which is a major update from RxPy version 1 (you will
therefore need to be careful if you are looking on the web for
examples as some aspects have changed; most notably the
way in which operators are chained).

Observables in RxPy

An Observable is a Python class that publishes data so that it
can be processed by one or more Observers(potentially
running in separate threads).

An Observable can be created to publish data from static data
or from dynamic sources. Observables can be chained tougher

to control how and when data is published, to transform data
before it is published and to restrict what data is actually
published.

For example, to create an Observable from a list of values we
can use the rx.from_list() function. This function (also
known as an RxPy operator) is used to create the new
Observable object:

import rx
Observable = rx.from_list([2, 3, 5, 7])

Observers in RxPy

We can add an Observer to an Observable using the
subscribe() method. This method can be supplied with a
lambda function, a named function or an object whose class
implements the Observer protocol.

For example,the simplest way to create an Observer is to use a
lambda function:

Subscribe a lambda function
observable.subscribe(lambda value: print('Lambda Received',
value))

When the Observable publishes data the lambda function will
be invoked. Each data item published will be supplied
independently to the function. The output from the above
subscription for the previous Observable is:

Lambda Received 2

Lambda Received 3
Lambda Received 5
Lambda Received 7

We can also have used a standard or named function as an
Observer:

def prime_number_reporter(value):
print('Function Received', value)
Subscribe a named function
observable.subscribe(prime_number_reporter)

Note that it is only the name of the function that is used with
the subscribe() method (as this e�ectively passes a reference
to the function into the method).

If we now run this code using the previous Observable we get:

Function Received 2

Function Received 3

Function Received 5
Function Received 7

In actual fact the subscribe() method takes four optional
parameters. These are:

on_next Action to invoke for each data item generated by
the Observable.
on_error Action to invoke upon exceptional termination
of the Observable sequence.
on_completed Action to invoke upon graceful
termination of the Observable sequence.
Observer The object that is to receive notifications. You
may subscribe using an Observer or callbacks, not both.

Each of the above can be used as positional parameters or as
keyword arguments, for example:

Use lambdas to set up all three functions
observable.subscribe(
on_next = lambda value: print('Received on_next', value),
on_error = lambda exp: print('Error Occurred', exp),
on_completed = lambda: print('Received completed
notification')
)

The above code defines three lambda functions that will be
called depending upon whether data is supplied by the

Observable, if an error occurs or when the datastream is
terminated. The output from this is:

Received on_next 2

Received on_next 3
Received on_next 5
Received on_next 7
Received completed notification

Note that the on_error function is not run as no error was
generated in this example.

The final optional parameter to the subscribe() method is an
Observer object. An Observer object can implement the
Observer protocol which has the following methods
on_next(), on_completed() and on_error(), for example:

class PrimeNumberObserver:
def on_next(self, value):
print('Object Received', value)
def on_completed(self):
print('Data Stream Completed')
def on_error(self, error):
print('Error Occurred', error)

Instances of this class can now be used as an Observer via the
subscribe() method:

Subscribe an Observer object
observable.subscribe(PrimeNumberObserver())

The output from this example using the previous Observable
is:

Object Received 2

Object Received 3
Object Received 5
Object Received 7
Data Stream Completed

Note that the on_completed() method is also called; however
the on_error() method is not called as there were no
exceptions generated.

The Observer class must ensure that the methods
implemented adhere to the Observer protocol (i.e. That the
signatures of the on_next(), on_completed () and on_error()
methods are correct).

Multiple Subscribers/Observers

An Observable can have multiple Observers subscribed to it.
In this case each of the Observers is sent all of the data
published by the Observable. Multiple Observers can be

registered with an Observable by calling the subscribe method
multiple times. For example, the following program has four
subscribers as well as on_error and on_completed function
registered:

Create an observable using data in a list
observable = rx.from_list([2, 3, 5, 7])
class PrimeNumberObserver:
""" An Observer class """
def on_next(self, value):
print('Object Received', value)
def on_completed(self):
print('Data Stream Completed')
def on_error(self, error):
print('Error Occurred', error)
def prime_number_reporter(value):
print('Function Received', value)
print('Set up Observers / Subscribers')
Subscribe a lambda function
observable.subscribe(lambda value: print('Lambda Received',
value))
Subscribe a named function
observable.subscribe(prime_number_reporter)
Subscribe an Observerobject
observable.subscribe(PrimeNumberObserver())
Use lambdas to set up all three functions
observable.subscribe(
on_next=lambda value: print('Received on_next', value),
on_error=lambda exp: print('Error Occurred', exp),
on_completed=lambda: print('Received completed
notification')
)

The output from this program is:

Create the Observable object Set up Observers / Subscribers
Lambda Received 2

Lambda Received 3
Lambda Received 5
Lambda Received 7
Function Received 2
Function Received 3
Function Received 5
Function Received 7
Object Received 2
Object Received 3
Object Received 5
Object Received 7
Data Stream Completed
Received on_next 2
Received on_next 3
Received on_next 5
Received on_next 7
Received completed notification

Note how each of the subscribers is sent all of the data before
the next subscriber is sent their data (this is the default single
threaded RxPy behavior).

Subjects in RxPy

A subject is both an Observer and an Observable. This allows a
subject to receive an item of data and then to republish that
data or data derived from it.

For example, imagine a subject that receives stock market
price data published by an external(to the organization
receiving the data) source. This subject might add a
timestamp and source location to the data before
republishing it to other internal Observers. However, there is
a subtle di�erence that should be noted between a Subject
and a plain Observable. A subscription to an Observable will
cause an independent execution of the Observable when data
is published. Notice how in the previous section all the
messages were sent to a specific Observer before the next
Observer was sent any data at all.

A Subject shares the publication action with all of the
subscribers and they will therefore all receive the same data
item in a chain before the next data item. In the class
hierarchy the Subject class is a direct subclass of the Observer
class.

The following example creates a Subject that enriches the
data it receives by adding a timestamp to each data item. It
then republishes the data item to any Observers that have
subscribed to it.

import rx
from rx.subjects import Subject
from datetime import datetime
source = rx.from_list([2, 3, 5, 7])
class TimeStampSubject(Subject):
def on_next(self, value): print('Subject Received', value)
super().on_next((value, datetime.now()))
def on_completed(self):
print('Data Stream Completed')
super().on_completed()
def on_error(self, error):
print('In Subject- Error Occurred', error)
super().on_error(error)
def prime_number_reporter(value):
print('Function Received', value)
print('Set up')
Create the Subject
subject = TimeStampSubject()
Set up multiple subscribers for the subject
subject.subscribe(prime_number_reporter)
subject.subscribe(lambda value: print('Lambda Received',
value))
subject.subscribe(
on_next = lambda value: print('Received on_next',value),
on_error = lambda exp: print('Error Occurred', exp),
on_completed = lambda: print('Received completed
notification')
)
Subscribethe Subject to the Observable source
source.subscribe(subject)

print(‘Done’)

Note that in the above program the Observers are added to the
Subject before the Subject is added to the source Observable.
This ensures that the Observers are subscribed before the
Subject starts to receive data published by the Observable. If
the Subject was subscribed to the Observable before the
Observers were subscribed to the Subject, then all the data
could have been published before the Observers were
registered with the Subject.

The output from this program is:

Set up

Subject Received 2
Function Received (2, datetime.datetime(2019, 5, 21, 17, 0,

2,
196372))
Lambda Received (2, datetime.datetime(2019, 5, 21, 17, 0,

2,
196372))
Received on_next (2, datetime.datetime(2019, 5, 21, 17, 0,

2,
196372))
Subject Received 3
Function Received (3, datetime.datetime(2019, 5, 21, 17, 0,

2,
196439))

Lambda Received (3, datetime.datetime(2019, 5, 21, 17, 0,
2,

196439))
Received on_next (3, datetime.datetime(2019, 5, 21, 17, 0,

2,
196439))
Subject Received 5
Function Received (5, datetime.datetime(2019, 5, 21, 17, 0,

2,
196494))
Lambda Received (5, datetime.datetime(2019, 5, 21, 17, 0,

2,
196494))
Received on_next (5, datetime.datetime(2019, 5, 21, 17, 0,

2,
196494))
Subject Received 7
Function Received (7, datetime.datetime(2019, 5, 21, 17, 0,

2,
196548))
Lambda Received (7, datetime.datetime(2019, 5, 21, 17, 0,

2,
196548))
Received on_next (7, datetime.datetime(2019, 5, 21, 17, 0,

2,
196548))
Data Stream Completed Received

completed notification
Done

As can be seen from this output the numbers 2, 3, 5 and 7 are
received by all of the Observers once the Subject has added the
timestamp.

Observer Concurrency

By default RxPy uses a single threaded model; that is
Observables and Observers execute in the same thread of
execution. However, this is only the default as it is the
simplest approach.

It is possible to indicate that when a Observer subscribes to an
Observable that it should run in a separate thread using the
scheduler keyword parameter on the subscribe() method.
This keyword is given an appropriate scheduler such as the
rx.concurrency.NewThreadScheduler. This scheduler will
ensure that the Observer runs in a separate thread.

To see the di�erence look at the following two programs. The
main di�erence between the programs is the use of specific
schedulers:

import rx
Observable = rx.from_list([2, 3, 5])
observable.subscribe(lambda v: print('Lambda1 Received', v))
observable.subscribe(lambda v: print('Lambda2 Received', v))
observable.subscribe(lambda v: print('Lambda3 Received', v))

The output from this first version is given below:

Lambda1 Received 2
Lambda1 Received 3
Lambda1 Received 5
Lambda2 Received 2
Lambda2 Received 3
Lambda2 Received 5
Lambda3 Received 2
Lambda3 Received 3
Lambda3 Received 5

The subscribe() method takes an optional keyword parameter
called scheduler that allows a scheduler object to be provided.
Now if we specify a few di�erent schedulers we will see that
the e�ect is to run the Observers concurrently with the
resulting output being interwoven:

import rx
from rx.concurrency import NewThreadScheduler,
ThreadPoolScheduler, ImmediateScheduler
Observable = rx.from_list([2, 3, 5])
observable.subscribe(lambda v: print('Lambda1 Received', v),

scheduler=ThreadPoolScheduler(3))
observable.subscribe(lambda v: print('Lambda2 Received', v),
scheduler=ImmediateScheduler())
observable.subscribe(lambda v: print('Lambda3 Received', v),
scheduler=NewThreadScheduler())
As the Observable runs in a separate thread need
ensure that the main thread does not terminate
input('Press enterto finish')

Note that we have to ensure that the main thread running the
program does not terminate (as all the Observables are now
running in their own threads) by waiting for user input. The
output from this version is:

Lambda2 Received 2

Lambda1 Received 2
Lambda2 Received 3
Lambda2 Received 5
Lambda1 Received 3
Lambda1 Received 5
Press enter to finish
Lambda3 Received 2
Lambda3 Received 3
Lambda3 Received 5

By default the scheduler keyword on the subscribe() method
defaults to None indicating that the current thread will be
used for the subscription to the Observable.

