

[image:]

Jarrel E.

Python Mastery Unleashed

Advanced Programming Techniques

First published by Indy Pub 2023

Copyright © 2023 by Jarrel E.

All rights reserved. No part of this publication may be reproduced,

stored or transmitted in any form or by any means, electronic,

mechanical, photocopying, recording, scanning, or otherwise

without written permission from the publisher. It is illegal to copy

this book, post it to a website, or distribute it by any other means

without permission.

Jarrel E. asserts the moral right to be identified as the author of

this work.

Jarrel E. has no responsibility for the persistence or accuracy of

URLs for external or third-party Internet Websites referred to in

this publication and does not guarantee that any content on such

Websites is, or will remain, accurate or appropriate.

First edition

[image:]

Contents

Acknowledgment

Forward

Preface

Introduction

Computer Graphics

Python Turtle Graphics

Computer Generated Art

Introduction to Matplotlib

Graphing with Matplotlib pyplot

Graphical User Interfaces

The wxPython GUI Library

Events in wxPython User Interfaces

PyDraw wxPython Example Application

Introduction to Games Programming

Building Games with pygame

StarshipMeteors pygame

Introduction to Testing

PyTestTesting Framework

Mocking for Testing

Introduction to Files, Paths and IO

Reading and Writing Files

StreamIO

Working with CSV Files

Working with Excel Files

Regular Expressions in Python

Introduction to Databases

Python DB-API

PyMySQL Module

Introduction to Logging

Logging in Python

Advanced Logging

Introduction to Concurrency and Parallelism

Threading

Multiprocessing

Inter Thread/Process Synchronization

Futures

Concurrency with AsyncIO

Reactive Programming Introduction

RxPy Observables, Observers and Subjects

RxPy Operators

Introduction to Sockets and Web Services

Sockets in Python

Web Services in Python

Bookshop Web Service

References

Acknowledgment

As the author, I stand at the forefront of this project, but it is

essential to recognize the collective e ort and support that

has been instrumental in bringing this book to fruition. The

world of Python programming is vast and ever-evolving, and

it is with the combined expertise and dedication of numerous

individuals that we present this comprehensive guide to

advanced Python techniques.

The Unsung Heroes: Editors and Reviewers

First and foremost, I extend my heartfelt gratitude to the

editorial team who diligently combed through the

manuscript, ensuring that every word was carefully placed,

every concept clearly explained, and every code example

meticulously tested. Their keen eye for detail and their

commitment to excellence have been indispensable in

crafting this book.

The Python Community The Python community is a vibrant and generous one, where

knowledge is freely shared and open-source projects flourish.

I want to express my gratitude to the Python community at

large, from developers to educators and enthusiasts, for

fostering an environment of continuous learning and

collaboration.

My Family and Supporters

I owe a profound debt of gratitude to my family and friends,

who supported me throughout the writing process. Their

patience, encouragement, and understanding were the pillars

upon which this endeavor was built.

Forward

In the ever-evolving world of technology, Python stands as a

beacon of innovation and e ciency. This book is dedicated to

those who have already embraced the fundamentals of

Python and are now poised to explore the deeper realms of

this versatile programming language.

The Power of Python Unveiled

Python is not just a language; it’s a tool for shaping the future

of computing. As we delve into the advanced techniques and

concepts within this book, you will find yourself equipped to

tackle challenges and create solutions that were previously

beyond your reach. Whether you are a professional developer

seeking to optimize your code, a data scientist diving deeper

into machine learning, or an enthusiast with a passion for

programming, this book is your gateway to Python

excellence.

The Journey Begins Within the pages of “Python Mastery Unleashed,” you will

embark on a journey that takes you from proficiency to

mastery. This book is designed to be your guiding light

through the intricate paths of advanced Python

programming. By the time you reach the final chapter, you

will have acquired the skills and knowledge necessary to

tackle complex projects, optimize your code, and explore

domains like data science, web development, and more.

What to Expect

This book is not merely a collection of code snippets; it’s a

comprehensive exploration of the art and science of Python

programming. I encourage you to approach this book with an

open mind and a willingness to learn. Python’s adaptability

and power are at your disposal, but it’s up to you to harness

its full potential. “Python Mastery Unleashed” will be your

trusted companion on this journey, providing insights and

guidance that can elevate your programming skills to new

heights.

Preface

It is with great pleasure and enthusiasm that I present to you

“Python Mastery Unleashed: Advanced Programming

Techniques.” This book is the culmination of a diligent e ort

to provide a comprehensive guide for individuals who aspire

to elevate their Python programming skills to an advanced

level. As a professional author with a profound passion for

Python, my mission is to empower you with the knowledge

and techniques required to produce professional-grade

Python applications.

Python has rapidly evolved from a beginner-friendly

language to a versatile and robust tool employed by

developers across the globe. Whether you are an experienced

programmer or someone just setting foot on the path of

Python, this book is meticulously crafted to cater to your

needs.

This book is replete with real-world examples, hands-on

exercises, and illuminating case studies designed to cement

your comprehension. Our intent is not merely to transform

you into a proficient Python programmer but to equip you with the capacity to surmount intricate programming

challenges with unwavering confidence.

Python’s journey into advanced programming territory may

be arduous, yet it is profoundly gratifying. We invite you to

interact with this book, explore the provided code, and

employ the acquired knowledge in your projects. Python is a

vast canvas for your programming ingenuity, and this book

shall provide you with the tools to craft your digital

masterpieces.

Thank you for entrusting us with your pursuit of knowledge

in “Python Mastery Unleashed: Advanced Programming

Techniques.” Let’s embark on this transformative journey

together, with the aim of emerging as true Python masters.

Introduc on

1.1 Introduction

I have heard many people over the years say that Python is an

easy language to lean and that Python is also a simple

language. To some extent both of these statements are true;

but only to some extent. While the core of the Python

language is easy to lean and relatively simple (in part thanks

to its consistency); the sheer richness of the language

constructs and flexibility available can be overwhelming. In

addition the Python environment, its Eco system, the range

of libraries available, the often competing options available

etc., can make moving to the next level daunting.

Once you have learned the core elements of the language such

as how classes and inheritance work, how functions work,

what are protocol sand Abstract Base Classes etc. Where do

you go next? The aim of this book is to delve into those next

steps. The book is organized into eight di erent topics:

1. Computer Graphics. The book covers Computer Graphics

and Computer Generated Art in Python as well as

Graphical User Interfaces and Graphing/ Charting via

MatPlotLib.

2. Games Programming. This topic is covered using the

pygame library.

3. Testing and Mocking. Testing is an important aspect of

any software development; this book introduces testing

in general and the PyTest module in detail. It also

considers mocking within testing including what and

when to mock.

4. File Input/Output. The book covers text file reading and

writing as well as reading and writing CSV and Excel files.

Although not strictly related to file input, regulator

expressions are included in this section as they can be

used to process textual data held in files.

5. Database Access. The book introduces databases and

relational database in particular. It then presents the

Python DB-API database access standard and one

implementation of this standard, the PyMySQL module

used to access a MySQL database.

6. Logging. An often missed topic is that of logging.The

book therefore introduces logging the need for logging,

what to log and what not to log as well as the Python

logging module.

7. Concurrency and Parallelism. The book provides

extensive coverage of concurrency topics including

Threads, Processes and inter thread or process

synchronization. It also presents Futures and AsyncIO.

8. Reactive Programming. This section of the book

introduces Reactive Programming using the PyRx

reactive programming library.

9. Network Programming. The book concludes by

introducing socket and web service communications in

Python.

Each section is introduced by a chapter providing the

background and key concepts of that topic. Subsequent

chapters then cover various aspects of the topic.

For example, the first topic covered is on Computer Graphics.

This section has an introductory chapter on Computer

Graphics in general. It then introduces the Turtle Graphics

Python library which can be used to generate a graphical

display.

The following chapter considers the subject of Computer

Generated Art and uses the Turtle Graphics library to

illustrate these ideas. Thus several examples are presented

that might be considered art. The chapter concludes by

presenting the well known Koch Snowflake and the

Mandelbrot Fractal set.

This is followed by a chapter presenting the MatPlotLib

library used for generating 2D and 3D charts and graphs (such

as a line chart, bar chart or scatter graph). The section

concludes with a chapter on Graphical User Interfaces (or

GUIs) using the wxpython library. This chapter explores what

we mean by a GUI and some of the alternatives available in

Python for creating a GUI.

Subsequent topics follow a similar pattern.

Each programming or library oriented chapter also includes

numerous sample programs that can be downloaded from the

GutHub repository and executed. These chapters also include

one or more end of chapter exercises(with sample solutions

also in the GutHub repository).

The topics within the book can be read mostly independently

of each other. This allows the reader to dip into subject areas

as and when required. For example, the File Input/Output

section and the Database Access section can be read

independently of each other (although in this case assessing

both technologies may be useful in selecting an appropriate

approach to adopt for the long term persistent storage of data

in a particular system).

Within each section there are usually dependencies, for

example it is necessary to understand the pygame library from the ‘Building Games with pygame’ introductory

chapter, before exploring the worked case study presented by

the chapter on the Star ship Meteors game. Similarly it is

necessary to have read the Threading and Multiprocessing

chapters before reading the Inter Thread/Process

Synchronization chapter.

Computer Graphics

Introduction to Computer Graphics

Computer Graphics are everywhere; they are on your TV, in

cinema adverts,the core of many films, on your tablet or

mobile phone and certainly on your PC or Mac as well as on

the dashboard of your car, on your smart watch and in

children’s electronic toys.

However what do we mean by the term Computer Graphics?

The term goes back to a time when many (most) computers

were purely textual in terms of their input and output and

very few computers could generate graphical displays let

alone handle input via such a display. However, in terms of

this book we take the term Computer Graphics to include the

creation of Graphical User Interfaces (or GUIs), graphs and

charts such as bar charts or line plots of data, graphics in

computer games (such as Space Invaders or Flight Simulator)

as well as the generation of 2D and 3D scenes or images.We

also use the term to include Computer Generated Art.

The availability of Computer Graphics is very important for

the huge acceptance of computer systems by non computer

scientists over the last 40 years. It is in part thanks to the

accessibility of computer systems via computer graphic

interfaces that almost everybody now uses some form of

computer system (whether that is a PC, a tablet, a mobile

phone or a smart TV).

A Graphical User Interface (GUI) can capture the essence of an

idea or a situation, often avoiding the need for a long passage

of text or textual commands. It is also because a picture can

paint a thousand words; as long as it is the right picture.

In many situations where the relationships between large

amounts of information must be conveyed, it is much easier

for the user to assimilate this graphically than textually.

Similarly, it is often easier to convey some meaning by

manipulating some system entities on screen, than by

combinations of text commands.

For example, a well chosen graph can make clear information

that is hard to determine from a table of the same data. In

turn an adventure style game can become engaging and

immersive with computer graphics which is in marked

contrast to the textual versions of the 1980s. This highlights

the advantages of a visual presentation compared to a purely

textual one.

Background

Every interactive software system has a Human Computer

Interface, whether it be a single text line system or an

advanced graphic display. It is the vehicle used by developers

for obtaining information from their user(s), and in turn,

every user has to face some form of computer interface in

order to perform any desired computer operation.

Historically computer systems did not have a Graphical User

Interface and rarely generated a graphical view. These

systems from the 60s, 70s and 80s typically focused on

numerical or data processing tasks. They were accessed via

green or grey screens on a text oriented terminal. There was

little or no opportunity for graphical output.

However, during this period various researchers at

laboratories such as Stanford, MIT, Bell Telephone Labs and

Xerox were looking at the possibilities that graphic systems

might o er to computers. Indeed even as far back as 1963

Ivan Sutherland showed that interactive computer graphics

were feasible with his Ph.D. thesis on the Sketchpad system.

The Graphical Computer Era Graphical computer displays and interactive graphical

interfaces became a common means of human–computer

interaction during the 1980s. Such interfaces can save a user

from the need to learn complex commands. They are less

likely to intimidate computer naives and can provide a large

amount of information quickly in a form which can be easily

assimilated by the user.

The widespread use of high quality graphical interfaces (such

as those provided by the Apple Macintosh and the early

Windows interface) led many computer users to expect such

interfaces to any software they use. Indeed these systems

paved the way for the type of interface that is now

omnipresent on PCs, Macs, Linux boxes, tablets and smart

phones etc. This graphical user interface is based on the

WIMP paradigm (Windows, Icons, Menus and Pointers)

which is now the prevalent type of graphical user interface in

use today.

The main advantage of any window-based system, and

particularly of a WIMP environment, is that it requires only a

small amount of user training. There is no need to learn

complex commands, as most operations are available either

as icons, operations on icons, user actions (such as swiping)

or from menu options, and are easy to use. (An icon is a small

graphic object that is usually symbolic of an operation or of a

larger entity such as an application program or a file). In general, WIMP based systems are simple to learn, intuitive to

use, easy to retain and straightforward to work with.

These WIMP systems are exemplified by the Apple Macintosh

interface (see Goldberg and Robson as well as Tesler), which

was influenced by the pioneering work done at the Palo Alto

Research Center on the Xerox Star Machine. It was, however,

the Macintosh which brought such interfaces to the mass

market, and first gained acceptance for them as tools for

business, home and industry.This interface transformed the

way in which humans expected to interact with their

computers, becoming a defacto standard,which forced other

manufacturers to provide similar interfaces on their own

machines, for example Microsoft Windows for the PC.

This type of interface can be augmented by providing direct

manipulation graphics. These are graphics which can be

grabbed and manipulated by the user, using a mouse, to

perform some operation or action. Icons are a simple version

of this, the “opening” of an icon causes either the associated

application to execute or the associated window to be

displayed.

Interactive and Non Interactive Graphics

Computer graphics can be broadly subdivided into two

categories:

Non Interactive Computer Graphics

Interactive Computer Graphics.

In Non Interactive Computer Graphics (aka Passive Computer

Graphics) an image is generated by a computer typically on a

computer screen; this image can be viewed by the user

(however they cannot interact with the image). Examples of

non-interactive graphics presented later in this book include

Computer Generated Art in which an image is generated using

the Python Turtle Graphics library.Such an image can viewed

by the user but not modified. Another example might be a

basic bar chart generated using MatPlotLib which presents

some set of data.

Interactive Computer Graphics by contrast, involve the user

interacting with the image displayed in the screen in some

way, this might be to modify the data being displayed or to

change they way in which the image is being rendered etc. It

is typified by interactive Graphical User Interfaces (GUIs) in

which a user interacts with menus, buttons, input field,

sliders,scroll bars etc. However, other visual displays can also

be interactive. For example, a slider could be used with a

MatplotLib chart. This display could present the number of

sales made on a particular date; as the slider is moved so the

data changes and the chart is modified to show di erent data

sets.

Another example is represented by all computer games which

are inherently interactive and most, if not all, update their

visual display in response to some user inputs. For example in

the classic flight simulator game, as the user moves the

joystick or mouse, the simulated plane moves accordingly

and the display presented to the user updates.

Pixels

A key concept for all computer graphics systems is the pixel.

Pixel was originally a word formed from combining and

shortening the words picture (or pix) and element.A pixel is a

cell on the computer screen. Each cell represents a dot on the

screen. The size of this dot or cell and the number of cells

available will vary depending upon the type, size and

resolution of the screen. For example, it was common for

early Windows PCs to have a 640 by 480 resolution display

(using a VGA graphics card). This relates to the number of

pixels in terms of the width and height. This meant that there

were 640 pixels across the screen with 480 rows of pixels

down the screen. By contrast today’s 4K TV displays have

4096 by 2160 pixels.

The size and number of pixels available a ects the quality of

the images presented to a user. With lower resolution displays

(with fewer individual pixels) the image may appear blocky or poorly defined; where as with a higher resolution it may

appear sharp and clear.

Each pixel can be referenced by its location in the display grid.

By filling a pixels on the screen with di erent colors various

images/displays can be created. For example, in the following

picture a single pixel has been filled at position 4 by 4:

[image:]

A sequence of pixels can form a line, a circle or any number of

di erent shapes. However, since the grid of pixels is based on

individual points, a diagonal line or a circle may need to

utilize multiple pixels which when zoomed may have jagged

edges. For example, the following picture shows part of a

circle on which we have zoomed in:

[image:]

Each pixel can have a color and a transparency associated

with it. The range of colors available depends on the display

system being used. For example, mono chrome displays only

allow black and white, where as a grey scale display only

allows various shades of grey to be displayed. On modern

systems it is usually possible to represent a wide range of

colors using the tradition RGB color codes (where R

represents Red, G represents Green and B represents Blue). In

this encoding solid Red is represented by a code such as [255,

0, 0] where as solid Green is represented by [0, 255, 0] and

solid Blue by [0, 0, 255]. Based on this idea various shades can

be represented by combination of these codes such as Orange

which might be represented by [255, 150, 50]. This is

illustrated below for a set of RGB colors using di erent red,

green and blue values:

[image:]

In addition it is possible to apply a transparency to a pixel.

This is used to indicate how solid the fill color should be. The

above grid illustrates the e ect of applying a 75%, 50% and

25% transparency to colors displayed using the Python

wxPython GUI library.In this library the transparency is

referred to as the alpha opaque value. It can have values in the range 0–255 where 0 is completely trans- parent and 255 is

completely solid.

Bit Map Versus Vector Graphics

There are two ways of generating an image/display across the

pixels on the screen. One approach is known as bit mapped

(or raster)graphics and the other is known as vector graphics.

In the bit mapped approach each pixel is mapped to the values

to be displayed to create the image. In the vector graphics

approach geometric shapes are described (such as lines and

points) and these are then rendered onto a display. Raster

graphics are simpler but vector graphics provide much more

flexibility and scalability.

Bu ering

One issue for interactive graphical displays is the ability to

change the display as smoothly and cleanly as possible. If a

display is jerky or seems to jump from one image to another,

then users will find it uncomfortable. It is therefore common

to drawn the next display on some in memory structure; often

referred to as a bu er. This bu er can then be rendered on

the display once the whole image has been created. For

example Turtle Graphics allows the user to define how many

changes should be made to the display before it is rendered (or drawn) on to the screen. This can significantly speed up

the performance of a graphic application.

In some cases systems will use two bu ers; often referred to

as double bu ering. In this approach one bu er is being

rendered or drawn onto the screen while the other bu er is

being updated. This can significantly improve the overall

performance of the system as modern computers can perform

calculations and generate data much faster than it can

typically be drawn onto a screen.

Python and Computer Graphics

In the remainder of this section of the book we will look at

generating computer graphics using the Python Turtle

Graphics library. We will also discuss using this library to

create Computer Generated Art. Following this we will explore

the MatPlotLib library used to generate charts and data plots

such as bar charts, scatter graphs, line plots and heat maps

etc. We will then explore the use of Python libraries to create

GUIs using menus, fields, tables etc.

Python Turtle Graphics

Introduction

Python is very well supported in terms of graphics libraries.

One of the most widely used graphics libraries is the Turtle

Graphics library introduced in this chapter. This is partly

because it is straight forward to use and partly because it is

provided by default with the Python environment (and this

you do not need to install any additional libraries to use it).

The chapter concludes by briefly considering a number of

other graphic libraries including PyOpen GL. The PyOpenGL

library can be used to create sophisticated 3D scenes.

The Turtle Graphics Library

The Turtle Module

This provides a library of features that allow what are known

as vector graphics to be created. Vector graphics refers to the

lines (or vectors) that can be drawn on the screen. The drawing area is often referred to as a drawing plane or

drawing board and has the idea of x, y coordinates.

The Turtle Graphics library is intended just as a basic drawing

tool; other libraries can be used for drawing two and three

dimensional graphs (such as MatPlotLib) but those tend to

focus on specific types of graphical displays.

The idea behind the Turtle module (and its name) derives

from the Logo programming language from the 60s and 70s

that was designed to introduce programming to children. It

had an on screen turtle that could be controlled by commands

such as forward (which would move the turtle forward), right

(which would turn the turtle by a certain number of degrees),

left (which turns the turtle left by a certain number of

degrees) etc. This idea has continued into the current Python

Turtle Graphics library where commands such as

turtle.forward(10) moves the turtle (or cursor as it is now)

forward 10 pixels etc. By combining together these apparently

simple commands, it is possible to create intricate and quiet

complex shapes.

Basic Turtle Graphics

Although the turtle module is built into Python 3 it is

necessary to import the module before you use it:

import turtle

There are in fact two ways of working with the turtle module;

one is to use the classes available with the library and the

other is to use a simpler set of functions that hide the classes

and objects.In this chapter we will focus on the set of

functions you can use to create drawings with the Turtle

Graphics library.

The first thing we will do is to set up the window we will use

for our drawings; the TurtleScreen class is the parent of all

screen implementations used for whatever operating system

you are running on.

If you are using the functions provided by the turtle module,

then the screen object is initialized as appropriate for your

operating system. This means that you can just focus on the

following functions to configure the layout/display such as

this screen can have a title, a size, a starting location etc.

The key functions are:

setup(width, height, startx, starty) Sets the size and

position of the main window/screen. The parameters are:

– width—if an integer, a size in pixels, if a float, a fraction of

the screen;

default is 50% of screen.

– height—if an integer, the height in pixels, if a float, a

fraction of the screen; default is 75% of screen.

– startx—if positive, starting position in pixels from the

left edge of the screen, if negative from the right edge, if

None, center window horizontally.

– starty—if positive, starting position in pixels from the

top edge of the screen, if negative from the bottom edge, if

None, center window vertically.

title(title string) sets the title of the screen/window.

exitonclick() shuts down the turtle graphics

screen/window when the use clicks on the screen.

bye() shuts down the turtle graphics screen/window.

done() starts the main event loop; this must be the last

statement in a turtle graphics program.

speed(speed)the drawing speed to use, the default is 3.

The higher the value the faster the drawing takes place,

values in the range 0–10 are accepted.

turtle.tracer(n = None) This can be used to batch updates

to the turtle graphics screen. It is very useful when a

drawing become large and complex. By setting the

number (n) to a large number (say 600) then 600

elements will be drawn in memory before the actual

screen is updated in one go; this can significantly speed

up the generation of for example, a fractal picture.When

called without arguments, returns the currently stored

value of n.

turtle.update() Perform an update of the turtle screen;

this should be called at the end of a program when

tracer() has been used as it will ensure that all elements

have been drawn even if the tracer threshold has not yet

been reached.

pencolor(color) used to set the color used to draw lines on

the screen; the color can be specified in numerous ways

including using named colors set as ‘red’, ‘blue’, ‘green’

or using the RGB color codes or by specifying the color

using hexadecimal numbers. For more information on the

named colors and RGB color codes to use see

https://www.tcl.tk/man/tcl/TkCmd/colors.htm. Note all

color methods use American spellings for example this

method is pencolor (not pen colour).

fillcolor(color) used to set the color to use to fill in closed

areas within drawn lines. Again note the spelling of color!

The following code snippet illustrates some of these

functions:

import turtle

set a title for your canvas window turtle.title('My

Turtle Animation')

set up the screen size (in pixels)

set the starting point of the turtle (0, 0)

turtle.setup(width=200, height=200, startx=0, starty=0)

sets the pen color to red turtle.pencolor('red')

...

Add this so that the window will close when clicked

on turtle.exitonclick()

We can now look at how to actually draw a shape onto the

screen.

The cursor on the screen has several properties; these include

the current drawing color of the pen that the cursor moves,

but also its current position (in the x, y coordinates of the

screen) and the direction it is currently facing. We have

already seen that you can control one of these properties

using the pencolor() method, other methods are used to

control the cursor (or turtle) and are presented below.

The direction in which the cursor is pointing can be altered

using several functions including:

right(angle) Turn cursor right by angle units.

left(angle) Turn the cursor left by angle units.

setheading(to_angle) Set the orientation of the cursor to

to_angle.

Where 0 is east, 90 is north, 180 is west and 270 is south. You

can move the cursor (and if the pen is down this will draw a

line) using:

forward(distance) move the cursor forward by the

specified distance in the direction that the cursor is

currently pointing. If the pen is down then draw a line.

backward(distance)move the cursor backward by

distance in the opposite direction that in which the cursor

is pointing.

And you can also explicitly position the cursor:

goto(x, y) move the cursor to the x, y location on the

screen specified; if the pen is down draw a line. You can

also usesteps and set position to do the same thing.

setx(x) sets the cursor’s x coordinate, leaves the y

coordinate unchanged.

sety(y) sets the cursor’s y coordinate, leaves the x

coordinate unchanged.

It is also possible to move the cursor without drawing by

modifying whether the pen is up or down:

penup() move the pen up—moving the cursor will no

longer draw a line.

pendown() move the pen down—moving the cursor will

now draw a line in the current pen color.

The size of the pen can also be controlled:

pensize(width) set the line thickness to width. The

method width() is an alias for this method.

It is also possible to draw a circle or a dot:

circle(radius, extent, steps) draws a circle using the given

radius.

The extent determines how much of the circle is drawn; if the

extent is not given then the whole circle is drawn.Steps

indicates the number of steps to be used to drawn the circle (it

can be used to draw regular polygons).

dot(size, color) draws a filled circle with the diameter of

size using the specified color.

You can now use some of the above methods to draw a shape

on the screen.For this first example, we will keep it very

simple, we will draw a simple square:

Draw a square

turtle.forward(50)

turtle.right(90)

turtle.forward(50)

turtle.right(90)

turtle.forward(50)

turtle.right(90)

turtle.forward(50)

turtle.right(90)

The above moves the cursor forward 50 pixels then turns 90°

before repeating these steps three times. The end result is

that a square of 50 50 pixels is drawn on the screen:

[image:]

Note that the cursor is displayed during drawing (this can be

turned o with turtle.hideturtle() as the cursor was originally

referred to as the turtle).

Drawing Shapes

Of course you do not need to just use fixed values for the

shapes you draw, you can use variables or calculate positions

based on expressions etc.

For example, the following program creates a sequences of

squares rotated around a central location to create an

engaging image:

import turtle

def setup():

""" Provide the config for the screen """ turtle.title('Multiple

SquaresAnimation') turtle.setup(100, 100, 0, 0)

turtle.hideturtle()

def draw_square(size):

""" Draw a squarein the currentdirection """

turtle.forward(size) turtle.right(90) turtle.forward(size)

turtle.right(90) turtle.forward(size) turtle.right(90)

turtle.forward(size)

setup()

for _ in range(0, 12):

draw_square(50)

Rotate the starting direction

turtle.right(120)

Add this so that the window will close when clickedon

turtle.exitonclick()

In this program two functions have been defined, one to

setup the screen or window with a title and a size and to turn

o the cursor display. The second function takes a size

parameter and uses that to draw a square. The main part of

the program then sets up the window and uses a for loop to

draw 12 squares of 50 pixels each by continuously rotating

120° between each square. Note that as we do not need to reference the loop variable we are using the ‘_’ format which

is considered an anonymous loop variable in Python.

The image generated by this program is shown below:

[image:]

Filling Shapes

It is also possible to fill in the area within a drawn shape. For

example, you might wish to fill in one of the squares we have

drawn as shown below:

[image:]

To do this we can use the begin_fill() and end_fill()

functions:

begin_fill() indicates that shapes should be filled with

the current fill col- our,this function should be called just

before drawing the shape to be filled.

end_fill() called after the shape to be filled has been

finished. This will cause the shape drawn since the last

call to begin_fill() to be filled using the current fill color.

filling() Return the current fill state (True if filling, False

if not).

The following program uses this (and the earlier

draw_square()function) to draw the above filled square:

turtle.title('Filled Square Example') turtle.setup(100, 100,

0, 0) turtle.hideturtle()

turtle.pencolor('red') turtle.fillcolor('yellow')

turtle.begin_fill()

draw_square(60)

turtle.end_fill()

turtle.done()

Other Graphics Libraries

Of course Turtle Graphics is not the only graphics option

available for Python; however other graphics libraries do not

come prepacked with Python and must be downloaded using

a tool such as Anaconda, PIP or PyCharm.

PyQtGraph. The PyQtGraph library is pure Python library

oriented towards mathematics, scientific and engineering

graphic applications as well as GUI applications. For more

information see http://www.pyqtgraph.org.

Pillow. Pillow is a Python imaging library (based on PIL

the Python Imaging library) that provides image

processing capabilities for use in Python. For more

information on Pillow see

https://pillow.readthedocs.io/en/stable.

Pyglet. pyglet is another windowing and multimedia

library for Python. See

https://bitbucket.org/pyglet/pyglet/wiki/Home.

3D Graphics

Although it is certainly possible for a developer to create

convincing 3D images using Turtle Graphics; it is not the

primary aim of the library. This means that there is no direct

support for creating 3D images other than the basic cursor

moving facilities and the programmers skill.

However, there are 3D graphics libraries available for

Python.One such library is Panda3D

(https://www.panda3d.org) while another is VPython

(https://vpython.org) while a third is pi3d

(https://pypi.org/project/pi3d). However we will briefly look

at the PyOpenGL library as this builds on the very widely used

OpenGL library.

PyOpenGL

PyOpenGL his an open source project that provides a set of

bindings (or wrappings around) the OpenGL library.OpenGL is the Open Graphics Library which is a cross language, cross

platform API for rendering 2D and 3D vector graphics.

OpenGL is used in a wide range of applications from games, to

virtual reality, through data and information visualization

systems to Computer Aided Design (CAD) systems. PyOpenGL

provides a set of Python functions that call out from Python

to the underlying OpenGL libraries. This makes it very easy to

create 3D vector based images in Python using the industry

standard OpenGL library. A very simple examples of an image

created using PyOpenGL is given below:

[image:]

Computer Generated Art

Creating Computer Art

Computer Art is defined as any art that uses a computer.

However, in the context of this book we mean it to be art that

is generated by a computer or more specifically a computer

program. The following example, illustrates how in a very few

lines of Python code, using the Turtle graphics library, you

can create images that might be considered to be computer

art.

The following image is generated by a recursive function that

draws a circle at a given x, y location of a specified size. This

function recursively calls itself by modifying the parameters

so that smaller and smaller circles are drawn at di erent

locations until the size of the circles goes below 20 pixels.

[image:]

The program used to generate this picture is given below for

reference:

import turtle

WIDTH = 640

HEIGHT = 360

def setup_window():

#Set up the window

turtle.title('Circles in My Mind')

turtle.setup(WIDTH, HEIGHT, 0, 0)

turtle.colormode(255) # Indicates RGB numbers will be in the

range 0 to 255

turtle.hideturtle() # Batch drawing to the screen for faster

rendering

turtle.tracer(2000) # Speed up drawing process

turtle.speed(10)

turtle.penup()

def draw_circle(x, y, radius, red=50, green=255, blue=10,

width=7):

""" Draw a circle at a specific x, y location.

Then draw four smaller circles recursively"""

colour = (red, green, blue)

Recursively drawn smaller circles

if radius > 50:

Calculatecolours and line width for smaller circles

if red < 216:

red = red + 33 green = green - 42 blue = blue + 10

width -= 1

else:

red = 0 green = 255

Calculate the radius for the smaller circles

new_radius = int(radius / 1.3)

Drawn four circles

draw_circle(int(x + new_radius), y, new_radius, red, green,

blue, width)

draw_circle(x - new_radius, y, new_radius, red, green,

blue, width)

draw_circle(x, int(y + new_radius), new_radius, red, green,

blue, width)

draw_circle(x, int(y - new_radius), new_radius, red, green,

blue, width)

#Draw the original circle turtle.goto(x, y)

turtle.color(colour)

turtle.width(width)

turtle.pendown()

turtle.circle(radius)

turtle.penup()

#Run the program print('Starting')

 setup_window()

 draw_circle(25,-100,200)

Ensure that all the drawingis rendered

turtle.update() print('Done')

turtle.done()

There are a few points to note about this program. It uses

recursion to draw the circles with smaller and smaller circles

being drawn until the radius of the circles falls below a certain

threshold (the termination point).

It also uses the turtle.tracer() function to speed up drawing

the picture as 2000 changes will be bu ered before the screen

is updated.

Finally, the colors used for the circles are changed at each

level of recession; a very simple approach is used so that the

Red, Green and Blue codes are changed resulting in di erent

color circles. Also a line width is used to reduce the size of the

circle outline to add more interest to the image

A Computer Art Generator As another example of how you can use Turtle graphics to

create computer art, the following program randomly

generates RGB colors to use for the lines being drawn which

gives the pictures more interest. It also allows the user to

input an angle to use when changing the direction in which

the line is drawn. As the drawing happens within a loop even

this simple change to the angle used to draw the lines can

generate very di erent pictures.

Lets play with some colours

import turtle

from random import randint

def get_input_angle():

""" Obtain input from user and convert to an int"""

message = 'Please provide an angle:'

value_as_string = input(message)

while not value_as_string.isnumeric(): print('The input must be

an integer!') value_as_string = input(message)

return int(value_as_string)

def generate_random_colour():

"""Generates an R,G,B values randomly in range

0 to 255 """

r = randint(0,

255)

g = randint(0,

255)

b = randint(0,

return r, g, b

255)

print('Set up Screen') turtle.title('Colourful pattern')

turtle.setup(640, 600) turtle.hideturtle()

turtle.bgcolor('black') # Set the background colour of the

screen

turtle.colormode(255) # IndicatesRGB numbers will be in the

range 0 to 255

turtle.speed(10)

angle = get_input_angle()

print('Start the drawing')

for i in range(0, 200): turtle.color(generate_random_colour())

turtle.forward(i)

turtle.right(angle)

print('Done')

turtle.done()

Some sample images generated from this program are given

below. The left most picture is generated by inputting an

angle of 38 degrees, the picture on the right uses an angle of

68 degrees and the bottom picture an angle of 98 degrees.

[image:]

The following pictures below use angles of 118, 138 and 168

degrees respectively.

[image:]

What is interesting about these images is how di erent each

is; even though they use exactly the same program. This

illustrates how algorithmic or computer generated art can be

as subtle and flexible as any other art form. It also illustrates

that even with such a process it is still up to the human to

determine which image (if any) is the most aesthetically

pleasing.

Fractals in Python

Within the arena of Computer Art fractals are a very well

known art form. Fractals are recurring patterns that are

calculated either using an iterative approach (such as a for

loop) or a recursive approach (when a function calls itself but

with modified parameters). One of the really interesting

features of fractals is that they exhibit the same pattern (or

nearly the same pattern)at successive levels of granularity.

That is, if you magnified a fractal image you would find that

the same pattern is being repeated at successively smaller and

smaller magnifications. This is known as expanding symmetry or unfolding symmetry; if this replication is

exactly the same at every scale, then it is called a ne self-

similar.

Fractals have their roots in the world of mathematics starting

in the 17th century, with the term fractal being coined in the

20th century by mathematical Benoit Mandelbrot in 1975.

One often cited description that Mandelbrot published to

describe geometric fractals is a rough or fragmented

geometric shape that can be split into parts,each of which is

(at least approximately) a reduced-size copy of the whole.

Since the later part of the 20th century fractals have been a

commonly used way of creating computer art. One example of

a fractal often used in computer art is the Koch snowflake,

while another is the Mandelbrot set. Both of these are used in

this chapter as examples to illustrate how Python and the

Turtle graphics library can be used to create fractal based art.

The Koch Snowflake

The Koch snowflake is a fractal that begins with equilateral

triangle and then replaces the middle third of every line

segment with a pair of line segments that form an equilateral

bump. This replacement can be performed to any depth

generating finer and finer grained (smaller and smaller)

triangles until the overall shape resembles a snow flake.

The following program can be used to generate a Koch

snowflake with di erent levels of recursion. The larger the

number of levels of recursion the more times each line

segment is dissected.

import turtle

Set up Constants

ANGLES = [60, -120, 60, 0] SIZE_OF_SNOWFLAKE = 300

def get_input_depth():

""" Obtain input from user and convert to an int"""

message = 'Please provide the depth (0 or a positive

interger):'

value_as_string = input(message)

while not value_as_string.isnumeric(): print('The input must be

an integer!') value_as_string = input(message)

return int(value_as_string)

def setup_screen(title, background='white', screen_size_x=640,

screen_size_y=320, tracer_size=800):

print('Set up Screen')

turtle.title(title) turtle.setup(screen_size_x, screen_size_y)

turtle.hideturtle()

turtle.penup()

turtle.backward(240)

Batch drawing to the screen for faster rendering

turtle.tracer(tracer_size)

turtle.bgcolor(background) # Set the background colour of the

screen

def draw_koch(size, depth):

if depth > 0:

for angle in ANGLES:

draw_koch(size / 3, depth - 1)

turtle.left(angle)

else:

turtle.forward(size)

depth = get_input_depth()

setup_screen('Koch Snowflake (depth ' + str(depth) + ')',

background='black',

screen_size_x=420, screen_size_y=420)

Set foreground colours

turtle.color('sky blue')

Ensure snowflake is centred turtle.penup()

turtle.setposition(-180,0) turtle.left(30) turtle.pendown()

Draw three sides of snowflake

for _ in range(3): draw_koch(SIZE_OF_SNOWFLAKE, depth)

turtle.right(120)

Ensure that all the drawing is rendered

turtle.update() print('Done') turtle.done()

Several di erent runs of the program are shown below with

the depth set at 0, 1, 3 and 7.

[image:]

Running the simple draw_koch() function with di erent

depths makes it easy to see the way in which each side of a

triangle can be dissected into a further triangle like shape.

This can be repeated to multiple depths giving a more

detailed structured in which the same shape is repeated again

and again.

Mandelbrot Set

Probably one of the most famous fractal images is based on

the Mandelbrot set. The Mandelbrot set is the set of complex

numbers c for which the function z * z + c does not diverge

when iterated from z = 0 for which the sequence of functions (func(0), func(func(0)) etc.) remains bounded by an absolute

value. The definition of the Mandelbrot set and its name is

down to the French mathematician Adrien Douady, who

named it as a tribute to the mathematician Benoit

Mandelbrot.

Mandelbrot set images may be created by sampling the

complex numbers and testing, for each sample point c,

whether the sequence func(0), func(func(0)) etc. ranges to

infinity (in practice this means that a test is made to see if it

leaves some predetermined bounded neighborhood of 0 after

a predetermined number of iterations). Treating the real and

imaginary parts of c as image coordinates on the complex

plane, pixels may then be colored according to how soon the

sequence crosses an arbitrarily chosen threshold, with a

special color (usually black) used for the values of c for which

the sequence has not crossed the threshold after the

predetermined number of iterations (this is necessary to

clearly distinguish the Mandelbrot set image from the image

of its complement).

The following image was generated for the Mandelbrot set

using Python and Turtle graphics.

[image:]

The program used to generate this image is given below:

for y in range(IMAGE_SIZE_Y):

zy = y * (MAX_Y - MIN_Y) / (IMAGE_SIZE_Y - 1) +

MIN_Y

for x in range(IMAGE_SIZE_X):

zx = x * (MAX_X - MIN_X) / (IMAGE_SIZE_Y - 1) +

MIN_X

z = zx + zy * 1j c = z

for i in range(MAX_ITERATIONS):

if abs(z) > 2.0:

break

z = z * z + c

turtle.color((i % 4 * 64, i % 8 * 32, i % 16 *

16))

turtle.setposition(x - SCREEN_OFFSET_X,

y - SCREEN_OFFSET_Y)

turtle.pendown()

turtle.dot(1)

turtle.penup()

Introduc on to Matplotlib

Introduction

Matplotlib is a Python graphing and plotting library that can

generate a variety of di erent types of graph or chart in a

variety of di erent formats. It can be used to generate line

charts, scatter graphs, heat maps, bar charts, pie charts and

3D plots. It can even support animations and interactive

displays.

An example of a graph generated using Matplotlib is given

below. This shows a line chart used to plot a simple sign

wave:

[image:]

Matplotlib is a very flexible and powerful graphing library. It

can support a variety of di erent Python graphics platforms

and operating system windowing environments. It can also

generate output graphics in a variety of di erent formats

including PNG, JPEG, SVG and PDF etc.

Matplotlib can be used on its own or in conjunction with other

libraries to provide a wide variety of facilities. One library that

is often used in conjunction with Matplotlib is NumPy which is a library often used in Data Science applications that

provides a variety of functions and data structures (such as n-

dimensional arrays) that can be very useful when processing

data for display within a chart.

However, Matplotlib does not come pre built into the Python

environment; it is an optional module which must be added to

your environment or IDE.

In this chapter we will introduce the Matplotlib library, its

architecture, the components that comprise a chart and the

pyplot API. The pyplot API is the simplest and most common

way in which a programmer interacts with Matplotlib. We will

then explore a variety of di erent types of chart and how they

can be created using Matplotlib, from simple line charts,

through scatter charts, to bar charts and pie charts. We will

finish by looking at a simple 3D chart.

Matplotlib

Matplotlib is a graph plotting library for Python. For simple

graphs Matplotlib is very easy to use, for example to create a

simple line graph for a set of x and y coordinates you can use

the matplotlib.pyplot.plot function:

import matplotlib.pyplot as pyplot

Plot a sequence of values

pyplot.plot([1, 0.25, 0.5, 2, 3, 3.75, 3.5])

Displaythe chart in a window

pyplot.show()

This very simple program generates the following graph:

[image:]

In this example, the plot() function takes a sequence of values

which will be treated as the y axis values; the x axis values are

implied by the position of the y values within the list. Thus as

the list has six elements in it the x axis has the range 0–6. In turn as the maximum value contained in the list is 3.75, then

the y axis ranges from 0 to 4.

Plot Components

Although they may seem simple, there are numerous

elements that comprise a Matplotlib graph or plot. These

elements can all be manipulated and modified

independently.It is therefore useful to be familiar with the

Matplotlib terminology associated with these elements, such

as ticks, legends, labels etc.