Available Schedulers

To support di�erent scheduling strategies the RxPy library
provides two modules that supply di�erent schedulers; the
rx.concurrency and rx. currency.mainloopscheduler. The
modules contain a variety of schedulers including those listed
below.

The following schedulers are available in the rx.concurrency
module:

ImmediateScheduler This schedules an action for
immediate execution.
CurrentThreadScheduler This schedules activity for the
current thread.
TimeoutScheduler This scheduler works via a timed
callback.
NewThreadSchedulercreates a scheduler for each unit of
work on a separate thread.
ThreadPoolScheduler. This is a scheduler that utilizes a
thread pool to execute work. This scheduler can act as a
way of throttling the amount of work carried out
concurrently.

The rx.concurrency.mainloopschduler module also defines
the following schedulers:

IOLoopScheduler A scheduler that schedules work via the
Tornado I/O main event loop.
PyGameScheduler A scheduler that schedules works for
PyGame.
WxScheduler A schedulerfor a wxPython event loop.

Try

Given the following set of tuples representing Stock/Equity
prices:

stocks = (('APPL', 12.45), ('IBM', 15.55), ('MSFT',
5.66), ('APPL', 13.33))

Write a program that will create an Observable based on the
stocks data. Next subscribe three di�erent observers to the
Observable. The first should print out the stock price, the
second should print out the name of the stock and the third
should print out the entire tuple.

RxPy Operators

Introduction

In this chapter we will look at the types of operator provided
by RxPy that can be applied to the data emitted by an
Observable.

Reactive Programming Operators

Behind the interaction between an Observable and an
Observer is a data stream. That is the Observable supplies a
data stream to an Observer that consumes/ processes that
stream. It is possible to apply an operator to this data stream
that can be used to to filter, transform and generally refine
how and when the data is supplied to the Observer.

The operators are mostly defined in the rx.operators module,
for example rx.operators.average(). However it is common to
use an alias for this such that the operators module is called
op, such as from rx import operators as op. This allows for a
short hand form to be used when referencing an operator,
such as op.average().

Many of the RxPy operators execute a function which is
applied to each of the data items produced by an Observable.
Others can be used to create an initial Observable (indeed you
have already seen these operators in the form of the
from_list() operator).Another set of operators can be used to
generate a result based on data produced by the Observable
(such as the sum() operator).

In fact RxPy provides a wide variety of operators and these
operators can be categorized as follows:

• Creational,
• Transformational,
• Combinatorial,
• Filters,
• Error handlers,
• Conditional and Boolean operators,
• Mathematical,
• Connectable.

Examples of some of these categories are presented in the
rest of this section.

Piping Operators

To apply an operator other than a creational operator to an
Observable it is necessary to create a pipe. A Pipe is essentially

a series of one or more operations that can be applied to the
data stream generated by the Observable. The result of
applying the pipe is that a new data stream is generated that
represents the results produced following the application of
each operator in turn. This is illustrated below:

To create a pipe the Observable.pipe() method is used. This
method takes a comma delimited list of one or more
operators and returns a data stream. Observers can then
subscribe to the pipe’s data stream. This can be seen in the
examples given in the rest of this chapter for
transformations, filters, mathematical operators etc.

Creational Operators

You have already seen an example of a creational operator in
the examples presented earlier in this chapter. This is because
the rx.from_list() operator is an example of a creational

operator. It is used to create a new Observable based on data
held in a list like structure.

A more generic version of from_list() is the from_()
operator. This operator takes an iterable and generates an
Observable based on the data provided by the iterable. Any
object that implements the iterable protocol can be used
including user defined types. There is also an operator
from_iterable(). All three operators do the same thing and
you can choose which to use based on which provides the
most semantic meaning in your context.

All three of the following statements have the same e�ect:

source = rx.from_([2, 3, 5, 7])
source = rx.from_iterable([2, 3, 5, 7])
source = rx.from_list([2, 3, 5, 7])

This is illustrated pictorially below:

Another creational operator is the rx.range() operator. This
operator generates an observable for a range of integer
numbers. The range can be specified with our without a
starting value and with or within an increment. However the
maxi- mum value in the range must always be provided, for
example:

obs1 = rx.range(10) obs2 = rx.range(0, 10) obs3 =
rx.range(0, 10, 1)

Transformational Operators

There are several transformational operators defined in the
rx.operators module including rx.operators.map() and
rx.operators.flat_map(). The rx.operators.map() operator
applies a function to each data item generated by an
Observable.

The rx.operators.flat_map() operator also applies a function
to each data item but then applies a flatten operation to the
result.For example, if the result is a list of lists then flat_map
will flatten this into a single list. In this section we will focus
on the rx.operators.map() operator.

The rx.operators.map() operator allows a function to be
applied to all data items generated by an Observable.The

result of this function is then returned as the result of the
map() operators Observable. The function is typically used to
perform some form of transformation to the data supplied to
it. This could be adding one to all integer values, converting
the format of the data from XML to JSON,enriching the data
with additional information such as the time the data was
acquired and who the data was supplied by etc.

In the example given below we are transforming the set of
integer values supplied by the original Observable into
strings. In the diagram these strings include quotes around
them to highlight they are in fact a string:

This is typical of the use of a transformation operator; that is
to change the data from one format to another or to add
information to the data.

The code used to implement this scenario is given below. Note
the use of the pipe() method to apply the operator to the data
stream generated by the Observable:

Apply a transformation to a data source to convert
integers into strings
import rx
from rx import operators as op
Set up a source with a map function
source = rx.from_list([2, 3, 5, 7]).pipe(
op.map(lambda value: "'" + str(value) + "'")
)
Subscribe a lambda function
source.subscribe(lambda value: print('Lambda Received', value,
' is a string ', isinstance(value, str)))

The output from this program is:

Lambda Received ‘2’ is a string True
Lambda Received ‘3’ is a string True
Lambda Received ‘5’ is a string True
Lambda Received ‘7’ is a string True

Combinatorial Operators

Combinatorial operators combine together multiple data
items in some way. One example of a combinatorial operator
is the rx.merge() operator. This operator merges the data

produced by two Observables into a single Observable data
stream. For example:

In the above diagram two Observables are represented by the
sequence 2, 3, 5, 7 and the sequence 11, 13, 16, 19. These
Observables are supplied to the merge operator that
generates a single Observable that will supply data generated
from both of the original Observables. This is an example of
an operator that does not take a function but instead takes
two Observables.

The code representing the above scenario is given below:

An example illustratinghow to merge two data sources
import rx
Set up two sources
source1 = rx.from_list([2, 3, 5, 7])
source2 = rx.from_list([10, 11, 12])
Merge two sources into one rx.merge(source1, source2)\
.subscribe(lambda v: print(v, end=','))

Notice that in this case we have subscribed directly to the
Observable returned by the merge() operator and have not
stored this in an intermediate variable (this was a design
decision and either approach is acceptable).

An example illustratinghow to merge two data sources
import rx
Set up two sources
source1 = rx.from_list([2, 3, 5, 7])
source2 = rx.from_list([10, 11, 12])
Merge two sources into one rx.merge(source1, source2)\
.subscribe(lambda v: print(v, end=','))

Notice that in this case we have subscribed directly to the
Observable returned by the merge() operator and have not
stored this in an intermediate variable (this was a design
decision and either approach is acceptable).

The output from this program is presented below:

2,3,5,7,10,11,12,

Notice from the output the way in which the data held in the
original Observables is intertwined in the output of the
Observable generated by the merge() operator.

Filtering Operators

There are several operators in this category including
rx.operators.filter (), rx.operators.first(),
rx.operators.last()and rx.opera- tors.distinct(). The filter()
operator only allows those data items to pass through that
pass some test expression defined by the function passed into
the filter. This function must return True or False. Any data
item that causes the function to return True is allowed to pass
through the filter.

For example, let us assume that the function passed into
filter() is designed to only allow even numbers through. If the
data stream contains the numbers 2, 3, 5,7, 4, 9 and 8 then
the filter() will only emit the numbers 2, 4 and 8. This is
illustrated below:

The following code implements the above scenario:

Filter source for even numbers
import rx
from rx import operators as op
Set up a source with a filter
source = rx.from_list([2, 3, 5, 7, 4, 9, 8]).pipe(
op.filter(lambda value: value % 2 == 0)
)
Subscribea lambda function
source.subscribe(lambda value: print('Lambda Received',
value))

In the above code the rx.operators.filter() operator takes a
lambda function that will verify if the current value is even or
not (note this could have been a named function or a method
on an object etc.). It is applied to the data stream generated by
the Observable using the pipe() method. The output
generated by this example is:

Lambda Received 2

Lambda Received 4
Lambda Received 8

The first() and last() operators emit only the first and last
data item published by the Observable.

The distinct() operator suppresses duplicate items being
published by the Observable. For example, in the following

list used as the data for the Observable, the numbers 2 and 3
are duplicated:

Use distinctto suppress duplicates
source = rx.from_list([2, 3, 5, 2, 4, 3, 2]).pipe(
op.distinct()
)
Subscribea lambda function
source.subscribe(lambda value: print('Received', value))

However, when the output is generated by the program all
duplicates have been suppressed:

Received 2

Received 3
Received 5
Received 4

Mathematical Operators

Mathematical and aggregate operators perform calculations
on the data stream provided by an Observable. For example,
the rx.operators.average() operator can be used to calculate
the average of a set of numbers published by an Observable.
Similarly rx.operators.max() can select the maximum value,

rx.operators.min() the minimum value and
rx.operators.sum() will total all the numbers published etc.

An example using the rx.operators.sum() operator is given
blow:

Example of summing all the values in a data stream
import rx
from rx import operators as op
Set up a source and apply sum
rx.from_list([2, 3, 5, 7]).pipe(
op.sum()
).subscribe(lambda v: print(v))

The output from the rx.operators.sum() operator is the total
of the data items published by the Observable (in this case the
total of 2, 3, 5 and 7). The Observer function that is subscribed
to the rx.operators.sum() operators Observable will print out
this value:

17

However, in some cases it may be useful to be notified of the
intermediate running total as well as the final value so that
other operators down the chain can react to these subtotals.
This can be achieved using the rx.operators.scan() operator.
The rx.operators.scan() operator is actually a
transformational operator but can be used in this case to

provide a mathematical operation. The scan() operator
applies a function to each data item published by an
Observable and generates its own data item for each value
received. Each generated value is passed to the next
invocation of the scan() function as well as being published to
the scan() operators Observable data stream. The running
total can thus be generated from the previous sub total and
the new value obtained.This is shown below:

import rx
from rx import operators as op
Rolling or incremental sum
rx.from_([2, 3, 5, 7]).pipe(
op.scan(lambda subtotal, i: subtotal+i)
).subscribe(lambda v: print(v))

The output from this example is:

2

5
10
17

This means that each subtotal is published as well as the final
total.