The elements that make up a plot are illustrated below:

[image:]

The diagram illustrates the following elements:

Axes An Axes is defined by the matplotlib.axes.Axes class.

It is used to maintain most of the elements of a figure

namely the X and Y Axis, the Ticks, the Line plots, any

text and any polygon shapes.

Title This is the title of the whole figure.

Ticks (Major and Minor) The Ticks are represented by the

class matplotlib.axis.Tick. A Tick is the mark on the Axis

indicating a new value. There can be Major ticks which are

larger and may be labeled. There are also minor ticks which

can be smaller (and may also be labeled).

Tick Labels (Major and Minor) This is a label on a Tick.

Axis The maplotlib.axis.Axis class defines an Axis

object(such as an X or Y axis) within a parent Axes

instance. It can have for matters used to format the labels

used for the major and minor ticks. It is also possible to

set the locations of the major and minor ticks.

Axis Labels (X, Y and in some cases Z) These are labels

used to describe the Axis.

Plot types such as line and scatter plots. Various types of

plots and graphs are supported by Matplotlib including

line plots, scatter graphs, bar charts and pie charts.

Grid This is an optional grid displayed behind a plot,

graph or chart. The grid can be displayed with a variety of

di erent line styles (such as solid or dashed lines), colors

and line widths.

Matplotlib Architecture

The Matplotlib library has a layered architecture that hides

much of the complexity associated with di erent windowing

systems and graphic outputs.This architecture has three main

layers,the Scripting Layer, the Artist Layer and the Back end

Layer. Each layer has specific responsibilities and

components. For example,the Back end is responsible for

reading and interacting with the graph or plot being

generated. In turn the Artist Layer is responsible for creating

the graph objects that will be rendered by the Back end Layer.

Finally the Scripting Layer is used by the developer to create

the graphs.

This architecture is illustrated below:

[image:]

Back end Layer

The Matplotlib back end layer handles the generation of

output to di erent target formats. Matplotlib itself can be

used in many di erent ways to generate many di erent

outputs.

Matplotlib can be used interactively, it can be embedded in an

application (or graphical user interface), it may be used as part of a batch application with plots being stored as PNG,

SVG, PDF or other images etc.

To support all of these use cases, Matplotlib can target

di erent outputs, and each of these capabilities is called a

back end; the “frontend” is the developer facing code. The

Back end Layer maintains all the di erent back ends and the

programmer can either use the default back end or select a

di erent back end as required.

The back end to be used can be set via the matplotlib.use()

function. For example, to set the back end to render

Postscript use: matplotlib.use(‘PS’) this is illustrated below:

import matplotlib

if 'matplotlib.backends' not in sys.modules:

matplotlib.use('PS')

import matplotlib.pyplot as pyplot

It should be noted that if you use the matplotlib.use()

function, this must be done before importing

matplotlib.pyplot. Calling matplotlib.use ()after

matplotlib.pyplot has been imported will have no e ect. Note

that the argument passed to the matplotlib.use() function is

case sensitive.

The default renderer is the ‘Agg’ which uses the Anti-Grain

Geometry C++ library to make a raster (pixel) image of the

figure. This produces high quality raster graphics based

images of the data plots.

The ‘Agg’ back end was chosen as the default back end as it

works on a broad selection of Linux systems as its supporting

requirements are quite small; other back ends may run on one

particular system, but may not work on another system. This

occurs if a particular system does not have all the

dependencies loaded that the specified Matplotlib back end

relies on.

[image:]

The Backend Layer can be divided into two categories:

User interface back ends (interactive) that support

various Python windowing systems such as wxWidgets

(discussed in the next chapter), Qt, TK etc.

Hard copy Back ends (non interactive) that support raster

and vector graphic outputs.

The User Interface and Hard copy back ends are built upon

common abstractions referred to as the Back end base classes.

The Artist Layer

The Artist layer provides the majority of the functionality that

you might consider to be what Matplotlib actually does; that

is the generation of the plots and graphs that are rendered/

displayed to the user (or output in a particular format).

[image:]

The artist layer is concerned with things such as the lines,

shapes, axis, and axes, text etc. that comprise a plot.

The classes used by the Artist Layer can be classified into one

of the following three groups; primitives, containers and

collections:

Primitives are classes used to represent graphical objects

that will be drawn on to a figures canvas.

Containers are objects that hold primitives. For example,

typically a figure would be instantiated and used to create

one or more Axes etc.

Collections are used to e ciently handle large numbers

of similar types of objects.

Although it is useful to be aware of these classes; in many

cases you will not need to work with them directly as the

pyplot APIhides much of the detail. However, it is possible to

work at the level of figures, axes, ticks etc. if required.

The Scripting Layer

The scripting layer is the developer facing interface that

simplifies the task of working with the other layers.

[image:]

Note that from the programmers point of view, the Scripting

Layer is represented by the pyplot module. Under the covers

pyplot uses module-level objects to track the state of the

data, handle drawing the graphs etc.

When imported pyplot selects either the default back end for

the system or the one that has been configured; for example

via the matplotlib.use() function.

It then calls a setup() function that:

creates a figure manager factory function, which when

called will create a new figure manager appropriate for

the selected back end,

prepares the drawing function that should be used with

the selected back end,

identifies the callable function that integrates with the

back end main loop function,

provides the module for the selected back end.

The pyplot interface simplifies interactions with the internal

wrappers by providing methods such as plot(), pie(), bar(),

title(), savefig(), draw() and figure() etc.

Most of the examples presented in the next chapter will use

the functions provided by the pyplot module to create the

required charts; thereby hiding the lower level details.

Graphing with Matplotlib pyplot

Introduction

In this chapter we will explore the Matplotlib pyplot API. This

is the most common way in which developers generate

di erent types of graphs or plots using Matplotlib.

The pyplot API

The purpose of the pyplot module and the API it presents is to

simplify the generation and manipulation of Matplotlib plots

and charts.As a whole the Matplotlib library tries to make

simple things easy and complex things possible. The primary

way in which it achieves the first of these aims is through the

pyplot API as this API has high level functions such as bar(),

plot(), scatter() and pie() that make it easy to create bar

charts, line plots, scatter graphs and pie charts.

One point to note about the functions provided by the pyplot

API is that they can often take very many parameters;

however most of these parameters will have default values

that in many situations will give you a reasonable default behavior/ default visual representation. You can therefore

ignore most of the parameters available until such time as

you actually need to do something di erent; at which point

you should refer to the Matplotlib documentation as this has

extensive material as well as numerous examples.

It is of course necessary to import the pyplot module;as it is a

module within the Matplotlib (e.g. matplotlib.pyplot) library.

It is often given an alias within a program to make it easier to

reference. Common alias for this module are pyplot or plt.

A typical import for the pyplot module is given below:

import matplotlib.pyplot as pyplot

The plyplotAPI can be used to

construct the plot,

configure labels and axis,

manage color and line styles,

handles events/allows plots to be interactive,

display(show) the plot.

We will see examples of using the pyplot API in the following

sections.

Line Graphs A Line Graph or Line Plot is a graph with the points on the

graph (often referred to as markers) connected by lines to

show how something changes in value as some set of values

(typically the x axis) changes; for example, over a series to

time intervals (also known as a time series). Time Series line

charts are typically drawn in chronological order; such charts

are known as run charts.

The following chart is an example of a run chart;it charts time

across the bottom (x axis) against speed (represented by the y

axis).

[image:]

The program used to generate this chart is given below:

import matplotlib.pyplot as pyplot

Set up the data

x = [0, 1, 2, 3, 4, 5, 6]

y = [0, 2, 6, 14, 30, 43, 75]

Set the axes headings pyplot.ylabel('Speed', fontsize=12)

pyplot.xlabel('Time', fontsize=12)

Set the title

pyplot.title("Speed v Time")

Plot and display the graph

Using blue circles for markers ('bo')

and a solid line ('-') pyplot.plot(x, y, 'bo-') pyplot.show()

The first thing that this program does is to import the

matplotlib.pyplot module and give it an alias of pyplot (as this

is a shorter name it makes the code easier to read).

Two lists of values are then created for the x and y

coordinates of each marker or plot point.

The graph itself is then configured with labels being provided

for the x and y axis (using the pyplot functions xlabel() and

ylabel()). The title of the graph is then set (again using a

pyplot function).

After this the x and y values are then plotted as a line chart on

the graph. This is done using the pyplot.plot() function. This

function can take a wide range of parameters, the only

compulsory parameters being the data used to define the plot

points. In the above example a third parameter is provided;

this is a string ‘bo-‘. This is a coded format string in that each

element of the string is meaningful to the pyplot.plot()

function. The elements of the string are:

b—this indicates the color to use when drawing the line;

in this case the letter ‘b’ indicates the color blue (in the

same way ‘r’ would indicate red and ‘g’ would indicate

green).

o—this indicates that each marker (each point being

plotted) should be represented by a circle. The lines

between the markers then create the line plot.

‘–’—This indicates the line style to use. A single dash

(’-’) indicates a solid line, where as a double dash (’–’)

indicates a dashed line.

Finally the program then uses the show() function to render

the figure on the screen; alternatively savefig() could have

been used to save the figure to a file.

Coded Format Strings

There are numerous options that can be provided via the

format string, the following tables summarises some of

these:

The following color abbreviations are supported by the

format string:C

[image:]

Di erent ways of representing the markers (points on the

graph) connected by the lines are also supported including:

[image:]

Finally, the format string supports di erent line styles:

[image:]

Some examples of formatting strings:

‘r’ red line with default markers and line style.

‘g-’ green solid line.

‘–’ dashed line with the default color and default

markers.

‘yo:’ yellow dotted line with circle markers.

Scatter Graph

A Scatter Graph or Scatter Plot is type of plot where individual

values are indicated using cartesian (or x and y) coordinates

to display values. Each value is indicated via a mark (such as a

circle or triangle)on the graph. They can be used to represent

values obtained for two di erent variables; one plotted on the

x axis and the other plotted on the y axis.

An example of a scatter chart with three sets of scatter values

is given below

[image:]

In this graph each dot represents the amount of time people

of di erent ages spend on three di erent activities.

The program that was used to generate the above graph is

shown below:

import matplotlib.pyplot as pyplot

Create data

riding = ((17, 18, 21, 22, 19, 21, 25, 22, 25, 24), (3, 6, 3.5,

4, 5, 6.3, 4.5, 5, 4.5, 4)) Other options available on the pyplot.scatter() function

swimming = ((17, 18, 20, 19, 22, 21, 23, 19, 21, 24), (8, 9, 7,

10, 7.5, 9, 8, 7, 8.5, 9))

sailing = ((31, 28, 29, 36, 27, 32, 34, 35, 33, 39), (4, 6.3, 6,

3, 5, 7.5, 2, 5, 7, 4))

Plot the data

pyplot.scatter(x=riding[0], y=riding[1], c='red', marker='o',

label='riding')

pyplot.scatter(x=swimming[0], y=swimming[1], c='green',

marker='^', label='swimming') pyplot.scatter(x=sailing[0],

y=sailing[1], c='blue', marker='*', label='sailing')

Configuregraph pyplot.xlabel('Age') pyplot.ylabel('Hours')

pyplot.title('Activities Scatter Graph') pyplot.legend()

Display the chart

pyplot.show()

In the above example the plot.scatter() function is used to

generate the scatter graph for the data defined by the riding,

swimming and sailing tuples.

The colors of the markers have been specified using the

named parameter c.

This parameter can take a string representing the name of a

color or a two dimensional array with a single row in which

each value in the row represents an RGB color code. The

marker Indicates the marker style such as ‘o’ for a circle, a ‘^’

for a triangle and ‘*’ for a star shape. The label is used in the

chart legend for the marker.

include:

alpha : indicates the alpha blending value, between 0

(transparent) and 1 (opaque).

linewidths : which is used to indicate the line width of the

marker edges.

edgecolors : indicates the color to use for the marker

edges if di erent from the fill color used for the marker

(indicates by the parameter‘c’).

When to Use Scatter Graphs

A useful question to consider is when should a scatter plot be

used? In general scatter plats are used when it is necessary to

show the relationship between two variables. Scatter plots are

sometimes called correlation plots because they show how

two variables are correlated.

In many cases a trend can be discerned between the points

plotted on a scatter chart (although there may be outlying

values). To help visualize the trend it can be useful to draw a

trend line along with the scatter graph. The trend line helps to

make the relationship of the scatter plots to the general trend

clearer.

The following chart represents a set of values as a scatter

graph and draws the trend line of this scatter graph. As can be seen some values are closer to the trend line than others.

[image:]

The trend line has been created in this case using the numpy

function polyfit().

The polyfit() function performs a least squares polynomial fit

for the data it is given. A poly1d class is then created based on

the array returned by polyfit(). This class is a one-

dimensional polynomial class. It is a convenience class, used

to encapsulate “natural” operations on polynomials.The poly1d object is then used to generate a set of values for use

with the set of x values for the function py- plot.plot().

import numpy as np

import matplotlib.pyplot as pyplot

x = (5, 5.5, 6, 6.5, 7, 8, 9, 10)

y = (120, 115, 100, 112, 80, 85, 69, 65)

Generate the scatter plot

pyplot.scatter(x, y)

Generate the trend line

z = np.polyfit(x, y, 1) p = np.poly1d(z) pyplot.plot(x, p(x),

'r')

Display the figure

pyplot.show()

Pie Charts

A Pie Chart is a type of graph in which a circle is divided into

sectors (or wedges) that each represent a proportion of the

whole. A wedge of the circle represents a category’s

contribution to the overall total. As such the graph resembles

a pie that has been cut into di erent sized slices.

Typically, the di erent sectors of the pie chart are presented

in di erent colors and are arranged clockwise around the

chart in order of magnitude. However, if there is a slice that

does not contain a unique category of data but summarises several, for example “other types” or “other answers”, then

even if it is not the smallest category, it is usual to display it

last in order that it does not detract from the named

categories of interest.

The following chart illustrates a pie chart used to represent

programming language usage within a particular

organization.

[image:]

The pie chart is created using the pyplot.pie() function.

import matplotlib.pyplot as pyplot

labels = ('Python','Java','Scala','C#')

sizes = [45, 30, 15, 10]

pyplot.pie(sizes, labels=labels, autopct='%1.f%%',

counterclock=False, startangle=90)

pyplot.show()

The pyplot.pie() function takes several parameters, most of

which are optional. The only required parameter is the first

one that provides the values to be used for the wedge or

segment sizes.The following optional parameters are used in

the above example:

The labels parameter is an optional parameter that can

take a sequence of strings that are used to provide labels

for each wedge.

The auto pct parameter takes a string (or function) to be

used to format the numeric values used with each wedge.

The counterclockwise parameter. By default wedges are

plotted counter clockwise in pyplot and so to ensure that

the layout is more like the traditional clockwise approach

the counter clock parameter is set to False.

The start angle parameter. The starting angle has also

been moved 90° using the start angle parameter so that

the first segment starts at the top of the chart.

Expanding Segments

It can be useful to emphasis a particular segment of the pie

chart by exploding it; that is separating it out from the rest of

the pie chart. This can be done using the explode parameter of

the pie() function that takes a sequence of values indicating

how much a segment should be exploded by.

The visual impact of the pie chart can also be enhanced in this

case by adding a shadow to the segments using the named

shadow boolean parameter. The e ect of these are shown

below:

[image:]

The program that generated this modified chart is given

below for reference:

import matplotlib.pyplot as pyplot

labels = ('Python','Java','Scala','C#')

sizes = [45, 30, 15, 10]

only "explode" the 1st slice (i.e. 'Python')

explode = (0.1, 0, 0, 0)

pyplot.pie(sizes, explode=explode, labels=labels,

autopct='%1.f%%', shadow=True, counterclock=False,

startangle=90)

pyplot.show()

When to Use Pie Charts

It is useful to consider what data can be/should be presented

using a pie chart. In general pie charts are useful for

displaying data that can be classified into nominal or ordinal

categories. Nominal data is categorized according to

descriptive or qualitative information such as program

languages, type of car, country of birth etc. Ordinal data is

similar but the categories can also be ranked,for example in a

survey people may be asked to say whether they classed

something as very poor, poor, fair, good, very good.

Pie charts can also be used to show percentage or

proportional data and usually the percentage represented by

each category is provided next to the corresponding slice of

pie.

Pie charts are also typically limited to presenting data for six

or less categories. When there are more categories it is

di cult for the eye to distinguish between the relative sizes

of the di erent sectors and so the chart becomes di cult to

interpret.

Bar Charts

A Bar Chart is a type of chart or graph that is used to present

di erent discrete categories of data. The data is usually

presented vertically although in some cases horizontal bar

charts may be used. Each category is represented by a bar

whose height (or length) represents the data for that

category.

Because it is easy to interpret bar charts, and how each

category relates to another, they are one of the most

commonly used types of chart. There are also several

di erent common variations such as grouped bar charts and

stacked bar charts.

The following is an example of a typical bar chart. Five

categories of programming languages are presented along

the x axis while the y axis indicates percentage usage. Each

bar then represents the usage percentage associated with

each programming language.

[image:]

The program used to generate the above figure is given below:

import matplotlib.pyplot as pyplot

Set up the data

labels = ('Python','Scala','C#','Java','PHP')

index = (1, 2, 3, 4, 5) # provideslocations on x axis sizes=

[45, 10, 15, 30, 22]

Set up the bar chart

pyplot.bar(index, sizes, tick_label=labels)

Configure the layout pyplot.ylabel('Usage')

pyplot.xlabel('Programming Languages')

Display the chart

pyplot.show()

The chart is constructed such that the lengths of the di erent

bars are proportional to the size of the category they

represent. The x-axis represents the di erent categories and

so has no scale. In order to emphasise the fact that the

categories are discrete, a gap is left between the bars on the

x-axis. The y-axis does have a scale and this indicates the

units of measurement.

Horizontal Bar Charts

Bar charts are normally drawn so that the bars are vertical

which means that the taller the bar, the larger the category.

However, it is also possible to draw bar charts so that the bars

are horizontal which means that the longer the bar, the larger

the category. This is a particularly e ective way of presenting

a large number of di erent categories when there is

insu cient space to fit all the columns required for a vertical

bar chart across the page.

In Matplotlib the pyplot.barh() function can be used to

generate a horizontal bar chart:

[image:]

In this case the only line of code to change from the previous

example is:

pyplot.barh(x_values, sizes, tick_label = labels)

Colored Bars

It is also common to color di erent bars in the chart in

di erent colours or using di erent shades. This can help to

distinguish one bar from another. An example is given below:

[image:]

The color to be used for each category can be provided via the

color parameter to the bar() (and barh()) function.This is a

sequence of the colors to apply. For example, the above

colored bar chart can be generated using:

pyplot.bar(x_values, sizes, tick_label=labels, color=('red',

'green', 'blue', 'yellow', 'orange'))

Stacked Bar Charts Bar Charts can also be stacked. This can be a way of showing

total values (and what contributes to those total values)

across several categories. That is, it is a way of viewing overall

totals, for several di erent categories based on how di erent

elements contribute to those totals.

Di erent colors are used for the di erent sub-groups that

contribute to the overall bar. In such cases, a legend or key is

usually provided to indicate what sub-group each of the

shadings/colors represent. The legend can be placed in the

plot area or may be located below the chart.

For example, in the following chart the total usage of a

particular programming language is composed of its use in

games and web development as well as data science analytics.

[image:]

From this figure we can see how much each use of a

programming language contributes to the overall usage of

that language. The program that generated this chart is given

below:

import matplotlib.pyplot as pyplot

Set up the data

labels = ('Python', 'Scala', 'C#', 'Java', 'PHP')

index = (1, 2, 3, 4, 5) web_usage = [20, 2, 5, 10, 14]

data_science_usage = [15, 8, 5, 15, 2] games_usage = [10, 1, 5,

5, 4]

Set up the bar chart

pyplot.bar(index, web_usage,tick_label=labels, label='web')

pyplot.bar(index, data_science_usage, tick_label=labels,

label='data science', bottom=web_usage)

web_and_games_usage = [web_usage[i] + data_science_usage[i]

for i in range(0,len(web_usage))] pyplot.bar(index, games_usage,

tick_label=labels, label='games', bottom=web_and_games_usage)

Configurethe layout pyplot.ylabel('Usage')

pyplot.xlabel('Programming Languages') pyplot.legend()

Display the chart

pyplot.show()

One thing to note from this example is that after the first set

of values are added using the pyplot.bar()function, it is

necessary to specify the bottom locations for the next set of

bars using the bottom parameter. We can do this just using

the values already used for web_usage for the second bar

chart; however for the third bar chart we must add the values

used for web_usage and data_- science_usage together (in

this case using a for list comprehension).

Grouped Bar Charts

Finally, Grouped Bar Charts are a way of showing information

about di erent sub-groups of the main categories. In such

cases, a legend or key is usually provided to indicate what

sub-group each of the shadings/colors represent. The legend can be placed in the plot area or may be located below the

chart.

For a particular category separate bar charts are drawn for

each of the subgroups. For example, in the following chart the

results obtained for two sets of teams across a series of lab

exercises are displayed. Thus each team has a bar for lab1,

lab2, lab3 etc. A space is left between each category to make it

easier to compare the sub categories.

The following program generates the grouped bar chart for

the lab exercises example:

import matplotlib.pyplot as pyplot

BAR_WIDTH = 0.35

set up groupedbar charts teama_results = (60, 75, 56, 62, 58)

teamb_results = (55, 68, 80, 73, 55)

Set up the index for each bar

index_teama = (1, 2, 3, 4, 5)

index_teamb = [i + BAR_WIDTH for i in index_teama]

Determine the mid point for the ticks

ticks = [i + BAR_WIDTH / 2 for i in index_teama]

tick_labels = ('Lab 1', 'Lab 2', 'Lab 3', 'Lab 4', 'Lab 5')

Plot the bar charts

pyplot.bar(index_teama, teama_results, BAR_WIDTH, color='b',

label='Team A')

pyplot.bar(index_teamb, teamb_results, BAR_WIDTH, color='g',

label='Team B')

Set up the graph pyplot.xlabel('Labs') pyplot.ylabel('Scores')

pyplot.title('Scores by Lab') pyplot.xticks(ticks, tick_labels)

pyplot.legend()

Display the graph

pyplot.show()

Notice in the above program that it has been necessary to

calculate the index for the second team as we want the bars

presented next to each other. Thus the index for the teams

includes the width of the bar for each index point, thus the

first bar is at index position 1.35, the second at index position

2.35 etc. Finally the tick positions must therefore be between

the two bars and thus is calculated by taking into account the

bar widths.

This program generates the following grouped bar chart:

[image:]

Figure sand Subplots

A Matplotlib figure is the object that contains all the graphical

elements displayed on a plot. That is the axes, the legend, the

title as well as the line plot or bar chart itself. It thus

represents the overall window or page and is the top, out

graphical component.

In many cases the figure is implicit as the developer interacts

with the pyplot API; however the figure can be accessed

directly if required.

Thematplotlib.pyplot.figure() function generates a figure

object. This function returns a matplotlib.figure.Figure object.

It is then possible to interact directly with the figure object.

For example it is possible to add axes to the figure, to add sub

plots to a graph etc.

Working directly with the figure is necessary if you want to

add multiple sub- plots to a figure. This can be useful if what

is required is to be able to compare di erent views of the

same data side by side. Each subplot has its own axes which

can coexist within the figure.

One or more subplots can be added to a figure using the

figure.addsubplot() method. This method adds an Axes to the

figure as one of a set of one or more subplots. A subplot can be

added using a 3-digit integer(or three separate integers)

describing the position of the subplot.The digits represent the

number of rows, columns and the index of the sub plot within

the resulting matrix.

Thus 2, 2, 1 (and 221) all indicate that the subplot will take the

1st index within a two by two grid of plots. In turn 2, 2, 3 (223)

indicates that the sub plot will be at index 3 which will be row 2 and column 1 within the 2 by 2 grid of plots. Where as 2, 2, 4

(or 224) indicates that the plot should be added as at index 4

or the fourth subplot within the grid (so position 2 by 2) etc.

For example, the following figure illustrates four subplots

presented within a single figure. Each subplot is added via the

figure.add_subplot() method.

[image:]

This figure is generated by the following program:

import matplotlib.pyplot as pyplot

t = range(0,20)

s = range(30,10, -1)

Set up the grid of subplots to be 2 by 2

grid_size='22'

Initialize a Figure

figure = pyplot.figure()

Add first subplot

position = grid_size + '1'

print('Adding first subplot to position', position) axis1 =

figure.add_subplot(position) axis1.set(title='subplot(2,2,1)')

axis1.plot(t, s)

Add second subplot

position = grid_size + '2'

print('Adding second subplot to position', position) axis2 =

figure.add_subplot(position) axis2.set(title='subplot(2,2,2)')

axis2.plot(t, s, 'r-')

Add third subplot

position = grid_size + '3'

print('Adding third subplot to position', position) axis3 =

figure.add_subplot(position) axis3.set(title='subplot(2,2,3)')

axis3.plot(t, s, 'g-')

Add fourth subplot

position = grid_size + '4'

print('Adding fourth subplot to position', position) axis4 =

figure.add_subplot(position) axis4.set(title='subplot(2,2,4)')

axis4.plot(t, s, 'y-')

Display the chart

pyplot.show()

The console output from this program is given below:

Adding first subplot to position221

Adding second subplot to position222

Adding third subplot to position223

Adding fourth subplot to position224

Graphs

A three dimensional graph is used to plot the relationships

between three sets of values(instead of the two used in the

examples presented so far in this chapter). In a three

dimensional graph as well as the x and y axis there is also a z

axis.

The following program creates a simple 3D graph using two

sets of values generated using the numpy range function.

These are then converted into a coordinate matrices using the

numpy meshgrid() function. The z axis values are created

using the numpy sin() function. The 3D graph surface is

plotted using the plot_surface() function of the futures axes

object. This takes the x, y and z coordinates. The function is

also given a color map to use when rendering the surface (in

this case the Matplotlib cool to warm color map is used).

import matplotlib.pyplot as pyplot

Import matplotlib colour map

from matplotlib import cm as colourmap

Required for £D Projections

from mpl_toolkits.mplot3d import Axes3D

Provide access to numpy functions

import numpy as np

Make the data to be displayed x_values = np.arange(-6, 6, 0.3)

y_values = np.arange(-6, 6, 0.3)

Generate coordinate matrices from coordinate vectors

x_values, y_values= np.meshgrid(x_values, y_values)

Generate Z valuesas sin of x plus y values

z_values = np.sin(x_values + y_values)

Obtain the figure object

figure = pyplot.figure()

Get the axes object for the 3D graph

axes = figure.gca(projection='3d')

Plot the surface.

surf = axes.plot_surface(x_values, y_values, z_values,

cmap=colourmap.coolwarm)

Add a color bar which maps values to colors.

figure.colorbar(surf)

Add labels to the graph pyplot.title("3D Graph")

axes.set_ylabel('y values', fontsize=8) axes.set_xlabel('x

values', fontsize=8) axes.set_zlabel('z values', fontsize=8)

Display the graph

pyplot.show()

This program generates the following 3D graph:

[image:]

One point to note about three dimensional graphs is that they

are not universally accepted as being a good way to present

data. One of the maxims of data visualization is keep it

simple/keep it clean. Many consider that a three dimensional

chart does not do this and that it can be di cult to see what is

really being shown or that it can be hard to interpret the data

appropriately. For example, in the above chart what are the

values associated with any of the peaks? This is di cult to

determine as it is hard to see where the peaks are relative to

the X, Y and Z axis. Many consider such 3D charts to be eye

candy; pretty to look at but not providing much information.

As such the use of a 3D chart should be minimized and only

used when actually necessary.

Graphical User Interfaces

A Graphical User Interface can capture the essence of an idea

or a situation, often avoiding the need for a long passage of

text. Such interfaces can save a user from the need to learn

complex commands. They are less likely to intimidate

computer users and can provide a large amount of

information quickly in a form which can be easily assimilated

by the user.

The widespread use of high quality graphical interfaces has

led many computer users to expect such interfaces to any

software they use. Most programming languages either

incorporate a Graphical User Interface (GUI) library or have

third party libraries available.

Python is of course a cross platform programming language

and this brings in additional complexities as the underlying

operating system may provide di erent windowing facilities

depending upon whether the program is running on Unix,

Linux, Mac OS or Windows operating systems.

In this chapter we will first introduce what we mean by a GUI

and by WIMP based UIs in particular. We will then consider

the range of libraries available for Python before selecting

one to use. This chapter will then describe how to create rich

client graphical displays(desktop application)using one of

these GUI libraries. Thus in this chapter we consider how

windows, buttons, text fields and labels etc. are created,added

to windows, positioned and organized.

GUIs and WIMPS

GUIs (Graphical User Interfaces) and WIMP (Windows, Icons,

Mice and Pop-up Menus) style interfaces have been available

within computer systems for many years but they are still one

of the most significant developments to have occurred. These

interfaces were originally developed out of a desire to address

many of the perceived weaknesses of purely textual

interfaces.

The textual interface to an operating system was typified by a

peremptory prompt. In Unix/Linux systems for example, the

prompt is often merely a single character such as %, > or $,

which can be intimidating. This is true even for experienced

computer users if they are not familiar with the Unix/Linux

family of operating systems.

For example, a user wishing to copy a file from one directory

to another might have to type something like:

> cp file.pdf ~otheruser/projdir/srcdir/newfile.pdf

This long sequence needs to be entered with no mistakes in

order to be accepted. Any error in this command will cause

the system to generate an error message which might or

might not be enlightening. Even where systems attempt to be

more “user friendly’’ through features like command

histories, much typing of arrow keys and file names is

typically needed.

The main issue on both input and output is one of bandwidth.

For example, in situations where the relationships between

large amounts of information must be described, it is much

easier to assimilate this if output is displayed graphically than

if it is displayed as a tables of figures. On input, combinations

of mouse actions can be given a meaning that could otherwise

only be conveyed by several lines of text.

WIMP stands for Windows (or Window Managers), Icons,

Mice and Pop-up menus. WIMP interfaces allow the user to

overcome at least some of the weaknesses of their textual

counterparts—it is possible to provide a pictorial image of the

operating system which can be based on a concept the user can relate to, menus can be used instead of textual commands

and information in general can be displayed graphically.

The fundamental concepts presented via a WIMP interface

were originally developed at XEROX’s Palo Alto Research

Center and used on the Xerox Star machine, but gained much

wider acceptance through first the Apple Macintosh and then

IBM PC implementations of WIMP interfaces.

Most WIMP style environments use a desktop analogy

(although this is less true of mobile devices such as phones

and tablets):

the whole screen represents a working surface (a

desktop),

graphic windows that can overlap represent sheets of

paper on that desktop,

graphic objects are used for specific concepts, for

example filing cabinets for disks or a waste bin for file

disposal (these could be regarded as desk accessories),

various application programs are displayed on the screen,

these stand for tools that you might use on your desktop.

In order to interact with this display, the WIMP user is

provided with a mouse (or alight pen or a touch sensitive

screen), which can be used to select icons and menus or to

manipulate windows.

The software basis of any WIMP style environment is the

window manager. It controls the multiple, possibly

overlapping windows and icons displayed on the screen. It

also handles the transfer of information about events which

occur in those windows to the appropriate application and

generates the various menus and prompts used.

A window is an area of the graphic screen in which a page or

piece of a page of information may be displayed; it may

display text, graphics or a combination of both. These

windows may be overlapping,and associated with the same

process, or they may be associated with separate processes.

Windows can generally be created, opened, closed, moved

and resized.

An icon is a small graphic object that is usually symbolic of an

operation or of a larger entity such as an application program

or a file. The opening of an icon causes either the associated

application to execute or the associated window to be

displayed.

At the heart of the users ability to interact with such WIMP

based programs is the event loop. This loop listens for events

such as the user clicking a button or selecting a menu item or

entering a text field. When such an event occurs it triggers the associated behavior (such as running a function linked with a

button).

Windowing Frameworks for Python

Python is a cross platform programming language. As such

Python programs can be written on one platform (such as a

Linux box) and then run on that platform or another

operating system platform(such as Windows or Mac OS). This

can however generate issues for libraries that need to be

available across multiple operating system platforms. The

area of GUIs is particularly an issue as a library written to

exploit features available in the Microsoft Windows system

may not be available (or may look di erent) on Mac OS or

Linux systems.

Each operating system that Python runs on may have one or

more windowing systems written for it and these systems

may or may not be available on other operating systems. This

makes the job of providing a GUI library for Python that much

more di cult.

Developers of Python GUIs have taken one of two approaches

to handle this:

One approach is to write a wrapper that abstracts the

underlying GUI facilities so that the developer works at a

level above a specific windowing system’s facilities. The

Python library then maps (as best it can) the facilities to

the underlying system that is currently being used.

The other approach is to provide a closer wrapping to a

particular set of facilities on the underlying GUI system

and to only target systems that support those facilities.

Some of the libraries available for Python are listed below and

have been categorized into platform-independent libraries

and platform specific libraries:

Platform-Independent GUI Libraries

Tkinter. This is the standard built-in Python GUI

library.It is built on top of the Tcl/Tk widget set that has

been around for very many years for many di erent

operating systems. Tcl stands for Tool Command

Language while Tk is the graphical user interface toolkit

for Tcl.

wxPython. wxWidgets is a free, highly portable GUI

library. Its is written in C++ and it can provide a native

look and feel on operating systems such as Windows, Mac

OS, Linux etc.wxPython is a set of Python bindings for

wxWidgets. This is the library that we will be using in this

chapter.

PyQT or PySide both of these libraries wrap the Qt toolkit

facilities. Qt is a cross platform software development

system for the implementation of GUIs and applications.

Platform-Specific GUI Libraries

PyObjc is a Mac OS specific library that provides an

Objective-C bridge too the Apple Mac Cocoa GUI libraries.

PythonWin provides a set of wrappings around the

Microsoft Windows foundation classes and can be used to

create Windows based GUIs.

The wxPython GUI Library

The wxPython Library

The wxPython library is a cross platform GUI library (or

toolkit) for Python. It allows programmers to develop highly

graphical user interfaces for their programs using common

concepts such as menu bars, menus, buttons, fields, panels

and frames.

In wxPython all the elements of a GUI are contained within

top level windows such as a wx.Frame or a wx.Dialog. These

windows contain graphical components known as widgets or

controls. These widgets/controls may be grouped together

into Panels (which may or may not have a visible

representation).

Thus in wxPython we might construct a GUI from:

Frames which provide the basic structure for a window:

borders, a label and some basic functionality (e.g.

resizing).

Dialogs which are like Frames but provide fewer border

controls.

Widgets/Controls that are graphical objects displayed in a

frame. Some other languages refer to them as UI

components. Examples of widgets are buttons,

checkboxes, selection lists, labels and text fields.

Containers are component that are made up of one or

more other components (or containers). All the

components within a container (such as a panel) can be

treated as a single entity.

Thus a GUI is constructed hierarchically from a set of widgets,

containers and one or more Frames (or in the case of a pop up

dialog then Dialogs). This is illustrated below for a window

containing several panels and widgets:

[image:]

Windows such as Frames and Dialogs have a component

hierarchy that is used (amongst other things) to determine

how and when elements of the window are drawn and

redrawn. The component hierarchy is rooted with the frame,

within which components and containers can be added.

The above figure illustrates a component hierarchy for a

frame, with two container Panels and a few basic widgets/ui

components held within the Panels. Note that a panel can

contain another sub panel with di erent widgets in.

wxPython Modules

The wxPython library is comprised of many di erent

modules. These modules provide di erent features from the

core wx module to the html oriented wx.html and wx.html2

modules. These modules include:

wx which holds the core widgets and classes in the wx

library.

wx.adv that provides less commonly used or more

advanced widgets and classes.

wx.grid contains widgets and classes supporting the

display and editing of tabular data.

wx.richtext consists of widgets and classes used for

displaying multiple text styles and images.

wx.html comprises widgets and supporting classes for a

generic html renderer.

wx.html2 provides further widget and supporting classes

for a native html renderer, with CSS and javascript

support.

Windows as Objects

In wxPython, Frames and Dialogs as well as their contents are

instances of appropriate classes (such as Frame, Dialog,

Panel, Button or Static Text). Thus when you create a window,

you create an object that knows how to display itself on the

computer screen. You must tell it what to display and then tell

it to show its contents to the user.

You should bear the following points in mind during your

reading of this chapter; they will help you understand what

you are required to do:

You create a window by instantiating a Frame or Dialog

object.

You define what the window displays by creating a widget

that has an appropriate parent component. This adds the

widget to a container, such as a type of panel or a frame.

You can send messages to the window to change its state,

perform an operation, and display a graphic object.

The window, or components within the window, can send

messages to other objects in response to user (or

program)actions.

Everything displayed by a window is an instance of a class

and is potentially subject to all of the above.

wx.App handles the main event loop of the GUI

application.

A Simple Example

An example of creating a very simple window using wxPython

is given below. The result of running this short program is

shown here for both a Mac and a Windows PC:

[image:]

This program creates a top level window (the wx.Frame) and

gives it a title. It also creates a label (a wx.StaticText object) to

be displayed within the frame.

To use the wxPythonlibrary it is necessary to import the wx

module.

import wx

Createthe Application Object

app = wx.App()

Now createa Frame (representingthe window)

frame = wx.Frame(parent=None, title='Simple Hello World')

And add a text label to it

text = wx.StaticText(parent=frame, label= 'Hello Python')

Displaythe window (frame)

frame.Show()

Start the event loop

app.MainLoop()

The program also creates a new instance of the Application

Object called wx. App().

Every wxPython GUI program must have one Application

Object. It is the equivalent of the main() function in many

non-GUI applications as it will run the GUI application for

you. It also provides default facilities for defining startup and

shutdown operations and can be sub classed to create custom

behavior.

Thewx.StaticText class is used to create a single (or multiple)

line label. In this case the label shows the string ‘Hello

Python’. The StaticText object is constructed with reference

to its parent container. This is the container within which the

text will be displayed. In this case the StaticText is being

displayed directly within the Frame and thus the frame object

is its containing parent object. In contrast the Frame which is

a top level window, does not have a parent container.

Also notice that the frame must be shown (displayed) for the

user to see it. This is because there might be multiple

di erent windows that need to be shown (or hidden) in

di erent situations for an application.

Finally the program starts the applications’ main event loop;

within this loop the program listens for any user input (such as requesting that the window is closed).

The wx.App Class

The wx.App class represents the application and is used to:

start up the wxPython system and initialize the

underlying GUI toolkit,

set and get application-wide properties,

implement the native windowing system main message

or event loop, and to dispatch events to window

instances.

Every wxPython application must have a single wx.App

instance. The creation of all of the UI objects should be

delayed until after the wx.App object has been created in

order to ensure that the GUI platform and wxWidgets have

been fully initialized.

It is common to subclass the wx.App class and override

methods such as OnPreInit and OnExit to provide custom

behavior. This ensures that the required behavior is run at

appropriate times. The methods that can be overridden for

this purpose are:

OnPreInit, This method can be overridden to define

behaviour that should be run once the application object

is created, but before the OnInit method has been called.

OnInit This is expected to create the applications main

window, display that window etc.

OnRun, This is the method used to start the execution of

the main program.

OnExit, This can be overridden to provide any behavior

that should be called just before the application exits.

As an example, if we wish to set up a GUI application such

that the main frame is initialized and shown after the wx.App

has been instantiated then the safest way is to override the

OnInit() method of the wx.App class in a suitable subclass.

The method should return True of False; where True is used

to indicate that processing of the application should continue

and False indicates that the application should terminate

immediately (usually as the result of some unexpected issue).

An example wx.App subclass is shown below:

class MainApp(wx.App):

def OnInit(self):

"""Initialise the main GUI Application"""

frame = WelcomeFrame()

frame.Show()

Indicatewhether processing should continue or not

return True

This class can now be instantiated and the MainLoop started, for

example:

Run the GUI application app = MainApp() app.MainLoop()

It is also possible to override the OnExit() to clean up

anything initialized in the OnInit() method.

Window Classes

The window or widget container classes that are commonly

used within a wxPython application are:

wx.Dialog A Dialog is a top level window used for popups

where the user has limited ability to interact with the

window. In many cases the user can only input some data

and/or accept or decline an option.

wx.Frame A Frame is a top level window whose size and

position can be set and can (usually) be controlled by the

user.

wx.Panel Is a container (non top level window) on which

controls/widgets can be placed. This is often used in

conjunction with a Dialog or a Frame to manage the

positioning of widgets within the GUI.

The inheritance hierarchy for these classes is given below for

reference:

[image:]

As an example of using a Frame and a Panel, the following

application creates two Panels and displays them within a top

level Frame. The background color of the Frame is the default

grey; while the background color for the first Panel is blue

and for the second Panel it is red. The resulting display is

shown below:

[image:]

The program that generated this GUI is given below:

import wx

class SampleFrame(wx.Frame):

def init (self):

super(). init (parent=None, title='Sample App', size=

(300, 300))

Set up the first Panel to be at position 1, 1

(The default)and of size 300 by 100

with a blue background self.panel1 = wx.Panel(self)

self.panel1.SetSize(300, 100)

self.panel1.SetBackgroundColour(wx.Colour(0, 0, 255))

Set up the second Panel to be at position1, 110

and of size 300 by 100 with a red background self.panel2 =

wx.Panel(self) self.panel2.SetSize(1, 110, 300, 100)

self.panel2.SetBackgroundColour(wx.Colour(255, 0, 0))

class MainApp(wx.App):

def OnInit(self):

""" Initialise the main GUI Application"""

frame = SampleFrame()

frame.Show()

return True

Run the GUI application app = MainApp() app.MainLoop()

The SampleFrame is a subclass of the wx.Frame class; it thus

inherits all of the functionality of a Top Level Frame

(window). Within the init() method of the SampleFrame the

super classes init() method is called. This is used to set the

size of the Frame and to give the Frame a title. Note that the

Frame also indicates that it does not have a parent window.