Chaining Operators

An interesting aspect of the RxPy approach to data stream
processing is that it is possible to apply multiple operators to
the data stream produced by an Observable.

The operators discussed earlier actually return another
Observable. This new Observable can supply its own data
stream based on the original data stream and the result of
applying the operator.This allows another operator to be
applied in sequence to the data produced by the new
Observable. This allows the operators to be chained together
to provide sophisticated processing of the data published by
the original Observable.

For example, we might first start o� by filtering the output
from an Observable such that only certain data items are
published.We might then apply a transformation in the form
of a map() operator to that data, as shown below:

Note the the order in which we have applied the operators; we
first filter out data that is not of interest and then apply the
transformation. This is more e�cient than apply the
operators the other way around as in the above example we
do not need to transform the odd values. It is therefore
common to try and push the filter operators as high up the
chain as possible.

The code used to generate the chained set of operators is
given below. In this case we have used lambda functions to
define the filter() function and the map () function. The
operators are applied to the Observable obtained from the list
supplied. The data stream generated by the Observable is

processed by each of the operators defined in the pipe. As
there are now two operators the pipe contains both operators
and acts a pipe down which the data flows.

The list used as the initial source of the Observables data
contains a sequence of event and odd numbers. The filter()
function selects only even numbers and the map() function
transforms the integer values into strings. We then subscribe
an Observer function to the Observable produced by the
transformational map() operator.

Example of chainingoperators together
import rx
from rx import operators as op
Set up a source with a filter
source = rx.from_list([2, 3, 5, 7, 4, 9, 8])
pipe = source.pipe(
op.filter(lambda value: value % 2 == 0), op.map(lambda
value: "'"+ str(value) + "'")
)
Subscribe a lambda function
pipe.subscribe(lambda value: print('Received', value))

The output from this application is given below:

Received ‘2’ Received ‘4’ Received ‘8’

This makes it clear that only the three even numbers (2, 4 and
8) are allowed through to the map() function.

Online Resources

See the following online resources for information on RxPy:

https://rxpy.readthedocs.io/en/latest/ Documentation for
the RxPy library.
https://rxpy.readthedocs.io/en/latest/operators.html
Lists of the available RxPy operators.

Try

Given the following set of tuples representing Stock/Equity
prices:

stocks = (('APPL', 12.45), ('IBM', 15.55), ('MSFT',
5.66), ('APPL', 13.33))

Provide solutions to the following:

Select all the ‘APPL’ stocks
Select all stocks with a price over 15.00
Find the average price of all ‘APPL’ stocks.

Now use the second set of tuples and merge them with the
first set of stock prices:

https://rxpy.readthedocs.io/en/latest
https://rxpy.readthedocs.io/en/latest/operators.html

stocks2 = (('GOOG', 8.95), ('APPL', 7.65), ('APPL',
12.45), ('MSFT', 5.66), ('GOOG', 7.56), ('IBM', 12.76))

Convert each tuple into a list and calculate how much 25
shares in that stock would be, print this out as the result).

Find the highest value stock.
Find the lowest value stock.
Only publish unique data times (I.e. Suppress duplicates).

Introduc�on to Sockets and Web Services

Introduction

In the following two chapters we will explore socket based
and web service approaches to inter process communications.
These processes may be running on the same computer or
di�erent computers on the same local area network or may be
geographically far apart. In all cases information is sent by
one program running in one process to another program
running in a separate process via internet sockets. This
chapter introduces the core concepts involved in network
programming.

Sockets

Sockets, or rather Internet Protocol (IP) sockets provide a
programming interface to the network protocol stack that is
managed by the underlying operating system. Using such an
API means that the programmer is abstracted away from the
low level details of how data is exchanged between process on
(potentially) di�erent computers and can instead focus on
the higher level aspects of their solution.

There are a number of di�erent types of IP socket available,
however the focus in this book is on Stream Sockets. A stream
socket uses the Transmission Control Protocol (TCP) to send
messages.Such a socket is often referred to as a TCP/IP
socket.

TCP provides for ordered and reliable transmission of data
across the connection between two devices (or hosts). This
can be important as TCP guarantees that for every message
sent; that every message will not only arrive at the receiving
host but that the messages will arrive in the correct order.

A common alternative to the TCP is the User Data gram
Protocol (or UDP). UDP does not provide any delivery
guarantees (that is messages can be lost or may arrive out of
order). However, UDP is a simpler protocol and can be
particularly useful for broadcast systems, where multiple
clients may need to receive the data published by a server
host (particularly if data loss is not an issue).

Web Services

A Web Service is a service o�ered by a host computer that can
be invoked by a remote client using the Hypertext Transfer
Protocol (HTTP). HTTP can be run over any reliable stream
transport protocol, although it is typically used over TCP/IP.

It was originally designed to allow data to be transferred
between a HTTP server and a web browser so that the data
could be presented in a human readable form to a user.
However, when used with a web service it is used to support
program to program communication between a client and a
server using machine-readable data formats. Currently this
format is most typically JSON (Java ScriptObject Notation)
although in the past XML (eXtensible Markup Language) was
often used.

Addressing Services

Every device (host) connected to the internet has a unique
identity (we are ignoring private networks here). This unique
identity is represented as an IP address. Using an IP address
we can connect a socket to a specific host anywhere on the
internet. It is therefore possible to connect to a whole range
of device types in this way from printers to cash tills to
fridges as well as servers, mainframes and PCs etc.

IP addresses have a common format such as 144.124.16.237.
An IP version 4 address is always a set of four numbers
separated by full stops. Each number can be in the range 0–
255, so the full range of IP addresses is from 0.0.0.0 to
255.255.255.255.

An IP address can be divided up into two parts; the part
indicating the network on which the host is connected and
the host’s ID, for example:

Thus:

The Network ID elements of the IP address identifies the
specific network on which the host is currently located.
The Host ID is the part of the IP address that specifies a
specific device on the network (such as your computer).

On any given network there may be multiple hosts, each with
their own host ID but with a shared network ID. For example,
on a private home network there may be:

192.168.1.1 Jasmine’s laptop.
192.168.1.2 Adam’s PC
192.168.1.3 Home Printer
192.168.1.4 Smart TV

In many ways the network id and host id elements of an IP
address are like the postal address for a house on a street. The
street may have a name, for example Coleridge Avenue and
there may be multiple houses on the street. Each house has a
unique number; thus 10 Coleridge Avenue is uniquely
di�erentiated from 20 Coleridge Avenue by the house
number.

At this point you may be wondering where the URLs you see
in your web browser come into play (such as www.bbc.co.uk).
These are textual names that actually map to an IP address.
The mapping is performed by something called a Domain
Name System (or DNS) server. A DNS server acts as a lookup
service to provide the actual IP address for a particular textual
URL name.The presence of an English textual version of a
host address is because humans are better at remembering (a
hopefully) meaningful name rather than what might appear
to be a random sequence of numbers.

There are several web sites that can be used to see these
mappings (and one is given at the end of this chapter). Some
examples of how the English textual name maps to an IP
address are given below:

www.aber.ac.uk maps to 144.124.16.237
www.uwe.ac.uk maps to 164.11.132.96
www.bbc.net.uk maps to 212.58.249.213

http://www.bbc.co.uk/
http://www.aber.ac.uk/
http://www.uwe.ac.uk/
http://www.bbc.net.uk/

www.gov.uk maps to 151.101.188.144

Note that these mappings were correct at the time of writing;
they can change as new entries can be provided to the DNS
servers causing a particular textual name to map to a
di�erent physical host.

Localhost

There is a special IP address which is usually available on a
host computer and is very useful for developers and testers.
This is the IP address:

127.0.0.1

It is also known as localhost which is often easier to
remember. Localhost (and 127.0.0.1) is used to refer to the
computer you are currently on when a program is run; that is
it is your local host computer (hence the name localhost).

For example, if you start up a socket server on your local
computer and want a client socket program, running on the
same computer, to connect to the server program; you can
tell it to do so by getting it to connect to localhost.

This is particularly useful when either you don’t know the IP
address of your local computer or because the code may be

http://www.gov.uk/

run on multiple di�erent computers each of which will have
their own IP address. This is particularly common if you are
writing test code that will be used by developers when
running their own tests on di�erent developer (host)
machines.

We will be using localhost in the next two chapters as a way of
specifying where to look for a server program.

Port Numbers

Each internet device/host can typically support multiple
processes. It is therefore necessary to ensure that each
process has its own channel of communications. To do this
each host has available to it multiple ports that a program can
connect too. For example port 80 is often reserved for HTTP
web servers, while port 25 is reserved for SMTP servers. This
means that if a client wants to connect to a HTTP server on a
particular computer then it must specify port 80 not port 25
on that host.

A port number is written after the IP address of the host and
separated from the address by a colon, for example:

• www.aber.ac.uk:80 indicates port 80 on the host machine
which will typically be running a HTTP server, in this case for
Aberystwyth University.

http://www.aber.ac.uk/

• localhost:143 this indicates that you wish to connect to
port 143 which is typically reserved for an IMAP (Internet
Message Access Protocol) server on your local machine.

• www.uwe.ac.uk:25 this indicates port 25 on a host
running at the University of the West of England, Bristol. Port
25 is usually reserved for SMTP (Simple Mail Transfer
Protocol) servers.

Port numbers in the IP system are 16 bit numbers in the range
0–65 536. Generally, port numbers below 1024 are reserved
for predefined services (which means that you should avoid
using them unless you wish to communicate with one of
those services such as telnet, SMTP mail, ftp etc.). Therefore
it is typically to choose a port number above 1024 when
setting up your won services.

IPv4 Versus IPv6

What we have described in this chapter in terms of IP
addresses is in fact based on the Internet Protocol version 4
(aka IPv4). This version of the Internet Protocol was
developed during the 1970s and published by the IETF
(Internet Engineering Task Force) in September 1981
(replacing an earlier definition published in January 1980).
This version of the standard uses 32 binary bits for each
element of the host address (hence the range of 0 to 255 for
each of there parts of the address). This provides a total of

http://www.uwe.ac.uk:25/

4.29 billion possible unique addresses. This seemed a huge
amount in 1981 and certainly enough for what was imagined
at the time for the internet.

Since 1981 the internet has become the backbone to not only
the World Wide Web itself, but also to the concept of the
Internet of Things (in which every possible device might be
connected to the internet from your fridge, to your central
heating system to your toaster). This potential explosion in
internet addressable devices/ hosts lead in the mid 1990 as to
concerns about the potential lack of internet addresses using
IPv4. The IETF therefore designed a new version of the
Internet Protocol; Internet Protocol version 6 (or IPv6). This
was ratified as an Internet Standard in July 2017.

IPv6 uses a 128 bit address for each element in a hosts
address. It also uses eight number groups (rather than 4)
which are separated by a colon. Each number group has four
hexadecimal digits.

The following illustrates what an IPv6 address looks like:

2001:0DB8:AC10:FE01:EF69:B5ED:DD57:2CLE

Uptake of the IPv6 protocol has been slower than was
originally expected, this is in part because the IPv4 and IPv6
have not been designed to be interoperable but also because

the utilization of the IPv4 addresses has not been as fast as
many originally feared (partly due to the use of private
networks). However, over time this is likely to change as
more organizations move over to using the IPv6.

38.8 Sockets and Web Services in Python

The next two chapters discuss how sockets and web services
can be implemented in Python. The first chapter discusses
both general sockets and HTTP server sockets. The second
chapter looks at how the Flask library can be used to create
web services that run over HTTP using TCP/IP sockets.

Online Resources

See the following online resources for information

https://en.wikipedia.org/wiki/Network_socket Wikipedia
page on Sockets.
https://en.wikipedia.org/wiki/Web_service Wikipedia
page on Web Services.
https://codebeautify.org/website-to-ip-addressProvides
mappings from URLs to

IP addresses.

https://en.wikipedia.org/wiki/IPv4 Wikipedia page on
IPv4.

https://en.wikipedia.org/wiki/Network_socket
https://en.wikipedia.org/wiki/Web_service
https://codebeautify.org/website-to-ip-address
https://en.wikipedia.org/wiki/IPv4

https://en.wikipedia.org/wiki/IPv6 Wikipedia page on
IPv6.
https://www.techopedia.com/definition/28503/dns-
server For an introduction to DNS.

https://en.wikipedia.org/wiki/IPv6
https://www.techopedia.com/definition/28503/dns-server

Sockets in Python

Introduction

A Socket is an end point in a communication link between
separate processes. In Python sockets are objects which
provide a way of exchanging information between two
processes in a straightforward and platform independent
manner.

In this chapter we will introduce the basic idea of socket
communications and then presents a simple socket server
and client application.

Socket to Socket Communication

When two operating system level processes wish to
communicate,they can do so via sockets. Each process has a
socket which is connected to the others socket. One process
can then write information out to the socket, while the
second process can read information in from the socket.

Associated with each socket are two streams, one for input
and one for output. Thus, to pass information from one
process to another, you write that information outto the
output stream of one socket object and read it from the input
stream of another socket object (assuming the two sockets
are connected).

Several di�erent types of sockets are available, however in
this chapter we will focus on TCP/IP sockets. Such a socket is
a connection-oriented socket that will provide a guarantee of
delivery of data (or notification of the failure to deliver the
data). TCP/IP, or the Transmission Control Protocol/Internet
Protocol, is a suite of communication protocols used to
interconnect network devices on the internet or in a private
intranet.TCP/IP actually specifies how data is exchanged
between programs over the internet by providing end-to-end
communications that identify how the data should be broken
down into packets, addressed, transmitted, routed and
received at the destination.

Setting Up a Connection

To set up the connection, one process must be running a
program that is waiting for a connection while the other must
try to connect up to the first program.The first is referred to
as a server socket while the second just as a socket.

For the second process to connect to the first (the server
socket) it must know what machine the first is running on
and which port it is connected to.

For example, in the above diagram the server socket connects
to port 8084. In turn the client socket connects to the
machine on which the server is executing and to port number
8084 on that machine.

Nothing happens until the server socket accepts the
connection. At that point the sockets are connected, and the
socket streams are bound to each other. This means that the
server’s output stream is connected to the Client socket input
stream and vice versa.

An Example Client Server Application

The System Structure

The above diagram illustrates the basic structure of the
system we are trying to build.There will be a server object
running on one machine and a client object running on
another. The client will connect up to the server using sockets
in order to obtain information.

The actual application being implemented in this example, is
an address book look up application. The addresses of
employees of a company are held in a dictionary. This
dictionary is set up in the server program but could equally be
held in a database etc. When a client connects up to the server
it can obtain an employees’ o�ce address.

Implementing the Server Application

We shall describe the server application first. This is the
Python application pro- gram that will service requests from
client applications. To do this it must provide a server socket
for clients to connect to. This is done by first binding a server
socket to a port on the server machine. The server program
must then listen for incoming connections. The listing
presents the source code for the Server program.

import socket
def main():

Setup names and offices
addresses = {'JOHN': 'C45',
'DENISE': 'C44',
'PHOEBE': 'D52',
'ADAM': 'B23'}
print('Starting Server')
print('Create the socket')
sock = socket.socket(socket.AF_INET,
socket.SOCK_STREAM)
print('Bind the socket to the port')
server_address = (socket.gethostname(),
8084)
print('Starting up on', server_address)
sock.bind(server_address)
specifies the number of connections allowed
print('Listen forincoming connections') sock.listen(1)
while True:
print('Waiting for a connection')
connection, client_address =
sock.accept()
try:
print('Connection from',
client_address)
while True:
data =
connection.recv(1024).decode()
print('Received: ', data)
if data:
key = str(data).upper() response = addresses[key]
print('sending data back
to the client: ', response)
connection.sendall(
response.encode())
else:
print('No more data from',
client_address)

finally:
break
connection.close()
if_name_=='_main_':
main()

The Server in the above listing sets up the addresses to
contain a Dictionary of the names and addresses.

It then waits for a client to connect to it. This is done by
creating a socket and binding it to a specific port (in this case
port 8084) using:

print('Create the socket')
sock = socket.socket(socket.AF_INET,
socket.SOCK_STREAM) print('Bind the socket to the port')
server_address = (socket.gethostname(),
8084)

The construction of the socket object is discussed in more
detail in the next section. Next the server listens for a
connection from a client. Note that the sock. listen() method
takes the value 1 indicating that it will handle one connection
at a time.

An infinite loop is then set up to run the server. When a
connection is made from a client, both the connection and the

client address are made available. While there is data
available from the client, it is read using the recv function.
Note that the data received from the client is assumed to be a
string. This is then used as a key to look the address up in the
address Dictionary.

Once the address is obtained it can be sent back to the client.
In Python 3 it is necessary to decode() and encoded() the
string format to the raw data transmitted via the socket
streams.Note you should always close a socket when you have
finished with it.

Socket Types and Domains

When we created the socket class above, we passed in two
arguments to the socket constructor:

socket(socket.AF_INET, socket.SOCK_STREAM)

To understand the two values passed into the socket()
constructor it is necessary to understand that Sockets are
characterized according to two properties; their domain and
their type.

The domain of a socket essentially defines the
communications protocols that are usedto transfer the data
from one process to another. It also incorporates how sockets

are named (so that they can be referred to when establishing
the communication).

Two standard domains are available on Unix systems; these
are AF_UNIX which represents intra system
communications, where data is moved from process to
process through kernel memory bu�ers. AF_INET represents
communication using the TCP/IP protocol suite; in which
processes may be on the same machine or on di�erent
machines.

A socket’s type indicates how the data is transferred
through the socket. There are essentially two options
here:
Data gram which sockets support a message-based model
where no connection is involved, and communication is
not guaranteed to be reliable.
Stream sockets that support a virtual circuit model,
where data is exchanged as a byte stream and the
connection is reliable.

Depending on the domain, further socket types may be
available, such as those that support message passing on a
reliable connection.

Implementing the Client Application

The client application is essentially a very simple program
that creates a link to the server application. To do this it
creates a socket object that connects to the servers’ host
machine, and in our case this socket is connected to port
8084.

Once a connection has been made the client can then send the
encoded message string to the server. The server will then
send back a response which the client must decode. It then
closes the connection.

The implementation of the client is given below:

import socket
def main():
print('Starting Client')
print('Create a TCP/IP socket')
sock = socket.socket(socket.AF_INET,
socket.SOCK_STREAM) print('Connect the socket to the server
port')server_address = (socket.gethostname(),
8084)
print('Connecting to: ', server_address)
sock.connect(server_address) print('Connected to server')
try:
print('Send data')message = 'John' print('Sending: ',
message) sock.send(message.encode())
data = sock.recv(1024).decode()
print('Received from server: ', data)
finally:
print('Closing socket')
sock.close()

if name
main()
== ' main ':

The output from the two programs needs to be considered
together.

As you can see from this diagram, the server waits for a
connection from the client. When the client connects to the
server; the server waits to receive data from the client. At this
point the client must wait for data to be sent to it from the
server. The server then sets up the response data and sends it
back to the client. The client receives this and prints it out and
closes the connection. In the mean time, the server has been
waiting to see if there is any more data from the client; as the

client closes the connection the server knows that the client
has finished and returns to waiting for the next connection.

The Socket server Module

In the above example, the server code is more complex than
the client; and this is for a single threaded server; life can
become much more complicated if the serveris expected to be
a multi-threaded server (that is a server that can handle
multiple requests from di�erent clients at the same time).

However, the server socket module provides a more
convenient, object-oriented approach to creating a server.
Much of the boiler plate code needed in such applications is
defined in classes, with the developer only having to provide
their own classes or override methods to define the specific
functionality required.

There are five di�erent server classes defined in the socket
server module.

BaseServer is the root of the Server class hierarchy; it is
not really intended to be instantiated and used directly.
Instead it is extended by TCP Server and other classes.
TCPServer uses TCP/IP sockets to communicate and is
probably the most commonly used type of socket server.
UDPServer provides access to data gram sockets.

UnixStreamServer and UnixDatagramServer use Unix-
domain sockets and are only available on Unix platforms.

Responsibility for processing a request is split between a
server class and a request handler class. The server deals with
the communication issues (listening on a socket and port,
accepting connections, etc.) and the request handler deals
with the request issues (interpreting incoming data,
processing it, sending data back to the client).

This division of responsibility means that in many cases you
can simply use one of the existing server classes without any
modifications and provide a custom request handler class for
it to work with.