When the Panel is created it is necessary to specify the

window (or in this case Frame) within which it will be

displayed. This is a common pattern within wxPython.

Also note that the SetSize method of the Panel class also

allows the position to be specified and that the Color class is

the wxPython Color class.

Widget/Control Classes

Although there are very many widgets/controls available to

the developer, the most commonly used include:

wx.Button/wx.ToggleButton/wx.RadioButton These are

widgets that provide button like behavior within a GUI.

wx.TextCtrl This widget allows text to be displayed and

edited. I can be a single line or multiple line widget

depending upon configuration.

wx.StaticText Used to display one or more lines of read-

only text. In many libraries this widgets is known as a

label.

wx.StaticLine A line used in dialogs to separate groups of

widgets. The line may be vertical or horizontal.

wx.ListBox This widget is used to allow a user to select

one option from a list of options.

wx.MenuBar/wx.Menu/wx.MenuItem. The components

that can be used to construct a set of menus for a User

Interface.

wx.ToolBar This widget is used to display a bar of buttons

and/or other widgets usually placed below the menu bar

in a wx.Frame.

The inheritance hierarchy of these widgets is given below.

Note that they all inherit from the class Control (hence why they are often referred to as Controls as well as Widgets or

GUI components).

[image:]

Whenever a widget is created it is necessary to provide the

container window class that will hold it, such as a Frame or a

Panel, for example:

enter_button = wx.Button(panel, label=‘Enter’)

In this code snippet a wx.Button is being created that will

have a label ‘Enter’ and will be displayed within the given

Panel.

Dialogs

The generic wx.Dialog class can be used to build any custom

dialog you require. It can be used to create modal and

modeless dialogs:

A modal dialog blocks program flow and user input on

other windows until it is dismissed.

A modeless dialog behaves more like a frame in that

program flow continues, and input in other windows is

still possible.

The wx.Dialog class provides two versions of the show

method to support modal and modeless dialogs. The

ShowModal() method is used to display a modal dialog,

while the Show() is used to show a modeless dialog.

As well as the generic wx.Dialog class,the wxPython library

provides numerous prebuilt dialogs for common situations.

These pre built dialogs include:

wx.ColourDialog This class is used to generate a color

chooser dialog.

wx.DirDialog This class provides a directory chooser

dialog.

wx.FileDialog This class provides a file chooser dialog.

wx.FontDialog This class provides a font chooser dialog.

wx.MessageDialog This class can be used to generate a

single or multi-line message or information dialog. It can

support Yes, No and Cancel options.It can be used for

generic messages or for error messages.

wx.MultiChoiceDialog This dialog can be used to display a

lit of strings and allows the user to select one or more

values for the list.

wx.PasswordEntryDialog This class represents a dialog

that allows a user to enter a one-line password string

from the user.

wx.ProgressDialog If supported by the GUI platform, then

this class will provide the platforms native progress

dialog, otherwise it will use the pure Python

wx.GenericProgressDialog. The wx.

GenericProgressDialog shows a short message and a

progress bar.

wx.TextEntryDialog This class provides a dialog that

requests a one-line text string from the user.

Most of the dialogs that return a value follow the same

pattern. This pattern returns a value from the ShowModel()

method that indicates if the user selected OK or CANCEL

(using the return value wx.ID_OK or wx.ID_CANCEL). The

selected/entered value can then be obtained from a suitable

get method such as GetColourData() for the ColourDialog or

GetPath() for the DirDialog.

Arranging Widgets Within a Container

Widgets can be located within a window using specific

coordinates (such as 10 pixels down and 5 pixels across).

However, this can be a problem if you are considering cross

platform applications, this is because how a button is

rendered (drawn) on a Mac is di erent to Windows and

di erent again from the windowing systems on Linux/Unix

etc.

This means that di erent amount of spacing must be given

on di erent plat- forms. In addition the fonts used with text

boxes and labels di er between di erent platforms also

requiring di erences in the layout of widgets.

To overcome this wxPython provides Sizers. Sizers work with

a container such as a Frame or a Panel to determine how the

contained widgets should be laid out. Widgets are added to a

sizer which is then set onto a container such as a Panel.

A Sizer is thus an object which works with a container and the

host windowing platform to determine the best way to

display the objects in the window. The developer does not

need to worry about what happens if a user resizes a window

or if the program is executed on a di erent windowing

platform.

Sizers therefore help to produce portable, presentable

user interfaces. In fact one

Sizer can be placed within another Sizer to create

complex component layouts.

There are several sizers available including:

wx.BoxSizer This sizer can be used to place several

widgets into a row or column organization depending

upon the orientation. When the BoxSizer is created the

orientation can be specified using wx.VERTICAL or wx,

HORIZONTAL.

wx.GridSizer This sizer lays widgets out in a two

dimensional grid.Each cell within the grid has the same

size. When the GridSizer object is created it is possible to

specify the number of rows and columns the grid has. It is

also possible to specify the spacing between the cells both

horizontally and vertically.

wx.FlexGridSizer This sizer is a slightly more flexible

version of the GridSizer. In this version not all columns

and rows need to be the same size (although all cells in

the same column are the same width and all cells in the

same row are the same height).

wx.GridBagSizer is the most flexible sizer. It allows

widgets to be positioned relative to the grid and also

allows widgets to span multiple rows and/or columns.

To use a Sizer it must first be instantiated. When widgets are

created they should be added to the sizer and then the sizer

should be set on the container.

For example, the following code uses a GridSizer used with a

Panel to layout out four widgets comprised of two buttons, a

StaticText label and a TextCtrl input field:

Create the panel

panel = wx.Panel(self)

Create the sizer to use with 4 rows and 1 column

And 5 spacing around each cell grid = wx.GridSizer(4,

1, 5, 5)

Create the widgets

text = wx.TextCtrl(panel, size=(150, -1)) enter_button =

wx.Button(panel, label='Enter') label =

wx.StaticText(panel,label='Welcome')

message_button = wx.Button(panel, label='Show Message')

Add the widgets to the grid sizer

grid.AddMany([text, enter_button, label, message_button])

Set the sizer on the panel panel.SetSizer(grid)

The resulting display is shown below:

[image:]

Drawing Graphics In earlier chapters we looked at the Turtle graphics API for

generating vector and raster graphics in Python. The

wxPython library provides its own facilities for generating

cross platform graphic displays using lines, squares,

circles,text etc. This is provided via the Device Context.

A Device Context (often shortened to just DC) is an object on

which graphics and text can be drawn. It is intended to allow

di erent output devices to all have a common graphics API

(also known as the GDI or Graphics Device Interface). Specific

device contexts can be instantiate depending on whether the

program is to use a window on a computer screen or some

other output medium (such as a printer).

There are several Device Context types available such as

wx.WindowDC, wx. PaintDC and wx.ClientDC:

The wx.WindowDC is used if we want to paint on the

whole window(Windows only). This includes window

decorations.

The wx.ClientDC is used to draw on the client area of a

window. The client area is the area of a window without

its decorations (title and border).

The wx.PaintDC is used to draw on the client area as well

but is intended to support the window refresh paint event

handling mechanism.

Note that the wx.PaintDC should be used only from a

wx.PaintEvent handler while the wx.ClientDC should never be

used from a wx.PaintEvent handler.

Whichever Device Context is used, they all support a similar

set of methods that are used to generate graphics, such as:

DrawCircle (x, y, radius)Draws a circle with the given

centreand radius.

DrawEllipse (x, y, width, height) Draws an ellipse

contained in the rectangle specified either with the given

top left corner and the given size or directly.

DrawPoint (x, y) Draws a point using the color of the

current pen.

DrawRectangle (x, y, width, height) Draws a rectangle

with the given corner coordinate and size.

DrawText (text, x, y) Draws a text string at the specified

point, using the current text font, and the current text

foreground and background colours.

DrawLine (pt1, pt2)/DrawLine (x1, y1, x2, y2) This method

draws a line from the first point to the second.

It is also important to understand when the device context is

refreshed/redrawn. For example, if you resize a window,

maximize it, minimize it, move it, or modify its contents the

window is redrawn.This generates an event, a PaintEvent. You

can bind a method to the PaintEvent (using wx.EVT_PAINT)

that can be called each time the window is refreshed.

This method can be used to draw whatever the contents of the

window should be. If you do not redraw the contents of the

device context in such a method than whatever you

previously drew will display when the window is refreshed.

The following simple program illustrates the use of some of

the Draw methods listed above and how a method can be

bound to the paint event so that the display is refreshed

appropriately when using a device context:

import wx

class DrawingFrame(wx.Frame):

def init (self, title):

super(). init (None, title=title, size=(300, 200))

self.Bind(wx.EVT_PAINT, self.on_paint)

def on_paint(self, event):

"""set up the device context (DC) for painting"""

dc = wx.PaintDC(self) dc.DrawLine(10, 10, 60, 20)

dc.DrawRectangle(20, 40, 40, 20) dc.DrawText("Hello World",

30, 70)dc.DrawCircle(130, 40, radius=15)

class GraphicApp(wx.App):

def OnInit(self):

""" Initialisethe GUI display""" frame =

DrawingFrame(title='PyDraw') frame.Show()

return True

Run the GUI application app = GraphicApp() app.MainLoop()

When this program is run the following display is generated:

[image:]

Events in wxPython User Interfaces

Event Handling

Events are an integral part of any GUI; they represent user

interactions with the interface such as clicking on a button,

entering text into a field, selecting a menu option etc.

The main event loop listens for an event; when one occurs it

processes that event (which usually results in a function or

method being called) and then waits for the next event to

happen. This loop is initiated in wxPython via the call to the

MainLoop() method on the wx.App object.

This raises the question ‘what is an Event?’. An event object is

a piece of information representing some interaction that

occurred typically with the GUI (although an event can be

generated by anything). An event is processed by an Event

Handler. This is a method or function that is called when the

event occurs. The event is passed to the handler as a

parameter. An Event Binder is used to bind an event to an

event handler.

Event Definitions

It is useful to summarize the definitions around events as the

terminology used can be confusing and is very similar:

Event represents information from the underlying GUI

framework that describes something that has happened

and any associated data. The specific data available will

di er depending on what has occurred. For example, if a

window has been moved then the associated data will

relate to the window’s new location. Where as a

CommandEvent generated by a selection action from a

ListBox provides the item index for the selection.

Event Loop the main processing loop of the GUI that

waits for an event to occur.When an event occurs the

associated event handler is called.

Event Handlers these are methods (or functions) that are

called when an event occurs.

EventBinders associate a type of event with an event

handler. There are di erent event binders for di erent

types of event.For example, the event binder associated

with the wx.MoveEvent is named wx.EVT_MOVE.

The relationship between the Event, the Event Handler via the

Event Binder is illustrated below:

[image:]

The top three boxes illustrate the concepts while the lower 3

boxes provide a concrete example of binding a Move_Event

to an on_move() method via the EVT_MOVE binder.

Types of Events

There are numerous di erent types of event including:

wx.CloseEvent used to indicate that a Frame or Dialog has

been closed.The event binder for this event is named

wx.EVT_CLOSE.

wx.CommandEvent used with widgets such as

buttons,list boxes, menu items, radio buttons, scroll bars,

sliders etc.Depending upon the type of widget that

generated the event di erent information may be

provided. For example, for a Button a CommandEvent

indicates that a button has been clicked where as for a

ListBox it indicates that an option has been selected,etc.

Di erent event binders are used for di erent event

situations. For example, to bind a command event to a

event handler for a button then the wx.EVT_BUTTON

binder is used; while for a ListBox a

wx.EVT_LISTBOXbinder can be used.

wx.FocusEvent This event is sent when a window’s focus

changes (loses or gains focus). You can pick up a window

gaining focus using the wx. EVT_SET_FOCUS event

binder. The wx.EVT_KILL_FOCUS is used to bind an

event handler that will be called when a window loses

focus.

wx.KeyEvent This event contains information relating to

a key press or release.

wx.MaximizeEvent This event is generated when a top

level window is maximized.

wx.MenuEvent This event is used for menu oriented

actions such as the menu being opened or closed;

however it should be noted that this event is not used

when a menu item is selected (MenuItems generate

CommandEvents).

wx.MouseEvent This event class contains information

about the events generated by the mouse: this includes

information on which mouse button was pressed (and

released) and whether the mouse was double clicked etc.

wx.WindowCreateEvent This event is sent just after the

actual window is created.

wx.WindowDestoryedEvent This event is sent as early as

possible during the window destruction process.

Binding an Event to an Event Handler

An event is bound to an Event Handler using the Bind()

method of an event generating object (such as a button, field,

menu item etc.) via a named Event Binder.

For example:

button.Bind(wx.EVT_BUTTON, self.event_handler_method)

Implementing Event Handling

There are four steps involved in implementing event handling

for a widget or window, these are:

1. Identify the event of interest. Many widgets will generate

di erent events in di erent situations; it may therefore

be necessary to determine which event you are interested

in.

2. Find the correct Event Binder name, e.g. wx.EVT_CLOSE,

wx.EVT_MOVE or wx.EVT_BUTTON etc. Again you may

find that the widget you are interested in supports

numerous di erent event binders which may be used in

di erent situations (even for the same event).

3. Implement an event handler (i.e. a suitable method or

function) that will be called when the event occurs. The

event handler will be supplied with the event object.

4. Bind the Event to the Event Handler via the Binder Name

using the Bind() method of the widget or window.

To illustrate this we will use a simple example.

We will write a very simple event handling application. This

application will have a Frame containing a Panel. The Panel

will contain a label using the wx. StaticText class.

We will define an event handler called on_mouse_click() that

will move the StaticText label to the current mouse location

when the left mouse button is pressed. This means that we

can move the label around the screen.

To do this we first need to determine the widget that will be

used to generate the event. In this case it is the panel that

contains the text label. Having done this we can look at the

Panel class to see what events and Event Bindings it supports.

It turns out that the Panel class only directly defines support

for NavigationKeyEvents. This is not actually what we want;

however the Panel class extends the Window class.

The Window class supports numerous event bindings, from

those associated with setting the focus (wx.EVT_SET_FOCUS

and wx.EVT_KILL_FOCUS) to key presses

(wx.EVT_KEY_DOWN and wx.EVT_KEY_UP) as well as

mouse events. There are however numerous di erent mouse event bindings. These allow left, middle and right mouse

button clicks to be picked up, down clicks to be

identified,situations such as the mouse entering or leaving

the window etc. However, the binding we are interested in for

a MouseEvent is the wx. EVT_LEFT_DOWNbinding; this

picks up on the MoueEvent when the left mouse button is

pressed (there is also the wx.EVT_LEFT_UP binding which

can be used to pick up an event that occurs when the left

mouse button is released).

We now know that we need to bind the on_mouse_click()

event handler to the MouseEvent via the

wx.EVT_LEFT_DOWN event binder, for example:

self.panel.Bind(wx.EVT_LEFT_DOWN, self.on_mouse_click)

All event handler methods takes two parameters, self and the

mouse event. Thus the signature of the on_mouse_click()

method is:

def on_mouse_click(self, mouse_event):

The mouse event object has numerous methods defined that

allow information about the mouse to be obtained such as the

number of mouse clicks involved (GetClickCount()), which

button was pressed (GetButton()) and the current mouse

position within the containing widget or window (GetPosition ()). We can therefore use this last method to obtain the

current mouse location and then use the SetPosition(x, y)

method on the StaticText object to set its position.

The end result is the program shown below:

import wx

class WelcomeFrame(wx.Frame):

""" The Main Window / Frame of the application """

def init (self):

super(). init (parent=None, title='Sample App', size=(300, 200))

Set up panel within the frame and text label

self.panel = wx.Panel(self)

self.text = wx.StaticText(self.panel, label='Hello')

Bind the on_mouse_clickmethod to the

Mouse Event via the

left mouse click binder

self.panel.Bind(wx.EVT_LEFT_DOWN, self.on_mouse_click)

def on_mouse_click(self, mouse_event):

"""When the left mouse button is clicked This method is called.

It will obtain thecurrent mouse coordinates, and reposition the

text label

to this position. """

x, y = mouse_event.GetPosition() print(x, y)

self.text.SetPosition(wx.Point(x, y))

class MainApp(wx.App):

def OnInit(self):

""" Initialisethe main GUI Application"""

frame = WelcomeFrame()

frame.Show()

Indicate that processingshould continue

return True

Run the GUI application app = MainApp() app.MainLoop()

When this program is run; the window is displayed with the

‘Hello’ StaticText label in the top left hand corner of the

Frame(actually it is added to the Panel, however the Panel

fills the Frame in this example). If the user then clicks the left

mouse button anywhere within the Frame then the

‘Hello’label jumps to that location.

This is shown below for the initial setup and then for two

locations within the window.

[image:]

An Interactive wxPython GUI

An example of a slightly larger GUI application, that brings

together many of the ideas presented in this chapter,is given

below.

In this application we have a text input field (a wx.TextCtrl)

that allows a user to enter their name. When they click on the

Enter button (wx.Button) the welcome label (a wx.StaticText)

is updated with their name.The ‘Show Message’ button is

used to display a wx.MessageDialog which will also contain

their name.

The initial display is shown below for both a Mac and a

Windows PC, note that the default background color for a

Frame is di erent on a Windows PC than on a Mac and thus

although the GUI runs on both platforms, the look di ers

between the two:

[image:]

The code used to implement this GUI application is given

below:

import wx

class HelloFrame(wx.Frame):

def

 init (self, title):

super(). init (None, title=title, size=(300,200))

self.name = ''

Create the BoxSizer to use for the Frame

vertical_box_sizer = wx.BoxSizer(wx.VERTICAL)

self.SetSizer(vertical_box_sizer)

Createthe panel to contain the widgets

panel = wx.Panel(self)

Add the Panel to the Frames Sizer

vertical_box_sizer.Add(panel,

wx.ID_ANY,

wx.EXPAND | wx.ALL,

20)

Create the GridSizerto use with the Panel

grid = wx.GridSizer(4, 1, 5, 5)

Set up the input field

self.text = wx.TextCtrl(panel, size=(150, -1))

Now configurethe enter button

enter_button = wx.Button(panel, label='Enter')

enter_button.Bind(wx.EVT_BUTTON, self.set_name)

Next set up the text label

self.label = wx.StaticText(panel, label='Welcome',

style=wx.ALIGN_LEFT)

Now configurethe Show Message button

message_button = wx.Button(panel, label='Show Message')

message_button.Bind(wx.EVT_BUTTON, self.show_message)

Add the widgetsto the grid sizer to handle layout

grid.AddMany([self.text, enter_button, self.label,

message_button])

Set the sizer on the panel

panel.SetSizer(grid)

Centre the Frame on the Computer Screen

self.Centre()

def show_message(self, event):

""" Event Handler to display the Message Dialog using the

current value of the name attribute. """ dialog =

wx.MessageDialog(None,

message='Welcome To Python ' + self.name, caption='Hello',

style=wx.OK)

dialog.ShowModal()

def set_name(self, event):

"""Event Handler for the Enter button.

Retrieves the text entered into the input field and sets the

self.name attribute. This is then used to set the text label """

self.name = self.text.GetLineText(0)

self.label.SetLabelText('Welcome ' + self.name)

class MainApp(wx.App):

def OnInit(self):

"""Initialise the GUI display"""

frame = HelloFrame(title='Sample App')

frame.Show()

Indicatewhether processing should continueor not

return True

def OnExit(self):

"""Executes when the GUI application shuts down"""

print('Goodbye')

Need to indicatesuccess or failure

return True

Run the GUI application app = MainApp() app.MainLoop()

If the user enters their name in the top TextCtrl field, for

example ‘Phoebe’, then when they click on the ‘Enter’ button

the welcome label changes to ‘Welcome Phoebe’:

[image:]

If they now click on the ‘Show Message’ button then the wx.

MessageDialog (a specific type of wx.Dialog) will display a

welcome message to Phoebe:

[image:]

Online Resources

There are numerous online references that support the

development of GUIs and of

Python GUIs in particular, including:

https://docs.wxpython.org for documentation on

wxPython.

https://www.wxpython.org wxPython home page.

https://www.wxwidgets.org For information on the

underlying wxWidgets

Cross platform GUI library.

Simple GUI Application

This exercise builds on the GUI you created in the last

chapter.

The application should allow a user to enter their name and

age. You will need to check that the value entered into the age

field is a numeric value (for example using is numeric()). If

the value is not a number then an error message dialog

should be displayed.

A button should be provided labeled ‘Birthday’; when clicked

it should increment the age by one and display a Happy

Birthday message. The age should be updated within the GUI.

An example of the user interface you created in the last

chapter is given below:

[image:]

As an example,the user might enter their name and age as

shown below:

[image:]

When the user clicks on the ‘birthday’ button then the Happy

Birthday message dialog is displayed:

[image:]

GUI Interface to a Tic Tac Toe Game

The aim of this exercise is to implement a simple Tic Tac Toe

game. The game should allow two users to play interactive

using the same mouse. The first user will have play as the ‘X’

player and the second user as the ‘0’ player.

When each user selects a button you can set the label for the

button to their symbol. You will need two check after each

move to see if someone has won (or if the game is a draw).

You will still need an internal representation of the grid so

that you can deter- mine who, if anyone, has won.

An example of how the GUI for the TicTacToe game might

look is given below:

[image:]

You can also add dialogs to obtain the players names and to

notify them who won or whether there was a draw.

PyDraw wxPython Example Applica on

Introduction

This chapter builds on the GUI library presented in the last

two chapters to illustrate how a larger application can be

built. It presents a case study of a drawing tool akin to a tool

such as Visio etc.

The PyDraw Application

The PyDraw application allows a user to draw diagrams using

squares, circles, lines and text. At present there is no select,

resize, reposition or delete option available (although these

could be added if required). PyDraw is implemented using the

wxPython set of components as defined in version 4.0.6.

[image:]

When a user starts the PyDraw application, they see the

interface shown above (for both the Microsoft Windows and

Apple Mac operating systems). Depending on the operating

system it has a menu bar across the top (on a Mac this menu

bar is at the Top of the Mac display), a tool bar below the

menu bar and a scrollable drawing area below that.

The first button on the tool bar clears the drawing area. The

second and third buttons are only implemented so that they

print out a message into the Python console, but are intended

to allow a user to load and save drawings.

The tool bar buttons are duplicated on the menus defined for

the application, along with a drawing tool selection menu, as

shown below:

[image:]

The Structure of the Application

The user interface created for the PyDraw application is made

up of a number of elements (see below): the PyDrawMenuBar,

the PyDrawToolbar containing a sequence of buttons across

the top of the window, the drawing panel, and the window

frame (implemented by the PyDrawFrame class).

[image:]

The following diagram shows the same information as that

presented above, but as a containment hierarchy, this means

that the diagram illustrates how one object is contained

within another. The lower level objects are contained within

the higher level objects.

[image:]

It is important to visualize this as the majority of wxPython

interfaces are built up in this way, using containers and

sizers.

The inheritance structure between the classes used in the

PyDraw application is illustrated below. This class hierarchy

is typical of an application which incorporates user interface

features with graphical elements.

[image:]

Model, View and Controller Architecture

The application adopts the well established Model-View-

Controller(or MVC) design pattern for separating out the

responsibilities between the view element (e.g. the Frame or

Panel), the control element (for handling user input) and the

model element (which holds the data to be displayed).

This separation of concerns is not a new idea and allows the

construction of GUI applications that mirror the Model-

View-Controller architecture. The intention of the MVC

architecture is the separation of the user display, from the

control of user input, from the underlying information model

as illustrated below.

[image:]

There are a number of reasons why this separation is useful:

re-usability of application and/or user interface

components,

ability to develop the application and user interface

separately,

ability to inherit from di erent parts of the class

hierarchy.

ability to define control style classes which provide

common features separately from how these features

may be displayed.

This means that di erent interfaces can be used with the

same application, without the application knowing about it. It

also means that any part of the system can be changed

without a ecting the operation of the other. For example, the

way that the graphical interface (the look) displays the

information could be changed without modifying the actual

application or how input is handled (the feel). Indeed the

application need not know what type of interface is currently

connected to it at all.

PyDraw MVC Architecture

The MVC structure of the PyDraw application has a top level

controller class PyDrawController and a top level view class

the PyDrawFrame (there is no model as the top level MVC

triad does not hold any explicit data itself). This is shown

below:

[image:]

At the next level down there is another MVC structure; this

time for the drawing element of the application. There is a

DrawingController, with a DrawingModel and a

DrawingPanel (the view) as illustrated below:

[image:]

The DrawingModel, DrawingPanel and DrawingController

classes exhibit the classic MVC structure. The view and the

controller classes (DrawingPanel and DrawingController)

know about each other and the drawing model, whereas the

DrawingModel knows nothing about the view or the

controller. The view is notified of changes in the drawing

through the paint event.

Additional Classes

There are also four types of drawing object(of Figure): Circle,

Line, Square and Text figures. The only di erence between these classes is what is drawn on the graphic device context

within the on_paint() method.The Figure class, from which

they all inherit, defines the common attributes used by all

objects within a Drawing (e.g. point representing an x and y

location and size).

[image:]

The PyDrawFrame class also uses a PyDrawMenuBar and a

PyDrawToolBar class. The first of these extends the

wx.MenuBar with menu items for use within the PyDraw

application.In turn the PyDrawToolBar extends the

wx.ToolBar and provides icons for use in PyDraw.

[image:]

The final class is the PyDrawApp class that extends the

wx.App class.

[image:]

Object Relationships

However, the inheritance hierarchy is only part of the story

for any object oriented application. The following figure

illustrates how the objects relate to one another within the

working application.

[image:]

The PyDrawFrame is responsible for setting up the controller

and the DrawingPanel. The PyDrawController is responsible

for handling menu and tool bar user interactions. This

separates graphical elements from the behavior triggered by

the user.

TheDrawingPanel is responsible for displaying any figures

held by the DrawingModel. TheDrawingController manages

all user interactions with the DrawingPanel including adding figures and clearing all figures from the model. The

DrawingModel holds list of figures to be displayed.

The Interactions Between Objects

We have now examined the physical structure of the

application but not how the objects within that application

interact. In many situations this can be extracted from the

source code of the application (with varying degrees of

di culty). However, in the case of an application such as

PyDraw, which is made up of a number of di erent

interacting components, it is useful to describe the system

interactions explicitly.

The diagrams illustrating the interactions between the

objects use the following conventions:

a solid arrow indicates a message send,

a square box indicates a class,

a name in brackets indicates the type of instance,

numbers indicate the sequence of message sends.

These diagrams are based on the collaboration diagrams

found in the UML (Unified Modelling Language) notation.

The PyDrawApp When the PyDrawApp is instantiated the PyDrawFrame in

created and displayed using the OnInit() method. The

MainLoop() method is then invoked. This is shown below:

class PyDrawApp(wx.App):

def OnInit(self):

""" Initialisethe GUI display""" frame =

PyDrawFrame(title='PyDraw') frame.Show()

return True

Run the GUI application app = PyDrawApp() app.MainLoop()

The PyDrawFrame Constructor

The PyDrawFrame constructor method sets up the main

display of the UI application and also initializes the

controllers and drawing elements. This is shown below using

a collaboration diagram:

[image:]

ThePyDrawFrame constructor sets up the environment for

the application. It creates the top level PyDrawController. It

creates the DrawingPanel and initializes the display layout. It

initializes the menu bar and tool bar. It binds the controllers

menu handler to the menus and centers itself.

Changing the Application Mode

One interesting thing to note is what happens when the user

selects an option from the Drawing menu. This allows the mode to be changed to a square, circle,line or text. The

interactions involved are shown below for the situation where

a user selects the ‘Circle’ menu item on the Drawing menu

(using a collaboration diagram):

[image:]

When the user selects one of the menu items the

command_menu_handler () method of the

PyDrawController is invoked. This method determines which

menu item has been selected; it then calls an appropriate

setter method (such as set_circle_mode() or

set_line_mode() etc.). These methods set the mode attribute

of the controller to an appropriate value.

Adding a Graphic Object A user adds a graphic object to the drawing displayed by the

DrawingPanel by pressing the mouse button. When the user

clicks on the drawing panel, the DrawingController responds

as shown below:

[image:]

The above illustrates what happens when the user presses

and releases a mouse button over the drawing panel, to create

a new figure. When the user presses the mouse button, a

mouse clicked message is sent to the DrawingController,

which decides what action to perform in response (see above).

In PyDraw, it obtains the cursor point at which the event was

generated by calling the GetPosition() method on the

mouse_event.

The controller then calls its own add() method passing in the

current mode and the current mouse location.The controller

obtains the current mode (from the PyDrawController using

the method callback provided when the DrawingController is instantiated) and adds the appropriate type of figure to the

DrawingModel.

The add() method then adds a new figure to the drawing

model based on the specified mode.

The Classes

This section presents the classes in the PyDraw application.

As these classes build on concepts already presented in the

last few chapters, they shall be presented in their entirety

with comments highlighting specific points of their

implementations. Note that the code imports the wx module

from the wxPython library,e.g.

import wx

The PyDrawConstants Class

The purpose of this class is to provide a set of constants that

can be referenced in the remainder of the application. It is

used to provide constants for the IDs used with menu items

and toolbar tools. It also provides constants used to represent

the current mode (to indicate whether a line, square, circle or

test should be added to the display).

class PyDrawConstants: LINE_ID = 100

SQUARE_ID = 102

CIRCLE_ID = 103

TEXT_ID = 104

SQUARE_MODE = 'square'

LINE_MODE = 'line'

CIRCLE_MODE = 'circle'

TEXT_MODE = 'Text'

The PyDrawFrame Class

The PyDrawFrame class provides the main window for the

application. Note that due to the separation of concerns

introduced via the MVC architecture, the view class is only

concerned with the layout of the components:

class PyDrawFrame(wx.Frame):

""" Main Frame responsible for the layout of the UI."""

def init (self, title):

super(). init (None, title=title, size=(300, 200))

Set up the controller

self.controller = PyDrawController(self)

Set up the layout fo the UI self.vertical_box_sizer =

wx.BoxSizer(wx.VERTICAL) self.SetSizer(self.vertical_box_sizer)

Set up the menu bar

self.SetMenuBar(PyDrawMenuBar())

Set up the toolbar

self.vertical_box_sizer.Add(PyDrawToolBar(self), wx.ID_ANY,

wx.EXPAND | wx.ALL,)

Setup drawing panel

self.drawing_panel = DrawingPanel(self,

self.controller.get_mode)

self.drawing_controller = self.drawing_panel.controller

Add the Panel to the Frames Sizer

self.vertical_box_sizer.Add(self.drawing_panel, wx.ID_ANY,

wx.EXPAND | wx.ALL)

Set up the command event handling for the menu bar and tool

bar

self.Bind(wx.EVT_MENU, self.controller.command_menu_handler)

self.Centre()

The PyDrawMenuBar Class

The PyDrawMenuBar class is a subclass of the wx.MenuBar

class which defines the contents of the menu bar for the

PyDraw application. It does this by creating two wx.Menu

objects and adding them to the menu bar. Each wx.Menu

implements a drop down menu from the menu bar. To add

individual menu items the wx. MenuItem class is used. These

menu items are appended to the menu. The menus are

themselves appended to the menu bar. Note that each menu

item has an id that can be used to identify the source of a

command event in an event handler. This allows a single

event handler to deal with events generated by multiple menu

items.

class PyDrawMenuBar(wx.MenuBar):

def init (self): super(). init () fileMenu =

wx.Menu()

newMenuItem = wx.MenuItem(fileMenu, wx.ID_NEW, text="New",

kind=wx.ITEM_NORMAL)

newMenuItem.SetBitmap(wx.Bitmap("new.gif"))

fileMenu.Append(newMenuItem)

loadMenuItem = wx.MenuItem(fileMenu, wx.ID_OPEN, text="Open",

kind=wx.ITEM_NORMAL)

loadMenuItem.SetBitmap(wx.Bitmap("load.gif"))

fileMenu.Append(loadMenuItem)

fileMenu.AppendSeparator()

saveMenuItem = wx.MenuItem(fileMenu, wx.ID_SAVE, text="Save",

kind=wx.ITEM_NORMAL)

saveMenuItem.SetBitmap(wx.Bitmap("save.gif"))

fileMenu.Append(saveMenuItem)

fileMenu.AppendSeparator()

quit = wx.MenuItem(fileMenu, wx.ID_EXIT,

'&Quit\tCtrl+Q')

fileMenu.Append(quit)

self.Append(fileMenu, '&File')

drawingMenu = wx.Menu()

lineMenuItem = wx.MenuItem(drawingMenu,

PyDraw_Constants.LINE_ID, text="Line", kind=wx.ITEM_NORMAL)

drawingMenu.Append(lineMenuItem)

squareMenuItem = wx.MenuItem(drawingMenu,

PyDraw_Constants.SQUARE_ID, text="Square",

kind=wx.ITEM_NORMAL)

drawingMenu.Append(squareMenuItem)

circleMenuItem = wx.MenuItem(drawingMenu,

PyDraw_Constants.CIRCLE_ID, text="Circle",

kind=wx.ITEM_NORMAL)

drawingMenu.Append(circleMenuItem)

textMenuItem = wx.MenuItem(drawingMenu,

PyDraw_Constants.TEXT_ID, text="Text", kind=wx.ITEM_NORMAL)

drawingMenu.Append(textMenuItem)

self.Append(drawingMenu, '&Drawing')

The PyDrawToolBar Class

The DrawToolBar class is a subclass of wx.ToolBar. The

classes constructor initializes three tools that are displayed

within the toolbar. The Realize() method is used to ensure

that the tools are rendered appropriately. Note that

appropriate ids have been used to allow an event handler to

identify which tools generated a particular command event.

By reusing the same ids for related menu items and command

tools,a single handler can be used to manage events from

both types of sources.

class PyDrawToolBar(wx.ToolBar):

def init (self, parent): super(). init (parent)

self.AddTool(toolId=wx.ID_NEW, label="New",

bitmap=wx.Bitmap("new.gif"), shortHelp='Open drawing',

kind=wx.ITEM_NORMAL)

self.AddTool(toolId=wx.ID_OPEN, label="Open",

bitmap=wx.Bitmap("load.gif"), shortHelp='Open drawing',

kind=wx.ITEM_NORMAL)

self.AddTool(toolId=wx.ID_SAVE, label="Save",

bitmap=wx.Bitmap("save.gif"), shortHelp='Save drawing',

kind=wx.ITEM_NORMAL)

self.Realize()

The PyDrawController Class

This class provides the control element of the top level view.

It maintains the current mode and implements a handler that can handle events from menu items and from the tool bar

tools.An id is used to identify each individual menu or tool

which allows a single handler to be registered with the frame.

class PyDrawController:

def init (self, view):

self.view = view

Set the initial mode

self.mode = PyDrawConstants.SQUARE_MODE

def set_circle_mode(self):

self.mode = PyDrawConstants.CIRCLE_MODE

def set_line_mode(self):

self.mode = PyDrawConstants.LINE_MODE

def set_square_mode(self):

self.mode = PyDrawConstants.SQUARE_MODE

def set_text_mode(self):

self.mode = PyDrawConstants.TEXT_MODE

def clear_drawing(self):

self.view.drawing_controller.clear()

def get_mode(self):

return self.mode

def command_menu_handler(self, command_event):

id = command_event.GetId()

if id == wx.ID_NEW:

print('Clear the drawing area')

self.clear_drawing()

elif id == wx.ID_OPEN:

print('Open a drawing file')

elif id == wx.ID_SAVE:

print('Save a drawing file')

elif id == wx.ID_EXIT:

print('Quite the application')

self.view.Close()

elif id == PyDrawConstants.LINE_ID: print('set drawing mode to

line') self.set_line_mode()

elif id == PyDrawConstants.SQUARE_ID: print('set drawing mode

to square') self.set_square_mode()

elif id == PyDrawConstants.CIRCLE_ID: print('set drawing mode

to circle') self.set_circle_mode()

elif id == PyDrawConstants.TEXT_ID: print('set drawing mode to

Text') self.set_text_mode()

else:

print('Unknown option', id)

The DrawingModel Class

The DrawingModel class has a contents attribute that is used

to hold all the figures in the drawing. It also provides some

convenience methods to reset the contents and to add a figure

to the contents.

class DrawingModel:

def init (self):

self.contents = []

def clear_figures(self):

self.contents = []

def add_figure(self, figure):

self.contents.append(figure)

The DrawingModel is a relatively simple model which merely

records a set of graphical figures in a List. These can be any

type of object and can be displayed in any way as long as they

implement the on_paint() method. It is the objects

themselves which determine what they look like when drawn.

The DrawingPanel Class

The DrawingPanel class is a subclass of the wx.Panel class. It

provides the view for the drawing data model. This uses the

classical MVC architecture and has a model (DrawingModel),

a view (the DrawingPanel) and a controller (the

DrawingController).

The DrawingPanel instantiates its own DrawingController to

handle mouse events.

It also registers for paint events so that it knows when to

refresh the display.

class DrawingPanel(wx.Panel):

def init (self, parent, get_mode): super(). init

(parent, -1) self.SetBackgroundColour(wx.Colour(255, 255, 255))

self.model = DrawingModel()

self.controller = DrawingController(self, self.model, get_mode)

self.Bind(wx.EVT_PAINT, self.on_paint)

self.Bind(wx.EVT_LEFT_DOWN, self.controller.on_mouse_click)

def on_paint(self, event):

"""set up the device context (DC) for painting"""

dc = wx.PaintDC(self)

for figure in self.model.contents:

figure.on_paint(dc)

The DrawingController Class

The DrawingController class provides the control class for the

top level MVC architecture used with the DrawingModel

(model) and DrawingPanel (view)classes. In particular

ithandles the mouse events in the DrawingPanel via the

on_mouse_click() method.

It also defines an add method that is used to add a figure to

the DrawingModel (the actual figure depends on the current

mode of the PyDrawController). A final method,the clear()

method, removes all figures from the drawing model and

refreshes the display.

class DrawingController:

def init (self, view, model, get_mode):

self.view = view self.model = model self.get_mode =

get_mode

def on_mouse_click(self, mouse_event): point =

mouse_event.GetPosition() self.add(self.get_mode(), point)

def add(self, mode, point, size=30):

if mode == PyDrawConstants.SQUARE_MODE:

fig = Square(self.view, point, wx.Size(size, size))

elif mode == PyDrawConstants.CIRCLE_MODE:

fig = Circle(self.view, point, size)

elif mode == PyDrawConstants.TEXT_MODE:

fig = Text(self.view, point, size)

elif mode == PyDrawConstants.LINE_MODE:

fig = Line(self.view, point, size)

self.model.add_figure(fig)

def clear(self): self.model.clear_figures() self.view.Refresh()

The Figure Class

The Figure class (an abstract super class of the Figure class

hierarchy)captures the elements which are common to

graphic objects displayed within a drawing. The point defines

the position of the figure, while the size attribute defines the

size of the figure. Note that the Figure is a subclass of a

wx.Panel and thus the display is constructed from inner

panels onto which the various figure shapes are drawn.

The Figure class defines a single abstract method

on_paint(dc) that must be implemented by all concrete sub

classes. This method should define how the shape is drawn on

the drawing panel.

class Figure(wx.Panel):

def init (self, parent, id=wx.ID_ANY, pos=None,

size=None, style=wx.TAB_TRAVERSAL):

wx.Panel. init (self, parent, id=id, pos=pos,

size=size, style=style)

self.point = pos self.size = size

@abstractmethod

def on_paint(self, dc):

Pass

The Square Class This is a subclass of Figure that specifies how to draw a

square shape in a drawing. It implements the on_paint()

method inherited from Figure.

class Square(Figure):

def init (self, parent, pos, size):

super(). init (parent=parent, pos=pos, size=size)

def on_paint(self, dc):

dc.DrawRectangle(self.point, self.size)

The Circle Class

This is another sub class of Figure. It implements the

on_paint() method by drawing a circle. Note that the shape

will be drawn within the panel size defined via the Figure

class (using the call to super). It is therefore necessary to see

the circle to fit within these bounds. This means that the size

attribute must be used to generate an appropriate radius. Also

note that the DrawCircle() method of the device context takes

a point that is the center of the circle so this must also be

calculated.

class Circle(Figure):

def init (self, parent, pos, size):

super(). init (parent=parent, pos=pos,size=wx.Size(size,

size))

self.radius = (size - 10) / 2 self.circle_center =

wx.Point(self.point.x +

self.radius, self.point.y + self.radius)

def on_paint(self, dc):

dc.DrawCircle(pt=self.circle_center, radius=self.radius)

The Line Class

This is another subclass of Figure. In this very simple

example, a default end point for the line is generated.

Alternatively the program could look for a mouse released

event and pick up the mouse at this location and use this as

the end point of the line.

class Line(Figure):

def init (self, parent, pos, size):

super(). init (parent=parent, pos=pos,

size=wx.Size(size, size))

self.end_point = wx.Point(self.point.x + size, self.point.y

+ size)

def on_paint(self, dc):

dc.DrawLine(pt1=self.point, pt2=self.end_point)25.1.4

The Text Class

This is also a subclass of Figure. A default value is used for the

text to display; however a dialog could be presented to the

user allowing them to input the text they wish to display:

class Text(Figure):

def init (self, parent, pos, size):

super(). init__(parent=parent, pos=pos,size=wx.Size(size,

size))

def on_paint(self, dc):

dc.DrawText(text='Text', pt=self.point)

References

The following provides some background on the Model-

View-Controller architecture in user interfaces.