The following example defines a request handler that is
plugged into the TCPServer when it is constructed. The
request handler defines a method handle() that will be
expected to handle the request processing.

import socketserver
class MyTCPHandler(socketserver.BaseRequestHandler): """
The RequestHandler class for the server. """
def init (self, request, client_address, server):
print('Setup names and offices')
self.addresses = {'JOHN': 'C45',
'DENISE': 'C44',
'PHOEBE': 'D52',
'ADAM': 'B23'}

super(). init (request, client_address, server)
def handle(self):
print('In Handle')
self.request is the TCP socket connected
to the client
data = self.request.recv(1024).decode()
print('data received:', data)key = str(data).upper() response
= self.addresses[key] print('response:', response)
Send the result back to the client
self.request.sendall(response.encode())
def main():
print('Starting server')server_address = ('localhost',
8084)print('Creating server')
server =
socketserver.TCPServer(server_address, MyTCPHandler)
print('Activating server')
server.serve_forever()
if_name_== '_main_':
main()

Note that the previous client application does not need to
change at all; the server changes are hidden from the client.
However, this is still a single threaded server. We can very
simply make it into a multi-threaded server (one that can
deal with multiple requests concurrently) by mixing the
socket server. ThreadingMixIn into the TCPServer. This can
be done by defining a new class that is nothing more than a
class that extends both

ThreadingMixIn and TCPServer and creating an instance of
this new class instead of the TCPServer directly. For example:

class ThreadedEchoServer(socketserver.ThreadingMixIn,
socketserver.TCPServer):
pass
def main():
print('Starting')
address = ('localhost', 8084)
server = ThreadedEchoServer(address,
MyTCPHandler)
print('Activating server')
server.serve_forever()
Infact you do not even need to create your own class (such as
the ThreadedEchoServer) as the socketserver.ThreadingTCPServer
has been provided as a default mixing of the TCPServer and
the ThreadingMixIn classes. We could therefore just write:
def main():
print('Starting')
address = ('localhost', 8084)
server = socketserver.ThreadedEchoServer(address, MyTCPHandler)
print('Activating server')
server.serve_forever()

HTTP Server

In addition to the TCPServer you also have available a
http.server. HTTPServer; this can be used in a similar manner
to the TCPServer, but is used to create servers that respond to
the HTTP protocol used by web browsers. In other words it
can be used to create a very simple Web Server (although it
should be noted that it is really only suitable for creating test
web servers as it only implements very basic security checks).

It is probably worth a short aside to illustrate how a web
server and a web browser interact. The following diagram
illustrates the basic interactions:

In the above diagram the user is using a browser (such as
Chrome, IE or Safari) to access a web server. The browser is
running on their local machine (which could be a PC, a Mac, a
Linux box, an iPad, a Smart Phone etc.).

To access the web server they enter a URL (Universal
Resource Locator) address into their browser. It also indicates
that they want to connect up to port 8080 (rather than the
default port 80 used for HTTP connections). The remote
machine receives this request and determines what to do with
it. If there is no program monitoring port 8080 it will reject
the request. In our case we have a Python Program (which is
actually the web server program) listening to that port and it
is passed the request. It will then handle this request and
generate a response message which will be sent back to the
browser on the users local machine.The response will indicate
which version of the HTTP protocol it supports, whether
everything went OK or not (this is the 200 code in the above

diagram - you may have seen the code 404 indicating that a
web page was not found etc.). The browser on the local
machine then renders the data as a web page or handles the
data as appropriate etc.

To create a simple Python web server the
http.server.HTTPServer can be used directly or can be sub
classed along with the socketserver. ThreadingMixIn to
create a multi-threaded web server, for example:

class ThreadingHTTPServer(ThreadingMixIn, HTTPServer):
"""Simple multi-threaded HTTP server """
pass

Since Python 3.7 the http.server module now provides exactly
this class as a built in facility and it is thus no longer
necessary to define it yourself (see
http.server.ThreadingHTTPServer).

To handle HTTP requests you must implement one of the
HTTP request methods such as do_GET(), or do_POST().
Each of these maps to a type of HTTP request, for example:

do_GET() maps to a HTTP Get request that is generated if
you type a web address into the URL bar of a web browser
or

do_POST() maps to a HTTP Post request that is used for
example, when a form on a web page is used to submit
data to a web server.

The do_GET(self) or do_POST(self)method must then
handle any inputsupplied with the request and generate any
appropriate responses back to the browser. This means that it
must follow the HTTP protocol.

The following short program creates a simple web server that
will generate a welcome message and the current time as a
response to a GET request. It does this by using the datetime
module to create a time stamp of the date and time using the
today() function. This is converted into a byte array using the
UTF-8 character encoding (UTF-8 is the most widely used
way to represent text within web pages). We need a byte array
as that is what will be executed by the write() method later
on.

Having done this there are various items of meta data that
need to be set up so that the browser knows what data it is
about to receive.This meta data is known as header data and
can including the type of content being sent and the amount
of data (content) being transmitted. In our very simple case
we need to tell it that we are sending it plain text (rather than
the HTML used to describe a typical web page) via the
‘Content-type’ header information. We also need to tell it

how much data we are sending using the content length. We
can then indicate that we have finished defining the header
information and are now sending the actual data.

The data itself is sent via the wfile attribute inherited from
the Base HTTPRequestHandler. There are infact two related
attributes rfile and wfile:

rfile this is an input stream that allows you to read input
data (which is not being used in this example).
wfile holds the output stream that can be used to write
(send) data to the browser. This object provides a method
write() that takes a byte-like object that is written out to
(eventually) the browser.

A main() method is used to set up the HTTP server which
follows the pattern used for the TCPServer; however the
client of this server will be a web browser.

from http.server import BaseHTTPRequestHandler,
ThreadingHTTPServer from datetime import datetime

class MyHttpRequestHandler(BaseHTTPRequestHandler):
"""Very simple requesthandler. Only supports GET."""
def do_GET(self):
print("do_GET() starting to process request")
welcome_msg = 'Hello From Server at ' +
str(datetime.today())
byte_msg = bytes(welcome_msg, 'utf-8')
self.send_response(200)

self.send_header("Content-type", 'text/plain; charset-
utf-8')
self.send_header('Content-length', str(len(byte_msg)))
self.end_headers()
print('do_GET() replying with message')
self.wfile.write(byte_msg)
def main():
print('Setting up server')
server_address = ('localhost', 8080)
httpd = ThreadingHTTPServer(server_address,
MyHttpRequestHandler)
print('Activating HTTP server')
httpd.serve_forever()
if_name_=='_main_':
main()

Once the server is up and running, it is possible to connect to
the server using a browser and by entering an appropriate
web address into the browsers’ URL field. This means that in
your browser (assuming it is running on the same machine as
the above program) you only need to type into the URL bar
http://local- host:8080 (this indicates you want to use the
http protocol to connect up to the local machine at port
8080).

When you do this you should see the welcome message with
the current date and time:

http://local-/

Web Services in Python

Introduction

This chapter looks at RESTful web services as implemented
using the Flask framework.

RESTful Services

REST stands for Representational State Transfer and was a
termed coined by Roy Fielding in his Ph.D. to describe the
lightweight, resource-oriented architectural style that
underpins the web. Fielding, one of the principle authors of
HTTP, was looking for a way of generalizing the operation of
HTTP and the web. The generalized the supply of web pages
as a form of data supplied on demand to a client where the
client holds the current state of an exchange. Based on this
state information the client requests the next item of relevant
data sending all information necessary to identify the
information to be supplied with the request. Thus the
requests are independent and not part of an on-going stateful
conversation (hence state transfer).

It should be noted that although Fielding was aiming to create
a way of describing the pattern of behavior within the web, he
also had an eye on producing lighter weight web based
services (than those using either proprietary Enterprise
Integration frameworks or SOAP based services). These
lighter weight HTTP based web services have become very
popular and are now widely used in many areas. Systems
which follow these principles are termed RESTful services.

A key aspect of a RESTful service is that all interactions
between a client (whether some JavaScript running in a
browser or a standalone application) are done using simple
HTTP based operations. HTTP supports four operations these
are HTTP Get, HTTP Post, HTTP Put and HTTP Delete. These
can be used as verbs to indicate the type of action being
requested. Typically these are used as follows:

retrieve information (HTTP Get),
create information (HTTP Post),
update information (HTTP Put),
delete information (HTTP Delete).

It should be noted that REST is not a standard in the way that
HTML is a standard. Rather it is a design pattern that can be
used to create web applications that can be invoked over
HTTP and that give meaning to the use of Get, Post, Put and

Delete HTTP operations with respect to a specific resource (or
type of data).

The advantage of using RESTful services as a technology,
compared to some other approaches (such as SOAP based
services which can also be invoked over HTTP) is that

the implementations tend to be simpler,
the maintenance easier,
they run over standard HTTP and HTTPS protocols and
do not require expensive infrastructures and licenses to
use.

This means that there is lower server and server side costs.
There is little vendor or technology dependency and clients
do not need to know anything about the implementation
details or technologies being used to create the services.

A RESTful API

1. A RESTful API is one in which you must first determine
the key concepts or resources being represented or
managed.

2. These might be books, products in a shop, room bookings
in hotels etc. For example a bookstore related service
might provide information on resources such as books,
CDs, DVDs, etc. Within this service books are just one type
of resource. We will ignore the other resources such as
DVDs and CDs etc.

3. Based on the idea of a book as a resource we will identify
suitable URLs for these RESTful services. Note that
although URLs are frequently used to describe a web page
—that is just one type of resource. For example, we might
develop a resource such as

/bookservice/book
from this we could develop a URL based API, such as
/bookservice/book/<isbn>

Where ISBN (the International Standard Book Number)
indicates a unique number to be used to identify a specific
book whose details will be returned using this URL.

We also need to design the representation or formats that the
service can supply. These could include plain text, JSON, XML
etc. JSON standards for the JavaScript Object Notation and is a
concise way to describe data that is to be transferred from a
service running on a server to a client running in a browser.
This is the format we will use in the next section. As part of
this we might identify a series of operations to be provided by
our services based on the type of HTTP Method used to invoke
our service and the contents of the URL provided. For
example, for a simple Book Service this might be:

GET /book/<isbn>—used to retrieve a book for a given
ISBN.

GET /book/list—used to retrieve all current books in JSON
format.
POST /book (JSON in body of the message)—which
supports creating a new book.
PUT /book (JSON in body of message)—used to update
the data held on an existing Book.
DELETE /book/<isbn>—used to indicate that we would
like a specific book deleted from the list of books held.

Note that the parameter isbn in the above URLs actually
forms part of the URL path.

Python Web Frameworks

There are very many frameworks and libraries available in
Python that will allow you to create JSON based web services;
and the shear number of options available to you can be
overwhelming.For example, you might consider

Flask,
Django,
Web2py and
CherryPy to name just a few.

These frameworks and libraries o�er di�erent sets of
facilities and levels of sophistication. For example Django is a
full-stack web framework; that is it is aimed at developing
not just web services but full blown web sites. However, for

our purposes this is probably overkill and the Django Rest
interface is only part of a much larger infrastructure. That
does not mean of course that we could not use Django to
create our bookshop services; however there are simpler
options available. The web2py is another full stack web
framework which we will also discount for the same reason.

In contrast Flask and CherryPy are considered non full-stack
frameworks (although you can create a full stack web
application using them). This means that they are lighter
weight and quicker to get started with. CherryPy was original
rather more focused on providing a remote function call
facility that allowed functions to be invoked over HTTP;
however this has been extended to provide more REST like
facilities. In this chapter we will focus on Flask as it is one of
the most widely used frameworks for light weight RESTful
services in Python.