• G.E. Krasner,S.T. Pope, A cookbook for using the model-

view controller user interface paradigm in small talk-80.

JOOP 1(3), 26–49 (1988).

Try

You could develop the PyDraw application further by adding

the following features:

A delete option You can add a button labeled Delete to the

window. It should set the mode to “delete”.The

drawingPanel must be altered so that the mouseReleased

method sends a delete message to the drawing. The

drawing must find and remove the appropriate graphic

object and send the changed message to itself.

A resize option This involves identifying which of the

shapes has been selected and then either using a dialog to

enter the new size or providing some option that allows

the size fo the shape to be indicated using the mouse.

Introduc on to Games Programming

Introduction

Games programming is performed by developers/coders who

implement the logic that drives a game.

Historically games developers did everything; they wrote the

code, designed the sprites and icons, handled the game play,

dealt with sounds and music, generated any animations

required etc. However, as the game industry has matured

games companies have developed specific roles including

Computer Graphics (CG) animators, artists, games developers

and games engine and physics engine developers etc.

Those involved with code development may develop a physics

engine, a games engine, the games themselves, etc. Such

developers focus on di erent aspects of a game. For examples

a game engine developer focuses on creating the framework

within which the game will run. In turn a physics engine

developer will focus on implementing the mathematics

behind the physics of the simulated games world (such as the

e ect of gravity on characters and components within that world). In many cases there will also be developers working

on the AI engine for a game. These developers will focus on

providing facilities that allow the game or characters in the

game to operate intelligently.

Those developing the actual game play will use these engines

and frameworks to create the overall end result. It is they who

give life to the game and make it an enjoyable (and playable)

experience.

Games Frameworks and Libraries

There are many frameworks and libraries available that allow

you to create anything from simple games to large complex

role playing games with infinite worlds.

One example is the Unity framework that can be used with the

C# programming language. Another such framework is the

Unreal engine used with the C++ programming language.

Python has also been used for games development with

several well known games titles depending on it in one way or

another. For example, Battle field 2 by Digital Illusions CE is a

military simulator first person shooter game. Battle field

Heroes handles portions of the game logic involving game

modes and scoring using Python.

Other games that use Python include Civilization IV (for many

of the tasks), Pirates of the Caribbean Online and Over watch

(which makes its choices with Python).

Python is also embedded as a scripting engine within tools

such as Autodesk’s Maya which is a computer animation

toolkit that is often used with games.

Python Games Development

For those wanting to learn more about game development;

Python has much to o er. There are many examples available

online as well as several game oriented frameworks.

The frameworks/libraries available for games development in

Python including:

Arcade. This is a Python library for creating 2D style video

games.

pyglet is a windowing and multimedia library for Python

that can also be used for games development.

Cocos2d is a framework for building2D games that is built

on top of pyglet.

pygame is probably the most widely used library for

creating games within the Python world.There are also

many extensions available for pygame that help to create

a wide range of di erent types of games.

We will focus on pygame in the next two chapters in this

book. Other libraries of interest to Python games developers

include:

PyODE. This is an open-source Python binding for the

OpenDynamics Engine which is an open-source physics

engine.

pymunk Pymunk is a easy-to-use 2D physics library that

can be used whenever you need 2d rigid body physics with

Python. It is very good when you need 2D physics in your

game, demo or other application. It is built on top of the

2D physics library Chipmunk.

pyBox2D pybox2d is a 2D physics library for your games

and simple simulations. It’s based on the Box2D library

written in C++. It supports several shape types

(circle,polygon, thin line segments) as well as a number

of joint types (revolute, prismatic, wheel, etc.).

Blender. This is a open-source 3D computer graphics

software tool set used for creating animated films, visual

e ects, art, 3D printed models, interactive 3D

applications and video games. Blender’s features include

3D modeling, texturing, raster graphics editing, rigging

and skinning,etc. Python can be used as a scripting tool

for creation,prototyping, game logic and more.

Quake Army Knife which is an environment for

developing 3D maps for games based on the Quake

engine. It is written in Delphi and Python.

Using Pygame

In the next two chapters we will explore the core pygame

library and how it can be used to develop interactive

computer games. The next chapter explores pygame itself and

the facilities it provides. The following chapter developers a

simple interactive game in which the user moves a star ship

around avoiding meteors which scroll vertically down the

screen.

Online Resources

For further information games programming and the

libraries mentioned in this chapter see:

https://unity.com/ the C# framework for games

development.

https://www.unrealengine.com for C++ games

development.

http://arcade.academy/ provides details on the Arcade

games framework.

http://www.pyglet.org/ for information on the piglet

library.

http://cocos2d.org/ is the home page for the Cocos2d

framework.

https://www.pygame.org for information on pygame.

http://pyode.sourceforge.net/ for details of the PyODE

bindings to the Open Dynamics Engine.

http://www.pymunk.org/ provides information on

pymunk.

https://github.com/pybox2d/pybox2d which is a Git hub

repository for pyBox2d.

https://git.blender.org/gitweb/gitweb.cgi/blender.git Git

Hub repository for Blender.

https://sourceforge.net/p/quark/code SourceForge

repository for Quake Army Knife.

https://www.autodesk.co.uk/products/maya/overview for

information on Autodesks Maya computer animation

software.

Building Games with pygame

Introduction

pygame is a cross-platform, free and Open Source Python

library designed to make building multimedia applications

such as games easy. Development of pygame started back in

October 2000 with pygame version 1.0 being released six

months later. The version of pygame discussed in this chapter

is version 1.9.6.If you have a later version check to see what

changes have been made to see if they have any impact on the

examples presented here.

pygame is built on top of the SDL library. SDL (or Simple

Direct media Layer) is a cross platform development library

designed to provide access to audio, key- boards, mouse,

joystick and graphics hardware via OpenGL and Direct3D. To

promote portability, pygame also supports a variety of

additional back ends including WinDIB, X11, Linux Frame

Bu er etc.

SDL o cially supports Windows, Mac OS X, Linux, iOS and

Android (although other platforms are uno cially supported). SDL itself is written in C and pygame provides a

wrapper around SDL. However, pygame adds functionality

not found in SDL to make the creation of graphical or video

games easier. These functions include vector maths, collision

detection, 2D sprite scene graph management, MIDI support,

camera, pixel array manipulation, transformations, filtering,

advanced free type font support and drawing.

The remainder of this chapter introduces pygame, the key

concepts; the key modules, classes and functions and a very

simple first pygame application. The next chapter steps

through the development of a simple arcade style video game

which illustrates how a game can be created using pygame.

The Display Surface

The Display Surface (aka the display)is the most important

part of a pygame game. It is the main window display of your

game and can be of any size, however you can only have one

Display Surface.

In many ways the Display Surface is like a blank piece of

paper on which you can draw. The surface itself is made up of

pixels which are numbered from 0,0 in the top left hand

corner with the pixel locations being indexed in the x axis and

the y axis. This is shown below:

[image:]

The above diagram illustrates how pixels within a Surface are

indexed. Indeed a Surface can be used to draw lines, shapes

(such as rectangles, squares, circles and ellipses), display

images, manipulate individual pixels etc. Lines are drawn

from one pixel location to another (for example from location

0,0 to location 9,0 which would draw a line across the top of

the above display surface). Images can be displayed within

the display surface given a starting point such as 1, 1.

The Display Surface is created by the

pygame.display.set_mode() function. This function takes a

tuple that can be used to specify the size of the Display

Surface to be returned. For example:

display_surface = pygame.display.set_mode((400, 300))

This will create a Display Surface (window) of 400 by 300

pixels.

Once you have the Display Surface you can fill it with an

appropriate back- ground color (the default is black) however

if you want a di erent background color or want to clear

everything that has previously been drawn on the surface,

then you can use the surface’s fill() method:

WHITE = (255, 255, 255)

display_surface.fill(WHITE)

The fill method takes a tuple that is used to define a color in

terms of Red, Green and Blue (or RGB) colors. Although the

above examples uses a meaningful name for the tuple

representing the RGB values used for white; there is of course

no requirement to do this (although it is considered good

practice).

To aid in performance any changes you make to the Display

Surface actually happen in the background and will not be rendered onto the actual display that the user sees until you

call the update() or flip() methods on the surface. For

example:

pygame.display.update()

pygame.display.flip()

The update() method will redraw the display with all changes

made to the display in the background. It has an optional

parameter that allows you to specify just a region of the

display to update (this is defined using a Rect which

represents a rectangular area on the screen). The flip()

method always refreshes the whole of the display (and as

such does exactly the same as the update() method with no

parameters).

Another method, which is not specifically a Display Surface

method,but which is often used when the display surface is

created,provides a caption or title for the top level window.

This is the pygame.display.set_caption() function. For

example:

pygame.display.set_caption('Hello World')

This will give the top level window the caption (or title) ‘Hello

World’.

Events

Just as the Graphical User Interface systems described in

earlier chapters have an event loop that allows the

programmer to work out what the user is doing (in those

cases this is typically selecting a menu item, clicking a button

or entering data etc.); pygame has an event loop that allows

the game to work out what the player is doing. For example,

the user may press the left or right arrow key. This is

represented by an event.

Event Types

Each event that occurs has associated information such as the

type of that event. For example:

Pressing a key will result in a KEYDOWN type of event,

while releasing a key will result in a KEYUP event type.

Selecting the window close button will generate a QUIT

event type etc.

Using the mouse can generate MOUSEMOTION events as

well as MOUSEBUTTONDOWN and MOUSEBUTTONUP

event types.

Using a Joystick can generate several di erent types of

event including JOYAXISMOTION,

JOYBALLMOTION,JOYBUTTONDOWN and JOYBU

TTONUP.

These event types tell you what occurred to generate the

event. This means that you can choose which types of events

you want to deal with and ignore other events.

Event Information

Each type of event object provides information associated

with that event. For example a Key oriented event object will

provide the actual key pressed while a mouse oriented event

object will provide information on the position of the mouse,

which button was pressed etc. If you try an access an attribute

on an event that does not support that attribute, then an error

will be generated.

The following lists some of the attributes available for

di erent event types:

KEYDOWN and KEYUP, the event has a key attribute and a

mod attribute (indicating if any other modifying keys

such as Shift are also being pressed).

MOUSEBUTTONUP and MOUSEBUTTONDOWN has an

attribute pos that holds a tuple indicating the mouse

location in terms of x and y coordinates on the underlying

surface. It also has a button attribute indicating which

mouse was pressed.

MOUSEMOTION has pos, rel and buttons attributes. The

pos is a tuple indicating the x and y location of mouse

cursor. The real attribute indicates the amount of mouse

movement and buttons indicates the state of the mouse

buttons.

As an example if we want to check for a keyboard event type

and then check that the key pressed was the space bar, then

we can write:

if event.type == pygame.KEYDOWN:

Check to see which key is pressed

if event.key == pygame.K_SPACE:

print('space')

This indicates that if it is a key pressed event and that the

actual key was the space bar; then print the string ‘space’.

There are many keyboard constants that are used to represent

the keys on the keyboard and pygame.K_SPACE constant

used above is just one of them.

All the keyboard constants are prefixed with ‘K_’ followed by

the key or the name of the key, for example:

K_TAB, K_SPACE, K_PLUS, K_0, K_1, K_AT, K_a, K_b,

K_z, K_DELTE, K_DOWN, K_LEFT, K_RIGHT, K_LEFT

etc.

Further keyboard constants are provided for modifier states

that can be combined with the above such as KMOD_SHIFT,

KMOD_CAPS, KMOD_CTRL and KMOD_ALT.

The Event Queue

Events are supplied to a pygame application via the Event

Queue. The Event Queue is used to collect together events as

they happen. For example, let us assume that a user clicks on

the mouse twice and a key twice before a program has a

chance to process them; then there will be four events in the

Event Queue as shown below:

[image:]

The application can then obtain an iterable from the event

queue and process through the events in turn. While the

program is processing these events further events may occur

and will be added to the Event Queue. When the program has

finished processing the initial collection of events it can

obtain the next set of events to process.

One significant advantage of this approach is that no events

are ever lost; that is if the user clicks the mouse twice while

the program is processing a previous set of events; they will

be recorded and added to the event queue. Another advantage is that the events will be presented to the program in the

order that they occurred.

The pygame.event.get() function will read all the events

currently on the Event Queue (removing them from the event

queue). The method returns an Event List which is an iterable

list of the events read. Each event can then be processed in

turn. For example:

for event in pygame.event.get():

if event.type == pygame.QUIT:

print('Received Quit Event:')

elif event.type == pygame.MOUSEBUTTONDOWN:

print('Received Mouse Event')

elif event.type == pygame.KEYDOWN:

print('Received KeyDown Event')

In the above code snippet an EventList is obtained from the

Event Queue containing the current set of events. The for loop

then processes each event in turn checking the type and

printing an appropriate message.

You can use this approach to trigger appropriate behavior

such as moving an image around the screen or calculating the

players score etc. However, be aware that if this behavior

takes too long it can make the game di cult to play(although the examples in this chapter and the next are simple enough

that this is not a problem).

A First pygame Application

We are now at the point where we can put together what we

have looked at so far and create a simple pygame application.

It is common to create a hello world style program when

using a new programming language or using a new

application framework etc. The intention is that the core

elements of the language or framework are explored in order

to generate the most basic form of an application using the

language or framework. We will therefore implement the

most basic application possible using pygame.

The application we will create will display a pygame window,

with a ‘Hello World’ title. We will then be able to quit the

game. Although technically speaking this isn’t a game, it does

possess the basic architecture of a pygame application.

The simple Hello World game will initialize pygame and the

graphical dis- play. It will then have a main game playing

loop that will continue until the user selects to quit the

application. It will then shut down pygame. The display

created by the program is shown below for both Mac and

Windows operating systems:

[image:]

To quit the program click on the exit button for the

windowing system you are using.

The simple Hello World game is given below:

import pygame

def main():

print('Starting Game')

print('Initialising pygame')

pygame.init() # Requiredby every pygame application

print('Initialising HelloWorldGame')

pygame.display.set_mode((200,

100))pygame.display.set_caption('Hello World')

print('Update display')

pygame.display.update()

print('Starting main Game Playing Loop')

running = True while running:

for event in pygame.event.get():

if event.type == pygame.QUIT: print('Received Quit Event:',

event)running = False

print('Game Over')

pygame.quit()

if_name_=='_main_':

main() There are several key steps highlighted by this example, these

steps are:

1. Import pygame. pygame is of course not one of the

default modules available within Python. You must first

import pygame into you code. The import pygame

statement imports the pygame module into your code and

makes the functions and classes in pygame available to

you (note the capitalization - pygame is not the same

module name as PyGame). It is also common to find that

programs import from pygame.locals import. This adds

several constants and functions into the namespace of

your pro- gram. In this very simple example we have not

needed to do this.

2. Initialize pygame. Almost every pygame module needs to

be initialized in some way and the simplest way to do this

is to call pygame.init(). This will do what is required to set

the pygame environment up for use. If you forget to call

this function you will typically get an error message such

as pygame.error: video system not initialized (or

something similar). If you get such a method checkto see

that you have called pygame.init(). Note that you can

initialize individual pygame modules (for example the

pygame.font module can be initialized using

pygame.font.init()) if required. However pygame.init() is

the most commonly used approach to setting up pygame.

3. Setup the display. Once you have initialized the pygame

framework you can setup the display.In the above code

example, the display is set up using the

pygame.display.set_mode() function. This function takes

a tuple specifying the size of the window to be created (in

this case 200 pixels wide by 100 pixels high). Note that if

you try and invoke this function by passing in two

parameters instead of a tuple, then you will get an error.

This function returns the drawing surface or

screen/window that can be used to display items within

the game such as icons, messages,shapes etc. As our

example is so simple we do not bother saving it into a

variable.However, anything more complex than this will

need to do so. We also set the window/frame’s caption (or

title). This is displayed in the title bar of the window.

4. Render the display. We now call the

pygame.display.update() function. This function causes

the current details of the display to be drawn. At the

moment this is a blank window. However, it is common in

games to perform a series of updates to the display in the

background and then when the program is ready to

update the display to call this function. This batches a

series of updates and the causes the display to be

refreshed. In a complex display it is possible to indicate

which parts of the display need to be redrawn rather than

redrawing the whole window. This is done by passing a

parameter into the update() function to indicate the

rectangle to be redrawn. However, our example is so

simple we are ok with redrawing the whole window and

therefore we do not need to pass any parameters to the

function.

5. Main game playing loop. It is common to have a main

game playing loop that drives the processing of user

inputs, modifies the state of the game and updates the

display. This is represented above by the while

running:loop. The local variable running is initialized to

True. This means that the while loop ensures that the

game continues until the user selects to quit the game at

which point the running variable is set to False which

causes the loop to exit. In many cases this loop will call

update() to refresh the display. The above example does

not do this as nothing is changed in the display. However

the example developed later in this chapter will illustrate

this idea.

6. Monitor for events that drive the game. As mentioned

earlier the event queue is used to allow user inputs to be

queued and then processed by the game.In the simple

example shown above this is represented by a for loop

that receives events using pygame.event.get() and then

checking to see if the event is a pygame.QUIT event. If it

is, then it sets the running flag to False. Which will cause

the main while loop of the game to terminate.

7. Quit pygame once finished. In pygame any module that

has an init() function also has an equivalent quit()

function that can be used to perform any cleanup

operations. As we called init() on the pygame module at

the start of our program we will therefore need to call

pygame.quit() at the end of the program to ensure

everything is tidied up appropriately.

The output generated from a sample run of this program is

given below:

pygame 1.9.6

Hello from the pygame community.

https://www.pygame.org/contribute.html Starting Game

Initialising pygame Initialising HelloWorldGame Update display

Starting main Game Playing Loop

Received Quit Event: Game Over

Further Concepts

There are very many facilities in pygame that go beyond what

we can cover in this book, however a few of the more common

are discussed below.

Surfaces are a hierarchy. The top level Display Surface may

contain other surfaces that may be used to draw images or

text. In turn containers such as Panels may render surfaces to

display images or text etc.

Other types of surface. The primary Display Surface is not the

only surface in pygame. For example, when an image, such as

a PNG or JPEG image is loaded into a game then it is rendered

onto a surface. This surface can then be displayed within

another surface such as the Display Surface. This means that

anything you can do to the Display Surface you can do with

any other surface such as draw on it, put text on it, color it,

add another icon onto the surface etc.

Fonts. The pygame.font.Font object is used to create a Font

that can be used to render text onto a surface. The render

method returns a surface with the text rendered on it that can

be displayed within another surface such as the Display

Surface. Note that you cannot write text onto an existing

surface you must always obtain a new surface (using render)

and then add that to an existing surface.The text can only be

displayed in a single line and the surface holding the text will

be of the dimensions required to render the text. For example:

text_font = pygame.font.Font('freesansbold.ttf', 18)

text_surface = text_font.render('Hello World',

antialias=True, color=BLUE)

This creates a new Font object using the specified font with

the specified font size (in this case 18). It will then render the

string ‘Hello World’ on to a new surface using the specified

font and font size in Blue. Specifying that anti alias is True indicates that we would like to smooth the edges of the text

on the screen.

Rectangles (or Rects). The pygame.Rect class is an object used

to represent rectangular coordinates. A Rect can be created

from a combination of the top left corner coordinates plus a

width and height. For flexibility many functions that expect a

Rect object can also be given a Rect like list; this is a list that

contains the data necessary to create a Rect object. Rects are

very useful in a pygame Game as they can be used to define

the borders of a game object. This means that they can be

used within games to detect if two objects have collided.This

is made particularly easy because the Rect class provides

several collision detection methods:

pygame.Rect.contains() test if one rectangle is inside

another

pygame.Rect.collide point() test if a point is inside a

rectangle

pygame.Rect.colliderect() test if two rectangles overlap

pygame.Rect.collidelist() test if one rectangle in a list

intersects

pygame.Rect.collidelistall() test if all rectangles in a list

intersect

pygame.Rect.collidedict() test if one rectangle in a

dictionary intersects

pygame.Rect.collidedictall() test if all rectangles in a

dictionary intersect

The class also provides several other utility methods such as

move() which moves the rectangle and inflate() which can

grow or shrink the rectangles size.

Drawing shapes. The pygame.draw module has numerous

functions that can be used to draw lines and shapes onto a

surface, for example:

pygame.draw.rect(display_surface, BLUE, [x, y, WIDTH,

HEIGHT])

This will draw a filled blue rectangle(the default) onto the

display surface. The rectangle will be located at the location

indicated by x and y (on the surface).This indicates the top

left hand corner of the rectangle. The width and height of the

rectangle indicate its size. Note that these dimensions are

defined within a list which is a structure referred to as being

rect like (see below). If you do not want a filled rectangle (i.e.

You just want the outline)then you can use the optional width

parameter to indicate the thickness of the outer edge. Other

methods available include:

pygame.draw.polygon() draw a shape with any number of

sides

pygame.draw.circle() draw a circle around a point

pygame.draw.ellipse() draw a round shape inside a

rectangle

pygame.draw.arc() draw a partial section of an ellipse

pygame.draw.line() draw a straight line segment

pygame.draw.lines() draw multiple contiguous line

segments

pygame.draw.aaline() draw fine antialiased lines

pygame.draw.aalines() draw a connected sequence of

antialiased lines

Images. The pygame.image module contains functions for

loading, saving and transforming images.When an image is

loaded into pygame, it is represented by a Surface object. This

means that it is possible to draw, manipulate and process an

image in exactly the same way as any other surface which

provides a great deal of flexibility.

At a minimum the module only supports loading

uncompressed BMP images but usually also supports JPEG,

PNG, GIF (non-animated), BMP, TIFF as well as other

formats.

However, it only supports a limited set of formats when

saving images; these are BMP, TGA, PNG and JPEG.

An image can be loaded from a file using:

image_surface = pygame.image.load(filename).convert()

This will load the image from the specified file onto a surface.

One thing you might wonder at is the use of the convert()

method on the object returned from the pygame.image.load()

function. This function returns a Surface that is used to

display the image contained in the file. We call the method

convert() on this Surface, not to convert the image from a

particular file format (such as PNG, or JPEG) instead this

method is used to convert the pixel format used by the

Surface. If the pixel format used by the Surface is not the

same as the display format, then it will need to be converted

on the fly each time the image is displayed on the screen; this

can be a fairly time consuming (and unnecessary) process. We

therefore do this once when the image is loaded which means

that it should not hinder runtime performance and may

improve performance significantly on some systems.

Once you have a surface containing an image it can be

rendered onto another surface, such as the display surface

using the Surface.blit() method. For example:

display_surface.blit(image_surface, (x, y))

Note that the position argument is a tuple specifying the x

and y coordinates to the image on the display surface. Strictly

speaking the blit() method draws one surface (the source

surface)

onto another surface at the destination coordinates. Thus the

target surface does not need to be the top level display

surface.

Clock. A Clock object is an object that can be used to track

time. In particular it can be used to define the frame rate for

the game. That is the number of frames rendered per

second.This is done using the Clock.tick() method. This

method should be called once (and only once) per frame. If

you pass the optional frame rate argument to the tick() the

function, then pygame will ensure that the games refresh rate

is slower then the the given ticks per second. This can be used

to help limit the runtime speed of a game. By calling clock.tick

(30) once per frame, the program will never run at more than

30 frames per second.

A More Interactive pygame Application

The first pygame application we looked at earlier just

displayed a window with the caption ‘Hello World’. We can

now extend this a little by playing with some of the features

we have looked at above.

The new application will add some mouse event handling.

This will allow us to pickup the location of the mouse when the user clicked on the window and draw a small blue box at

that point.

If the user clicks the mouse multiple times we will get

multiple blue boxes being drawn. This is shown below.

[image:]

This is still not much of a game but does make the pygame

application more interactive.

The program used to generate this application is presented

below:

import pygame

FRAME_REFRESH_RATE = 30

BLUE = (0, 0, 255)

BACKGROUND = (255, 255, 255) # White

WIDTH = 10

HEIGHT = 10

def main():

print('Initialising PyGame')

pygame.init() # Required by every PyGame application

print('Initialising Box Game')

display_surface = pygame.display.set_mode((400, 300))

pygame.display.set_caption('Box Game') print('Update display')

pygame.display.update()

print('Setup the Clock')

clock = pygame.time.Clock()

Clear the screen of current contents

display_surface.fill(BACKGROUND)

print('Starting main Game Playing Loop')

running = True while running:

for event in pygame.event.get():

if event.type == pygame.QUIT: print('Received Quit Event:',

event) running = False

elif event.type == pygame.MOUSEBUTTONDOWN:

print('Received Mouse Event', event) x, y = event.pos

pygame.draw.rect(display_surface, BLUE, [x, y,

WIDTH, HEIGHT])

second

Update the display

pygame.display.update()

Defines the frame rate - the number of frames per

Should be called once per frame (but only once)

clock.tick(FRAME_REFRESH_RATE)

print('Game Over')

Now tidy up and quit Python

pygame.quit()

if_name_=='_main_':

main()

Note that we now need to record the display surface in a local

variable so that we can use it to draw the blue rectangles. We

also need to call the pygame.dis- play.update() function each

time round the main while loop so that the new rectangles we

have drawn as part of the event processing for loop are

displayed to the user.

We also set the frame rate each time round the main while

loop. This should happen once per frame (but only once) and

uses the clock object initialized at the start of the program.

Alternative Approach to Processing Input Devices

There are actually two ways in which inputs from a device

such as a mouse, joystick or the keyboard can be processed.

One approach is the Event based model described earlier. The

other approach is the State based approach.

Although the Event based approach has many advantages is

has two disadvantages:

Each event represents a single action and continuous

actions are not explicitly represented. Thus if the user

presses both theX key and the Z key then this will

generate two events and it will be up to the program to

determine that they have been pressed at the same time.

It is also up to the program to determine that the user is

still pressing a key (by noting that no KEYUP event has

occurred).

Both of these are possible but can be error prone.

An alternative approach is to use the State based approach. In

the state based approach the program can directly check the

state of a input device (such as a key or mouse or keyboard).

For example, you can use pygame.key.get_pressed() which

returns the state of all the keys. This can be used to determine

if a specific key is being pressed at this moment in time. For

example, pygame.key. get_pressed()[pygame.K_SPACE] can

be used to check to see if the space bar is being pressed.

This can be used to determine what action to take. If you keep

checking that the key is pressed then you can keep

performing the associated action. This can be very useful for

continues actions in a game such as moving an object etc.

However, if the user presses a key and then releases it before

the program checks the state of the keyboard then that input

will be missed.

pygame Modules There are numerous modules provided as part of pygame as

well as associated libraries. Some of the core modules are

listed below:

pygame.display This module is used to control the display

window or screen. It provides facilities to initialize and

shutdown the display module. It can be used to initialize a

window or screen. It can also be used to cause a window

or screen to refresh etc.

pygame.event This module manages events and the event

queue. For example pygame.event.get() retrieves events

from the event queue, pygame.event.poll() gets a single

event from the queue and pygame.event.peek() tests to

see if there are any event types on the queue.

pygame.draw The draw module is used to draw simple

shapes onto a Surface. For example, it provides functions

for drawing a rectangle (pygame.draw.rect), a polygon, a

circle, an ellipse, a line etc.

pygame.font The font module is used to create and render

TrueType fonts into a new Surface object. Most of the

features associated with fonts are sup- ported by the

pygame.font.Font class. Free standing module functions

allow the module to be initialized and shutdown, plus

functions to access fonts such as

pygame.font.get_fonts() which provides a list of the

currently available fonts.

pygame.image This module allows images to be saved

and loaded. Note that images are loaded into a Surface

object (there is no Image class unlike many other GUI

oriented frameworks).

pygame.joystick The joystick module provides the

Joystick object and several supporting functions. These

can be used for interacting with joysticks, game pads and

trackballs.

pygame.key This module provides support for working

with inputs from the keyboard. This allows the input keys

to be obtained and modifier keys (such as Control and

Shift)to be identified. It also allows the approach to

repeating keys to be specified.

pygame.mouse This module provides facilities for

working with mouse input such as obtaining the current

mouse position, the state of mouse buttons as well as the

image to use for the mouse.

pygame.time This is the pygame module for managing

timing within a game. It provides the pygame.time.Clock

class that can be used to track time.

StarshipMeteors pygame

Creating a Spaceship Game

In this chapter we will create a game in which you pilot a

starship through a field of meteors. The longer you play the

game the larger the number of meteors you will encounter. A

typical display from the game is shown below for a Apple Mac

and a Windows PC:

[image:]

We will implement several classes to represent the entities

within the game. Using classes is not a required way to

implement a game and it should be noted that many

developers avoid the use of classes. However, using a class

allows data associated with an object within the game to be

maintained in one place; it also simplifies the creation of multiple instances of the same object(such as the meteors)

within the game.

The classes and their relationships are shown below:

[image:]

This diagram shows that the Star ship and Meteor classes will

extend a class called GameObject. In turn it also shows that

the Game has a 1:1 relationship with the Starship class. That is

the Game holds a reference to one Starship and in turn the

starship holds a single reference back to the Game.

In contrast the Game has a 1 to many relationship with the

Meteor class. That is the Game object holds references to

many Meteors and each Meteor holds a reference back to the

single Game object.

The Main Game Class

The first class we will look at will be the Game class itself.

TheGame class will hold the list of meteors and the starship

as well as the main game playing loop. It will also initialize

the main window display (for example by setting the size and

the caption of the window).

In this case we will store the display surface returned by the

pygame.display.set_mode() function in an attribute of the

Game object called display_surface. This is because we will

need to use it later on to display the starship and the meteors.

We will also hold onto an instance of the pygame.time.Clock()

class that we will use to set the frame rate each time round

the main game playing while loop.

The basic framework of our game is shown below; this listing

provides the basic Game class and the main method that will

launch the game. The game also defines three global

constants that will be used to define the frame refresh rate

and the size of the display.

import pygame

Set up Global'constants'

FRAME_REFRESH_RATE = 30

DISPLAY_WIDTH = 600

DISPLAY_HEIGHT = 400

class Game:

""" Represents the game itself and game playing loop """

def init (self): print('Initialising PyGame') pygame.init()

Set up the display

self.display_surface =

pygame.display.set_mode((DISPLAY_WIDTH, DISPLAY_HEIGHT))

pygame.display.set_caption('Starship Meteors')

Used for timingwithin the program.

self.clock = pygame.time.Clock()

def play(self):

is_running = True

Main game playing Loop

while is_running:

Work out what the user wants to do

for event in pygame.event.get():

if event.type == pygame.QUIT:

is_running = False

elif event.type == pygame.KEYDOWN:

if event.key == pygame.K_q:

is_running = False

Update the display

pygame.display.update()

Definesthe frame rate

self.clock.tick(FRAME_REFRESH_RATE)

Let pygame shutdown gracefully

pygame.quit()

def main():

print('Starting Game') game = Game() game.play()

print('Game Over')

if_name_=='_main_':

main()

The main play() method of the Game class has a loop that will

continue until the user selects to quit the game. They can do

this in one of two ways, either by pressing the ‘q’ key

(represented by the event.key K_q) or by clicking on the

window close button. In either case these events are picked up

in the main event processing for loop within the main while

loop method.

If the user does not want to quit the game then the display is

updated (refreshed) and then the clock.tick() (or frame) rate

is set. When the user selects to quit the game then the main

while loop is terminated (the is_running flag is set to False)

and the pygame.quit() method is called to shut down pygame.

At the moment this not a very interactive game as it does not

do anything except allow the user to quit. In the next section

we will add in behavior that will allow us to display the space

ship within the display.

TheGameObject Class

The GameObject class defines three methods:

The load_image() method can be used to load an image to be

used to visually represent the specific type of game object.

The method then uses the width and height of the image to

define the width and height of the game object.

The rect() method returns a rectangle representing the

current area used by the game object on the underlying

drawing surface. This di ers from the images own rect()

which is not related to the location of the game object on the

underlying surface. Rects are very useful for comparing the

location of one object with another (for example when

determining if a collision has occurred).

The draw() method draws the GameObjects’ image onto the

display_- surface held by the game using the GameObjects

current x and y coordinates. It can be overridden by sub

classes if they wish to be drawn in a di erent way.

The code for the GameObject class is presented below:

class GameObject:

def load_image(self, filename):

self.image = pygame.image.load(filename).convert()

self.width = self.image.get_width()

self.height = self.image.get_height()

def rect(self):

""" Generates a rectanglerepresenting the objects location

and dimensions"""

return pygame.Rect(self.x, self.y, self.width, self.height)

def draw(self):

""" draw the game object at the current x, y coordinates """

self.game.display_surface.blit(self.image, (self.x,

self.y))

The GameObject class is directly extended by the Starship

class and the Meteor class.

Currently there are only two types of game elements, the

starship and the meteors; but this could be extended in future

to planets, comets,shooting stars etc.

Displaying the Starship

The human player of this game will control a starship that

can be moved around the display. The Starship will be

represented by an instance of the class Starship. This class

will extend the GameObject class that holds common

behaviors for any type of element that is represented within

the game.

The Starship class defines its own init ()method that takes a

reference to the game that the starship is part of. This

initialization method sets the initial starting location of the

Starship as half the width of the display for the x coordinate

and the display height minus 40 for the y coordinate (this

gives a bit of a bu er before the end of the screen). It then

uses the load_image() method from the GameObject parent class to load the image to be used to represent the Starship.

This is held in a file called starship.png. For the moment we

will leave the Starship class as it is (however we will return to

this class so that we can make it into a movable object in the

next section).

The current version of the Starship class is given below:

class Starship(GameObject):

""" Represents a starship"""

def init (self, game):

self.game = game

self.x = DISPLAY_WIDTH / 2 self.y = DISPLAY_HEIGHT - 40

self.load_image('starship.png')

In the Game class we will now add a line to the init ()method

to initialize the Starship object. This line is:

Set up the starship

self.starship = Starship(self)

We will also add a line to the main while loop within the

play() method just before we refresh the display.This line will

call the draw() method on the starship object:

Draw the starship self.starship.draw() This will have the e ect of drawing the starship onto the

windows drawing surface in the background before the

display is refreshed. When we now run this version of the

StarshipMeteor game we now see the Starship in the display:

[image:]

Of course at the moment the starship does not move; but we

will address that in the next section.

Moving the Spaceship

We want to be able to move the Starship about within the

bounds of the display screen. To do this we need to change the starships x and y coordinates in response to the user pressing

various keys.

We will use the arrow keys to move up and down the screen or

to the left or right of the screen. To do this we will define four

methods within the Starship class; these methods will move

the starship up, down, left and right etc.

The updated Starship class is shown below:

[image:]

This version of the Starship class defines the various move

methods. These methods use a new global value

STARSHIP_SPEED to determine how far and how fast the

Starship moves. If you want to change the speed that the

Starship moves then you can change this global value.

Depending upon the direction intended we will need to

modify either the xor y coordinate of the Starship.

If the starship moves to the left then the x coordinate is

reduced by STARSHIP_SPEED,

if it moves to the right then the x coordinate is increased

by STARSHIP_SPEED,

in turn if the Starship moves up the screen then the y

coordinate is decremented by STARSHIP_SPEED,

but if it moves down the screen then the y coordinate is

increased by STARSHIP_SPEED.

Of course we do not want our Starship to fly o the edge of

the screen and so a test must be made to see if it has reached

the boundaries of the screen. Thus tests are made to see if the

x or y values have gone below Zero or above the

DISPLAY_WIDTH or DISPLAY_HEIGHT values. If any of

these conditions are met then the x or y values are reset to an

appropriate default.

We can now use these methods with player input. This player

input will indicate the direction that the player wants to move

the Starship. As we are using the left, right, up and down

arrow keys for this we can extend the event processing loop

that we have already defined for the main game playing loop.

As with the letter q, the event keys are prefixed by the letter K

and an under bar, but this time the keys are named K_LEFT,

K_RIGHT, K_UP and K_DOWN.

When one of these keys is pressed then we will call the

appropriate move method on the starship object already held

by the Game object.

The main event processing for loop is now:

Work out what the user wants to do

for event in pygame.event.get():

if event.type == pygame.QUIT:

is_running = False

elif event.type == pygame.KEYDOWN:

Check to see which key is pressed

if event.key == pygame.K_RIGHT:

Right arrow key has been pressed

move the player right

self.starship.move_right()

elif event.key == pygame.K_LEFT:

Left arrow has been pressed

move the playerleft

self.starship.move_left()

elif event.key == pygame.K_UP:

self.starship.move_up()

elif event.key == pygame.K_DOWN:

self.starship.move_down()

elif event.key == pygame.K_q:

is_running = False

However, we are not quite finished. If we try and run this

version of the program we will get a trail of Starships drawn

across the screen; for example:

[image:]

The problem is that we are redrawing the starship at a

di erent position; but the previous image is still present.

We now have two choices one is to merely fill the whole

screen with black; e ectively hiding anything that has been

drawn so far; or alternatively we could just draw over the area

used by the previous image position. Which approach is

adopted depends on the particular scenario represented by

your game. As we will have a lot of meteors on the screen once

we have added them; the easiest option is to over- write

everything on the screen before redrawing the starship. We

will therefore add the following line:

Clear the screen of current contents

self.display_surface.fill(BACKGROUND)

This line is added just before we draw the Starship within the

main game playing while loop. Now when we move the

Starship the old image is removed before we draw the new

image:

[image:]

One point to note is that we have also defined another global

value BACKGROUND used to hold the background color of the

game playing surface. This is set to black as shown below:

Define default RGB colours

BACKGROUND = (0, 0, 0)

If you want to use a di erent background color then change

this global value.

Adding a Meteor Class

The Meteor class will also be a subclass of the GameObject

class. However, it will only provide a move_down() method

rather than the variety of move methods of the Starship.

It will also need to have a random startingx coordinate so that

when a meteor is added to the game its starting position will

vary. This random position can be generated using the

random.randint() function using a value between 0 and the

width of the drawing surface. The meteor will also start at the

top of the screen so will have a di erent initial coordinate to

the Starship. Finally, we also want our meteors to have

di erent speeds; this can be another random number

between 1 and some specified maximum meteor speed. To

support these we need to add random to the modules being

imported and define several new global values, for example:

import pygame, random

INITIAL_METEOR_Y_LOCATION = 10

MAX_METEOR_SPEED = 5

We can nowdefinethe Meteor class: We can now add the meteors to the Game class.We will add a

class Meteor(GameObject):

"""represents a meteor in the game """

def init (self, game):

self.game = game

self.x = random.randint(0, DISPLAY_WIDTH)

self.y = INITIAL_METEOR_Y_LOCATION

self.speed = random.randint(1, MAX_METEOR_SPEED)

self.load_image('meteor.png')

def move_down(self):

"""Move the meteor down the screen """

self.y = self.y + self.speed

if self.y > DISPLAY_HEIGHT:

self.y = 5

')'

def str (self):

return 'Meteor('+ str(self.x) + ', ' + str(self.y) +

The init () method for the Meteor class has the same steps as

the Starship; the di erence is that the x coordinate and the

speed are randomly generated. The image used for the Meteor

is also di erent as it is ‘meteor.png’. We have also

implemented amove_down() method. This is essentially the

same as the Starships move_down().

Note that at this point we could create a subclass of

GameObject called MoveableGameObject (which extends

GameObject) and push the move operations up into that class

and have the Meteor and Starship classes extend that class.

However we don’t really want to allow meteors to move just

anywhere on the screen.

new global value to indicate the number of initial meteors in

the game:

INITIAL_NUMBER_OF_METEORS = 8

Next we will initialize a new attribute for the Game class that

will hold a list of Meteors. We will use a list here as we want to

increase the number of meteors as the game progresses. To

make this process easy we will use a list comprehension

which allows a for loop to run with the results of an

expression captured by the list:

Set up meteors

self.meteors = [Meteor(self) for _ in range(0,

INITIAL_NUMBER_OF_METEORS)] We now have a list of

meteors that need to be displayed. We thus need to update the

while loop of the play() method to draw not only the starship

but also all the meteors:

Draw the meteorsand the starship

self.starship.draw()

for meteor in self.meteors:

meteor.draw() The end result is that a set of meteor objects are created at

random starting locations across the top of the screen:

[image:]

Moving the Meteors

We now want to be able to move the meteors down the screen

so that the Starship has some objects to avoid. We can do this

very easily as we have already implemented a move_down()

method in the Meteor class. We therefore only need to add a

for loop to the main game playing while loop that will move

all the meteors.For example:

Move the Meteors

for meteor in self.meteors:

meteor.move_down()

This can be added after the event processing for loop and

before the screen is refreshed/redrawn or updated. Now when

we run the game the meteors move and the player can

navigate the Starship between the falling meteors.

[image:]

Identifying a Collision

At the moment the game will play for ever as there is no end

state and no attempt to identify if a Starship has collided with

a meteor. We can add Meteor/Starship collision detection using PyGame Rects. As mentioned in the last chapter a Rect

is a PyGame class used to represent rectangular coordinates.

It is particularly useful as the pygame.Rect class provides

several collision detection methods that can be used to test if

one rectangle (or point) is inside another rectangle. We can

therefore use one of the methods to test if the rectangle

around the Starship intersects with any of the rectangles

around the Meteors.

The GameObject class already provides a method rect() that

will return a Rect object representing the objects’ current

rectangle with respect to the drawing surface (essentially the

box around the object representing its location on the screen).

Thus we can write a collision detection method for the Game

class using the GameObject generated rects and the Rect class

colliderect() method:

def _check_for_collision(self):

""" Checks to see if any of the meteors have collided with the

starship"""

result = False

for meteor in self.meteors:

if self.starship.rect().colliderect(meteor.rect()):

result = True break

return result

Note that we have followed the convention here of preceding

the method name with an under bar indicating that this method should be considered private to the class. It should

therefore never be called by anything outside of the Game

class. This convention is defined in PEP 8 (Python

Enhancement Proposal) but is not enforced by the language.