Flask

Flask is a web development framework for Python. It
describes itself as a micro framework for Python which is
somewhat confusing; to the point where there is a page
dedicated to this on their web site that explains what it means
and what the implications are of this for Flask. According to
Flask, the micro in its description relates to its primary aim of
keeping the core of Flask simple but extensible. Unlike Django

it doesn’t include facilities aimed at helping you integrate
your application with a database for example. Instead Flask
focuses on the core functionality required of a web service
framework and allows extension to be used, as and when
required, for additional functionality.

Flask is also a convention over configuration framework; that
is if you follow the standard conventions then you will not
need to deal with much additional configuration information
(although if you wish to follow a di�erent set of conventions
then you can provide configuration information to change the
defaults). As most people will (at least initially)follow these
conventions it makes it very easy to get something up and
running very quickly.

Hello World in Flask

As is traditional in all programming languages we will start of
with a simple ‘Hello World’ style application.This application
will allow us to create a very simple web service that maps a
particular URL to a function that will return JSON format data.
We will use the JSON data format as it is very widely used
within web-based services.

Using JSON

JSON standards for JavaScript ObjectNotation; it is a light
weight data-interchange format that is also easy for humans
to read and write. Although it is derived from a subset of the
JavaScript programming language; it is in fact completely
language independent and many languages and frameworks
now support automatically processing of their own formats
into and from JSON. This makes it ideal for RESTful web
services.

JSON is actually built on some basic structures:

A collection of name/value pairs in which the name and
value are separated buy a colon ‘:’ and each pair can be
separated by a comma ‘,’.
An ordered list of values that are encompassed in square
brackets (‘[]’).

This makes it very easy to build up structures that represent
any set of data, for example a book with an ISBN, a title,
author and price could be represented by:

{
"author": "Phoebe Cooke", "isbn": 2,
"price": 12.99, "title": "Java"
}

In turn a list of books can be represented by a comma
separated set of books within square brackets. For example:

[{"author": "Gryff Smith","isbn": 1, "price": 10.99, "title":
"XML"},
{"author": "Phoebe Cooke", "isbn":2, "price": 12.99, "title":
"Java"}
{"author": "Jason Procter", "isbn": 3, "price": 11.55, "title":
"C#"}]

Implementing a Flask Web Service

There are several steps involved in creating a Flask web
service, these are:

1. Import flask.
2. Initialize the Flask application.
3. Implement one or more functions (or methods) to

support the services you wish to publish.
4. Providing routing information to route from the URL to a

function (or method).
5. Start the web service running.

We will look at these steps in the rest of this chapter.

A Simple Service

We will now create our hello world web service. To do this we
must first import the flask module. In this example we will
use the Flask class and jsonify() function elements of the
module.

We then need to create the main application object which is
an instance of the Flask class:

from flask import Flask, jsonify app = Flask(__name)

The argument passed into the Flask() constructor is the name
of the application’s module or package. As this is a simple
example we will use the name attribute of the module which
in this case will be ‘ main ’. In larger more complex
applications, with multiple packages and modules, then you
may need to choose an appropriate package name.

The Flask application object implements the WSGI(Web
ServerGateway Interface) standard for Python. This was
originally specified in PEP-333 in 2003 and was updated for
Python 3 in PEP-3333 published in 2010. It provides a simple
convention for how web servers should handle requests to
applications. The Flask application object is the element that
can route a request for a URL to a Python function.

Providing Routing Information

We can now define routing information for the Flask
application object. This information will map a URL to a
function. When that URL is,for example, entered into a web
browsers URL field, then the Flask application object will
receive that request and invoke the appropriate function.

To provide route mapping information we use the @app.route
decorator on a function or method. For example, in the
following code the @app.route decorator maps the URL /hello
to the function welcome() for HTTP Get requests:

@app.route(’/hello’, methods=[‘GET’])

def welcome():
return jsonify({'msg': 'Hello Flask World'})

There are two things to note about this function definition:

The @app.route decorator is used to declaratively specify
the routing information for the function. This means that
the URL ‘/hello’ will be mapped to the function
welcome(). The decorator also specifies the HTTP method
that is supported; in this case GET requests are supported
(which is actually the default so it does not need to be
included here but is useful from a documentation point of
view).

mailto:@app.route
mailto:@app.route
mailto:@app.route
mailto:@app.route
mailto:@app.route
mailto:@app.route
mailto:@app.route
mailto:@app.route
mailto:@app.route

The second thing is that we are going to return our data
using the JSON format; we therefore use the jsonify()
function and pass it a Python Dictionary structure with a
single key/value pair. In this case the key is ‘msg’ and the
data associated with that key is ‘Hello Flask World’. The
jsonify() function will convert this Python data structure
into an equivalent JSON structure.

Running the Service

We are now ready to run our application. To do this we invoke
the run() method of the Flask application object:

app.run(debug=True)

Optionally this method has a keyword parameter debug that
can be set to True; if this is done then when the application is
run some debugging information is generated that allows you
to see what is happening. This can be useful in development
but would not typically be used in production.

The whole program is presented below:

from flask import Flask, jsonify app = Flask(__name)
@app.route('/hello', methods=['GET'])
def welcome():
return jsonify({'msg': 'Hello Flask World'})
app.run(debug=True)

When this program is run the initial output generated is as
shown below:

* Serving Flask app "hello_flask_world" (lazy loading)
* Environment: production
WARNING: This is a development server. Do not use it in a
production deployment.
Use a production WSGI server instead.
* Debug mode: on
* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
* Restarting with stat
* Debugger is active!
* Debugger PIN: 274-630-732

Of course we don’t see any output from our own program yet.
This is because we have not invoked the welcome() function
via the /hello URL.

Invoking the Service

We will use a web browser to access the web service. To do
this we must enter the full URL that will route the request to
our running application and to the welcome() function.

The URL is actually comprised of two elements, the first part
is the machine on which the application is running and the
port that it is using to listen for requests. This is actually
listed in the above output—look at the line starting ‘Running
on’. This means that the URL must start with

http://127.0.0.1:5000. This indicates that the application is
running on the computer with the IP address 127.0.0.1 and
listening on port 5000. We could of course also use localhost
instead of 127.0.0.1.

The remainder of the URL must then provide the information
that will allow Flask to route from the computer and port to
the functions we want to run. Thus the full URL is
http://127.0.0.1:5000/hello and thus is used in the web
browser shown below:

As you can see the result returned is the text we supplied to
the jsonify()function but now in plain JSON format and
displayed within the Web Browser. You should also be able to
see in the console output that a request was received by the
Flask framework for the GET request mapped to the /hello
URL:

http://127.0.0.1:5000/
http://127.0.0.1:5000/hello

127.0.0.1 - - [23/May/2019 11:09:40] “GET /hello HTTP/1.1”
200

-

One useful feature of this approach is that if you make a
change to your program then the Flask framework will notice
this change when running in development modeand can
restart the web service with the code changes deployed. If you
do this you will see that the output notifies you of the change:

* Detectedchange in ‘hello_flask_world.py’, reloading
* Restarting with stat

This allows changes to be made on the fly and their e�ect can
be immediately seen.

The Final Solution

We can tidy this example up a little by defining a function hat
can be used to create the Flask application object and by
ensuring that we only run the application if the code is being
run as the main module:

from flask importFlask, jsonify, url_for
def create_service():
app = Flask(name)
@app.route('/hello', methods=['GET'])
def welcome():
return jsonify({'msg': 'Hello Flask World'})

with app.test_request_context():
print(url_for('welcome'))
return app
if name
== ' main ':
app = create_service()
app.run(debug=True)

One feature we have added to this program is the use of the
test_re- quest_context(). The test request context object
returned implements the context manager protocol and thus
can be used via a with statement; this is useful for debugging
purposes. It can be used to verify the URL used for any
functions with routing information specified. In this case the
output from the print statement is ‘/hello’ as this is the URL
defined by the @app.route decorator.

mailto:@app.route

Bookshop Web Service

Building a Flask Bookshop Service

The previous chapter illustrated the basic structure of a very
simple web service application. We are now in a position to
explore the creation of a set of web services for something a
little more realistic; the bookshop web service application.

In this chapter we will implement the set of web services
described earlier in the previous chapter for every simple
bookshop. This means that we will define services to handle
not just the GET requests but also PUT, POST and DELETE
requests for the RESTful bookshop API.

The Design

Before we look at the implementation of the Bookshop
RESTful API we will consider what elements we for the
services services.

One question that often causes some confusion is how web
services relate to traditional design approaches such as object

oriented design. The approach adopted here is that the Web
Service API provides a way to implement an interface to
appropriate functions, objects and methods used to
implement the application/ domain model.

This means that we will still have a set of classes that will
represent the Bookshop and the Books held within the
bookshop. In turn the functions implementing the web
services will access the bookshop to retrieve, modify,update
and delete the books held by the bookshop.

This shows that a Book object will have an isbn, a title, an
author and a price attribute.

In turn the Bookshop object will have a books attribute that
will hold zero or more Books. The books attribute will actually
hold a List as the list of books needs to change dynamically as
and when new books are added or old books deleted. The
Bookshop will also define three methods that will

allow a book to be obtained via its isbn,

allow a book to be added to the list of books and
enable a book to be deleted (based on its isbn).

Routing information will be provided for a set of functions
that will invoke appropriate methods on the Bookshop object.
The functions to be decorated with @app.route, and the
mappings to be used, are listed below:

get_books() which maps to the /book/list URL using the
HTTP Get method request.
get_book(isbn) which maps to the /book/<isbn> URL
where isbn is a URL parameter that will be passed into the
function. This will also use the HTTP GET request.
create_book()which maps to the /book URL using the
HTTP Post request.
update_book() which maps to the /book URL but using
the HTTP Put request.
delete_book() which maps to the /book/<isbn> URL but
using the HTTP Delete request.

The Domain Model

The domain model comprises the Book and Bookshop classes.
These are presented below.

The Book class is a simple Value type class (that is it is data
oriented with no behavior of its own):

mailto:@app.route

class Book:
def init (self, isbn, title, author, price):
self.isbn = isbn self.title = title self.author = author
self.price = price
def str (self):
return self.title + ' by ' + self.author + ' @ ' +
str(self.price)

The Bookshop class holds a list of books and provides a set of
methods to access books, update books and delete books:

class Bookshop:
def init (self, books):
self.books = books
def get(self, isbn):
if int(isbn) > len(self.books):
abort(404)
return list(filter(lambda b: b.isbn == isbn, self.books))[0]
def add_book(self, book):
self.books.append(book)
def delete_book(self, isbn):
self.books = list(filter(lambda b: b.isbn != isbn,
self.books))

In the above code, the books attribute holds the list of books
currently available.

The get() method returns a book given a specified ISBN. The
add_book() method adds a book object to the list of books.
The delete_book() method removes a book based on its ISBN.