We can now use this method in the main while loop of the

game to check for a collision:

Check to see if a meteor has hit the ship

if self._check_for_collision():

starship_collided = True

This code snippet also introduces a new local variable

starship_collided. We will initially set this to False and is

another condition under which the main game playing while

loop will terminate:

is_running = True

starship_collided = False

Main game playing Loop

while is_running and not starship_collided:

Thus the game playing loop will terminate if the user selects

to quit or if the starship collides with a meteor.

Identifying a Win

We currently have a way to loose the game but we don’t have

a way to win the game! However, we want the player to be

able to win the game by surviving for a specified period of

time.We could represent this with a timer of some sort.

However, in our case we will represent it as a specific number

of cycles of the main game playing loop. If the player survives

for this number of cycles then they have won. For example:

See if the player has won

if cycle_count == MAX_NUMBER_OF_CYCLES:

print('WINNER!')

break

In this case a message is printed out stating that the player

won and then the main game playing loop is terminated

(using the break statement). The

MAX_NUMBER_OF_CYCLES global value can be set as

appropriate, for example:

MAX_NUMBER_OF_CYCLES = 1000

Increasing the Number of Meteors

We could leave the game as it is at this point, as it is now

possible to win or loose the game. However, there are a few

things that can be easily added that will enhance the game

playing experience. One of these is to increase the number of Meteors on the screen making it harder as the game

progresses. We can do this using a

NEW_METEOR_CYCLE_INTERVAL.

NEW_METEOR_CYCLE_INTERVAL = 40

When this interval is reached we can add a new Meteor to the

list of current Meteors; it will then be automatically drawn by

the Game class. For example:

Determineif new meteors should be added

if cycle_count % NEW_METEOR_CYCLE_INTERVAL == 0:

self.meteors.append(Meteor(self))

Now every NEW_METEOR_CYCLE_INTERVAL another

meteor will be added at a random x coordinate to the game.

Pausing the Game

Another feature that many games have is the ability to pause

the game. This can be easily added by monitoring for a pause

key (this could be the letter p represented by the event_key

pygame.K_p). When this is pressed the game could be paused

until the key is pressed again.

The pause operation can be implemented as a method

_pause() that will consume all events until the appropriate key is pressed. For example:

def _pause(self):

paused = True while paused:

for event in pygame.event.get():

if event.type == pygame.KEYDOWN:

if event.key == pygame.K_p:

paused = False break

In this method the outer while loop will loop until the paused

local variable is set too False. This only happens when the ‘p’

key is pressed. The break after the statement setting paused

to False ensures that the inner for loop is terminated allowing

the outer while loop to check the value of paused and

terminate.

The_pause() method can be invoked during the game playing

cycle by monitoring for the ‘p’ key within the event for loop

and calling the _pause() method from there:

elif event.key == pygame.K_p:

self._pause()

Note that again we have indicated that we don’t expect the

_pause() method to be called from outside the game by

prefixing the method name with an under bar (‘_’).

Displaying the Game Over Message PyGame does not come with an easy way of creating a popup

dialog box to display messages such as ‘You Won’; or ‘You

Lost’ which is why we have used print statements so far.

However, we could use a GUI framework such as wxPython to

do this or we could display a message on the display surface

to indicate whether the player has won or lost.

We can display a message on the display surface using the

pygame.font. Font class. This can be used to create a Font

object that can be rendered onto a surface that can be

displayed onto the main display surface.

We can therefore add a method _display_message() to the

Game class that can be used to display appropriate messages:

def _display_message(self, message):

"""Displays a message to the user on the screen """

print(message)

text_font = pygame.font.Font('freesansbold.ttf', 48)

text_surface = text_font.render(message, True, BLUE, WHITE)

text_rectangle = text_surface.get_rect() text_rectangle.center

= (DISPLAY_WIDTH / 2,

DISPLAY_HEIGHT / 2)

self.display_surface.fill(WHITE)

self.display_surface.blit(text_surface, text_rectangle)

Again the leading under bar in the method name indicates

that it should not be called from outside the Game class.

We can now modify the main loop such that appropriate

messages are displayed to the user, for example:

Check to see if a meteor has hit the ship

if self._check_for_collision(): starship_collided = True

self._display_message('Collision: Game Over')

The result of the above code being run when a collision occurs

is shown below:

[image:]

The StarshipMeteors Game

The complete listing for the final version of the

StarshipMeteors game is given below:

import pygame, random, time

FRAME_REFRESH_RATE = 30

DISPLAY_WIDTH = 600

DISPLAY_HEIGHT = 400

WHITE = (255, 255, 255) BACKGROUND = (0, 0, 0)

INITIAL_METEOR_Y_LOCATION = 10

INITIAL_NUMBER_OF_METEORS = 8

MAX_METEOR_SPEED = 5

STARSHIP_SPEED = 10

MAX_NUMBER_OF_CYCLES = 1000

NEW_METEOR_CYCLE_INTERVAL = 40

class GameObject:

def load_image(self, filename):

self.image = pygame.image.load(filename).convert()

self.width = self.image.get_width()

self.height = self.image.get_height()

def rect(self):

""" Generates a rectangle representing the objects location

and dimensions """

return pygame.Rect(self.x, self.y, self.width, self.height)

def draw(self):

""" draw the game object at the current x, y coordinates """

self.game.display_surface.blit(self.image, (self.x,

self.y))

class Starship(GameObject):

""" Represents a starship"""

def init (self, game):

self.game = game

self.x = DISPLAY_WIDTH / 2 self.y = DISPLAY_HEIGHT - 40

self.load_image('starship.png')

def move_right(self):

""" moves the starship right across the screen """

self.x = self.x + STARSHIP_SPEED

if self.x + self.width > DISPLAY_WIDTH:

self.x = DISPLAY_WIDTH - self.width

def move_left(self):

""" Move the starship left across the screen """

self.x = self.x - STARSHIP_SPEED

if self.x < 0:

self.x = 0

def move_up(self):

""" Move the starship up the screen """

self.y = self.y - STARSHIP_SPEED

if self.y < 0:

self.y = 0

def move_down(self):

""" Move the starship down the screen """

self.y = self.y + STARSHIP_SPEED

if self.y + self.height > DISPLAY_HEIGHT:

self.y = DISPLAY_HEIGHT - self.height

')'

def str (self):

return 'Starship(' + str(self.x) + ', ' + str(self.y) +

class Meteor(GameObject):

""" represents a meteor in the game """

def init (self, game):

self.game = game

self.x = random.randint(0, DISPLAY_WIDTH)

self.y = INITIAL_METEOR_Y_LOCATION

self.speed = random.randint(1, MAX_METEOR_SPEED)

self.load_image('meteor.png')

def move_down(self):

""" Move the meteor down the screen """

self.y = self.y + self.speed

if self.y > DISPLAY_HEIGHT:

self.y = 5

')'

def str (self):

return 'Meteor(' + str(self.x) + ', ' + str(self.y) +

class Game:

""" Represents the game itself, holds the main game playing loop

"""

def init (self):

pygame.init()

Set up the display

self.display_surface =

pygame.display.set_mode((DISPLAY_WIDTH, DISPLAY_HEIGHT))

pygame.display.set_caption('Starship Meteors')

Used for timing within the program.

self.clock = pygame.time.Clock()

Set up the starship

self.starship = Starship(self)

Set up meteors

self.meteors = [Meteor(self) for _ in range(0,

INITIAL_NUMBER_OF_METEORS)]

def _check_for_collision(self):

""" Checks to see if any of the meteors have collided with the

starship """

result = False

for meteor in self.meteors:

if self.starship.rect().colliderect(meteor.rect()):

result = True

break return result

def _display_message(self, message):

""" Displays a message to the user on the screen """ text_font =

pygame.font.Font('freesansbold.ttf', 48) text_surface =

text_font.render(message, True, BLUE,

WHITE)

text_rectangle = text_surface.get_rect()

text_rectangle.center = (DISPLAY_WIDTH / 2,

DISPLAY_HEIGHT / 2) self.display_surface.fill(WHITE)

self.display_surface.blit(text_surface, text_rectangle)

def _pause(self): paused = True while paused:

for event in pygame.event.get():

if event.type == pygame.KEYDOWN:

if event.key == pygame.K_p:

paused = False break

def play(self): is_running = True starship_collided = False

cycle_count = 0

Main game playing Loop

while is_running and not starship_collided:

Indicates how many times the main game loop has

been run

cycle_count += 1

See if the player has won

if cycle_count == MAX_NUMBER_OF_CYCLES:

self._display_message('WINNER!') break

Work out what the user wants to do

for event in pygame.event.get():

if event.type == pygame.QUIT:

is_running = False

elif event.type == pygame.KEYDOWN:

Check to see which key is pressed

if event.key == pygame.K_RIGHT:

Right arrow key has been pressed

move the player right

self.starship.move_right()

elif event.key == pygame.K_LEFT:

Left arrow has been pressed

move the player left

self.starship.move_left()

elif event.key == pygame.K_UP:

self.starship.move_up()

elif event.key == pygame.K_DOWN:

self.starship.move_down()

elif event.key == pygame.K_p:

self._pause()

elif event.key == pygame.K_q:

is_running = False

Move the Meteors

for meteor in self.meteors:

meteor.move_down()

Clear the screen of current contents

self.display_surface.fill(BACKGROUND)

Draw the meteors and the starship

self.starship.draw()

for meteor in self.meteors:

meteor.draw()

Check to see if a meteor has hit the ship

if self._check_for_collision(): starship_collided = True

self._display_message('Collision: Game Over')

Determine if new mateors should be added

if cycle_count % NEW_METEOR_CYCLE_INTERVAL == 0:

self.meteors.append(Meteor(self))

Update the display

pygame.display.update()

frames per once)

Defines the frame rate. The number is number of

second. Should be called once per frame (but only

self.clock.tick(FRAME_REFRESH_RATE)

time.sleep(1)

Let pygame shutdown gracefully

pygame.quit()

def main():

print('Starting Game') game = Game() game.play()

print('Game Over')

if_name_== '_main_':

main()

Try

Using the example presented in this chapter add the

following:

Provide a score counter. This could be based on the

number of cycles the player survives or the number of

meteors that restart from the top of the screen etc.

Add another type of GameObject, this could be a shooting

star that moves across the screen horizontally; perhaps

using an random starting y coordinate.

Allow the game di culty to be specified at the start. This

could a ect the number of initial meteors, the maximum

speed of a meteor, the number of shooting stars etc.

Introduc on to Tes ng

Introduction to Testing

This chapter considers the di erent types of tests that you

might want to perform with the systems you develop in

Python. It also introduces Test Driven Development.

Types of Testing

There are at least two ways of thinking about testing:

1. It is the process of executing a program with the intent of

finding errors/bugs (see Glenford Myers, The Art of

Software Testing).

2. It is a process used to establish that software components

fulfill the requirements identified for them, that is that

they do what they are supposed to do.

These two aspects of testing tend to have been emphasized at

di erent points in the software life cycle. Error Testing is an

intrinsic part of the development process, and an increasing emphasis is being placed on making testing a central part of

software development (see Test Driven Development).

It should be noted that it is extremely di cult—and in many

cases impossible— to prove that software works and is

completely error free. The fact that a set of tests finds no

defects does not prove that the software is error-free.

‘Absence of evidence is not evidence of absence!’. This was

discussed in the late 1960s and early 1970s by Dijkstra and

can be summarized as:

Testing shows the presence, not the absence of bugs

Testing to establish that software components fulfill their

contract involves checking operations against their

requirements. Although this does happen at development

time, it forms a major part of Quality Assurance (QA) and User

Acceptance testing. It should be noted that with the advent of

Test-Driven Development,the emphasis on testing against

requirements during development has become significantly

higher.

There are of course many other aspects to testing, for

example, Performance Testing which identifies how a system

will perform as various factors that a ect that system change.

For example, as the number of concurrent requests increase, as the number of processors used by the underlying hardware

changes, as the size of the database grows etc.

However you view testing, the more testing applied to a

system the higher the level of confidence that the system will

work as required.

What Should Be Tested?

An interesting question is ‘What aspects of your software

system should be subject to testing?’. In general, anything

that is repeatable should be subject to formal (and ideally

automated) testing. This includes(but is not limited to):

The build process for all technologies involved.

The deployment process to all platforms under

consideration.

The installation process for all runtime environments.

The upgrade process for all supported versions (if

appropriate).

The performance of the system/servers as loads increase.

The stability for systems that must run for any period of

time (e.g. 24 7 systems).

The backup processes.

The security of the system.

The recovery ability of the system on failure.

The functionality of the system.

The integrity of the system.

Notice that only the last two of the above list might be what is

commonly considered areas that would be subject to testing.

However, to ensure the quality of the system under

consideration, all of the above are relevant. In fact, testing

should cover all aspects of the software development life

cycle and not just the QA phase. During requirements

gathering testing is the process of looking for missing or

ambiguous requirements.

During this phase consideration should also be made with

regard to how the overall requirements will be tested, in the

final software system.

Test planning should also look at all aspects of the software

under test for functionality, usability, legal compliance,

conformance to regulatory constraints, security,

performance, availability, resilience, etc. Testing should be

driven by the need to identify and reduce risk.

Testing Software Systems

[image:]

As indicated above there are a number of di erent types of

testing that are commonly used within industry. These types

are:

Unit Testing, which is used to verify the behavior of

individual components.

Integration Testing that tests that when individual

components are combined together to provide higher-

level functional units, that the combination of the units

operates appropriately.

Regression Testing. When new components are added to

a system, or existing components are changed, it is

necessary to verify that the new functionality does not

break any existing functionality. Such testing is known as

Regression Testing.

Performance Testing is used to ensure that the systems’

performance is as required and, within the design

parameters, and is able to scale as utilization increases.

Stability Testing represents a style of testing which

attempts to simulate system operation over an extended

period of time. For example, for a online shopping

application that is expected to be up and running 24 7 a

stability test might ensure that with an average load that

the system can indeed run 24 hours a day for 7 days a

week.

Security Testing ensures that access to the system is

controlled appropriately given the requirements. For

example, for an online shopping system there may be

di erent security requirements depending upon whether

you are browsing the store, purchasing some products or

maintaining the product catalogue.

Usability Testing which may be performed by a specialist

usability group and may involved filming users while they

use the system.

System Testing validates that the system as a whole

actually meets the user requirements and conforms to

required application integrity.

User Acceptance Testing is a form of user oriented testing

where users confirm that the system does and behaves in

the way they expect.

Installation, Deployment and Upgrade Testing. These

three types of testing validate that a system can be

installed and deployed appropriate including any upgrade

processes that may be required.

Smoke Tests used to check that the core elements of a

large system operate correctly. They can typically be run

quickly and in a faction of the time taken to run the full

system tests.

Key testing approaches are discussed in the remainder of this

section.

Unit Testing

A unit can be as small as a single function or as large as a

subsystem but typically is a class, object,self-contained

library (API) or web page. By looking at a small self-

contained component an extensive set of tests can be

developed to exercise the defined requirements and

functionality of the unit.

Unit testing typically follows a white box approach, (also

called Glass Box or Structural testing), where the testing

utilizes knowledge and understanding of the code and its

structure, rather than just its interface (which is known as the

black box approach).

In white box testing,test coverage is measured by the number

of code paths that have been tested. The goal in unit testing is to provide 100% coverage: to exercise every instruction, all

sides of each logical branch,all called objects, handling of all

data structures, normal and abnormal termination of all

loops etc. Of course this may not always be possible but it is a

goal that should be aimed for. Many auto- mated test tools

will include a code coverage measure so that you are aware of

how much of your code has been exercised by any given set of

tests.

Unit Testing is almost always automated—there are many

tools to help with this, perhaps the best-known being the

xUnit family of test frameworks such as JUnit for Java and

PyUnit for Python. The framework allows developers to:

focus on testing the unit,

simulate data or results from calling another unit

(representative good and bad results)

create data driven tests for maximum flexibility and

repeatability,

rely on mock objects that represent elements outside the

unit that it must interact with.

Having the tests automated means that they can be run

frequently, at the very least after initial development and

after each change that a ects the unit.

Once confidence is established in the correct functioning of

one unit, developers can then use it to help test other units with which it interfaces, forming larger units that can also be

unit tested or, as the scale gets larger, put through

Integration Testing.

Integration Testing

Integration testing is where several units (or modules) are

brought together to be tested as an entity in their own right.

Typically, integration testing aims to ensure that modules

interact correctly and the individual unit developers have

interpreted the requirements in a consistent manner.

An integrated set of modules can be treated as a unit and unit

tested in much the same way as the constituent modules, but

usually working at a “higher” level of functionality.

Integration testing is the intermediate stage between unit

testing and full system testing.

Therefore, integration testing focuses on the interaction

between two or more units to make sure that those units work

together successfully and appropriately. Such testing is

typically conducted from the bottom up but may also be

conducted top down using mocks or stubs to represented

called or calling functions. An important point to note is that

you should not aim to test everything together at once (so

called Big Bang testing) as it is more di cult to isolate bugs

in order that they can be rectified. This is why it is more common to find that integration testing has been performed

in a bottom up style.

System Testing

System Testing aims to validate that the combination of all

the modules, units, data, installation, configuration etc.

operates appropriately and meets the requirements specified

for the whole system. Testing the system has a whole

typically involves testing the top most functionality or

behaviors of the system. Such Behavior Based testing often

involves end users and other stake holders who are less

technical. To support such tests a range of technologies have

evolved that allow a more English style for test descriptions.

This style of testing can be used as part of the requirements

gathering process and can lead to a Behavior Driven

Development (BDD) process. The Python module pytest-bdd

provides a BDD style extension to the core pytest framework.

Installation/Upgrade Testing

Installation testing is the testing of full, partial or upgrade

install processes. It also validates that the installation and

transition software needed to move to the new release for the

product is functioning properly. Typically, it

verifies that the software may be completely uninstalled

through its back-out process.

determines what files are added, changed or deleted on

the hardware on which the program was installed.

determines whether any other programs on the hardware

are a ected by the new software that has been installed.

determines whether the software installs and operates

properly on all hardware platforms and operating

systems that it is supposed to work on.

Smoke Tests

A smoke test is a test or suite of tests designed to verify that

the fundamentals of the system work. Smoke tests may be run

against a new deployment or a patched deployment in order

to verify that the installation performs well enough to justify

further testing. Failure to pass a smoke test would halt any

further testing until the smoke tests pass. The name derives

from the early days of electronics: If a device began to smoke

after it was powered on, testers knew that there was no point

in testing it further. For software technologies, the

advantages of performing smoke tests include:

Smoke tests are often automated and standardized from

one build to another.

Because smoke tests validate things that are expected to

work, when they fail it is usually an indication that

something fundamental has gone wrong (the wrong

version of a library has been used) or that a new build has

introduced a bug into core aspects of the system.

If a system is built daily, it should be smoke tested daily.

It will be necessary to periodically add to the smoke tests

as new functionality is added to the system.

Automating Testing

The actual way in which tests are written and executed needs

careful consideration. In general, we wish to automate as

much of the testing process as is possible as this makes it

easy to run the tests and also ensures not only that all tests

are run but that they are run in the same way each time. In

addition,once an automated test is set up it will typically be

quicker to re-run that automated test than to manually

repeat a series of tests. However, not all of the features of a

system can be easily tested via an automated test tool and in

some cases the physical environment may make it hard to

automate tests.

Typically, most unit testing is automated and most

acceptance testing is manual. You will also need to decide

which forms of testing must take place. Most software

projects should have unit testing,integration testing, system

testing and acceptance testing as a necessary requirement.

Not all projects will implement performance or stability

testing, but you should be careful about omitting any stage of

testing and be sure it is not applicable.

Test Driven Development

Test Driven Development (or TDD) is a development

technique whereby developers write test cases before they

write any implementation code. The tests thus drive or dictate

the code that is developed. The implementation only provides

as much functionality as is required to pass the test and thus

the tests act as a specification of what the code does (and

some argue that the tests are thus part of that specification

and provide documentation of what the system is capable of).

TDD has the benefit that as tests must be written first, there

are always a set of tests available to perform unit, integration,

regression testing etc. This is good as developers can find that

writing tests and maintaining tests is boring and of less

interest than the actual code itself and thus put less emphasis

into the testing regime than might be desirable. TDD

encourages, and indeed requires,that developers maintain an

exhaustive set of repeatable tests and that those tests are

developed to the same quality and standards as the main body

of code.

There are three rules of TDD as defined by Robert Martin,

these are:

1. You are not allowed to write any production code unless it

is to make a failing unit test pass

2. You are not allowed to write any more of a unit test than

is su cient to fail; and compilation failures are failures

3. You are not allowed to write any more production code

than is su cient to pass the one failing unit test.

This leads to the TDD cycle described in the next section.

The TDD Cycle

There is a cycle to development when working in a TDD

manner. The shortest form of this cycle is the TDD mantra:

Red /Green /Refactor

Which relates to the unit testing suite of tools where it is

possible to write a unit test. Within tools such as PyCharm,

when you run a pyunit or pytest test a Test View is shown

with Red indicating that a test failed or Green indicating that

the test passed. Hence Red/Green, in other words write the

test and let it fail, then implement the code to ensure it

passes. The last part of this mantra is Refactor which

indicates once you have it working make the code cleaner,

better, fitter by Refactoring it. Refactoring is the process by which the behavior of the system is not changed but the

implementation is altered to improve it.

The full TDD cycle is shown by the following diagram which

highlights the test first approach of TDD:

[image:]

The TDD mantra can be seen in the TDD cycle that is shown

above and described in more detail below:

1. Write a single test.

2. Run the test and see it fail.

3. Implement just enough code to get the test to pass.

4. Run the test and see it pass.

5. Refactor for clarity and deal with any issue of reuse etc.

6. Repeat for next test.

Test Complexity

The aim is to strive for simplicity in all that you do within

TDD. Thus, you write a test that fails, then do just enough to

make that test pass (but no more). Then you refactor the

implementation code (that is change the internals of the unit

under test) to improve the code base. You continue to do this

until all the functionality for a unit has been completed. In

terms of each test, you should again strive for simplicity with

each test only testing one thing with only a single assertion

per test (although this is the subject of a lot of debate within

the TDD world).

Refactoring

The emphasis on refactoring within TDD makes it more than

just testing or Test First Development. This focus on

refactoring is really a focus on (re)design and incremental

improvement. The tests provide the specification of what is

needed as well as the verification that existing behavior is

maintained,but refactoring leads to better design software.

Thus, without refactoring TDD is not TDD!

Design for Testability

Testability has a number of facets

Configurability. Set up the object under test to an

appropriate configuration for the test

Controllability.Control the input (and internal state)

Observability.Observe its output

Verifiability. That we can verify that output in an

appropriate manner.

Testability Rules of Thumb

1. If you cannot test code then change it so that you can!

2. If your code is di cult to validate then change it so that it

isn’t!

3. Only one concrete class should be tested per Unit test and

then Mock the Rest!

4. If you code is hard to reconfigure to work with Mocks

then make it so that you code can use Mocks!

5. Design your code for testability!

Book Resources

The Art of Software Testing, G.J. Myers, C. Sandlerand T.

Badgett, John Wiley & Sons, 3rd Edition (Dec 2011),

1118031962.

PyTestTes ng Framework

Introduction

There are several testing frameworks available for Python,

although only one, unit test comes as part of the typical

Python installation. Typical libraries include Unit test, (which

is available within the Python distribution by default) and

PyTest.

In this chapter we will look at PyTest and how it can be used

to write unit tests in Python for both functions and classes.

What Is PyTest?

PyTest is a testing library for Python; it is currently one of the

most popular Python testing libraries (others include unit

test and doc test). PyTest can be used for various levels of

testing, although its most common application is as a unit

testing framework. It is also often used as a testing

framework within a TDD based development project. In fact,

it is used by Mozilla and Dropbox as their Python testing

framework.

PyTest o ers a large number of features and great flexibility

in how tests are written and in how set up behavior is defined.

It automatically finds test based on naming conventions and

can be easily integrated into a range of editors and IDEs

including PyCharm.

Setting Up PyTest

You will probably need to set up PyTest so that you can use it

from within your environment. If you are using the PyCharm

editor, then you will need to add the PyTest module to the

current PyCharm project and tell PyCharm that you want to

use PyTest to run all tests for you.

A Simple PyTest Example

Something to Test

To be able to explore PyTest we first need something to test;

we will therefore define a simple Calculator class. The

calculator keeps a running total of the operations performed;

it allows a new value to be set and then this value can be

added to, or subtracted from, that accumulated total.

class Calculator:

def init (self): self.current = 0 self.total = 0

def set(self, value):

self.current = value

def add(self):

self.total += self.current

def sub(self):

self.total -= self.current

def total(self):

return self.total

Save this class into a file called calculator.py.

Writing a Test

We will now create a very simple PyTest unit test for our

Calculator class. This test will be defined in a class called

test_calculator.py. You will need to import the calculator

class we wrote above into your test_calculator.py file

(remember each file is a module in Python).

The exact import statement will depend on where you placed

the calculator file relative to the test class. In this case the two

files are both in the same directory and so we can write:

from calculator import Calculator

We will now define a test,the test should be pre-fixed with

test_ for PyTest to find them. In fact PyTest uses several

conventions to find tests, which are:

Search for test_*.py or*_test.py files.

From those files, collect test items:

– test_prefixed test functions,

– test_prefixed test methods inside Test prefixed test

classes (without an init method).

Note that we keep test files and the files containing the code

to be tested separate; indeed in many cases they are kept in

di erent directory structures. This means that there is not

chance of developers accidentally using tests in production

code etc.

Now we will add to the file a function that defines a test. We

will call the function test_add_one; it needs to start with

test_ due to the above convention. However, we have tried to

make the rest of the function name descriptive, so that its

clear what it is testing. The function definition is given below:

from calculator import Calculator

def test_add_one():

calc = Calculator() calc.set(1) calc.add()

assert calc.total == 1

The test function creates a new instance of the Calculator

class and then calls several methods on it; to set up the value

to add, then the call to the add() method itself etc.

The final part of the test is the assertion. The assert verifies

that the behavior of the calculator is as expected. The PyTest

assert statement works out what is being tested and what it

should do with the result—including adding information to

be added to a test run report. It avoids the need to have to

learn a load of assert Something type methods (unlike some

other testing frameworks).

Note that a test without an assertion is not a test; i.e. it does

not test anything. Many IDEs provide direct support for

testing frameworks including PyCharm. For example,

PyCharm will now detect that you have written a function

with an assert statement in it and add a Run Test icon to the

grey area to the left of the editor. This can be seen in the

following picture where a green arrow has been added at line

4; this is the ‘Run Test’ button:

[image:]

The developer can click on the green arrow to run the test.

They will then be presented with the Run menu that is

preconfigured to use PyTest for you:

[image:]

If the developer now selects the Run option; this will use the

PyTest runner to execute the test and collect information

about what happened and present it in a PyTest output view

at the bottom of the IDE:

[image:]

Here you can see a tree in the left-hand panel that currently

holds the one test defined in the test_calculator.py file. This

tree shows whether tests have passed or failed. In this case we

have a green tick showing that the test passed.

To the right of this tree is the main output panel which shows

the results of running the tests. In this case it shows that

PyTest ran only one test and that this was the test_add_one test which was defined in test_calculator.py and that 1 test

passed.

If you now change the assertion in the test to check to see that

the result is 0 the test will fail. When run, the IDE display will

update accordingly.

The tree in the left-hand pane now shows the test as failed

while the right-hand pane provides detailed information

about the test that failed including where in the test the failed

assertion was defined. This is very helpful when trying to

debug test failures.

Working with PyTest

[image:]

Testing Functions

We can test standalone functions as well as classes using

PyTest. For example, given the function increment below

(which merely adds one to any number passed into it):

def increment(x):

return x + 1

We can write a PyTest test for this as follows:

def test_increment_integer_3():

assert increment(3) == 4 The only real di erence is that we have not had to make an

instance of a class:

[image:]

Organizing Tests

Tests can be grouped together into one or more files; PyTest

will search for all files following the naming convention (file

names that either start or end with ‘test’) in specified

locations:

If no arguments are specified when PyTest is run then the

search for suitably named test files starts from the test

paths environment variable (if confugured) or the current

directory. Alternatively, command line arguments can be

used in any combination of directories or filenames etc.

PyTest will recursively search down into sub directories,

unless they match no recurs dirs environment variable.

In those directories, it will search for files that match the

naming conventions test_*.py or*_test.py files.

Tests can also be arranged within test files into Test

classes.Using test classes can be helpful in grouping tests together and managing the setup and tear down behaviors of

separate groups of tests. However, the same e ect can be

achieved by separating the tests relating to di erent

functions or classes into di erent files.

Test Fixtures

It is not uncommon to need to run some behavior before or

after each test or indeed before or after a group of tests. Such

behaviors are defined within what is commonly known as test

fixtures.

We can add specific code to run:

at the beginning and end of a test class module of test

code (setup_module/teardown_module)

at the beginning and end of a test class

(setup_class/teardown_class) or using the alternate

style of the class level fixtures (setup/teardown)

before and after a test function call

(setup_function/teardown_function)

before and after a test method call

(setup_method/teardown_method)

To illustrate why we might use a fixture, let us expand our

Calculator test:

def test_initial_value(): calc = Calculator() assert

calc.total== 0

def test_add_one():

calc = Calculator() calc.set(1) calc.add()

assert calc.total == 1

def test_subtract_one(): calc = Calculator() calc.set(1)

calc.sub()

assert calc.total == -1

def test_add_one_and_one(): calc = Calculator() calc.set(1)

calc.add() calc.set(1) calc.add()

assert calc.total == 2

We now have four tests to run (we could go further but this is

enough for now). One of the issues with this set of tests is that

we have repeated the creation of the Calculator object at the

start of each test. While this is not a problem in itself it does

result in duplicated code and the possibility of future issues in

terms of maintenance if we want to change the way a

calculator is created. It may also not be as e cient as reusing

the Calculator object for each test.

We can however, define a fixture that can be run before each

individual test function is executed. To do this we will write a

new function and use the pytest.fixture decorator on that

function. This marks the function as being special and that it

can be used as a fixture on an individual function.

Functions that require the fixture should accept a reference to

the fixture as an argument to the individual test function. For example, for a test to accept a fixture called calculator; it

should have an argument with the fixture name, i.e.

calculator. This name can then be used to access the object

returned. This is illustrated below:

import pytest

from calculator import Calculator

@pytest.fixture defcalculator():

"""Returns a Calculatorinstance"""

return Calculator()

def test_initial_value(calculator):

assert calculator.total == 0

def test_add_one(calculator): calculator.set(1) calculator.add()

assert calculator.total == 1

def test_subtract_one(calculator): calculator.set(1)

calculator.sub()

assert calculator.total == -1

def test_add_one_and_one(calculator):

calculator.set(1) calculator.add() calculator.set(1)

calculator.add()

assert calculator.total == 2

In the above code, each of the test functions accepts the

calculator fixture that is used to instantiate the Calculator

object. We have therefore de-duplicated our code; there is

now only one piece of code that defines how a calculator

object should be created for our tests. Note each test is

supplied with a completely new instance of the Calculator

object; there is therefore no chance of one test impacting on

another test.

It is also considered good practice to add a doc string to your

fixtures as we have done above. This is because PyTest can

produce a list of all fixtures available along with their doc

strings. From the command line this is done using:

> pytest fixtures

The PyTest fixtures can be applied to functions (as above),

classes, modules, packages or sessions. The scope of a fixture

can be indicated via the (optional) scope parameter to the

fixture decorator. The default is “function” which is why we

did not need to specify anything above. The scope determines

at what point a fixture should be run. For example, a fixture

with ‘session’ scope will be run once for the test session, a

fixture with module scope will be run once for the module

(that is the fixture and anything it generates will be shared

across all tests in the current module), a fixture with class

scope indicates a fixture that is run for each new instance of a

test class created etc.

Another parameter to the fixture decorator is auto use which

if set to True will activate the fixture for all tests that can see

it. If it is set to False (which is the default)then an explicit

reference in a test function(or method etc.) is required to

activate the fixture.

If we add some additional fixtures to our tests we can see

when they are run:

import pytest

from calculator import Calculator

@pytest.fixture(scope='session', autouse=True)

def session_scope_fixture():

print('session_scope_fixture')

@pytest.fixture(scope='module', autouse=True)

def module_scope_fixture():

print('module_scope_fixture')

@pytest.fixture(scope='class', autouse=True)

def class_scope_fixture():

print('class_scope_fixture')

@pytest.fixture def calculator():

"""Returns a Calculator instance""" print('calculator fixture')

return Calculator()

def test_initial_value(calculator):

assert calculator.total == 0

def test_add_one(calculator): calculator.set(1) calculator.add()

assert calculator.total == 1

def test_subtract_one(calculator): calculator.set(1)

calculator.sub()

assert calculator.total == -1

def test_add_one_and_one(calculator):

calculator.set(1) calculator.add() calculator.set(1)

calculator.add()

assert calculator.total == 2

If we run this version of the tests, then the output shows when

the various

fixtures are run:

session_scope_fixture module_scope_fixture class_scope_fixture

calculator fixture

.class_scope_fixture calculator fixture

.class_scope_fixture calculator fixture

.class_scope_fixture calculator fixture

Parameterised Tests

One common requirement of a test to run the same tests

multiple times with several di erent input values. This can

greatly reduce the number of tests that must be defined. Such

tests are referred to as parametrised tests; with the parameter

values for the test specified using the

@pytest.mark.parametrize decorator.

@pytest.mark.parametrize decorator.

@pytest.mark.parametrize('input1,input2,expected', [(3, 1, 4),

(3, 2, 5),

])

def test_calculator_add_operation(calculator, input1,

input2,expected):

calculator.set(input1)

calculator.add() calculator.set(input2) calculator.add()

assert calculator.total == expected

This illustrates setting up a parametrised test for the

Calculator in which two input values are added together and

compared with the expected result. Note that the parameters

are named in the decorator and then a list of tuples is used to

define the values to be used for the parameters. In this case the test_ calculator_add_operation will be run two passing

in 3, 1 and 4 and then passing in 3, 2 and 5 for the parameters

input1, input2 and expected respectively.

Testing for Exceptions

You can write tests that verify that an exception was raised.

This is useful as testing negative behavior is as important as

testing positive behavior. For example, we might want to

verify that a particular exception is raised when we attempt to

withdraw money from a bank account which will take us over

our overdraft limit.

To verify the presence of an exception in PyTest use the with

statement and pytest.raises. This is a context manager that

will verify on exit that the specified exception was raised. It is

used as follows:

with pytest.raises(accounts.BalanceError):

current_account.withdraw(200.0)

Ignoring Tests

In some cases it is useful to write a test for functionality that

has not yet been implemented; this may be to ensure that the testis not forgotten or because it helps to document what the

item under test should do. However, if the test is run then the

test suite as a whole will fail because the test is running

against behavior that has yet to be written.

One way to address this problem is to decorate a test with the

@pytest.- mark.skip decorator:

@pytest.mark.skip(reason='not implemented yet')

def test_calculator_multiply(calculator):

calculator.multiply(2, 3)

assert calculator.total == 6

This indicates that PyTest should record the presence of the

test but should not try to execute it. PyTest will then note that

the test was skipped, for example in PyCharm this is shown

using a circle with a line through it.

[image:]

It is generally considered best practice to provide a reason

why the test has been skipped so that it is easier to track. This

information is also available when PyTest skips the test:

[image:]

Try

Create a simple Calculator class that can be used for testing

purposes. This simple calculator can be used to add, subtract,

multiple and divide numbers.

This will be a purely command driven application that will

allow the user to specify

the operation to perform and

the two numbers to use with that operation.

The Calculator object will then return a result.The same

object can be used to repeat this sequence of steps. This general behavior of the Calculator is illustrated below in flow

chart form:

[image:]

[image:]

You should also provide a memory function that allows the

current result to be added to or subtracted from the current

memory total. It should also be possible to retrieve the value

in memory and clear the memory. Next write a PyTest set of

tests for the Calculator class.

Think about what tests you need to write; remember you

can’t write tests for every value that might be used for an

operation; but consider the boundaries, 0, −1, 1, −10, +10 etc.

Of course you also need to consider the cumulative e ect of

the behavior of the memory feature of the calculator; that is

multiple memory adds or memory subtractions and

combinations of these.

As you identify tests you may find that you have to update

your implementation of the Calculator class. Have you taken

into account all input options, for example dividing by zero—

what should happen in these situations.

Mocking for Tes ng

Introduction

Testing software systems is not an easy thing to do; the

functions, objects,methods etc. That are involved in any

program can be complex things in their own right. In many

cases they depend on and interact with other functions,

methods and objects; very few functions and methods operate

in isolation. Thus the success of failure of a function or

method or the overall state of an object is dependent on other

program elements.

However, in general it is a lot easier to test a single unit in

isolation rather than to test it as part of a larger more

complex system. For example, let us take a Python class as a

single unit to be tested. If we can test this class on its own we

only have to take into account the state of the classes object

and the behavior defined for the class when writing our test

and determining appropriate outcomes.

[image:]

However, if that class interacts with external systems such as

external services, databases, third party software, data

sources etc. Then the testing process becomes more complex:

[image:]

It may now be necessary to verify data updates made to the

database,or information sent to a remote service etc. to

confirm that the operation of a class’s object is correct. This

makes not only the software being tested more complex but it

also makes the tests themselves more complex. This means

that there is greater chance that the test will fail, that the

tests will contain bugs or issues themselves and that the test

will be harder for someone to understand and maintain. Thus a common objective when writing unit tests or subsystem

tests is to be able to test elements/ units in isolation.

The question is how to do this when a function or method

relies on other elements?

The key to decoupling functions, methods and objects from

other program or system elements is to use mocks. These

mocks can be used to decouple one object rom another, one

function from another and one system from another; thereby

simplifying the testing environment. These mocks are only

intended to be used for testing purposes, for example the

above scenario could be simplified by mocking out each of the

external systems as shown below:

[image:]

Mocking is not a Python specific concept and there are many

mocking libraries available for may di erent languages.

However, in this chapter we will be focusing on the

unites.mock library which has been part of the standard

Python distribution since Python 3.3.

Why Mock?

A useful first question to consider with regard to mocking, in

software testing, is ‘Why mock?’. That is, why bother with the

concept of a mock in the first place;

why not test with the real thing?

There are several answers to this, some of which are

discussed below:

Testing in isolation is easier. As mentioned in the

introduction, testing a unit (whether that is a class, a

function, a module etc.) is easier in isolation then when

dependent on external classes, functions, modules etc.

The real thing is not available. In many cases it is necessary to

mock out part of a system or an interface to another system

because the real thing is just not available. This could be for

several reasons including that it has not been developed

yet.In the natural course of software development some parts of a system are likely to be developed and ready for testing

before other parts. If one part relies on another part for some

element of its operation then the system that is not yet

available can be mocked out. In other situations the

development team or test team may not have access to the

real thing. This may because it is only available within a

production context. For example, if a software development

house is developing one subsystem it may not have access to

another subsystem as it is proprietary and only accessible

once the software has been deployed within the client

organization.

Real elements can be time consuming. We want our tests to

run as quickly as possible and certainly within a Continuous

Integration (CI) environment we want them to run fast

enough that we can repeatedly test a system throughout the

day. In some situations the real thing may take a significant

amount of time to process the test scenario. As we want to

test our own code we may not be worried about whether a

system outside of our control operates correctly or not (at

least at this level of testing; it may still be a concern for

integration and system testing). We can therefore improve

the response times of our tests if we mock out the real system

and replace it with a mock that provides much faster response

times (possibly because it use scanned responses).

The real thing takes time to set up. In a Continuous

Integration (CI) environment, new builds of a system are

regularly and repeatedly tested (for example whenever a

change is made to their code base). In such situations it may

be necessary to configure and deploy the final system to a

suitable environment to perform appropriate tests. If an

external system is time consuming to configure, deploy and

initialize it may be more e ective to mock that system out.

Di cult to emulate certain situations. It can be di cult

within a test scenario to emulate specific situations. These

situations are often related to error or exceptional

circumstances that should never happen within a correctly

functioning environment. However, it may well be necessary

to validate that if such a situation does occur, then the

software can deal with that scenario. If these scanners are

related to how external (the unit under test) system fail or

operate incorrectly then it may be necessary to mock out

these systems to be able to generate the scenarios.

We want repeatable tests. By their very nature when you run a

test you either want it to pass or fail each time it is run with

the same inputs. You certainly do not want tests that pass

sometimes and fail other times. This mean that there is no

confidence in the tests and people often start ignoring failed

tests. This situation can happen if the data provided by

systems that a test depends on do not supply repeatable data.

This can happen for several di erent reason but a common

cause is because they return real data. Such real data may be

subject to change, for example consider a system that uses a

data feed for the current exchange rate between funds and

dollars. If the associated test confirms that a trade when

priced in dollars is correctly converted to funds using the

current exchange rate then that test is likely to generate a

di erent result every time it is run. In this situation it would

lie better to mock out the current exchange rate service so

that a fixed/known exchange rate is used.

The Real System is not reliable enough. In some cases the real

system may not be reliable enough itself to allow for

repeatable tests. The Real System may not allow tests to be

repeated. Finally, the real system may not allow tests to be

easily repeated. For example, a test which involves lodging a

trade for a certain number of IBM shares with an Trade Order

management system may not allow that trade, with those

shares, for that customer to be run several times (as it would

then appear to be multiple trades). However, for the purposes

of testing we may want to test submitting such a trade in

multiple di erent scenarios, multiple times.It may therefore

be necessary to mock out the real Order Management System

so that such tests can be written.

What Is Mocking?

The previous section gave several reasons to use mocks; the

next thing to consider then is what is a mock?

Mocks, including mock functions,methods and mock objects

are things that:

Possess the same interface as the real thing, whether they

are mock functions, methods or whole objects. They thus

take the same range and types of parameters and return

similar information using similar types.

Define behavior that in some way represents/mimics real

exemplar behavior but typically in very controlled ways.

This behavior may be hard coed, may really on a set of

rules or simplified behavior; may be very simplistic or

quiet sophisticated in its own right.

They thus emulate the real system and from outside of the

mock may actually appear to be the real system.

In many cases the term mock is used to cover a range of

di erent ways in which the real thing can be emulated; each

type of mock has its own characteristics. It is therefore useful

to distinguish the di erent types of mocks as this can help

deter- mine the style of mock to be adopted in a particular

test situation.

The are di erent types of Mock including:

Test Stubs. A test stub is typically a hand coded function,

method or object used for testing purposes. The behavior

implemented by a test stub may rep- resent a limited sub

set of the functionality of the real thing.

Fakes.Fakes typically provide addition functionality

compared with a Test Stub. Fakes may be considered to be

a test specific version of the real thing, such as an in

memory database used for testing rather than the real

database. Such Fakes typically still have some limitations

on their functionality, for example when the tests are

terminated all data is purged from the in memory

database rather than stored permanently on disk.

Auto generated Test Mocks. These are typically generated

automatically using a supporting framework. As part of

the set up of the test the expectations associated with the

test mock. These expectations may specify the results to

return for specific inputs as well as whether the test mock

was called etc.

Test Mock Spy. If we are testing a particular unit and it

returns the correct result

we might decided that we do not need to consider the internal

behavior of the unit. However, it is common to want to

confirm that the test mock was invoked in the way we

expected. This helps verify the internal behavior of the unit

under test. This can be done using a test mock spy. Such a test

mock records how many times it was called and what the parameters used where (as well as other information). The

test can then interrogate the test mock to validate that it was

invoked as expected/as many times as expected/with the

correct parameters etc.

Common Mocking Framework Concepts

As has been mentioned there are several mocking frameworks

around for not only Python but other languages such as Java,

C# and Scala etc. All of these frameworks have a common core

behavior. This behavior allows a mock function, method or

object to be created based on the interface presented by the

real thing. Of course unlike languages such as C# and Java

Python does not have a formal interface concept; however

this does not stop the mocking framework from still using the

same idea.

In general once a mock has been created it is possible to

define how that mock should appear to behave; in general this

involves specifying the return result to use fora function or

method. It is also possible to verify that the mock has been

invoked as expected with the parameters expected.

The actual mock can be added to a test or a set of tests either

programmatically or via some form of decorator. In either

case for the duration of the test the mock will be used instead

of the real thing.

Assertions can then be used to verify the results returned by

the unit under test while mock specific methods are typically

used to verify (spy on) the methods defined on the mock.

Mocking Frameworks for Python

Due to Python’s dynamic nature it is well suited to the

construction of mock functions, methods and objects.In fact

there are several widely used mocking frameworks available

for Python including:

unittest.mock The unittest.mock (included in the Python

distribution from Python 3.3 on wards). This is the default

mocking library provided with Python for creating mock

objects in Python tests.

pymox This is a widely used making framework. It is an

open source frame- work and has a more complete set of

facilities for enforcing the interface of a mocked class.

Mocktest This is another popular mocking framework. It

has its own DSL (Domain Specific Language) to support

mocking and a wide set of expectation matching behavior

for mock objects.

In the remainder of this chapter we will focus on the

unittest.mock library as it is provided as part of the standard

Python distribution.

The unittest.mock Library

The standard Python mocking library is the unittest.mock

library. It has been included in the standard Python

distribution since Python3.3 and provides a simple way to

define mocks for unit tests.

The key to the unittest.mock library is the Mock class and its

subclass MagicMock. Mock and MagicMock objects can be

used to mock functions, methods and even whole classes.

These mock objects can have canned responses defined so

that when they are involved by the unit under test they will

respond appropriately. Existing objects can also have

attributes or individual methods mocked allowing an object

to be tested with a known state and specified behavior.

To make it easy to work with mock objects, the library

provides the

@unittest.mock.patch() decorator. This decorator can be

used to replace real functions and objects with mock

instances. The function behind the decorator can also be used

as a context manager allowing it to be used in with-as

statements providing for fine grained control over the scope

of the mock if required.

Mock and Magic Mock Classes The unittest.mock library provides the Mock class and the

MagicMock class. The Mock class is the base class for mock

objects. The MagicMock class is a subclass of the Mock class.

It is called the MagicMock class as it provides default

implementations for several magic method such as . len (), .

str (), and . iter ().

As a simple example consider the following class to be tested:

class SomeClass():

def _hidden_method(self):

return 0

def public_method(self, x):

return self.hidden_method() + x

This class defines two methods; one is intended as part of the

public interface of the class (the public_method()) and one it

intended only for internal or private use (the

_hidden_method()). Notice that the hidden method uses the

convention of preceding its name by an underbar (‘_’).

Let us assume that we wish to test the behavior of the

public_method() and want to mock out the

_hidden_method().

We can do this by writing a test that will create a mock object

and use this in place of the real _hidden_method(). We could probably use either the Mock class or the MagicMock class for

this; however due to the additional functionality provided by

the MagicMock class it is common practice to use that class.

We will therefore do the same.

The test to be created will be defined within a method within

a test class. The names of the test method and the test class

are by convention descriptive and thus will describe what is

being tested, for example:

from unittest.mock import *

from unittest import TestCase

from unittest import main

class test_SomeClass_public_interface(TestCase):

def test_public_method(self):

test_object = SomeClass()

Set up canned response on mock method

test_object._hidden_method = MagicMock(name =

'hidden_method')

test_object._hidden_method.return_value = 10

Test the object

result = test_object.public_method(5)

self.assertEqual(15, result, 'return value from public_method

incorrect')

In this case note that the class being tested is instantiated

first. The MagicMock is then instantiated and assigned to the

name of the method to be mocked. This in e ect replaces that

method for the test_object. TheMagicMock. The MagicMock object is given a name as this helps with treating any issues in

the report generated by the unites framework. Following this

the canned response from the mock version of the

_hidden_method() is defined; it will always return the value

10.

At this point we have set up the mock to be used for the test

and are now ready to run the test. This is done in the next line

where the public_method() is called on the test_object with

the parameter 5. The result is then stored.

The test then validates the result to ensure that it is correct;

i.e. that the returned value is 15.

Although this is a very simple example it illustrates how a

method can be mocked out using the MagicMock class.

The Patchers

The unittest.mock.patch(), unittest.mock.patch.object() and

unittest.patch.dict() decorators can be used to simplify the

creation of mock objects.

The patch decorator takes a target for the patch and

returns a MagicMock objectin its place. It can be used as a

TastCase method or class decorator. As a class decorator

it decorates each test method in the class automatically.It

can also be used as a context manager via the with and

with-as statements.

The patch.object decorator can be provided with either

two or three arguments. When given three arguments it

will replace the object to be patched, with a mock for the

given attribute/method name. When given two

arguments the object to be patched is given a default

MagicMock object for the specified attribute/function.

The patch.dict decorator patches a dictionary or

dictionary like object.

For example, we can rewrite the example presented in the

previous section using the @patch.object decorator to

provides the mock object for the _hid- den_method() (it

returns a MagicMock linked to SomeClass):

class test_SomeClass_public_interface(TestCase):

@patch.object(SomeClass, '_hidden_method')

def test_public_method(self, mock_method):

Set up cannedresponse

mock_method.return_value = 10

Createobject to be tested

test_object = SomeClass()

result = test_object.public_method(5)

self.assertEqual(15, result, 'return value from

public_methodincorrect')

In the above code the _hidden_method() is replaced with a

mock version for SomeClass within the

test_public_method() method. Note that the mock version of the method is passed in as a parameter to the test method so

that the canned response can be specified. You can also use

the @patch() decorator to mock a function from a module.

For example, given some external module with a function

api_call, we can mock that function out using the @patch()

decorator:

@patch('external_module.api_call')

def test_some_func(self, mock_api_call):

This uses patch() as a decorator and passed the target object’s

path. The target path was ‘external_module.api_call’ which

consists of the module name and the function to mock.

Mocking Returned Objects

In the examples looked at so far the results returned from the

mock functions or methods have been simple integers.

However, in some cases the returned values must themselves

be mocked as the real system would return a complex object

with multiple attributes and methods.

The following example uses a MagicMock object to represent

an object returned from a mocked function. This object has

two attributes, one is a response code and the other is a JSON string.JSON stands for the JavaScript Object Notation and is a

commonly used format in web services.

import external_module

from unittest.mock import *

from unittest import TestCase from unittest import main import

json

def some_func():

Calls out to external API - which we want to mock

response = external_module.api_call()

return responseclass test_some_func_calling_api(TestCase):

class test_some_func_calling_api(TestCase):

@patch('external_module.api_call')

def test_some_func(self, mock_api_call):

Sets up mock version of api_call

mock_api_call.return_value = MagicMock(status_code=200,

response=json.dumps({'key':'value'}))

Calls some_func() that calls the (mock) api_call()

function

result = some_func()

Check that the result returned from some_func() is what was

expected

self.assertEqual(result.status_code, 200, "returned status

code is not 200")

self.assertEqual(result.response, '{"key": "value"}',

"response JSON incorrect")

In this example the function being tested is some_func() but

some_func() calls out to the mocked function

external_module.api_call(). This mocked function returns a

MagicMock object with a pre-specified status_code and

response. The assertions then validate that the object returned by some_func() contains the correct status code and

response.

Validating Mocks Have Been Called

Using unittest.mock it is possible to validate that a mocked

function or method was called appropriately using

assert_called(), assert_- called_with() or

assert_called_once_with() depending on whether the

function takes parameters or not.

The following version of the

test_some_func_with_params() test method verifies that

the mock api_call() function was called with the correct

parameter.

@patch('external_module.api_call_with_param')

def test_some_func_with_param(self, mock_api_call):

Sets up mock version of api_call

mock_api_call.return_value = MagicMock(status_code=200,

response=json.dumps({'age': '23'}))

result = some_func_with_param('Phoebe')

Check result returned from some_func() is what was expected

self.assertEqual(result.response, '{age": "23"}', 'JSON

result incorrect')

Verify that the mock_api_call was called with the correct

params

mock_api_call.api_call_with_param.assert_called_with('Phoebe') If we wished to validate that it had only been called once we

could use the assert_called_once_with() method.

Mock and Magic Mock Usage

Naming Your Mocks

It can be useful to give your mocks a name. The name is used

when the mock appears in test failure messages. The name is

also propagated to attributes or methods of the mock:

mock = MagicMock(name='foo')

Mock Classes

As well as mocking an individual method on a class it is

possible to mock a whole class. This is done by providing the

patch() decorator with the name of the class to patch (with no

named attribute/method). In this case the while class is

replaced by a MagicMock object. You must then specify how

that class should behave.

import people

from unittest.mock import * from unittest import TestCase from

unittest import main

class MyTest(TestCase):

@patch('people.Person')

def test_one(self, MockPerson): self.assertIs(people.Person,

MockPerson) instance = MockPerson.return_value

instance.calculate_pay.return_value = 250.0 payroll =

people.Payroll()

result = payroll.generate_payslip(instance)

self.assertEqual('You earned 250.0', result, 'payslip

incorrect')

In this example the people.Person class has been mocked out.

This class has a method calculate_pay() which is being

mocked here. The Payroll class has a method

generate_payslip() that expects to be given a Person object. It

then uses the information provided by the person objects

calculate_pay() method to generate the string returned by

the generate_payslip() method.

Attributes on Mock Classes

Attributes on a mock object can be easily defined, for example

if we want to set an attribute on a mock object then we can

just assign a value to the attribute:

import people

from unittest.mock import *

from unittest import TestCase

class MyTest(TestCase):

@patch('people.Person')

def test_one(self, MockPerson): self.assertIs(people.Person,

MockPerson) instance = MockPerson.return_value instance.age=

24

instance.name = 'Adam'

self.assertEqual(24, instance.age, 'age incorrect')

self.assertEqual('Adam', instance.name, 'name incorrect')

In this case the attribute age and name have been added to the

mock instance of the people.Person class.

If the attribute itself needs to be a mock object then all that is

required is to assign a MagicMock (or Mock) object to that

attribute:

instance.address = MagicMock(name='Address')

Mocking Constants

It is very easy to mock out a constant; this can be done using

the @patch() decorator and proving the name of the constant

and the new value to use. This value can be a literal value such

as 42 or ‘Hello’ or it can be a mock object itself (such as a

MagicMock object). For example:

@patch('mymodule.MAX_COUNT', 10)

def test_something(self):

Test can now use mymodule.MAX_COUNT

Mocking Properties It is also possible to mock Python properties. This is done

again using the @patch decorator but using the

unittest.mock.PropertyMock class and the new_callable

parameter. For example:

@patch('mymoule.Car.wheels', new_callable=mock.PropertyMock)

def test_some_property(self, mock_wheels):

mock_wheels.return_value = 6

Rest of test method

Raising Exceptions with Mocks

A very useful attribute that can be specified when a mock

object is created is the side_e ect. If you set this to an

exception class or instance then the exception will be raised

when the mock is called, for example:

mock = Mock(side_effect=Exception('Boom!'))

mock()

This will result in the Exception being raised when the mock()

is invoked.

Applying Patch to Every Test Method If you want to mock out something for every test in a test

class then you can decorate the whole class rather than each

individual method. The e ect of decorating the class is that

the patch will be automatically applied to all test methods in

the class (i.e. To all methods starting with the word ‘test’).

For example:

import people

from unittest.mock import *

from unittest import TestCase

from unittest import main

@patch('people.Person')

class MyTest(TestCase):

def test_one(self, MockPerson):

self.assertIs(people.Person, MockPerson)

def test_two(self, MockSomeClass):

self.assertIs(people.Person, MockSomeClass)

def do_something(self):

return 'something'

In the above test class, the tests test_one and test_two are

supplied with the mock version of the Person class. However

the do_something() method is not a ected.

Using Patch as a Context Manager

The patch function can be used as a context manager. This

gives fine grained control over the scope of the mock object.

In the following example the the test_one() method contains

a with-as statement that we used to patch (mock) the person

class as MockPerson. This mock class is only available within

the with-as statement.

import people

from unittest.mock import * from unittest import TestCase from

unittest import main

class MyTest(TestCase):

def test_one(self):

with patch('people.Person') as MockPerson:

self.assertIs(people.Person, MockPerson) instance =

MockPerson.return_value instance.calculate_pay.return_value =

250.0 payroll = people.Payroll()

result = payroll.generate_payslip(instance)

self.assertEqual('You earned 250.0', result,

'payslip incorrect')

Mock Where You Use It

The most common error made by people using the

unittest.mock library is mocking in the wrong place. The rule

is that you must mock out where you are going to use it; or to

put it another way you must always mock the real thing

where it is imported into, not where it’s imported from.

Patch Order Issues It is possible to have multiple patch decorators on a test

method. However, the order in which you define the patch

decorators is significant. The key to understanding what the

order should be is to work backwards so that when the mocks

are passed into the test method they are presented to the

right parameters. For example:

@patch('mymodule.sys')

@patch('mymodule.os')

@patch('mymodule.os.path')

def test_something(self, mock_os_path, mock_os, mock_sys):

The rest of the test method

Notice that the last patch’s mock is passed into the second

parameter passed to the test_something() method (self is the

first parameter to all methods). In turn the first patch’s mock

is passed into the last parameter. Thus the mocks are passed

into the test method in the reverse order to that which they

are defined in.

How Many Mocks?

An interesting question to consider is how many mocks

should you use per test?

This is the subject or a lot of debate within the software

testing community. The general rules of thumb around this topic are given below, however it should be borne in mind

that these are guidelines rather than hard and fast rules.

Avoid more than 2 or 3 mocks per test. You should avoid

more than 2–3 mocks as the mocks themselves the get

harder to manage. Many also consider that if you need

more then 2–3 mocks per test then there are probably

some underlying design issues that need to be considered.

For example, if you are testing a Python class then that

class may have too many dependencies. Alternatively the

class may have too many responsibilities and should be

broken down into several independent classes; each with

a distinct responsibility. Another cause might be that the

class’s behavior may not be encapsulated enough and

that you are allowing other elements to interact with the

class in more informal ways (i.e. The interface between

the class and other elements is not clean/exploit enough).

The result is that it may be necessary to refactor your

class before progressing with your development and

testing.

Only Mock you Nearest Neighbor. You should only ever

mock your nearest neighbor whether that is a

function,method or object. You should try to avoid

mocking dependencies of dependencies. If you find

yourself doing this then it will become harder to

configure, maintain, understand and develop. It is also

increasingly likely that you are testing the mocks rather

than your own function, method or class.

Mocking Considerations

The following provide some rules of thumb to consider when

using mocks with your tests:

Don’t over mock—if you do then you can end up just

testing the mocks themselves.

Decide what to mock, typical examples of what to mock

include those elements that are not yet available, those

elements that are not by default repeatable (such as live

data feeds) or those elements of the system that are time

consuming or complex.

Decide where to mock such as the interfaces for the unit

under test. You want to test the unit so any interface it

has with another system, function, class might be a

candidate for a mock.

Decide when to mock so that you can determine the

boundaries for the test.

Decide how you will implement your mocks. For example

you need to consider which mocking framework(s) you

will use or how to mock larger components such as a

database

Try

One of the reasons for mocking is to ensure that tests are

repeatable. In this exercise we will mock out the use of a

random number generate to ensure that our tests can bee

easily repeated.

The following program generates a deck of cards and

randomly picks a card from the deck:

import random

def create_suite(suite):

return [(i, suite) for i in range(1, 14)]

def pick_a_card(deck):

print('You picked')

position = random.randint(0, 52) print(deck[position][0],

"of", deck[position][1]) return (deck[position])

Set up the data

hearts = create_suite('hearts') spades =

create_suite('spades') diamonds = create_suite('diamonds')

clubs = create_suite('clubs')

Make the deck of cards

deck = hearts + spades + diamonds + clubs

Randomlypick from the deck of cards

card = pick_a_card(deck)

Each time the program is run a different card is picked, for

example in two con- secutive runs the followingoutput is

obtained:

You picked

13 of clubs

You picked

1 of hearts

We now want to write a test for the pick_a_card() function.

You should mock out the random.randint() function to do

this.

Introduc on to Files, Paths and IO

Introduction

The operating system is a critical part of any computer

systems. It is comprised of elements that manage the

processes that run on the CPU, how memory is utilized and

managed, how peripheral devices are used (such as printers

and scanners), it allows the computer system to

communicate with other systems and it also provide support

for the file system used.

The File System allows programs to permanently store data.

This data can then be retrieved by applications at a later date;

potentially after the whole computer has been shut down and

restarted.

The File Management System is responsible for managing the

creation, access and modification of the long term storage of

data in files. This data may be stored locally or remotely on

disks, tapes, DVD drives, USB drives etc.

Although this was not always the case; most modern

operating systems organize files into a hierarchical structure,

usually in the form of an inverted tree. For example in the

following diagram the root of the directory structure is shown

as ‘/’. This root directory holds six sub directories. In turn the

Users sub directory holds 3 further directories and so on:

[image:]

Each file is contained within a directory (also known as a

folder on some operating systems such as Windows). A

directory can hold zero or more files and zero or more

directories.

For any give directory there are relationships with other

directories as shown below for the directory jhunt:

[image:]

The root directory is the starting point for the hierarchical

directory tree structure. A child directory of a given directory

is known as a sub directory. The directory that holds the given directory is known as the parent directory. At any one time,

the directory within which the program or user is currently

working, is known as the current working directory.

A user or a program can move around this directory structure

as required. To do this the user can typically either issue a

series of commands at a terminal or command window. Such

as cd to change directory or pwd to print the working

directory. Alternatively Graphical User Interfaces (GUIs) to

operating systems usually include some form of file manager

application that allows a user to view the file structure in

terms of a tree. The Finder program for the Mac is shown

below with a tree structure displayed for a pycharm projects

directory. A similar view is also presented for the Windows

Explorer program.

[image:]

File Attributes

A file will have a set of attributes associated with it such as

the date that it was created, the date it was last

updated/modified, how large the file is etc. It will also

typically have an attribute indicating who the owner of the

file is. This may be the creator of the file; however the

ownership of a file can be changed either from the command

line or through the GUI interface. For example, on Linux and

Mac OS X the command chown can be used to change the file

ownership.

It can also have other attributes which indicate who can read,

write or execute the file. In Unix style systems (such as Linux

and Mac OS X) these access rights can be specified for the file

owner, for the group that the file is associated with and for all

other users.

The file owner can have rights specified for reading, writing

and executing a file. These are usually represented by the

symbols ‘r’, ‘w’ and ‘x’ respectively. For example the

following uses the symbolic notation associated with Unix

files and indicates that the file owner is allowed to read, write

and execute a file:

-RWX-----

Here the first dash is left blank as it is to do with special files

(or directories), then the next set of three characters

represent the permissions for the owner, the following set of

three the permissions for all other users. As this example has

rwx in

the first group of three characters this indicates that the user

can read ‘r’, write ‘w’ and execute ‘x’ the file. However the

next six characters are all dashes indicating that the group

and all other users cannot access the file at all. The group that

a file belongs to is a group that can have any number of users as members. A member of the group will have the access

rights as indicated by the group settings on the file. As for the

owner of a file these can be to read, write or execute the file.

For example, if group members are allowed to read and

execute a file, then this would be shown using the symbolic

notation as:

---r-x--

Now this example indicates that only members of the group

can read and execute the file; note that group members

cannot write the file (they therefore cannot modify the file).

If a user is not the owner of a file, nor a member of the group

that the file is part of, then their access rights are in the

‘everyone else’ category. Again this category can have read,

write or execute permissions. For example, using the

symbolic notation, if all users can read the file but are not

able to do anything else, then this would be shown as:

----r-

Of course a file can mix the above permissions together, so

that an owner may be allowed to read, write and execute a

file, the group may be able to read and execute the file but all

other users can only read the file. This would be shown as:

-rwx-xr--

In addition to the symbolic notation there is also a numeric

notation that is used with Unix style systems. The numeric

notation uses three digits to represent the permissions. Each

of the three rightmost digits represents a di erent

component of the permissions: owner, group, and others.

Each of these digits is the sum of its component bits in the

binary numeral system. As a result, specific bits add to the

sum as it is represented by a numeral:

The read bit adds 4 to its total (in binary 100),

The write bit adds 2 to its total (in binary 010), and

The execute bit adds 1 to its total (in binary 001).

This the following symbolic notations can be represented

by an equivalent numeric notation:

[image:]

A path is a particular combination of directories that can lead

to a specific sub directory or file.

This concept is important as Unix/Linux/Max OS X and

Windows file systems represent an inverted tree of directories and files., It is thus important to be able to uniquely reference

locations with the tree.

For example, in the following diagram the

path/Users/jhunt/work-

spaces/pycharmprojects/furtherpython/chapter2 is

highlighted:

[image:]

A path may be absolute or relative. An absolute path is one

which provides a complete sequence of directories from the

root of the file system to a specific sub directory or file.

A relative path provides a sequence from the current working

directory to a particular sub directory or file.

The absolute path will work wherever a program or user is

currently located within the directory tree. However, a

relative path may only be relevant in a specific location.

For example, in the following diagram, the relative path

pycharmprojects/furtherpython/chapter2 is only meaningful

relative to the directory workspace:

[image:]

Note that an absolute path starts from the root directory

(represented by ‘/’) where as a relative path starts from a

particular sub directory (such as pycham projects).

File Input/Output

File Input/Output (often just referred to as File I/O) involves

reading and writing data to and from files. The data being

written can be in di erent formats.

For example a common format used in Unix/Linux and

Windows systems is the ASCII text format. The ASCII format

(or American Standard Code for Information Interchange) is a

set of codes that represent various characters that is widely

used by operating systems. The following table illustrates

some of the ASCII character codes and what they represent:

[image:]

[image:]

ASCII is a very useful format to use for text files as they can be

read by a wide range of editors and browsers. These editors

and browsers make it very easy to create human readable

files. However, programming languages such as Python often

use a di erent set of character encoding such as a Unicode

character encoding (such as UTF-8). Unicode is another

standard for representing characters using various codes.

Unicode encoding systems o er a wider range of possible

character encoding than ASCII, for example the latest version

of Unicode in May 2019, Unicode 12.1, contains a repertoire of

137,994 characters covering 150 modern and historic scripts,

as well as multiple symbol sets and emojis.

However, this means that it can be necessary to translate

ASCII into Unicode (e.g. UTF-8) and vice versa when reading

and writing ASCII files in Python.

Another option is to use a binary format for data in a file. The

advantage of using binary data is that there is little or no

translation required from the internal representation of the

data used in the Python program into the format stored in the

file. It is also often more concise than an equivalent ASCII

format and it is quicker for a program to read and write and

takes up less disk space etc. However, the down side of a

binary format is that it is not in an easily human readable

format. It may also be di cult for other programs, particularly those written in other programming languages

such as Java or C#, to read the data in the files.

Sequential Access Versus Random Access

Data can be read from (or indeed written to) a file either

sequentially or via a random access approach.

Sequential access to data in a file means that the program

reads (or writes) data to a file sequentially, starting at the

beginning of a file and processing the data an item at a time

until the end of the file is reached.The read process only ever

moves forward and only to the next item of data to read.

Random Access to a data file means that the program can read

(or write) data anywhere into the file at any time. That is the

program can position itself at a particular point in the file (or

rather a pointer can be positioned within the file) and it can

then start to read (or write) at that point. If it is reading then

it will read the next data item relative to the pointer rather

than the start of the file. If it is writing data then it will write

data from that point rather than at the end of the file. If there

is already data at that point in the file then it will be over

written. This type of access is also known as Direct Access as

the computer program needs to know where the data is stored

within the file and thus goes directly to that location for the data. In some cases the location of the data is recorded in an

index and thus is also known as indexed access.

Sequential file access has advantages when a program needs

to access information in the same order each time the data is

read. It is also is faster to read or write all the data

sequentially than via direct access as there is no need to move

the file pointer around.

Random access files however are more flexible as data does

not need to be written or read in the order in which it is

obtained. It is also possible to jump to just the location of the

data required and read that data (rather than needing to

sequentially read through all the data to find the data items of

interest).

Files and I/O in Python

In the remainder of this section of the book we will explore

the basic facilities provided for reading and writing files in

Python.We will also look at the underlying streams model for

file I/O. After this we will explore the widely used CSV and

Excel file formats and libraries available to support those.

This section concludes by exploring the Regular Expression

facilities in Python. While this last topic is not strictly part of

file I/O it is often used to parse data read from files to screen

out unwanted information.

Reading and Wri ng Files

Introduction

Reading data from and writing data to a file is very common

within many programs. Python provides a large amount of

support for working with files of various types. This chapter

introduces you to the core file IO functionality in Python.

Obtaining References to Files

Reading from, and writing to, text files in Python is relatively

straightforward.The built in open() function creates a file

object for you that you can use to read and/ or write data from

and/ or to a file.

The function requires as a minimum the name of the file you

want to work with. Optionally you can specify the access

mode (e.g. read, write, append etc.). If you do not specify a

mode then the file is open in read-only mode. You can also

specify whether you want the interactions with the file to be

bu ered which can improve performance by grouping data

reads together.

The syntax for the open() function is

file_object = open(file_name, access_mode, buffering)

Where

file_name indicates the file to be accessed.

access_mode The access_mode determines the mode in

which the file is to be opened, i.e. read, write, append, etc.

A complete list of possible values is given below in the

table.This is an optional parameter and the default file

access mode is read (r).

bu ering If the bu ering value is set to 0, no bu ering

takes place. If the bu ering value is 1, line bu ering is

performed while accessing a file.

The access_mode values are given in the following table.

[image:]

The file object itself has several useful attributes such as

file.closed returns True if the file has been closed (can no

longer be accessed because the close() method has been

called on it).

file.mode returns the access mode with which the file was

opened.

file.name The name of the file.

The file.close() method is used to close the file once you have

finished with it.This will flush any unwritten information to

the file (this may occur because of bu ering) and will close

the reference from the file object to the actual underlying

operating system file. This is important to do as leaving a

reference to a file open can cause problems in larger

applications as typically there are only a certain number of

file references possible at one time and over a long period of

time these may all be used up resulting in future errors being

thrown as files can no longer be opened.

The following short code snippet illustrates the above ideas:

file = open('myfile.txt', 'r+') print('file.name:', file.name)

print('file.closed:', file.closed) print('file.mode:',

file.mode) file.close()

print('file.closed now:', file.closed)

The output from this is:

file.name: myfile.txt

file.closed: False

file.mode: r+

file.closed now: True

Reading Files

Of course, having set up a file object we want to be able to

either access the contents of the file or write data to that file (or do both). Reading data from a text file is supported by the

read(), readline() and readlines() methods:

The read() method This method will return the entire

contents of the file as a single string.

The readline() method reads the next line of text from a

file. It returns all the text on one line up to and including

the newline character. It can be used to read a file a line at

a time.

The readlines() method returns a list of all the lines in a

file, where each item of the list represents a single line.

Note that once you have read some text from a file using one

of the above operations then that line is not read again. Thus

using readlines() would result in a further readlines()

returning an empty list whatever the contents of the file.

The following illustrates using the readlines() method to read

all the text in a text file into a program and then print each

line out in turn:

file = open('myfile.txt', 'r')

lines = file.readlines()

for line in lines:

print(line, end='')

file.close()

Notice that within the for loop we have indicated to the print

function that we want the end character to be ' ' rather than a newline; this is because the line string already possesses the

newline character read from the file.

File Contents Iteration

As suggested by the previous example; it is very common to

want to process the contents of a file one line at a time. In fact

Python makes this extremely easy by making the file object

support iteration. File iteration accesses each line in the file

and makes that line available to the for loop. We can therefore

write:

file = open('myfile.txt', 'r')

for line in file:

print(line, end='')

file.close()

It is also possible to use the list comprehension to provide a

very concise way to load and process lines in a file into a list.

It is similar to the e ect of readlines() but we are now able to

preprocess the data before creating the list:

file = open('myfile.txt', 'r')

lines = [line.upper() for line in file]

file.close()

print(lines)

Writing Data to Files

Writing a string to a file is supported by the write() method.

Of course, the file object we create must have an access mode

that allows writing (such as ‘w’). Note that the write method

does not add a newline character (represented as ‘\n’) to the

end of the string—you must do this manually.

An example short program to write a text file is given below:

print('Writing file')

f = open('my-new-file.txt', 'w') f.write('Hello from

Python!!\n')f.write('Working with files is easy...\n')

f.write('It is cool ...\n')

f.close()

This creates a new file called my-new-file.txt. It then writes

three strings to the file each with a newline character on the

end; it then closes the file.

The e ect of this is to create a new file called myfile.txt with

three lines in it:

[image:]

Using Files and with Statements

Like several other types where it is important to shut down

resources; the file object class implements the Context

Manager Protocol and thus can be used with the with

statement. It is therefore common to write code that will open

a file using the with as structure thus ensuring that the file

will be closed when the block of code is finished with, for

example:

with open('my-new-file.txt','r') as f:

lines = file.readlines()

for line in lines:

print(line, end='')

The File input Module

In some situations, you may need to read the input from

several files in one go. You could do this by opening each file

independently and then reading the contents and appending

that contents to a list etc. However, this is a common enough requirement that the file input module provides a function

file input.input() that can take a list of files and treat all the

files as a single input significantly simplifying this process,

for example:

with fileinput.input(files=('spam.txt', 'eggs.txt')) as f:

for line in f:

process(line)

Features provided by the file input module include

Return the name of the file currently being read.

Return the integer “file descriptor” for the current file.

Return the cumulative line number of the line that has

just been read.

Return the line number in the current file. Before the first

line has been read this returns 0.

A boolean function that indicates if the current line just

read is the first line of its file

Some of these are illustrated below:

with fileinput.input(files=('textfile1.txt',

'textfile2.txt')) as f:

line = f.readline()

print('f.filename():', f.filename()) print('f.isfirstline():',

f.isfirstline()) print('f.lineno():',

f.lineno())print('f.filelineno():', f.filelineno()) for line in

f:

print(line, end='')

Renaming Files

A file can be renamed using the os.rename() function. This

function takes two arguments, the current filename and the

new filename. It is part of the Python os module which

provides methods that can be used to perform a range of file-

processing operations (such as renaming a file). To use the

module, you will first need to import it. An example of using

the rename function is given below:

import os

os.rename('myfileoriginalname.txt',' myfilenewname.txt')

Deleting Files

A file can be deleted using the os.remove() method. This

method deletes the file specified by the file name passed to it.

Again, it is part of the os module and therefore this must be

imported first:

import os

os.remove('somefilename.txt')

Random Access Files

All the examples presented so far suggest that files are

accessed sequentially, with the first line read before the second and so on. Although this is (probably) the most

common approach it is not the only approach supported by

Python; it is also possible to use a random-access approach to

the contents within a file.

To understand the idea of random file access it is useful to

understand that we can maintain a pointer into a file to

indicate where we are in that file in terms of reading or

writing data. Before anything is read from a file the pointer is

before the beginning of the file and reading the first line of

text would for example, advance the point to the start of the

second line in the file etc. This idea is illustrated below:

[image:]

When randomly accessing the contents of a file the

programmer manually moves the pointer to the location

required and reads or writes text relative to that pointer. This

means that they can move around in the file reading and

writing data.

The random-access aspect of a file is provided by the seek

method of the file object:

file.seek (o set, whence) this method determines where

the next read or write operation (depending on the mode

used in the open() call) takes place.

In the above the o set parameter indicates the position of the

read/ write pointer within the file. The move can also be

forwards or backwards (represented by a negative o set). The

optional whence parameter indicates where the o set is

relative to. The values used for whence are:

0 indicates that the o set is relative to start of file (the

default).

1 means that the o set is relative to the current pointer

position.

2 indicates the o set is relative to end of file.

Thus, we can move the pointer to a position relative to the

start of the file, to the end of the file, or to the current position.

For example, in the following sample code we create a new

text file and write a set of characters into that file. At this

point the pointer is positioned after the ‘z’ in the file.

However, we then use seek() to move the point to the 10th

character in the file and now write ‘Hello’, next we reposition

the pointer to the 6th character in the file and write out

‘BOO’. We then close the file. Finally,we read all the lines

from the file using a with as statement and the open()

function and from this we will see that the text is the file is

now abcdefBOOjHELLOpqrstuvwxyz:

f = open('text.txt',

'w')f.write('abcdefghijklmnopqrstuvwxyz\n') f.seek(10,0)

f.write('HELLO') f.seek(6, 0) f.write ('BOO') f.close()

with open('text.txt', 'r') as f:

for line in f:

print(line, end='')

Directories

Both Unix like systems and Windows operating systems are

hierarchical structures comprising directories and files. The

os module has several functions that can help with creating,

removing and altering directories. These include:

mkdir() This function is used to create a directory, it

takes the name of the directory to create as a parameter.

If the directory already exists FileExistsError is raised.

chdir() This function can be used to change the current

working directory. This is the directory that the

application will read from/ write to by default.

getcwd() This function returns a string representing the

name of the current working directory.

rmdir() This function is used to remove/ delete a

directory. It takes the name of the directory to delete as a

parameter.

listdir() This function returns a list containing the names

of the entries in the directory specified as a parameter to

the function (if no name is given the current directory is

used).

A simple example illustrates the use of some of these

functions is given below:

import os

print('os.getcwd(:', os.getcwd()) print('List contentsof

directory')print(os.listdir())

print('Create mydir')

os.mkdir('mydir')

print('List the updated contents of directory')

print(os.listdir())

print('Change into mydir directory')

os.chdir('mydir')print('os.getcwd(:', os.getcwd())

print('Change back to parent directory')

os.chdir('..')print('os.getcwd(:', os.getcwd()) print('Remove

mydir directory') os.rmdir('mydir')

print('List the resultingcontents of directory')

print(os.listdir())

Note that ‘..’ is a short hand for the parent directory of the

current directory and

‘.’ is short hand for the current directory.

An example of the type of output generated by this program

for a specific set up on a Mac is given below:

os.getcwd(:

/Users/Shared/workspaces/pycharm/pythonintro/textfiles

List contents of directory

['my-new-file.txt', 'myfile.txt', 'textfile1.txt',

'textfile2.txt']

Create mydir

List the updated contents of directory

['my-new-file.txt', 'myfile.txt', 'textfile1.txt',

'textfile2.txt', 'mydir']

Change into mydir directory

os.getcwd(:

/Users/Shared/workspaces/pycharm/pythonintro/textfiles/mydir

Change back to parent directory os.getcwd(:

/Users/Shared/workspaces/pycharm/pythonintro/textfiles

Remove mydir directory

List the resulting contents of directory

['my-new-file.txt', 'myfile.txt', 'textfile1.txt',

'textfile2.txt']

Temporary Files

During the execution of many applications it may be

necessary to create a temporary file that will be created at one

point and deleted before the application finishes. It is of

course possible to manage such temporary files yourself

however, the tempfile module provides a range of facilities to

simplify the creation and management of these temporary

files.

Within the tempfile module TemporaryFile,

NamedTemporaryFile, TemporaryDirectory, and

SpooledTemporaryFile are high-level file objects which

provide automatic cleanup of temporary files and directories.

These objects implement the Context Manager Protocol.

The tempfile module also provides the lower-level function

mkstemp() and mkdtemp() that can be used to create

temporary files that require the developer to management

them and delete them at an appropriate time.

The high-level feature for the tempfile module are:

TemporaryFile(mode=‘w+b’) Return an anonymous

gfile-like object that can be used as a temporary storage

area. On completion of the managed context (via a with

statement) or destruction of the file object, the temporary

file will be removed from the files ystem. Note that by

default all data is written to the temporary file in binary

format which is generally more e cient.

NamedTemporaryFile(mode=‘w+b’) This function

operates exactly as TemporaryFile() does, except that the

file has s visible name in the file system.

SpooledTemporaryFile(max_size=0, mode=‘w+b’) This

function operates exactly as TemporaryFile() does,

except that data is spooled in memory until the file size

exceeds max_size, or until the file’s fileno () method is

called, at which point the contents are written to disk and

operation proceeds as with TemporaryFile().

TemporaryDirectory(su x=None, prefix=None,

dir=None)

This function creates a temporary directory. On completion of

the context or destruction of the temporary directory object

the newly created temporary directory and all its contents are

removed from the file system.

The lower level functions include:

mkstemp() Creates a temporary file that is only readable

or writable by the user who created it.

mkdtemp() Creates a temporary directory. The directory

is readable, writable, andsearchable only by the creating

user ID.

gettempdir() Return the name of the directory used for

temporary files.

This defines the default value for the default temporary

directory to be used with the other functions in this module.

An example of using the TemporaryFile function is given

below. This code imports the tempfile module then prints out

the default directory used for temporary files. It then creates

a TemporaryFile object and prints its name and mode (the

default mode is binary but for this example we have

overwritten this so that plain text is used). We have then

written a line to the file. Using seek we are repositioning

ourselves at the start of the file and then reading the line we

have just written.

import tempfile

print('tempfile.gettempdir():', tempfile.gettempdir())

temp = tempfile.TemporaryFile('w+')print('temp.name:',

temp.name)print('temp.mode:', temp.mode)temp.write('Hello

world!')temp.seek(0)

line = temp.readline()

print('line:', line)

The output from this when run on an Apple Mac is:

tempfile.gettempdir():

/var/folders/6n/8nrnt9f93pn66ypg9s5dq8y80000gn/T

temp.name: 4 temp.mode: w+

line: Hello world!

Note that the file name is ‘4’ and that the temporary directory

is not a meaningful name!

Working with Paths

The path lib module provides a set of classes representing file

system paths; that is paths through the hierarchy of

directories and files within an operating systems file

structure. It was introduced in Python 3.4. The core class in

this module is the Path class.

A Path object is useful because it provides operations that

allow you to manipulate and manage the path to a file or

directory. The Path class also replicates some of the

operations available from the os module (such as mkdir,

rename and rmdir) which means that it is not necessary to

work directly with the os module.

A path object is created using the Path constructor function;

this function actually returns a specific type of Path

depending on the type of operating system being used such as

a WindowsPath or a PosixPath (for Unix style systems).

The Path() constructor takes the path to create for example

‘D:/mydir’ (on Windows) or ‘/Users/user1/mydir’ on a Mac or

‘/var/temp’ on Linux etc.

You can then use several di erent methods on the Path object

to obtain information about the path such as:

exists() returns True of False depending on whether the

path points to an existing file or directory.

is_dir() returns True if the path points to a directory.

False if it references a file. False is also returned if the

path does not exist.

is_file() returns True of the path points to a file, it

returns False if the path does not exist or the path

references a directory.

absolute() A Path object is considered absolute if it has

both a root and (if appropriate) a drive.

is_absolute() returns a Boolean value indicating whether

the Path is absolute or not.

An example of using some of these methods is given below:

from pathlib import Path

print('Create Path object for current directory')

p = Path('.') print('p:', p) print('p.exists():',

p.exists()) print('p.is_dir():', p.is_dir())

print('p.is_file():', p.is_file())

print('p.absolute():', p.absolute())

Sample output produced by this code snippet is:

Create Path object for current directory p: .

p.exists(): True

p.is_dir(): Truep.is_file(): Falsep.absolute():

/Users/Shared/workspaces/pycharm/pythonintro/textfiles There are also several methods on the Path class that can be

used to create and remove directories and files such as:

mkdir() is used to create a directory path if it does not

exist. If the path already exists, then a FileExistsError is

raised.

rmdir() remove this directory; the directory must be

empty otherwise an error will be raised.

rename(target) rename this file or directory to the given

target.

unlink() removes the file referenced by the path object.

joinpath(*other) appends elements to the path object e.g.

path.joinpath(‘/temp’).

with_name(new_name)return a new path object with

the name changed.