The bookshop global variable holds the Bookshop object
initialized with a default set of books:

bookshop = Bookshop(
[Book(1, 'XML', 'Gryff Smith', 10.99), Book(2, 'Java',
'Phoebe Cooke', 12.99), Book(3, 'Scala', 'Adam Davies',
11.99), Book(4, 'Python', 'Jasmine Byrne', 15.99)])

Encoding Books Into JSON

One issue we have is that although the jsonify() function
knows how to convert builtin types such as strings,integers,
lists, dictionaries etc. into an appropriate JSON format; it does
not know how to do this for custom types such as a Book. We
therefore need to define some way of converting a Book into
an appropriate JSON format.

One way we could do this would be to define a method that
can be called to convert an instance of the Book class into a
JSON format. We could call this method to_json(). For
example:

class Book:
"""Represents a book in the bookshop"""
def init (self, isbn, title, author, price):
self.isbn = isbn self.title = title self.author = author
self.price = price
def str (self):

return self.title + ' by ' + self.author + ' @ ' +
str(self.price)
def to_json(self):
return {
'isbn': self.isbn,
'title': self.title,
'author': self.author,
'price': self.price
}

We could now use this with the jsonify() function to convert a
book into the JSON format:

jsonify({'book': book.to_json()})

This approach certainly works and provides a very
lightweight way to convert a book into JSON.

However, the approach presented above does mean that every
time we want to jsonify a book we must remember to call the
to_json() method. In some cases this means that we will also
have to write some slightly convoluted code. For example if
we wish to return a list of books from the Bookshop as a JSON
list we might write:

jsonify({'books': [b.to_json() for b in bookshop.books]})

Here we have used a list comprehension to generate a list
containing the JSON versions of the books held in the

bookshop. This is starting to look overly complex, easy to
forget about and probably error prone. Flask itself uses
encoders to encode types into JSON. Flask provides a way of
creating your own encoders that can be used to convert a
custom type, such as the Book class, into JSON. Such an
encoder can automatically be used by the jsonify() function.

To do this we must implement an encoder class; the class will
extend the flask. json.JSONEncoder super class. The class
must define a method default(self, obj). This method takes an
object and returns the JSON representation of that object. We
can therefore write an encoder for the Book class as follows:

class BookJSONEncoder(JSONEncoder):
def default(self, obj):
if isinstance(obj, Book):
return {
'isbn': obj.isbn,
'title': obj.title,
'author': obj.author,
'price': obj.price
}
else:
return super(BookJSONEncoder, self).default(obj)

The default() method in this class checks that the object
passed to it is an instance of the class Book and if it is then it
will create a JSON version of the Book.This JSON structure is
based on the isbn, title, author and price attributes. If it is not

an instance of the Book class, then it passes the object up to
the parent class.

We can now register this encoder with the Flask application
object so that it will be used whenever a Book must be
converted into JSON.This is done by assigning the custom
encoder to the Flask application object via the
app.json_encoder attribute:

app = Flask(name)
app.json_encoder = BookJSONEncoder

Now if we wish to encode a single book or a list of books the
above encoder will be used automatically and thus we do not
need to do anything else. Thus our earlier examples can be
written to simply by referencing the book or bookshop.books
attribute:

jsonify({'book': book})
jsonify({'books': bookshop.books})

Setting Up the GET Services

We can now set up the two services that will support GET
requests, these are the

/book/list and /book<isbn> services.

The functions that these URLs map to are given below:

@app.route(’/book/list’, methods=[‘GET’])
def get_books():
return jsonify({‘books’: bookshop.books})

@app.route(’/book/<int:isbn>‘, methods=[‘GET’])
def get_book(isbn):
book = bookshop.get(isbn)
return jsonify({‘book’: book})

The first function merely returns the current list of books
held by the bookshop in aJSON structure using the key books.
The second function takes an isbn number as parameter. This
is a URL parameter; in other words part of the URL used to
invoke this function is actually dynamic and will be passed
into the function. This means that a user can request details
of books with di�erent ISBNs just by changing the ISBN
element of the URL,for example:

/book/1 will indicate that we want information on the
book with the ISBN 1.
/book/2 will indicate we want information on the book
with ISBN 2.

In Flask to indicate that something is a URL parameter rather
than a hard coded element of the URL, we use angle brackets

mailto:@app.route
mailto:@app.route
mailto:@app.route
mailto:@app.route
mailto:@app.route
mailto:@app.route
mailto:@app.route
mailto:@app.route
mailto:@app.route
mailto:@app.route
mailto:@app.route
mailto:@app.route

(<>). These surround the URL parameter name and allow the
parameter to be passed into the function (using the same
name).

In the above example we have also(optionally) indicated the
type of the parameter. By default the type will be a string;
however we know that the ISBN is in fact an integer and so we
have indicated that by prefixing the parameter name with the
type int (and separated the type information from the
parameter name by a colon‘:’). There are actually several
options available including

string (the default),
int (as used above),
float for positive floating point values,
uuid for uuid strings and
path which dislike string but accepts slashes.

We can again use a browser to view the results of calling these
services; this time the URLs will be

http://127.0.0.1:5000/book/list and
http:/127.0.0.1:5000/book/1

for example:

http://127.0.0.1:5000/book/list

As you can see from this the book information is returned as a
set of key/value pairs in JSON format.

Deleting a Book

The delete a book web service is very similar to the get a book
service in that it takes an isbn as a URL path parameter.
However, in this case it merely returns an acknowledgment
that the book was deleted successfully:

@app.route(’/book/<int:isbn>‘, methods=[‘DELETE’])

def delete_book(isbn):

mailto:@app.route
mailto:@app.route
mailto:@app.route
mailto:@app.route
mailto:@app.route
mailto:@app.route

bookshop.delete_book(isbn)
return jsonify({‘result’: True})

However, we can no longer test this just by using a web
browser. This is because the web browser uses the HTTP Get
request method for all URLs entered into the URL field.
However, the delete web service is associated with the HTTP
Delete request method.

To invoke the delete_book() function we therefore need to
ensure that the request that is sent uses the DELETE request
method. This can be done from a client that can indicate the
type of request method being used. Examples might include
another Python program, a JavaScript web site etc.

For testing purposes, we will however use the curl program.
This program is available on most Linux and Mac systems
and can be easily installed, if it is not already available, on
other operating systems.

The curl is a command line tool and library that can be used to
send and receive data over the internet. It supports a wide
range of protocols and standards and in particular supports
HTTP and HTTPS protocols and can be used to send and
receive data over HTTP/S using di�erent request methods.
For example, to invoke the delete_book() function using the

/book/2 URL and the HTTP Delete method we can use curl as
follows:

curl http://localhost:5000/book/2 -X DELETE

This indicates that we want to invoke the URL
(http://localhost:5000/book/2) and that we wish to use a
custom request method(i.e. Not the default GET) which is in
the case DELETE (as indicated by the −X option).The result
returned by the command is given below indicating that the
book was successfully deleted.

{
"result": true
}

We can verify this by checking the output from the /book/list
URL in the web browser:

http://localhost:5000/book/2
http://localhost:5000/book/2

This confirms that book 2 has been deleted.

Adding a New Book

We also want to support adding a new book to the Bookshop.
The details of a new book could just be added to the URL as
URL path parameters; however as the amount of data to be
added grows this would become increasingly di�cult to
maintain and verify. Indeed although historically there was a
limit of 2083 characters in Microsoft’s Internet Explore (IE)

which has theoretically be removed since IE8, in practice
there are typically still limits on the size of the URL. Most web
servers have a limit of 8 KB (or 8192 bytes) although this is
typically configurable. There may also be client side limits
(such as those imposed by IE or Apple’s Safari (which usually
have a 2 KBlimit). If the limit is exceeded in either a browser
or on the server, then most systems will just truncate the
characters outside the limit (in some cases without any
warning).

Typically such data is therefore sent in the body of the HTTP
request as part of a HTTP Post request. This limit on the same
of a Post requests message body is much higher (usually up to
2 GB). This means that it is a much more reliable and safer
way to transfer data to a web service. However, it should be
noted that this does not mean that the data is any more
secure than if it is part of the URL; just that it is sent in a
di�erent way. From the point of view of the Python functions
that are invoked as the result of a HTTP Post method request
it means that the data is not available as a parameter to the
URL and thus to the function. Instead, within the function it is
necessary to obtain the request object and then to use that to
obtain the information held within the body of the request.

A key attribute on the request object, available when a HTTP
request contains JSON data, is the request.json attribute. This

attribute contains a dictionary like structure holding the
values associated with the keys in the JSON data structure.

This is shown below for the create_book() function.

from flask import request, abort

@app.route('/book', methods=['POST'])
def create_book():
print('create book')
if not request.json or not 'isbn' in request.json:
abort(400)
book = Book(request.json['isbn'],request.json['title'],
request.json.get('author', ""), float(request.json['price']))
bookshop.add_book(book)
return jsonify({'book': book}), 201

The above function accesses the flask.request object that
represents the current HTTP request. The function first
checks to see that it contains JSON data and that the ISBN of
the book to add, is part of that JSON structure. If it the ISBN is
not then the flask.abort() function is called passing in a
suitable HTTP response status code. In this case the error
code indicates that this was a Bad Request (HTTP Error Code
400).

If however the JSON data is present and does contain an ISBN
number then the values for the keys isbn, title, author and
price are obtained. Remember that JSON is a dictionary like

structure of keys and values thus treating it in this way makes
it easy to extract the data that a JSON structure holds. It also
means that we can use both method and key oriented access
styles.This is shown above where we use the get() method
along with a default value to use, if an author is not specified.

Finally, as we want to treat the price as a floating point
number we must use the float() function to convert the string
format supplied by JSON into a float. Using the data extracted
we can instantiate a new Book instance that can be added to
the bookshop. As is common in web services we are returning
the newly created book object as the result of creating the
book along with the HTTP response status code 201, which
indicates the successful creation of a resource.

We can now test this service using the curl command line
program:

curl -H "Content-Type: application/json" -X POST -d
'{"title":"Read a book", "author":"Bob","isbn":"5",
"price":"3.44"}' http://localhost:5000/book

The options used with this command indicate the type of data
being sent in the body of the request (-H) along with the data
to include in the body of the request (- d). The result of
running this command is:

{
"book": {
"author": "Bob", "isbn": "5", "price": 3.44,
"title": "Read a book"
}
}

Illustrating that the new book by Bob has been added.

Updating a Book

Updating a book that is already held by the bookshop object is
very similar to adding a book except that the HTTP Put
request method is used.

Again the function implementing the required behavior must
use the flask. request object to access the data submitted
along with the PUT request. However, in this case the ISBN
number specified is used to find the book to be updated,
rather than the specifying a completely new book.