The ‘/’ operator can also be used to create new path

objects from existing paths for example path/ ‘test’/

‘output’ which would append the directories test and out

to the path object.

Two Path class methods can be used to obtain path objects

representing key directories such as the current working

directory (the directory the program is logically in at that

point) and the home directory of the user running the

program:

Path.cwd() return a new path object representing the

current directory.

Path.home() return a new path object representing the

user’s home directory.

An example using several of the above features is given below.

This example obtains a path object representing the current

working directory and then appends ‘text’ to this. The result

path object is then checked to see if the path exists (on the

computer running the program), assuming that the path does

not exist it is created and the exists() method is rerun.

p = Path.cwd()

print('Set up new directory')

newdir = p / 'test'

print('Check to see if newdir exists') print('newdir.exists():',

newdir.exists()) print('Create new dir')

newdir.mkdir()

print('newdir.exists():', newdir.exists())

The e ect of creating the directory can be seen in the output:

Set up new directory

Check to see if newdir exists newdir.exists(): False

Create new dir newdir.exists(): True

A very useful method in the Path object is the glob(pattern)

method. This method returns all elements within the path

that meet the pattern specified.

For example path.glob(‘*.py’) will return all the files ending

.py within the current path.

Note that ‘**/*.py’ would indicate the current directory and

any sub directory. For example, the following code will return

all files where the file name ends with ‘.txt’ for a given path:

print('-' * 10)

for file in path.glob('*.txt'):

print('file:', file)

print('-' * 10)

An example of the output generated by this code is:

—————

file: my-new-file.txt

file: myfile.txt

file: textfile1.txt

file: textfile2.txt

—————

Paths that reference a file can also be used to read and write

data to that file. For example the open() method can be used

to open a file that by default allows a file to be read:

open(mode=‘r’) this can be used to open the file

referenced by the path object.

This is used below to read the contents of a file a line at a time

(note that with as statement is used here to ensure that the

file represented by the Path is closed):

p = Path('mytext.txt')

with p.open() as f:

print(f.readline())

However, there are also some high-level methods available

that allow you to easily write data to a file or read data from a

file. These include the Path methods write_text and

read_text methods:

write_text(data) opens the file pointed to in text mode

and writes the data to it and then closes the file.

read_text() opens the file in read mode, reads the text

and closes the file; it then returns the contents of the file

as a string.

These are used below

dir = Path('./test') print('Create new file') newfile = dir

/ 'text.txt'

print('Write some text to file')newfile.write_text('Hello Python

World!') print('Read the text back again')

print(newfile.read_text())

print('Remove the file')

newfile.unlink()

Which generates the following output:

Create new file

Write some text to file

Read the text back again

Hello Python World!

Remove the file

Try

The aim of this exercise is to explore the creation of, and

access to, the contents of a file.

You should write two programs,these programs are outlined

below:

1. Create a program that will write today’s date into a file –

the name of the file can be hard coded or supplied by the

user. You can use the datetime.today() function to obtain

the current date and time. You can use the str() function

to convert this date time object into a string so that it can

be written out to a file.

2. Create a second program to reload the date from the file

and convert the string into a date object. You can use the

datetime.strptime() function to convert a string into a

date time object (see https://docs.python.org/3/library/

datetime.html#datetime.datetime.strptime for

documentation on this function).

This function stakes a string containing a date and time in it

and a second string which defines the format expected. If you

use the approach outlined in step 1 above to write the string

out to a file then you should find that the following defines an

appropriate format to parse the date_str so that a date time

object can be created:

datetime_object = datetime.strptime(date_str, '%Y-%m-%d

%H:%M:%S.%f')

StreamIO

Introduction

In this chapter we will explore the Stream I/O model that

under pins the way in which data is read from and written to

data sources and sinks. One example of a data source or sink

is a file but another might be a byte array.

This model is actually what sits underneath the file access

mechanisms discussed in the previous chapter.

It is not actually necessary to understand this model to be

able to read and write data to and from a file, however in

some situations it is useful to have an under- standing of this

model so that you can modify the default behavior when

necessary.

The remainder of this chapter first introduces the Stream

model, discusses Python streams in general and then

presents the classes provided by Python. It then considers what is the actual e ect of using the open() function

presented in the last chapter.

What is a Stream?

Streams are objects which serve as sources or sinks of data. At

first this concept can seem a bit strange. The easiest way to

think of a stream is as a conduit of data flowing from or into a

pool. Some streams read data straight from the “source of the

data” and some streams read data from other streams. These

latter streams then do some “useful” processing of the data

such as converting the raw data into a specific format. The

following figure illustrates this idea.

[image:]

In the above figure the initial FileIO stream reads raw data

from the actual data source (in this case a file). The

Bu eredReader then bu ers the data reading process for e ciency. Finally the TextIOW rapper handles string

encoding; that is it converts strings from the typical ASCII

representation used in a file into the internal representation

used by Python (which uses Unicode).

You might ask at this point why have a streams model at all;

after all we read and wrote data to files without needing to

know about streams in the last chapter? The answer is that a

stream can read or write data to or from a source of data

rather than just from a file. Of course a file can be a source of

data but so can a socket, a pipe,a string, a web service etc. It is

therefore a more flexible data I/O model.

Python Streams

The Python io module provides Python’s main facilities for

dealing with data input and output. There are three main

types of input/output these are text I/O, binary I/O and raw

I/.O. These categories can be used with various types of data

source/sinks.

Whatever the category, each concrete stream can have a

number of properties such as being read-only, write-only or

read-write. It can also support sequential access or random

access depending on the nature of the underlying data sink.

For example, reading data from a socket or pipe is inherently sequential where as reading data from a file can be performed

sequentially or via a random access approach.

Whichever stream is used however, they are aware of the type

of data they can process. For example, attempting to supply a

string to a binary write-only stream will raise a TypeError. As

indeed will presenting binary data to a text stream etc.

As suggested by this there are a number of di erent types of

stream provided by the Python io module and some of these

are presented below:

[image:]

The abstract IOBase class is at the root of the stream IO class

hierarchy. Below this class are stream classes for unbu ered

and bu ered IO and for text orientedIO.

IOBase

This is the abstract base class for all I/O stream classes.The

class provides many abstract methods that sub classes will need to implement.

The IOBase class (and its sub classes) all support the iterator

protocol.This means that an IOBase object (or an object of a

subclass) can iterate over the input data from the underling

stream.

IOBase also implements the Context Manager Protocol and

therefore it can be used with the with and with-as

statements.

The IOBase class defines a core set of methods and attributes

including:

close() flush and close the stream.

closed an attribute indicating whether the stream is

closed.

flush() flush the write bu er of the stream if applicable.

readable() returns True if the stream can be read from.

readline(size=-1) return a line from the stream. If size is

specified at most size bytes will be read.

readline(hint=-1) read a list of lines. If hint is specified

then it is used to control the number of lines read.

seek(o set[, whence]) This method moves the current

the stream position/pointer to the given o set. The

meaning of the o set depends on the whence parameter.

The default value for whence is SEEK_SET.

SEEK_SET or 0: seek from the start of the stream (the

default);o set must either be a number returned by

TextIOBase.tell(), or zero. Any other o set value produces

undefined behavior.

SEEK_CUR or 1: “seek” to the current position; o set

must be zero, which is a no-operation (all other values

are unsupported).

SEEK_END or 2: seek to the end of the stream; o set

must be zero (all other values

seekable() does the stream support seek().

tell() return the current stream position/pointer.

writeable() returns true if data can be written to the

stream.

writelines(lines) write a list of lines to the stream.

Raw IO/UnBu ered IO Classes

Raw IO or unbu ered IO is provided by the RawIOBase and

FileIO classes. RawIOBase This class is a subclass of IOBase

and is the base class for raw binary (aka unbu ered) I/O. Raw

binary I/O typically provides low-level access to an

underlying OS device or API, and does not try to encapsulate it

in high-level primitives (this is the responsibility of the

Bu ered I/O and Text I/O classes that can wrap a raw I/O

stream). The class adds methods such as:

read(size=-1) This method reads up to size bytes from the

stream and returns them. If size is unspecified or-1 then

all available bytes are read.

readall() This method reads and returns all available

bytes within the stream.

readint(b) This method reads the bytes in the stream into

a per-allocated, writable bytes-like object b (e.g. into a

byte array). It returns the number of bytes read.

write(b) This method writes the data provided by b (a

bytes -like object such as a byte array) into the

underlying raw stream.

FileIO The FileIO class represents a raw unbu ered binary IO

stream linked to an operating system level file. When the

FileIO class is instantiated it can be given a file name and the

mode (such as ‘r’ or ‘w’ etc.). It can also be given a flag to

indicate whether the file descriptor associated with the

underlying OS level file should be closed or not.

This class is used for the low-level reading of binary data and

is at the heart of all file oriented data access (although it is

often wrapped by another stream such as a bu ered reader or

writer).

Binary IO/Bu ered IO Classes Binary IO aka Bu ered IO is a filter stream that wraps a lower

level RawIOBase stream(such as a FileIO stream). The classes

implementing bu ered IO all extend the Bu eredIOBase class

and are:

Bu eredReader When reading data from this object, a larger

amount of data may be requested from the underlying raw

stream, and kept in an internal bu er. The bu ered data can

then be returned directly on subsequent reads.

Bu eredWriter When writing to this object, data is normally

placed into an internal bu er. The bu er will be written out

to the underlying RawIOBase object under various conditions,

including:

when the bu er gets too small for all pending data;

when flush() is called;

when the Bu eredWriter object is closed or destroyed.

Bu eredRandom A bu ered interface to random access

streams. It supports seek() and tell() functionality.

Bu eredRWPair A bu ered I/O object combining two

unidirectional RawIOBase objects – one readable, the other

writeable—into a single bidirectional endpoint.

Each of the above classes wrap a lower level byte oriented

stream class such as the io.FileIO class, for example:

f = io.FileIO('data.dat')

br = io.BufferedReader(f)

print(br.read())

This allows data in the form of bytes to be read from the file

‘data.dat’. You can of course also read data from a di erent

source, such as an in memory BytesIO object:

binary_stream_from_file =

io.BufferedReader(io.BytesIO(b'starship.png')) bytes =

binary_stream_from_file.read(4) print(bytes)

In this example the data is read from the BytesIO object by the

Bu eredReader. The read() method is then used to read the

first 4 bytes, the output is:

b‘star’

Note the ‘b’ in front of both the string ‘starship.png’ and the

result ‘star’. This indicates that the string literal should

become a bytes literal in Python 3. Bytes literals are always

prefixed with ‘b’ or ‘B’; they produce an instance of the bytes

type instead of the str type. They may only contain ASCII

characters.

The operations supported by bu ered streams include, for

reading:

peek(n) return up to n bytes of data without advancing

the stream pointer. The number of bytes returned may be

less or more than requested depending on the amount of

data available.

read(n) return n bytes of data as bytes, if n is not supplied

(or is negative) the read all available data.

readl(n) read up to n bytes of data using a single call on

the raw data stream

The operations supported by bu ered writers include:

write(bytes) writes the bytes-like data and returns the

number of bytes written.

flush() This method forces the bytes held in the bu er

into the raw stream.

Text Stream Classes

The text stream classes are the TextIOBase class and its two

sub classes TextIOWrapper and StringIO.

TextIOBase This is the root class for all Text Stream classes. It

provides a character and line based interface to Stream I/O.

This class provides several additional methods to that defined

in its parent class:

read(size=-1) This method will return at most size

characters from the stream as a single string. If size is

negative or None, it will read all remaining data.

readline(size=-1) This method will return a string

representing the current line (up to a newline or the end

of the data whichever comes first). If the stream is

already at EOF, an empty string is returned. If size is

specified, at most size characters will be read.

seek(o set, [, whence]) change the stream

position/pointer by the specified o set. The optional

whence parameter indicates where the seek should start

from:

– SEEK_SET or 0: (the default) seek from the start of the

stream.

– SEEK_CUR or1: seek to the current position; o set must

be zero, which is a no operation.

– SEEK_END or 2: seek to the end of the stream; o set

must be zero.

tell() Returns the current stream position/pointer as an

opaque number. The number does not usually represent a

number of bytes in the underlying binary storage.

write(s) This method will write the string s to the stream

and return the number of characters written.

TextIOWrapper. This is a bu ered text stream that wraps a

bu ered binary stream and is a direct subclass of TextIOBase.

When a TextIOWrapper is created there are a range of options

available to control its behavior:

io.TextIOWrapper(buffer, encoding=None, errors=None, newline=No

ne, line_buffering=False, write_through=False)

Where

bu er is the bu ered binary stream.

encoding represents the text encoding used such as UTF-

8.

errors defines the error handling policy such as strict or

ignore.

newline controls how line endings are handled for

example should they be ignored (None) or represented as

a linefeed, carriage return or a newline/carriage return

etc.

line_bu ering if True then flush() is implied when a call

to write contains a new line character or a carriage return.

write_through if True then a call to write is guaranteed

not to be bu ered.

The TextIOWrapper is wrapped around a lower level binary

bu ered I/O stream, for example:

f = io.FileIO('data.txt')

br = io.BufferedReader(f)

text_stream = io.TextIOWrapper(br, 'utf-8') StringIO This is an in memory stream for text I/O. The initial

value of the bu er held by the StringIO object can be provided

when the instance is created, for example:

in_memory_text_stream = io.StringIO('to be or not to be that is

the question')

print('in_memory_text_stream', in_memory_text_stream)

print(in_memory_text_stream.getvalue())

in_memory_text_stream.close()

This generates:

in_memory_text_stream <_io.StringIOobject at

0x10fdfaee8>

To be or not to be that is the question

Note that the underlying bu er (represented by the string

passed into the StringIO instance) is discarded when the

close() method is called. The getvalue() method returns a

string containing the entire contents of the bu er. If it is

called after the stream was closed then an error is generated.

Stream Properties

It is possible to query a stream to determine what types of

operations it supports. This can be done using the readable(),

seekable() and writeable() methods. For example:

f = io.FileIO('myfile.txt')

br = io.BufferedReader(f)

text_stream = io.TextIOWrapper(br,encoding='utf-8')

print('text_stream', text_stream)

print('text_stream.readable():', text_stream.readable())

print('text_stream.seekable()', text_stream.seekable())

print('text_stream.writeable()', text_stream.writable())

text_stream.close()

The output from this code snippet is:

text_stream <_io.TextIOWrapper name=‘myfile.txt’

encoding=‘utf-8’>text_stream.readable(): True

text_stream.seekable() True

text_stream.writeable() False

Closing Streams

All opened streams must be closed. However, you can close

the top level stream and this will automatically close lower

level streams, for example:

f = io.FileIO('data.txt')

br = io.BufferedReader(f)

text_stream = io.TextIOWrapper(br, 'utf-8')

print(text_stream.read()) text_stream.close()

Returning to the open() Function

If streams are so good then why don’t you use them all the

time? Well actually in Python 3 you do! The core open

function (and indeed the io.open() function) both return a

stream object. The actual type of object returned depends on

the file mode specified, whether bu ering is being used etc.

For example:

import io

Text stream

f1 = open('myfile.txt', mode='r', encoding='utf-8')

print(f1)

Binary IO aka Buffered IO

f2 = open('myfile.dat', mode='rb')

print(f2)

f3 = open('myfile.dat', mode='wb')

print(f3)

Raw IO aka Unbufferedf IO

f4 = open('starship.png', mode='rb', buffering=0)

print(f4)

When this short example is run the output is:

<_io.TextIOWrapper name=‘myfile.txt’ mode=‘r’

encoding=‘utf-8’>

<_io.Bu eredReader name=‘myfile.dat’>

<_io.Bu eredWriter name=‘myfile.dat’>

<_io.FileIO name=‘starship.png’ mode=‘rb’

closefd=True>

As you can see from the output,four di erent types of object

have been returned from the open() function. The first is a

TextIOWrapper, the second a Bu eredReader, the third a

Bu eredWriter and the final one is a FileIO object. This

reflects the di erences in the parameters passed into the

open (0 function. For example, f1 references a

io.TextIOWrapper because it must encode (convert) the input

text into Unicode using the UTF-8 encoding scheme. While f2

holds a io.Bu eredReader because the mode indicates that we

want to read binary data while f3 holds a io.Bu eredWriter

because the mode used indicates we want to write binary data.

The final call to open returns a FileIO because we have

indicated that we do not want to bu er the data and thus we

can use the lowest level of stream object.

In general the following rules are applied to determine the

type of object returned based on the modes and encoding

specified:

[image:]

Note that not all mode combinations make sense and thus

some combinations will generate an error.

In general you don’t therefore need to worry about which

stream you are using or what that stream does; not least

because all the streams extend the IOBase class and thus have

a common set of methods and attributes.

However, it is useful to understand the implications of what

you are doing so that you can make better informed choices.

For example, binary streams (that do less processing) are

faster than Unicode oriented streams that must convert from

ASCII into Unicode.

Also understanding the role of streams in Input and Output

can also allow you to change the source and destination of

data without needing to rewrite the whole of your application.

You can thus use a file or stdin for testing and a socket for

reading data in production.

Try

Use the underlying streams model to create an application

that will write binary data to a file. You can use the ‘b’ prefix

to create a binary literal to be written, for example b ‘Hello

World’.

Next create another application to reload the binary data from

the file and print it out.

Working with CSV Files

Introduction

This chapter introduces a module that supports the

generation of CSV (or Comma Separated Values) files.

CSVFiles

The CSV (Comma Separated Values)format is the most

common import and export format for spreadsheets and

databases. However, CSV is not a precise standard with

multiple di erent applications having di erent conventions

and specific standards.

The Python csv module implements classes to read and write

tabular data in CSV format. As part of this it supports the

concept of a dialect which is a CSV format used by a specific

application or suite of programs, for example,it supports an

Excel dialect.

This allows programmers to say, “write this data in the

format preferred by Excel,” or “read data from this file which was generated by Excel,” without knowing the precise details

of the CSV format used by Excel.

Programmers can also describe the CSV dialects understood

by other applications or define their own special-purpose CSV

dialects.

The csv module provides a range of functions including:

csv.reader (csvfile, dialect=‘excel’, **fmtparams)

Returns a reader object which will iterate over lines in the

given csvfile. An optional dialect parameter can be given.

This may be an instance of a subclass of the Dialect class

or one of the strings returned by the list_dialects()

function. The other optional fmtparams keyword

arguments can be given to override individual formatting

parameters in the current dialect.

csv.writer (csvfile, dialect=‘excel’, **fmtparams) Returns

a writer object responsible for converting the user’s data

into delimited strings on the given csvfile. An optional

dialect parameter provided. The fmtparams keyword

arguments can be given to override individual formatting

parameters in the current dialect.

csv.list_dialects() Return the names of all registered

dialects. For example on a Mac OS X the default list of

dialects is [‘excel’, ‘excel-tab’, ‘unix’].

The CSV Writer Class

A CSV Writer is obtained from the csv.writer()function. The

csv writer supports two methods used to write data to the CSV

file:

csvwriter.writerow(row) Write the row parameter to the

writer’s file object, formatted according to the current

dialect.

csvwriter.writerows(rows) Write all elements in rows (an

iterable of row objects as described above) to the writer’s

file object, formatted according to the current dialect.

Writer objects also have the following public attribute:

csvwriter.dialect A read-only description of the dialect in

use by the writer.

The following program illustrates a simple use of the csv

module which creates a file called sample.csv.

As we have not specified a dialect, the default ‘excel’ dialect

will be used. The writerow() method is used to write each

comma separate list of strings to the CSV file.

print('Crearting CSV file')

with open('sample.csv', 'w', newline='') as csvfile: writer =

csv.writer(csvfile) writer.writerow(['She Loves You', 'Sept

1963'])

writer.writerow(['I Want to Hold Your Hand', 'Dec 1963'])

writer.writerow(['Cant Buy Me Love', 'Apr 1964'])

writer.writerow(['A Hard Days Night', 'July 1964'])

The resulting file can be viewed as shown below:

[image:]

However, as it is a CSV file, we can also open it in Excel:

[image:]

The CSV Reader Class

A CSV Reader object is obtained from the csv.reader()

function. It implements the iteration protocol.

If a csv reader object is used with a for loop then each time

round the loop it supplies the next row from the CSV file as a

list, parsed according to the current CSV dialect.

Reader objects also have the following public attributes:

csvreader.dialect A read-only description of the dialect in

use by the parser.

csvreader.line_num The number of lines read from the

source iterator.

This is not the same as the number of records returned, as

records can span multiple lines.

The following provides a very simple example of reading a

CSV file using a csv reader object:

print('Starting to read csv file')

with open('sample.csv', newline='') as csvfile:

reader = csv.reader(csvfile)

for row in reader:

print(*row, sep=', ')

print('Done Reading')

The output from this program, based on the sample.csv file

created earlier is:

Starting to read csv file

She Loves You, Sept 1963

I Want to Hold Your Hand, Dec 1963

Cant Buy Me Love, Apr 1964

A Hard Days Night, July 1964

Done Reading

The CSV DictWriter Class

In many cases the first row of a CSV file contains a set of

names (or keys) that define the fields within the rest of the

CSV. That is the first row gives meaning to the columns and

the data held in the rest of the CSV file. It is therefor every

useful to capture this information and to structure the data

written to a CSV file or loaded from a CSV file based on the

keys in the first row.

The csv.DictWriter returns an object that can be used to write

values into theCSV file based on the use of such named

columns. The file to be used with the DictWriter is provided

when the class is instantiated.

import csv

with open('names.csv', 'w', newline='') as csvfile:

fieldnames = ['first_name', 'last_name', 'result'] writer =

csv.DictWriter(csvfile, fieldnames=fieldnames)

writer.writeheader()

writer.writerow({'first_name': 'John',

'last_name': 'Smith',

'result' : 54})

writer.writerow({'first_name': 'Jane',

'last_name': 'Lewis',

'result': 63})

writer.writerow({'first_name': 'Chris',

'last_name': 'Davies',

'result' : 72})

Note that when the DictWriter is created a list of the keys

must be provided that are used for the columns in the CSV

file.

The method writeheader()is then used to write the header

row out to the CSV file.

The method writerow() takes a dictionary object that has keys

based on the keys defined for the DictWriter. These are then

used to write data out to the CSV (note the order of the keys in

the dictionary is not important).

In the above example code the result of this is that a new file

called names.csv is created which can be opened in Excel:

Of course, as this is a CSV file it can also be opened in a plain

text editor as well.

[image:]

The CSV DictReader Class

As well as the csv.DictWriter there is a csv.DictReader. The file

to be used with the DictReader is provided when the class is

instantiated. As with the DictReader the DictWriter class takes

a list of keys used to define the columns in the CSV file. If the

headings to be used for the first row can be provided although

this is optional (if a set of keys are not provided, then the

values in the first row of the CSV file will be used as the field

names).

The DictReader class provides several useful features

including the field names property that contains a list of the

keys/headings for the CSV file as defined by the first row of

the file.

The DictReader class also implements the iteration protocol

and thus it can be used in a for loop in which each row (after

the first row) is returned in turn as a dictionary. The

dictionary object representing each row can then be used to

access each column value based on the keys defined in the

first row.

An example is shown below for the CSV file created earlier:

import csv

print('Starting to read dict CSV example')

with open('names.csv', newline='') as csvfile:

reader = csv.DictReader(csvfile)

for heading in reader.fieldnames:

print(heading, end=' ')

print('\n------------------------------')

for row in reader:

print(row['first_name'], row['last_name'],

row['result'])

print('Done')

This generates the following output:

Starting to read dict CSV example first_name last_name

result

———————————————

John Smith 54

Jane Lewis 63

Chris Davies 72

Done

Try

In this exercise you will create a CSV file based on a set of

transactions stored in a current account.

1. To do this first define a new Account class to represent a

type of bank account.

2. When the class is instantiated you should provide the

account number, the name of the account holder, an

opening balance and the type of account (which can be a

string representing ‘current’, ‘deposit’ or ‘investment’

etc.). This means that there must be an init method and

you will need to store the data within the object.

3. Provide three instance methods for the Account;

deposit(amount), withdraw(amount) and get_balance().

The behavior of these methods should be as expected,

deposit will increase the balance, withdraw will decrease

the balance and get_balance() returns the current

balance.

Your Account class should also keep a history of the

transactions it is involved in.

A Transaction is a record of a deposit or withdrawal along

with an amount. Note that the initial amount in an account

can be treated as an initial deposit.

The history could be implemented as a list containing an

ordered sequence to transactions. A Transaction itself could

be defined by a class with an action (deposit or withdrawal)

and an amount. Each time a withdrawal or a deposit is made a

new transaction record should be added to a transaction

history list. Next provide a function(which could be called

something like write_ac- count_transactions_to_csv())

that can take an account and then write each of the

transactions it holds out to a CSV file, with each transaction

type and the transaction amount separated by a comma.

The following sample application illustrates how this

function might be used:

[image:]

Working with Excel Files

Introduction

This chapter introduces the open pyxl module that can be

used when working with Excel files. Excel is a software

application developed by Microsoft that allows users to work

with spreadsheets. It is a very widely used tool and files using

the Excel file format are commonly encountered within many

organizations. It is in e ect the industry standard for

spreadsheets and as such is a very useful tool to have in the

developers toolbox.

Excel Files

Although CSV files are a convenient and simple way to handle

data;it is very common to need to be able to read or write

Excel files directly. To this end there are several libraries

available in Python for this purpose. One widely used library

is the OpenPyXL library. This library was originally written to

support access to Excel 2010 files. It is an open source project

and is well documented.

The OpenPyXL library provides facilities for

reading and writing Excel workbooks,

creating/accessing Excel worksheets,

creating Excel formulas,

creating graphs (with support from additional modules).

As OpenPyXL is not part of the standard Python distribution

you will need to install the library yourself using a tool such

as Anaconda or pip (e.g. pip install open pyxl). Alternatively,

if you are using PyCharm you will be able to add the Open

PyXL library to your project.

The key element in the Open PyXL library is the Workbook

class. This can be imported from the module:

from ope npyxl import Workbook

A new instance of the (in memory) Workbook can be created

using the Workbook class (note at this point it is purely a

structure within the Python program and must be saved

before an actual Excel file is created).

wb = Workbook()

The Openpyxl. Work Sheet Objects A workbook is always created with at least one worksheet. You

can get hold of the currently active worksheet using the

Workbook.active property:

ws = wb.active

You can create additional worksheets using the workbooks’

create_sheet

() method:

ws = wb.create_sheet('Mysheet')

You can access or update the title of the worksheet using the

title property:

ws.title = 'New Title'

The background color of the tab holding this title is white by

default. You can change this providing an RRGGBB color code

to the worksheet. sheet_properties.tab Color attribute, for

example:

ws.sheet_properties.tabColor = "1072BA"

Working with Cells

It is possible to access the cells within a worksheet. A cell can

be accessed directly as keys on the worksheet, for example:

ws['A1'] = 42

or

cell = ws['A1']

This returns a cell object; you can obtain the value of the cell

using the value property, for example

print(cell.value)

There is also the Worksheet.cell() method. This provides

access to cells using row and column notation:

d = ws.cell(row=4, column=2, value=10)

A row of values can also be added at the current position

within the Excel file using append:

ws.append([1, 2, 3])

This will add a row to the Excel file containing 1, 2, and 3.

Ranges of cells can be accessed using slicing:

cell_range = ws['A1':'C2']

Ranges of rows or columns can also be obtained:

col = ws['C'] col_range = ws['C:D'] row10 = ws[10] row_range =

ws[5:10] The value of a cell can also be an Excel formula such as

ws['A3'] = '=SUM(A1, A2)'

A workbook is actually only a structure in memory; it must be

saved to a file for permanent storage. These workbooks can be

saved using the save() method. This method takes a file name

and writes the Workbook out in Excel format.

workbook = Workbook()

... workbook.save('balances.xlsx')

Sample Excel File Creation Application

The following simple application creates a Workbook with

two worksheets.It also contains a simple Excel formula that

sums the values held in to other cells:

from openpyxl import Workbook

def main():

print('Starting Write Excel Example with openPyXL')

workbook = Workbook()

Get the currentactive worksheet

ws = workbook.active ws.title = 'my worksheet'

ws.sheet_properties.tabColor= '1072BA'

ws['A1'] = 42 ws['A2'] = 12

ws['A3'] = '=SUM(A1, A2)'

ws2 = workbook.create_sheet(title='my other sheet')

ws2['A1'] = 3.42 ws2.append([1, 2, 3]) ws2.cell(column=2,row=1,

value=15)

workbook.save('sample.xlsx')

print('Done Write Excel Example')

if _name == '_main_':

main()

The Excel file generated from this can be viewed in Excel as

shown below:

[image:]

Loading a Workbook from an Excel File

Of course, in many cases it is necessary not just to create

Excel files for data export but also to import data from an

existing Excel file. This can be done using the OpenPyXL load_workbook() function. This function opens the specified

Excel file (in read only mode by default)and returns a

Workbook object.

from openpyxl import load_workbook

workbook = load_workbook(filename='sample.xlsx')

You can now access a list of sheets, their names, obtain the

currently active sheet etc. using properties provided by the

workbook object:

workbook.active returns the active worksheet object.

workbook.sheet names returns the names (strings) of the

worksheets in this workbook.

workbook.worksheets returns a list of worksheet objects.

The following sample application reads the Excel file created

earlier in this chapter:

from openpyxl import load_workbook

def main():

print('Starting reading Excel file using openPyXL')

workbook = load_workbook(filename='sample.xlsx')

print(workbook.active) print(workbook.sheetnames)

print(workbook.worksheets)

print('-' * 10)

ws = workbook['my worksheet'] print(ws['A1'])

print(ws['A1'].value) print(ws['A2'].value)

print(ws['A3'].value)

print('-' * 10)

for sheet in workbook:

print(sheet.title)

print('-' * 10)

cell_range = ws['A1':'A3']

for cell in cell_range:

print(cell[0].value)

print('-' * 10)

print('Finished reading Excel file using openPyXL')

if _name == '_main_':

main()

The output from this application is illustrated below:

Starting readingExcel file using openPyXL

['my worksheet', 'my other sheet']

[,]

42

12

=SUM(A1, A2)

my worksheet

my other sheet

42

12

=SUM(A1, A2)

Finished reading Excel file using openPyXL

Try Using the Account class that you created in the last chapter;

write the account transaction information to an Excel file

instead of a CSV file.

To do this create a function called

write_account_transaction_to_excel() that takes the name

of the Excel file and the account to store. The function should

then write the data to the file using the excel format.

The following sample application illustrates how this

function might be used:

print('Starting')

acc = accounts.CurrentAccount('123', 'John', 10.05, 100.0)

acc.deposit(23.45)

acc.withdraw(12.33)

print('Writing AccountTransactions')

write_account_transaction_to_excel('accounts.xlsx', acc)

print('Done')

The contents of the Excel file would then be:

[image:]

Regular Expressions in Python

Introduction

Regular Expression are a very powerful way of processing text

while looking for recurring patterns; they are often used with

data held in plain text files (such as log files), CSV files as well

as Excel files. This chapter introduces regular expressions,

discusses the syntax used to define a regular expression

pattern and presents the Python re module and its use.

What Are Regular Expressions?

A Regular Expression (also known as a regex or even just re)

is a sequence of characters (letters, numbers and special

characters) that form a pattern that can be used to search text

to see if that text contains sequences of characters that match

the pattern.

For example, you might have a pattern defined as three

characters followed by three numbers. This pattern could be

used to look for such a pattern in other strings. Thus, the following strings either match (or contain) this pattern or

they do not:

[image:]

Regular Expression are very widely used for finding

information in files, for example

finding all lines in a log file associated with a specific user

or a specific operation,

for validating input such as checking that a string is a

valid email address or postcode/ZIP code etc.

Support for Regular Expressions is wide spread within

programming languages such as Java, C#, PHP and

particularly Perl. Python is no exception and has the built-in

module re (as well as additional third-party modules) that

support Regular Expressions.

Regular Expression Patterns

You can define a regular expression pattern using any ASCII

character or number. Thus, the string ‘John’ can be used to

define a regex pattern that can be used to match any other

string that contains the characters ‘J’, ‘o’, ‘h’, ‘n’. Thus each

of the following strings will match this pattern:

• ‘John Hunt’

• ‘John Jones’

• ‘Andrew John Smith’

• ‘Mary Helen John’

• ‘John John John’

• ‘I am going to visit the John’

• ‘I once saw a film by John Wayne’

But the following strings would not match the pattern:

•‘Jon Davies’ in this case because the spelling of John is

di erent.

• ‘john Williams’ in this case because the capital J does not

match the lowercase j.

• ‘David James’ in this case because the string does not

contain the string John!

Regular expressions (regexs) use special characters to allow

more complex patterns to be described. For example, we can

use the special characters ‘[]’ to define a set of characters that

can match. For example, if we want to indicate that the J may

be a capital or a lower-case letter then we can write ‘[Jj]’—

this indicates that either ‘J’ or ‘j’ can match the first.

[Jj]ohn—this states that the pattern starts with either a

capital J or a lowercase j followed by ‘ohn’.

Now both ‘john Williams’ and ‘John Williams’ will match this

regex pattern

Pattern Metacharacters

There are several special characters (often referred to as

metacharacters) that have a specific meaning within a regex

pattern,these are listed in the following table:

[image:]

Special Sequences A special sequence is a combination of a ‘\’ (backslash)

followed by a character combination which then has a special

meaning. The following table lists the common special

sequences used in Regular Expressions:

[image:]

Sets

A set is a sequence of characters inside a pair of square

brackets which have specific meanings. The following table

provides some examples.

[image:]

The Python re Module

The Python re module is the built-in module provided by

Python for working with regular Expressions.

You might also like to examine the third party regex module

(see https://pypi. org/project/regex) which is backwards

compatible with the default re module but provides additional

functionality.

Working withPython Regular Expressions

Using Raw Strings

An important point to note about many of the strings used to

define the regular expression patterns is that they are

preceded by an ‘r’ for example r’/bin/sh$‘.

The ‘r’ before the string indicates that the string should be

treated as a raw string.

A raw string is a Python string in which all characters are

treated as exactly that; individual characters. It means that

backslash (‘\’) is treated as a literal character rather than as a

special character that is used to escape the next character.

For example, in a standard string ‘\n’ is treated as a special

character representing a newline, thus if we wrote the

following:

s = 'Hello \n world' print(s)

We will get as output:

Hello

World

However, if we prefix the string with an ‘r’ then we are telling

Python to treat it as a raw string. For example:

s = r'Hello \n world'

print(s)

The output is now

Hello \n world This is important for regular expression as characters such as

backslash(‘\’) are used within patterns to have a special

regular expression meaning and thus we do not want Python

to process them in the normal way.

Simple Example

The following simple Python program illustrates the basic

use of the re module. It is necessary to import the re module

before you can use it.

import re

text1 = 'john williams' pattern = '[Jj]ohn'

print('looking in', text1, 'for the pattern', pattern)

if re.search(pattern, text1):

print('Match has been found')

When this program is run, we get the following output:

looking in john williams for the pattern [Jj]ohn Match has been

found

If we look at the code, we can see that the string that we are

examining contains ‘john williams’ and that the pattern used

with this string indicates that we are looking for a sequence of

‘J’ or ‘j’ followed by ‘ohn’. To perform this test we use the re.

search() function passing the regex pattern, and the text to

test, as parameters. This function returns either None (which is taken as meaning False by the If statement) or a Match

Object (which always has a Boolean value of True). As of

course ‘john’ at the start of text1 does match the pattern, the

re.search() function returns a match object and we see the

‘Match has been found’ message is printed out.

Both the Match object and search() method will be described

in more detail below; however, this short program illustrates

the basic operation of a Regular Expression.

The Match Object

Match objects are returned by the search() and match()

functions. They always have a boolean value of True. The

functions match() and search() return None when there is no

match and a Match object when a match is found. It is

therefore possible to use a match object with an if statement:

import re

match = re.search(pattern, string)

if match:

process(match)

Match objects support a range of methods and attributes

including:

match.re The regular expression object whose match() or

search()method produced this match instance.

match.string The string passed to match() or search().

match.start([group])/ match.end([group]) Return the

indices of the start and end of the sub string matched by

group.

match.group() returns the part of the string where there

was a match.

The search() Function

The search() function searches the string for a match, and

returns a Match object if there is a match. The signature of

the function is:

re.search(pattern, string, flags=0)

The meaning of the parameters are:

pattern this is the regular expression pattern to be used in

the matching process.

string this is the string to be searched.

flags these (optional) flags can be used to modify the

operation of the search.

The re module defines a set of flags (or indicators)that can be

used to indicate any optional behaviors associated with the

pattern.These flags include:

[image:]

If there is more than one match, only the first occurrence of

the match will be returned:

import re

line1 = 'The price is 23.55' containsIntegers = r'\d+'

if re.search(containsIntegers, line1):

print('Line 1 contains an integer')

else:

print('Line 1 does not contain an integer')

In this case the output is

Line 1 contains an integer

Another example of using the search() function is given

below. In this case the pattern to look for defines three

alternative strings (that is the string must contain either

Beatles, Adele or Gorillaz):

import re

Alternative words

music = r'Beatles|Adele|Gorillaz' request = 'Play some Adele'

if re.search(music, request):

print('Set Fire to the Rain')

else:

print('No Adele Available')

In this case we generate the output:

Set Fire to the Rain

The match() Function

This function attempts to match a regular expression pattern

at the beginning of a string. The signature of this function is

given below:

re.match(pattern, string, flags=0)

pattern this is the regular expression to be matched.

string this is the string to be searched.

flags modifier flags that can be used.

The re.match() function returns a Match object on success,

None on failure.

The Di erence Between Matching and Searching Python o ers two di erent primitive operations based on

regular expressions:

match() checks for a match only at the beginning of the

string,

search() checks for a match anywhere in the string.

The findall() Function

The findall() function returns a list containing all matches.

The signature of this function is:

re.findall(pattern, string, flags=0)

This function returns all non-overlapping matches of pattern

in string, as a list of strings.

The string is scanned left-to-right, and matches are returned

in the order found. If one or more groups are present in the

pattern, then a list of groups is returned; this will be a list of

tuples if the pattern has more than one group. If no matches

are found, an empty list is returned.

An example of using the findall() function is given below.

This example looks for a sub string starting with two letters and followed by ‘ai’ and a single character. It is applied to a

sentence and returns only the sub string ‘Spain’ and ‘plain’.

import re

str = 'The rain in Spain stays mainly on the plain' results =

re.findall('[a-zA-Z]{2}ai.', str) print(results)

for s in results:

print(s)

The output from this program is

[‘Spain’, ‘plain’]

Spain

plain

The finditer() Function

This function returns an iterator yielding matched objects for

the regular expression pattern in the string supplied. The

signature for this function is:

re.finditer(pattern, string, flags=0)

The string is scanned left-to-right,and matches are returned

in the order found. Empty matches are included in the result.

Flags can be used to modify the matches.

The split() Function

The split() function returns a list where the string has been

split at each match. The syntax of the split() function is

re.split(pattern, string, maxsplit=0, flags=0)

The result is to split a string by the occurrences of pattern. If

capturing parentheses are used in the regular expression

pattern, then the text of all groups in the pattern are also

returned as part of the resulting list. If max split is nonzero,

at most max split splits occur, and the remainder of the string

is returned as the final element of the list. Flags can again be

used to modify the matches.

import re

str = 'It was a hot summer night' x =re.split('\s', str)

print(x)

The output is

['It', 'was', 'a', 'hot', 'summer', 'night']

The sub() Function

The sub() function replaces occurrences of the regular

expression pattern in the string with the repl string. re.sub(pattern, repl, string, max=0)

This method replaces all occurrences of the regular

expression pat- tern in string with repl, substituting all

occurrences unless max is provided. This method returns the

modified string.

import re

pattern = '(England|Wales|Scotland)'

input = 'England for football, Wales for Rugby and Scotland for

the Highland games'

print(re.sub(pattern, 'England', input))

Which generates:

England for football, England for Rugby and England for the

Highland games

You can control the number of replacements by specifying the

count parameter: The following code replaces the first 2

occurrences:

import re

pattern = '(England|Wales|Scotland)'

input = 'England for football, Wales for Rugby and Scotland for

the Highland games'

x = re.sub(pattern, 'Wales', input, 2)

print(x)

which produces

Wales for football,Wales for Rugby and Scotland for the

Highland games

You can also find out how many substitutions were made

using the subn() function. This function returns the new

string and the number of substitutions in a tuple:

import re

pattern = '(England|Wales|Scotland)'

input = 'England for football, Wales for Rugby and Scotland for

the Highland games'

print(re.subn(pattern,'Scotland', input))

The output from this is:

('Scotland for football, Scotlandfor Rugby and Scotlandfor the

Highland games', 3)

The compile() Function

Most regular expression operations are available as both

module-level functions (as described above) and as methods

on a compiled regular expression object.

The module level functions are typically simplified or

standardized ways to use the compiled regular expression. In

many cases these functions are su cient but if finer grained

control is required then a compiled regular expression may be

used.

re.compile(pattern, flags=0)

The compile() function compiles a regular expression pattern

into a regular expression object, which can be used for

matching using its match(), search() and other methods as

described below.