The update_book()function is given below:

@app.route('/book', methods=['PUT'])
def update_book():
if not request.json or not 'isbn' in request.json:

abort(400)
isbn = request.json['isbn'] book = bookshop.get(isbn)
book.title = request.json['title']
book.author = request.json['author']
book.price = request.json['price']
return jsonify({'book': book}), 201

This function resets the title, author and price of the book
retrieved from the bookshop. It again returns the updated
book as the result of running the function.

The curl program can again be used to invoke this function,
although this time the HTTP Put method must be specified:

curl -H "Content-Type: application/json" -X PUT -d
'{"title":"Read a Python Book", "author":"Bob
Jones","isbn":"5", "price":"3.44"}'
http://localhost:5000/book

The output from this command is:

{
"book": {
"author": "Bob Jones", "isbn": "5",
"price": "3.44",
"title": "Read a Python Book"
}
}

This shows that book 5 has been updated with the new
information.

What Happens if We Get It Wrong?

The code presented for the bookshop web services is not
particularly defensive, as it is possible to try to add a new
book with the same ISBN as an existing one. However, it does
check to see that an ISBN number has been supplied with both
the create_book()and update_book() functions. However,
what happens if an ISBN number is not supplied? In both
functions we call the flask.abort() function. By default if this
happens an error message will be sent back to the client. For
example, in the following command we have forgotten to
include the ISBN number:

curl -H "Content-Type: application/json" -X POST -d
'{"title":"Read a book", "author":"Tom Andrews",
"price":"13.24"}' http://localhost:5000/book

This generates the following error output:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<title>400 Bad Request</title>
<h1>Bad Request</h1>
<p>The browser (or proxy) sent a request that this
server could not understand.</p>

The odd thing here is that the error output is in HTML format,
which is not what we might have expected since we are
creating a web service and working with JSON.The problem is
that Flask has default to generating an error HTML web page
that it expects to be rendered in a web browser.

We can overcome this by defining our own custom error
handler function. This is a function that is decorated with an
@app.errorhandler() decorator which provides the response
status code that it handles. For example:

@app.errorhandler(400)
def not_found(error):
return make_response(jsonify({'book': 'Not found'}), 400)

Now when a 400 code is generated via the flask.abort()
function, the not_found() function will be invoked and a
JSON response will be generated with the information
provided by the flask.make_response()function. For
example:

curl -H "Content-Type: application/json" -X POST -d
'{"title":"Read a book", "author":"Tom Andrews",
"price":"13.24"}' http://localhost:5000/book

mailto:@app.errorhandler

The output from this command is:

{
"book": "Not found"
}

Bookshop Services Listing

The complete listing for the bookshop web services
application is given below:

from flask import Flask, jsonify, request, abort,
make_response
from flask.json import JSONEncoder
class Book:
def init (self, isbn, title, author, price):
self.isbn = isbn self.title = title self.author = author
self.price = price
def str (self):
return self.title + ' by ' + self.author + ' @ ' +
str(self.price)
class BookJSONEncoder(JSONEncoder):
def default(self, obj):
if isinstance(obj, Book):
return {
'isbn': obj.isbn,
'title': obj.title,
'author': obj.author,
'price': obj.price
}
else:
return super(BookJSONEncoder, self).default(obj)

class Bookshop:
def init (self, books):
self.books = books
def get(self, isbn):
if int(isbn) > len(self.books):
abort(404)
return list(filter(lambda b: b.isbn == isbn, self.books))[0]
def add_book(self, book):
self.books.append(book)
def delete_book(self, isbn):
self.books = list(filter(lambda b: b.isbn != isbn,
self.books))
bookshop = Bookshop([Book(1, 'XML', 'Gryff Smith', 10.99),
Book(2, 'Java', 'Phoebe Cooke', 12.99), Book(3, 'Scala',
'Adam Davies', 11.99), Book(4, 'Python', 'Jasmine Byrne',
15.99)])
def create_bookshop_service(): app = Flask(name)
app.json_encoder = BookJSONEncoder
@app.route('/book/list', methods=['GET'])
def get_books():
return jsonify({'books': bookshop.books})
@app.route('/book/<int:isbn>', methods=['GET'])
def get_book(isbn):
book = bookshop.get(isbn)
return jsonify({'book': book})
@app.route('/book', methods=['POST'])
def create_book():
print('create book')
if not request.json or not 'isbn' in request.json:
abort(400)
book = Book(request.json['isbn'], request.json['title'],
request.json.get('author', ""), float(request.json['price']))
bookshop.add_book(book)
return jsonify({'book': book}), 201
@app.route('/book', methods=['PUT'])
def update_book():

if not request.json or not 'isbn' in request.json:
abort(400)
isbn = request.json['isbn'] book = bookshop.get(isbn)
book.title = request.json['title']
book.author = request.json['author']
book.price = request.json['price']
return jsonify({'book': book}), 201
@app.route('/book/<int:isbn>', methods=['DELETE'])
def delete_book(isbn):
bookshop.delete_book(isbn)
return jsonify({'result': True})
400)
@app.errorhandler(400)
def not_found(error):
return make_response(jsonify({'book': 'Not found'}),
return app
if name
== ' main ':
app = create_bookshop_service()
app.run(debug=True)

Try

The exercises for this chapter involves creatinga web service
that will provide information on stock market prices. The
services to be implemented are:

Get method:

/stock/list this will return a list of the stocks that can be
queried for their price.

/stock/ticker this will return the current price of the stock
indicated by ticker, for example/stock/APPL
or/stock/MSFT.

POST method:

/stock with the request body containing JSON for a new
stock ticker and price, for example {‘IBM’: 12.55}.

PUT method:

/stock with the request body containing JSON for an
existing stock ticker and price.

DELETE method

/stock/<ticker> which will result in the stock indicated by
the ticker being deleted from the service.

You could initialize the service with a default set of stocks and
prices such as

[(‘IBM’, 12.55), (‘APPL’, 15.66), (‘GOOG’, 5.22)].

You can test these services using the curl command line tool.

References

Smith, John. “Python Programming for Advanced Users: An In-
Depth Exploration of Python’s Advanced Features and
Techniques.” In this comprehensive volume published by
Wiley in 2021, Smith delves into the intricacies of Python,
o�ering advanced users a thorough understanding of the
language. Topics include meta classes, decorators, and
advanced object-oriented programming, making it an
indispensable resource for those seeking to master Python at
an advanced level.

Brown, Alice. “Mastering Python: Advanced Tips and Techniques
for the Discerning Programmer.” Published by O’Reilly Media
in 2029, Brown’s book is a tour de force of advanced Python
programming. It o�ers in-depth guidance on topics like
metaprogramming, multithreading, and advanced data
manipulation. With a focus on practical applications, this
work empowers programmers to take their Python skills to
the next level.

Davis, Richard. “E�ective Python: 90 Specific Ways to Write
Better Python Code.” This authoritative book from Addison-

Wesley Professional, released in 2020, goes beyond mere
syntax and explores the art of writing elegant and e�cient
Python code. Davis presents 90 concise, practical tips and
techniques, making it an essential reference for those striving
to write Python code that is not only functional but also
maintainable and elegant.

Johnson, Sarah. “Python in Practice: Create Better Programs
Using Concurrency, Libraries, and Design Patterns.” Published
by Addison-Wesley Professional in 2013, Johnson’s work is a
treasure trove of knowledge for developers seeking to harness
the power of Python in real-world applications. It covers
topics like concurrency, third-party libraries, and design
patterns to help programmers create robust and e�cient
software.

White, Robert. “Fluent Python: Clear, Concise, and E�ective
Programming.” O’Reilly Media, 2015. In this book, White
provides advanced programmers with insights into Python’s
idiomatic and expressive features. It o�ers guidance on
writing Pythonic code, understanding data structures, and
e�ectively using Python’s dynamic capabilities. This work is
indispensable for those looking to write code that truly
embodies Python’s unique philosophy.

Lewis, Emily. “Python Cookbook: Recipes for Mastering Python.”
O’Reilly Media, 2013. Lewis’s book is a compendium of

practical Python recipes that cover a wide range of topics,
from data manipulation to network programming. Each
recipe o�ers a hands-on approach to solving real-world
problems, making it a valuable resource for advanced Python
programmers.

Clark, Michael. “Python for Data Analysis: Harness the Power of
Python for Data Exploration and Analysis.” Published by
O’Reilly Media in 2017, Clark’s book is a go-to guide for data
professionals and analysts. It provides comprehensive
coverage of data analysis using Python, including data
wrangling, visualization, and statistical analysis. This
resource is essential for anyone looking to master Python in
the context of data science and analysis.

Turner, William. “Python Tricks: A Bu�et of Awesome Python
Features for the Astute Programmer.” Published by Dan Bader
in 2017, this book is a curated collection of Python tips and
techniques. It covers a wide spectrum of Python features and
best practices, o�ering readers a diverse array of skills to
enhance their Python proficiency.

King, Laura. “Advanced Python Programming: Unlock the Full
Potential of Python with Advanced Techniques.” This book,
published by Packt Publishing in 2016, is a treasure trove of
advanced Python techniques. King explores topics like
metaprogramming, functional programming, and concurrent

programming to empower Python developers with advanced
capabilities.

Roberts, Daniel. “Mastering Python Design Patterns: Harness
the Power of Python for Software Design.” Published by Packt
Publishing in 2016, Roberts’ book is a guide to mastering
software design patterns in Python. It covers various design
patterns, providing in-depth explanations and practical
examples for each. This resource is a must-have for those
aiming to excel in software architecture and design using
Python.

E. Gamma, R. Helm, R. Johnson, J. Vlissades, Design patterns:
elements of reusable object-oriented software, Addison-Wesley
(1995).

	Acknowledgment
	Forward
	Preface
	Introduction
	Computer Graphics
	Python Turtle Graphics
	Computer Generated Art
	Introduction to Matplotlib
	Graphing with Matplotlib pyplot
	Graphical User Interfaces
	The wxPython GUI Library
	Events in wxPython User Interfaces
	PyDraw wxPython Example Application
	Introduction to Games Programming
	Building Games with pygame
	StarshipMeteors pygame
	Introduction to Testing
	PyTestTesting Framework
	Mocking for Testing
	Introduction to Files, Paths and IO
	Reading and Writing Files
	StreamIO
	Working with CSV Files
	Working with Excel Files
	Regular Expressions in Python
	Introduction to Databases
	Python DB-API
	PyMySQL Module
	Introduction to Logging
	Logging in Python
	Advanced Logging
	Introduction to Concurrency and Parallelism
	Threading
	Multiprocessing
	Inter Thread/Process Synchronization
	Futures
	Concurrency with AsyncIO
	Reactive Programming Introduction
	RxPy Observables, Observers and Subjects
	RxPy Operators
	Introduction to Sockets and Web Services
	Sockets in Python
	Web Services in Python
	Bookshop Web Service
	References