The expression’s behavior can be modified by specifying a

flags value. V The statements:

prog = re.compile(pattern)

result = prog.match(string)

are equivalent to

result = re.match(pattern,string)

but using re.compile() and saving the resulting regular

expression object for reuse is more e cient when the

expression will be used several times in a single program.

Compiled regular expression objects support the following

methods and attributes:

Pattern.search(string, pos, end pos) Scan through string

looking for the first location where this regular

expression produces a match and return a corresponding

Match object. Return None if no position in the string

matches the pattern. Starting at pos if provided and

ending at end pos if this is provided (otherwise process

the whole string).

Pattern.match(string, pos, end pos)If zero or more

characters at the beginning of string match this regular

expression,return a corresponding match object. Return

None if the string does not match the pattern. The pos

and end pos are optional and specify the start and end

positions within which to search.

Pattern.split(string, maxsplit = 0)Identical to the

split()function, using the compiled pattern.

Pattern.find all(string[, pos[, end pos]])Similar to the

find all () function, but also accepts optional pos and end

pos parameters that limit the search region like for

search().

Pattern.finditer(string[, pos[, end pos]])Similar to the

find- iter() function, but also accepts optional pos and

end pos parameters that limit the search region like for

search().

Pattern.sub(repl, string, count = 0)Identical to the

sub()function, using the compiled pattern.

Pattern.subn(repl,string, count = 0)Identical to the

subn()function, using the compiled pattern.

Pattern.pattern the pattern string from which the pattern

object was compiled.

An example of using the compile() function is given below.

The pattern to be compiled is defined as containing 1 or more digits (0 to 9):

import re

line1 = 'The price is 23.55' containsIntegers = r'\d+'

rePattern = re.compile(containsIntegers)

matchLine1 = rePattern.search(line1)

if matchLine1:

print('Line 1 containsa number')

else:

print('Line 1 does not contain a number')

The compiled pattern can then be used to apply methods such

as search() to a specific string (in this case held in line1). The

output generated by this is:

Line 1 contains a number

Of course the compiler pattern object supports a range of

methods in addition to search() as illustrated by the spilt

method:

p = re.compile(r'\W+') s = '20 High Street' print(p.split(s))

The output from this is

['20', 'High', 'Street']

Try

Write a Python function to verify that a given string only

contains letters (upper case or lower case) and numbers. Thus spaces and under bars (‘_’) are not allowed. An example of

the use of this function might be:

print(contains_only_characters_and_numbers(‘John’)) #

True

print(contains_only_characters_and_numbers(‘John_Hun

t’)) # False

print(contains_only_characters_and_numbers(‘42’)) #

True

print(contains_only_characters_and_numbers(‘John42’))

True

print(contains_only_characters_and_numbers(‘John 42’))

False

Write a function to verify a UK Postcode format (call it

verify_postcode). The format of a Postcode is two letters

followed by 1 or 2 numbers, followed by a space, followed by

one or two numbers and finally two letters. An Example of a

postcode is SY23 4ZZ another postcode might be BB1 3PO and

finally we might have AA1 56NN (note this is a simplification

of the UK Postcode system but is suitable for our purposes).

Using the output from this function you should be able to run

the following test code:

True

print("verify_postcode('SY23 3AA'):", verify_postcode('SY23

33AA'))

True

print("verify_postcode('SY23 4ZZ'):", verify_postcode('SY23

4ZZ'))

True

print("verify_postcode('BB1 3PO'):", verify_postcode('BB1

3PO'))

False

print("verify_postcode('AA111 NN56'):",verify_postcode('AA111

NN56'))

True

print("verify_postcode('AA1 56NN'):", verify_postcode('AA1

56NN'))

False print("verify_postcode('AA156NN'):",

verify_postcode('AA156NN'))

False

print("verify_postcode('AA NN'):", verify_postcode('AA NN'))

Write a function that will extract the value held between two

strings or characters such as ‘<’ and ‘>’. The function should

take three parameters, the start character, the end character

and the string to process. For example, the following code

snippet:

print(extract_values(’<‘, ‘>‘, ‘<John>’))

print(extract_values(’<‘, ‘>‘, ‘<42>’))

print(extract_values(’<‘, ‘>‘, ‘<John 42>’))

print(extract_values(’<‘, ‘>‘, ‘The <town> was in the

<valley>’))

Should generate output such as:

[‘John’]

[‘42’]

[‘John 42’]

[‘town’, ‘valley’]

Introduc on to Databases

Introduction

There are several di erent types of database system in

common use today including Object databases, NoSQL

databases and (probably the most common) Relational

Databases. This chapter focuses on Relational Databases as

typified by database systems such as Oracle, Microsoft SQL

Server and MySQL. The database we will use in this book is

MySQL.

What Is a Database?

A database is essentially a way to store and retrieve data.

Typically, there is some form of query language used with the

database to help select the information to retrieve such as

SQL or Structured Query Language.

Inmost cases there is a structure defined that is used to hold

the data (although this is not true of the newer NoSQL or

non-relational unstructured databases such as CouchDB or

MongoDB).

In a Relational Database the data is held in tables, where the

columns define the properties or attributes of the data and

each row defines the actual values being held, for example:

[image:]

In this diagram there is a table called students; it is being

used to hold information about students attending a meeting.

The table has 5 attributes (or columns) defined for id, name,

surname, subject and email.

In this case, the id is probably what is known as a primary

key. The primary key is a property that is used to uniquely

identify the student row; it cannot be omitted and must be

unique (within the table). Obviously names and subjects may

well be duplicated as there may be more than one student

studying Animation or Games and students may have the same first name or surname. It is probable that the email

column is also unique as students probably don’t share an

email address but again this may not necessarily be the case.

You might at this point wonder why the data in a Relational

Database is called relational and not tables or tabular?The

reason is because of a topic known as relational algebra that

underpins Relational Database theory. Relational Algebra

takes its name from the mathematical concept known as a

relation. However, for the purposes of this chapter you don’t

need to worry about this and just need to remember that data

is held in tables.

Data Relationships

When the data held in one table has a link or relationship to

data held in another table then an index or key is used to link

the values in one table to another. This is illustrated below for

a table of addresses and a table of people who live in that

address. This shows for example, that ‘PhoebeGates’ lives at

address ‘addr2’ which is 12 Queen Street, Bristol, BS42 6YY.

[image:]

This is an example of a many to one (often written as many:1)

relationship; that is there are many people who can live at one

address (in the above Adam Smith also lives at address

‘addr2’). In Relational Databases there can be several

di erent types of relationship such as:

one:one where only one row in one table references one

and only one row in another table. An example of a one to

one relationship might be from a person to an order for a

unique piece of jewellery.

one:many this is the same as the above address example,

however in this case the direction of the relationship is

reversed (that is to say that one address in the addresses

table can reference multiple persons in the people table).

many:many This is where many rows in one table may

reference many rows in a second table. For example,

many students may take a particular class and a student

may take many classes. This relationship usually involves

an intermediate (join) table to hold the associations

between the rows.

The Database Schema

The structure of a Relational Database is defined using a Data

Definition Language or Data Description Language (a DDL).

Typically, the syntax of such a language is limited to the

semantics (meaning) required to define the structure of the

tables. This structure is known as the database schema.

Typically, the DDL has commands such as CREATETABLE,

DROP TABLE (to delete a table) and ALTER TABLE (to modify

the structure of an existing table).

Many tools provided with a database allow you to define the

structure of the database without getting too bound up in the

syntax of the DDL; however, it is useful to be aware of it and

to understand that the database can be created in this way.

For example, we will use the MySQL database in this chapter.

The MySQL Workbench is a tool that allows you to work with

MySQL databases to manage and query the data held within a particular database instance. For references for mySQL and

the MySQL Workbench see the links at the end of this chapter.

As an example, within the MySQL Workbench we can create a

new table using a menu option on a database:

[image:]

Using this we can interactively define the columns that will

comprise the table:

[image:]

Here each column name, its type and whether it is the

primary key (PK), not empty(or Not Null NN) or unique (UQ)

have been specified. When the changes are applied, the tool

also shows you the DDL that will be used to create the

database:

[image:]

When this is applied a new table is created in the database as

shown below:

[image:]

The tool also allows us to populate data into the table; this is

done by entering data into a grid and hitting apply as shown

below:

[image:]

SQL and Databases

We can now use query languages to identify and return data

held in the database often using specific criteria.

For example, let us say we want to return all the people who

have the surname Jones from the following table:

[image:]

We can do this by specifying that data should be returned

where the surname equals ‘Jones’; in SQL this would look

like:

SELECT * FROM students where surname='Jones';

The above SELECT statement states that all the properties

(columns or attributes) in a row in the table students are to be

returned where the surname equals ‘Jones’. The result is that

two rows are returned:

[image:]

Note we need to specify the table we are interested in and

what data we want to return (the ‘*’ after the select indicated

we want all the data). If we were only interested in their first

names then we could use:

SELECT name FROM students where surname='Jones';

This would return only the names of the students:

[image:]

Data Manipulation Language

Data can also be inserted into a table or existing data in a

table can be updated. This is done using the Data

Manipulation Language (DML).

For example, to insert data into a table we merely need to

write an INSERT SQL statement providing the values to be

added and how they map to the columns in the table:

INSERT INTO 'students'('id', 'name', 'surname', 'subject',

'email') VALUES ('6', 'James', 'Andrews', 'Games',

'ja@my.com'); This would add the row 6 to the table students with the result

that the table would now have an additional row:

[image:]

Updating an existing row is a little more complicated as it is

first necessary to identify the row to be updated and then the

data to modify. Thus an UPDATE statement includes a where

clause to ensure the correct row is modified:

UPDATE 'students' SET 'email'='grj@my.com' WHERE 'id'='2';

The e ect of this code is that the second row in the students

table is modified with the new email address:

[image:]

Transactions in Databases

Another important concept within a database is that of a

Transaction. A Transaction represents a unit of work

performed within a database management system (or similar

system) against a database instance,and is independent of

any other transaction.

Transactions in a database environment have two main

purposes

To provide a unit of work that allows recovery from

failures and keeps a database consistent even in cases of

system failure, when execution stops (completely or

partially). This is because either all the operations within

a transaction are performed or none of them are. Thus, if

one operation causes an error then all the changes being

made by the transaction thus far are rolled back and none

of them will have been made.

To provide isolation between programs accessing a

database concurrently. This means that the work being

done by one program will not interact with another

programs work.

A database transaction, by definition, must be atomic,

consistent, isolated and durable:

Atomic This indicates that a transaction represents an

atomic unit of work; that is either all the operations in the

transaction are performed or none of them are

performed.

Consistent Once completed the transaction must leave

the data in a consistent state with any data constraints

met (such as a row in one table must not reference an

non-existent row in another table in a one to many

relationship etc.).

Isolated This relates to the changes being made by

concurrent transactions; these changes must be isolated

from each other. That is, one transaction cannot see the

changes being made by another transaction until the

second transaction completes and all changes are

permanently saved into the database.

Durable This means that once a transaction completes

then the changes it has made are permanently stored into

the database (until some future transaction modifies that

data).

Database practitioners often refer to these properties of

database transactions using the acronym ACID (for Atomic,

Consistent, Isolated,Durable).

Not all databases support transactions although all

commercial, production quality databases such as Oracle, Microsoft SQL Server and MySQL, do support transactions.

Further Reading

If you want to know more about databases and database

management systems here are some online resources:

https://en.wikipedia.org/wiki/Database which is the

wikipedia entry for data- bases and thus acts as a useful

quick reference and jumping o point for other material.

https://en.wikibooks.org/wiki/Introduction_to_Comput

er_Information_Systems/Database which provides a

short introduction to databases.

https://www.techopedia.com/6/28832/enterprise/databa

ses/introduction-to-data-bases another useful starting

point for delving deeper into databases.

https://en.wikipedia.org/wiki/Object_database for

information on Object databases.

https://en.wikipedia.org/wiki/NoSQL for an introduction

to No SQL or non relational databases.

https://www.mysql.com/ for the MySQL Database.

https://dev.mysql.com/downloads/workbench The

MySQL Workbench home page.

https://www.mongodb.com/ for the home page of the

MongoDBsite.

http://couchdb.apache.org/ for the Apache Couch

Database.

If you want to explore the subject of database design (that is

design of the tables and links between tables in a

database)then these references may help:

https://en.wikipedia.org/wiki/Database_design the

wikipedia entry for database design.

https://www.udemy.com/cwdatabase-design-

introduction/ which covers most of the core ideas within

database design.

http://en.tekstenuitleg.net/articles/software/database-

design-tutorial/intro.html which provides another

tutorial that covers most of the core elements of data-

base design.

If you wish to explore SQL more then see:

https://en.wikipedia.org/wiki/SQL the wikipedia site for

SQL

https://www.w3schools.com/sql/sql_intro.asp which is

the W3 school material on SQL and as such an excellent

resource.

https://www.codecademy.com/learn/learn-sql which is a

codecademy site for

SQL.

Python DB-API

Accessing a Database from Python

The standard for accessing a database in Python is the Python

DB-API. This specifies a set of standard interfaces for

modules that wish to allow Python to access a specific

database. The standard is described in PEP 249

(https://www.python.org/ dev/peps/pep-0249)—a PEP is a

Python Enhancement Proposal.

Almost all Python database access modules adhere to this

standard. This means that if you are moving from one

database to another, or attempting to port a Python program

from one database to another, then the APIs you encounter

should be very similar (although the SQL processed by

di erent database can also di er). There are modules

available for most common databases such as MySQL, Oracle,

Microsoft SQL Server etc.

TheDB-API

There are several key elements to the DB_API these are:

The connect function. The connect() function that is used

to connect to a database and returns a Connection Object.

Connection Objects. Within the DB-API access to a

database is achieved through connection objects. These

connection objects provide access to cursor objects.

Cursor objects are used to execute SQL statements on the

database.

The result of an execution. These are the results that can

be fetched as a sequence of sequences (such a tuple of

tuples). The standard can thus be used to select, insert or

update information in the database.

These elements are illustrated below:

[image:]

The standard specifies a set of functions and objects to be

used to connect to a database. These include the connection

function, the Connection Object and the Cursor object.

The above elements are described in more detail below.

The Connect Function

The connection function is defined as:

connect(parameters...)

It is used to make the initial connection to the database. The

connection returns a Connection Object. The parameters

required by the connection function are data- base

dependent.

The Connection Object

The Connection Object is returned by the connect() function.

The Connection object provides several methods including:

close() used to close the connection once you no longer

need it. The connection will be unusable from this point

on wards.

commit() used to commit a pending transaction.

rollback() used to rollback all the changes made to the

database since the last transaction commit (optional as

not all databases provide transaction support).

cursor() returns a new Cursor object to use with the

connection.

The Cursor Object

The Cursor object is returned from the connection.cusor()

method. A Cursor Object represents a database cursor, which

is used to manage the context of a fetch operation or the

execution of a database command. Cursors support a variety

of attributes and methods:

cursor.execute(operation, parameters) Prepare and

execute a database operation (such as a query statement

or an update command). Parameters may be provided as a

sequence or mapping and will be bound to variables in the

operation. Variables are specified in a database specific

notation.

cursor.row count a read-only attribute providing the

number of rows that the last cursor.execute() call

returned (for select style statements) or a ected (for

update or insert style statements).

cursor.description a read only attribute providing

information on the columns present in any results

returned from a SELECT operation.

cursor.close() closes the cursor. From this point on the

cursor will not be usable.

In addition, the Cursor object also provides several fetch style

methods. These methods are used to return the results of a

database query. The data returned is made up of a sequence of

sequences (such as a tuple of tuples) where each inner

sequence represents a single row returned by the SELECT

statement. The fetch methods defined by the standard are:

cursor.fetchone() Fetch the next row of a query result set,

returning a single sequence, or None when no more data

is available.

cursor.fetchall()Fetch all (remaining) rows of a query

result, returning them as a sequence of sequences.

cursor.fetchman(size) Fetch the next set of rows of a

query result, returning a sequence of sequences (e.g. a

tuple of tuples). An empty sequence is returned when no

more rows are available. The number of rows to fetch per

call is specified by the parameter.

Mappings from Database Types to Python Types

The DB-API standard also specifies a set of mappings from

the types used in a database to the types used in Python. For a

full listing see the DB-API standard itself but the key

mappings include:

[image:]

Generating Errors

The standard also specifies a set of Exceptions that can be

thrown in di erent situations.

These are presented below and in the following table:

[image:]

The above diagram illustrates the inheritance hierarchy for

the errors and warning associated with the standard. Note

that the DB-API Warning and Error both extend the

Exception class from standard Python; however, depending

on the specific implementation there may be one or more

additional classes in the hierarchy between these classes. For

example, in the PyMySQL module there is a MySQLError class

that extends Exception and is then extended by both Warning and Error.

Also note that Warning and Error have no relationship with

each other. This is because Warnings are not considered

Errors and thus have a separate class hierarchies. However,

the Error is the root class for all database Error classes.

A description of each Warning or Error class is provided

below.

[image:]

Row Descriptions The Cursor object has an attribute description that provides a

sequence of sequences; each sub sequence provides a

description of one of the attributes of the data returned by a

SELECT statement. The sequence describing the attribute is

made up of up to seven items, these include:

name representing the name of the attribute,

type_code which indicates what Python type this

attribute has been mapped to,

display_size the size used to display the attribute,

internal_size the size used internally to represent the

value,

precision if a real numeric value the precision supported

by the attribute,

scale indicates the scale of the attribute,

null_ok this indicates whether null values are acceptable

for this attribute.

The first two items (name and type_code) are mandatory, the

other five are optional and are set to None if no meaningful

values can be provided.

Transactions in PyMySQL

Transactions are managed in PyMySQL via the database

connection object. This object provides the following method:

connection.commit()this causes the current transaction

to commit all the changes made permanently to the

database. A new transaction is then started.

connection.rollback() this causes all changes that have

been made so far (but not permanently stored into the

database i.e. Not committed) to be removed. A new

transaction is then started.

The standard does not specify how a database interface

should manage turning on and o transaction (not least

because not all databases support transactions). However,

MySQL does support transactions and can work in two

modes; one supports the use of transactions as already

described; the other uses an auto commit mode. In auto

commit mode each command sent to the database (whether a

SELECT statement or an INSERT/UPDATE statement) is

treated as an independent transaction and any changes are

automatically committed at the end of the statement. This

auto commit mode can be turned on in PyMySQL using:

connection.autocommit(True) turn on auto commit

(False to turn o auto commit which is the default).

Other associated methods include

connection.get_autocommit() which returns a boolean

indicating whether auto commit is turned on or not.

connection.begin() to explicitly begin a new transaction.

Online Resources See the following online resources for more information on

the Python Database API:

https://www.python.org/dev/peps/pep-0249/ Python

Database API Specification V2.0.

https://wiki.python.org/moin/DatabaseProgramming

Database Programming in Python.

https://docs.python-guide.org/scenarios/db/ Databases

and Python.

PyMySQL Module

The PyMySQL Module

The PyMySQL module provides access to a MySQL database

from Python. It implements the Python DB-API v 2.0. This

module is a pure Python database interface implementation

meaning that it is portable across di erent operating

systems; this is notable because some database interface

modules are merely wrappers around other

(native)implementations that may or may not be available on

di erent operating systems. For example, a native Linux

based database inter- face module may not be available for

the Windows operating system. If you are never going to

switch between di erent operating systems, then this is not a

problem of course.

To use the PyMySQL module you will need to install it on your

computer. This will involve using a tool such as Anaconda or

adding it to your PyCharm project. You can also use pip to

install it:

> pip install PyMySQL

Working with the PyMySQL Module

To use the PyMySQL module to access a database you will

need to follow these steps.

1. Import the module.

2. Make a connection to the host machine running the

database and to the database you are using.

3. Obtain a cursor object from the connection object.

4. Execute some SQL using the cursor.execute() method.

5. Fetch the result(s) of the SQL using the cursor object (e.g.

fetchall,fetchmany or fetchone).

6. Close the database connection.

These steps are essentially boiler plate, code that is you will

use them whenever you access a database via PyMySQL (or

indeed any DB-API compliant module).

We will take each of these steps in turn.

Importing the Module

As the PyMySQL module is not one of the built-in modules

provided by default with Python you will need to import the

module into your code, for example using

import pymsql Be careful with thecase used here as the module name is

pymysql in the code (if you try to import PyMySQL Python

will not find it!).

Connect to the Database

Each database module will have their own specifics for

connecting to the database server; these usually involve

specifying the machine that the database is running on (as

databases can be quiet resource intensive, they are often run

on a separate physical computer), the user to use for the

connection and any security information required such as a

password and the database instance to connect to. In most

cases a database is looked after by a database management

system (a DBMS) that can manage multiple database

instances and it is therefore necessary to specify which

database instance you are interested in.

For MySQL, the MySQL database server is a DBMS that can

indeed look after multiple database instances. The

pymysql.connect function thus requires the following

information when connecting to the database is:

The name of the machine hosting the MySQL database

servere.g. dbserver. mydomain.com. If you want to

connect to the same machine as your Python program is

running on, then you can use localhost. This is a special

name reserved for the local machine and avoids you

needing to worry about the name of your local computer.

The user name to use for the connection. Most databases limit

access to their databases to named users. These are not

necessary users such as humans that log into a system but

rather entities that are allowed to connect to the database and

perform certain operations. For example,one user may only

be able to read data in the database where as another user is

allowed to insert new data into the database. These users are

authenticated by requiring them to provide a password.

• The password for the user.

• The database instance to connect to. As mentioned in the

previous chapter a Database

Management System (DMS) can manage multiple database

instances and thus it is necessary to say which database

instance you are interested in.

For example:

Open database connection connection =

pymysql.connect('localhost','username','password','uni-

database')

In this case the machine we are connecting to is ‘localhost’

(that is the same machine as the Python program itself is running on), the user is represented by ‘username’ and

‘password’ and the database instance of interest is called

‘uni-database’.

This returns a Connection object as per the DB-API standard.

Obtaining the Cursor Object

You can obtain the cursor object from the connection using

the cursor() method:

prepare a cursor object using cursor() method cursor =

connection.cursor()

Using the Cursor Object

Once you have obtained the cursor object you can use it to

execute an SQL query or a DML insert, update or delete

statement. The following example uses a simple select

statement to select all the attributes in the students table for

all rows currently stored in the students table:

execute SQL query using execute() method.

cursor.execute('SELECT * FROM students')

Note that this method executes the SELECT statement but

does not return the set of results directly. Instead the execute method returns an integer indicating the number of rows

either a ected by the modification or returned as part of the

query. In the case of a SELECT statement the number

returned can be used to determine which type of fetch method

to use.

Obtaining Information About the Results

The Cursor Object can also be used to obtain information

about the results to be fetched such as how many rows there

are in the results and what the type is of each attribute in the

results:

cusor.rowcount() this is a read-only property that

indicates the number of rows returned for a SELECT

statement or rows a ected for a UPDATE or INSERT

statement.

cursor.description()this is a read-only property that

provides a description of each attribute in the results set.

Each description provides the name of the attribute and

an indication of the type (via a type_code) as well as

further information on whether the value can be null or

not and for numbers scale, precision and size

information.

An example of using these two properties is given below:

print('cursor.rowcount', cursor.rowcount)

print('cursor.description', cursor.description)

A sample of the output generated by these lines is given below:

cursor.rowcount 6

cursor.description (('id', 3, None, 11, 11, 0, False),

('name', 253, None, 180, 180, 0, False), ('surname',

253, None, 180, 180, 0, False), ('subject', 253, None,

180, 180,

0, False), ('email', 253, None, 180, 180, 0, False))

Fetching Results

Now that a successful SELECT statement has been run against

the database, we can fetch the results. The results are

returned as a tuple of tuples. As mentioned in the last chapter

there are several di erent fetch options available including

fetchone (), fetchmany(size) and fetchall(). In the following

example we use the fetchall() option as we know that there

are only up to six rows that can be returned.

Fetch all the rows and then iterate over the data

data = cursor.fetchall()

for row in data:

print('row:', row)

In this case we loop through each tuple within the data

collection and print that row out. However, we could just as

easily have extracted the information in the tuple into individual elements. These elements could then be used to

construct an object that could then be processed within an

application, for example:

for row in data:

id, name, surname, subject, email = row

student = Student(id, name, surname, subject, email)

print(student)

Close the Connection

Once you have finished with the database connection it

should be closed.

disconnect from server

connection.close()

Complete PyMySQL Query Example

A complete listing illustrating connecting up to the database,

running a SELECT statement and printing out the results

using a Student class is given below:

import pymysql

class Student:

def init (self, id, name, surname, subject, email):

self.id = id

self.name = name

self.surname = surname

self.subject = subject

self.email = email

def str (self):

return 'Student[' + str(id) + '] ' + name + ' ' +

surname + ' - ' + subject + ' ' + email

Open database connection

connection = pymysql.connect('localhost',

'user',

'password',

'uni-database')

prepare a cursor object using cursor() method cursor =

connection.cursor()

execute SQL query using execute() method.

cursor.execute('SELECT * FROM students')

print('cursor.rowcount', cursor.rowcount)

print('cursor.description', cursor.description)

Fetch all the rows and then iterate over the data

data = cursor.fetchall()

for row in data:

student_id, name, surname, subject, email = row

student = Student(student_id, name, surname, subject,

email)

print(student)

disconnect from server connection.close()

The output from this program, for the database created in the

last chapter is shown here:

cursor.rowcount 6

cursor.description (('id', 3, None, 11, 11, 0, False),

('name', 253, None, 180, 180, 0, False), ('surname',

253, None, 180, 180, 0, False), ('subject', 253, None,

180, 180,

0, False), ('email', 253, None, 180, 180, 0, False))

Student[1] Phoebe Cooke - Animation pc@my.com

Student[2] Gryff Jones - Games grj@my.com

Student[3] Adam Fosh - Music af@my.com

Student[4]Jasmine Smith - Games js@my.com

Student[5] Tom Jones - Music tj@my.com

Student[6] James Andrews - Games ja@my.com

Inserting Data to the Database

As well as reading data from a database many applications

also need to add new data to the database. This is done via the

DML (Data Manipulation Language) INSERT statement. The

process for this is very similar to running a query against the

database using a SELECT statement; that is, you need to make

a connection, obtain a cursor object and execute the

statement. The one di erence here is that you do not need to

fetch the results.

import pymysql

Open database connection connection =

pymysql.connect('localhost', 'user', 'password', 'uni-

database')

prepare a cursor object using cursor() methodcursor =

connection.cursor()

try:

Execute INSERT command

cursor.execute("INSERT INTO students (id, name, surname,

subject, email) VALUES (7, 'Denise', 'Byrne', 'History',

'db@my.com')")

Commit the changes to the database

connection.commit()

except:

Something went wrong

rollback the changes

connection.rollback()

Close the database connectionconnection.close()

The result of running this code is that the database is updated

with a seventh row for ‘Denise Byrne’. This can be seen in the

MySQL Workbench if we look at the contents of the students

table:

[image:]

There are a couple of points to note about this code example.

The first is that we have used the double quotes around the

string defining the INSERT command— this is because a

double quotes string allows us to include single quotes within

that string. This is necessary as we need to quote any string

values passed to the database (such as ‘Denise’).

The second thing to note is that by default the PyMySQL

database interface requires the programmer to decide when

to commit or rollback a transaction. A transaction was

introduced in the last chapter as an atomic unit of work that

must either be completed or as a whole or rollback so that no

changes are made. However, the way in which we indicate

that a transaction is completed is by calling the commit()

method on the database connection. In turn we can indicate

that we want to rollback the current transaction by calling

rollback(). In either case, once the method has been invoked a

new transaction is started for any further database activity.

In the above code we have used a try block to ensure that if

everything succeeds, we will commit the changes made, but if

an exception is thrown (of any kind) we will rollback the

transaction—this is a common pattern.

Updating Data in the Database

If we are able to insert new data into the database, we may

also want to update the data in a database, for example to

correct some information. This is done using the UPDATE

statement which must indicate which existing row is being

updated as well as what the new data should be.

import pymysql

Open database connection

connection = pymysql.connect('localhost',

'user',

'password',

'uni-database')

prepare a cursor object using cursor() method cursor =

connection.cursor()

try:

Execute UPDATE command

cursor.execute("UPDATE students SET email =

'denise@my.com' WHERE id = 7")

Commit the changes to the database

connection.commit()

except:

rollback the changes if an exception / error

connection.rollback()

Close the database connection connection.close()

In this example we are updating the student with id 7 such

that their email address will be changed to ‘denise@my.com’.

This can be verified by examining the contents of the

students table in the MySQL Workbench:

[image:]

Deleting Data in the Database Finally, it is also possible to delete data from a database, for

example if a student leaves their course. This follows the

same format as the previous two examples with the

di erence that the DELETE statement is used instead:

import pymysql

Open database connection

connection = pymysql.connect('localhost',

'user',

'password',

'uni-database')

prepare a cursor object using cursor() method cursor =

connection.cursor()

try:

Execute DELETE command

cursor.execute("DELETE FROM studentsWHERE id = 7")

Commit the changes to the database connection.commit()

except:

rollback the changes if an exception / error

connection.rollback()

Close the database connection connection.close()

In this case we have deleted the student with id 7. We can see

that again in the MySQL Workbench by examining the

contents of the students table after this code has run:

[image:]

Creating Tables

It is not just data that you can add to a database; if you wish

you can programmatically create new tables to be used with

an application. This process follows exactly the same pattern

as those used for INSERT, UPDATE and DELETE. The only

di erence is that the command sent to the database contains

a CREATE statement with a description of the table to be

created. This is illustrated below:

import pymysql

Open database connection

connection = pymysql.connect('localhost',

'user',

'password',

'uni-database')

prepare a cursor object using cursor() method cursor =

connection.cursor()

try:

Execute CREATE command

cursor.execute("CREATE TABLE log (message VARCHAR(100) NOT

NULL)")

Commit the changes to the database connection.commit()

except:

rollback the changes if an exception / error

connection.rollback()

Close the database connection connection.close()

This creates a new table log within the uni-database; this can

be seen by looking at the tables listed for the uni-database

within the MySQL Workbench.

[image:]

Online Resources

See the following online resources for more information on

the Python Database API:

https://pymysql.readthedocs.io/en/latest/ PyMySQL

Documentation site.

https://github.com/PyMySQL/PyMySQL Git hub

repository for the PyMySQL library.

Try

In this exercise you will create a database and tables based on

a set of transactions stored in a current account. You can use

the account class you created in the CSV and Excel chapter for

this.

You will need two tables, one for the account information and

one for the transaction history. The primary key of the

account information table can be used as the foreign key for

the transaction history table. Then write a function that takes

an Account object and populates the tables with the

appropriate data.

To create the account information table you might use the

following DDL:

CREATE TABLE acc_info (idacc_info INT NOT NULL, name

VARCHAR(255) NOT NULL, PRIMARY KEY (idacc_info))

While for the transactions table you might use:

CREATE TABLE transactions (idtransactions INT NOT NULL, type

VARCHAR(45) NOT NULL, amount VARCHAR(45) NOT NULL, account INT

NOT NULL, PRIMARY KEY (idtransactions))" Remember to be careful with integers and decimals if you are

creating an SQL string such as:

statement = "INSERT into transactions (idtransactions,

type, amount, account) VALUES (" + str(id) + ", '" +

action + "', " + str(amount) + ", " +

str(account_number) + ")"

Introduc on to Logging

Introduction

Many programming languages have common logging

libraries including Java and C# and of course Python also has

a logging module. Indeed the Python logging module has

been part of the built in modules since Python 2.3.

This chapter discusses why you should add logging to your

programs, what you should (and should not) log and why just

using the print() function is not su cient.

Why Log?

Logging is typically a key aspect of any production

application; this is because it is important to provide

appropriate information to allow future investigation

following some event or issue in such applications. These

investigations include:

Diagnosing failures; that is why did an application

fail/crash.

Identifying unusual or unexpected behavior; which might

not cause the application to fail but which may leave it in

an unexpected state or where data may be corrupted etc.

Identifying performance or capacity issues; in such

situations the application is performing as expected by it

is not meeting some non-functional requirements

associated with the speed at which it is operating or its

ability to scale as the amount of data or the number of

users grows.

Dealing with attempted malicious behavior in which

some outside agent is attempting to a ect the behavior of

the system or to acquire information which they should

not have access to etc. This could happen for example, if

you are creating a Python web application and a user tries

to hack into your web server.

Regulatory or legal compliance. In some cases records of

program execution may be required for regulatory or

legal reasons. This is particularly true of the financial

sector where records must be kept for many years in case

there is a need to investigate the organizations’ or

individuals’ behavior.

What Is the Purpose of Logging?

In general there are therefore two general reason to log what

an application is doing during it operation:

For diagnostic purposes so that recorded events/steps can

be used to analyze the behavior of the system when

something goes wrong.

Auditing purposes that allow for later analysis of the

behavior of the system for business, legal or regulatory

purposes. For example, in this case to determine who did

what with what and when.

Without such logged information it is impossible after the

event to know what happened. For example, if all you know is

that an application crashed (unexpectedly stopped executing)

how can you determine what state the application was in,

what functions, methods etc. were being executed and which

statements run?

Remember that although a developer may have been using an

IDE to run their applications during development and may

possibly been using the debugging facilities available that

allow you to see what functions or methods, statements and

even variable values are place; this is not how most

production systems are run. In general a production Python

system will be run either from a command line or possibly

through a short cut (on a Windows box) to simplify running

the program. All the user will know is that something failed or

that the behavior they expected didn’t occur—if in fact they

are aware of any issue at all!

Logs are therefore key to after the event analysis of failures,

unexpected behavior or for analysis of the operation of the

system for business reasons.

What Should You Log?

One question that you might be considering at this point is

‘what information should I log?’. An application should log

enough information so that post event investigators can

understand what was happening, when and where. In general

this means that you will want to log the time of the log

message, the module/filename, function name or method

name executing, potentially the log level being used (see

later) and in some cases the parameter values/state of the

environment, program or class involved.

In many cases developers log the entry (and to a lesser

extent) the exit from a function or method. However, it may

also be useful to log what happens at branch points within a

function or method so that the logic of the application can be

followed.

All applications should log all errors/exceptions. Although

care is needed to ensure that this is done appropriately. For

example if an exception is caught and then re thrown several

times it is not necessary to log it every time it is caught.

Indeed doing this can make the log files much larger, cause confusion when the problem is being investigated and result

in unnecessary overheads. One common approach is to log an

exception where it is first raised and caught and not to log it

after that.

What Not to Log

The follow on question to consider is ‘what information

should I not log?’. One general area not to log is any personal

or sensitive information including any information that can

be used to identify an individual. This sort of information is

known as PII or Personally Identification Information.

Such information includes

user ids and passwords,

email addresses,

data of birth, birth place,

personally identifiable financial information such as bank

account details,credit card details etc.,

bio metric information,

medical/health information,

government issued personal information such as

passport details,drivers license number, social security

numbers, National Insurance numbers etc.,

o cial organizational information such as professional

registrations and membership numbers,

physical addresses, phone (land-line) numbers, mobile

phone numbers,

verification elated information such as mother’s maiden

name, pets’ names, high school, first school, favorite

film, etc.,

it also increasing includes online information relating to

social media such as

Facebook or LinkedIn accounts.

All of the above is sensitive information and much of it can be

used to identify an individual; none of this information

should be logged directly.

That does not mean that you cannot and shouldn’t log that a

user logged in; you may well need to do that. However, the

information should at least be obfuscated and should not

include any information not required. For example you may

record that a user represented by some id attempted to log in

at a specific time and whether they were successful or not.

However, you should not log their password and may not log

the actual user id instead you may log an id that can be used

to map to their actual user id.

You should also be careful about directly logging data input

too an application directly into a log file. One way in which a

malicious agent can attack an application (particularly a web application) is by attempting to send very large amounts of

data to it (as part of a field or as a parameter to an operation).

If the application blindly logs all data submitted to it, then the

log files can fill up very quickly. This can result in the file

store being used by the application filling up and causing

potential problems for all software using the same file store.

This form of attack is known as a log (or log file) injection

attack and is well documented (see https://

www.owasp.org/index.php/Log_Injection which is part of the

well respected Open Web Application Security Project).

Another point to note is that it is not merely enough to log an

error. This is not error handling; logging an error does not

mean you have handled it; only that you have noted it. An

application should still decide how it should manage the error

or exception.

In general you should also aim for empty logs in a production

system; that is only information that needs to be logged in a

production system should be logged (often information about

errors, exceptions or other unexpected behavior). However,

during testing much more detail is required so that the

execution of the system should be followed. It should

therefore be possible to select how much information is

logged depending on the environment the code is running in

(that is within a test environment or within a production

environment).

A final point to note is that it is important to log information

to the correct place. Many applications (and organizations)

log general information to one log file, errors and exceptions

to another and security information to a third. It is therefore

important to know where your log information is being sent

and not to send information to the wrong log.

Why Not Just Use Print?

Assuming that you want to log information in your

application then next question is how should you do that?

Through this book we have been using the Python print()

function to print out information that indicates results

generated by our code but also at times what is happening

with a function or a method etc.

Thus we need to consider whether using the print() function

the best way to log information.

In actual fact, using print() to log information in a production

system is almost never the right answer, this is for several

reasons:

The print()function by default writes strings out to the

standard output (stdout) or standard error output

(stderr) which by default directs output to the console/

terminal. For example, when you run an application

within an IDE, the output is displayed in the Console

window. If you run an application from the command line

then the output is directed back to that

command/terminal window. Both of these are fine during

development, but what if the program is not run from a

command window, perhaps instead it is started up by the

operating system automatically (as is typical of

numerous services such as a print service or a web

server). In this case there is no terminal/console window

to send the data to; instead the data is just lost. As it

happens the stdout and stderr output streams can be

directed to a file (or files). However, this is typically done

when the program is launched and may be easily omitted.

In addition there is only the option of sending all stdout

to a specific file or all error output to the stderr.

Another issue with using the print()function is that all

calls to print will be output. When using most loggers it is

possible to specify the log level required. These di erent

log levels allow di erent amounts of information to be

generated depending upon the scenario. For example, in a

well tested reliable production system we may only want

error related or critical information to be logged. This will

reduce the amount of information we are collecting and

reduce any performance impact introduced by logging

into the application. However, during testing phases we

may want a far more detailed level of logging.

In other situations we may wish to change the log level

being used for a running production system without

needing to modify the actual code (as this has the

potential to introduced errors into the code). Instead we

would like to have the facility to externally change the

way in which the logging system behaves, for example

through a configuration file. This allows system

administrators to modify the amount and the detail of the

information being logged. It typically also allows the

designation of the log information to be changed.

Finally, when using the print()function a developer can

use whatever format they like, they can include a

timestamp on the message or not, they can include the

module or function/method name or not they can include

parameters of not. Using a logging system usually

standardizes the information generated along with the

log message. Thus all log messages will have (or not

have) a times- tamp,or all messages will include (or not

include) information on the function or method in which

they were generated etc.

Logging in Python

The Logging Module

Python has included a builtin logging module since Python

2.3. This module, the logging module, defines functions and

classes which implement a flexible logging framework that

can be used in any Python application/script or in Python

libraries/modules.

Although di erent logging frameworks di er in the specific

details of what they o er; almost all o er the same core

elements (although di erent names are sometimes used).

The Python logging module is no di erent and the core

elements that make up the logging framework and its

processing pipeline are shown below (note that a very similar

diagram could be drawn for login frameworks in Java, Scala,

C++ etc.).

The following diagram illustrates a Python program that uses

the built-in Python logging framework to log messages to a

file.

[image:]

The core elements of the logging framework (some of which

are optional) are shown above and described below:

Log Message The is the message to be logged from the

application.

Logger Provides the programmers entry point/interface

to the logging system.

The Logger class provides a variety of methods that can be

used to log messages at di erent levels.

Handler Handlers determine where to send a log

message, default handlers include file handlers that send

messages to a file and HTTP handlers that send messages

to a web server.

Filter This is an optional element in the logging pipeline.

They can be used to further filter the information to be

logged providing fine grained control of which log

messages are actually output (for example to a log file).

For matter These are used to format the log message as

required. This may involve adding timestamps, module

and function/method information etc. to the original log

message.

Configuration Information The logger (and associated

handlers, filters and for matters) can be configured either

programmatically in Python or through configuration

files. These configuration files can be written using key-

value pairs or in a YAML file (which is a simple mark up

language). YAML stands for Yet Another Markup

Language!

It is worth noting that much of the logging framework is

hidden from the developer who really only sees the logger;

the remainder of the logging pipeline is either configured by

default or via log configuration information typically in the

form of a log configuration file.

The Logger

The Logger provides the programmers interface to the

logging pipeline. A Logger object is obtained from the

getLogger() function defined in the logging module. The

following code snippet illustrates acquiring the default logger

and using it to log an error message. Note that the logging

module must be imported:

import logging

logger = logging.getLogger()

logger.error('This should be used with somethingunexpected'

The output from this short application is logged to the

console as this is the default configuration:

This should be used with something unexpected

Controlling the Amount of Information Logged

Log messages are actually associated with a log level.These

log levels are intended to indicate the severity of the message

being logged. There are six di erent log levels associated with

the Python logging framework, these are:

NOTSET At this level no logging takes place and logging is

e ectively turned o .

DEBUG This level is intended to provide detailed

information, typically of interest when a developer is

diagnosing a bug or issues within an application.

INFO This level is expected to provide less detail than the

DEBUG log level as it is expected to provide information

that can be used to confirm that the application is

working as expected.

WARNING This is used to provide information on an

unexpected event or an indication of some likely problem

that a developer or system administration might wish to

investigate further.

ERROR This is used to provide information on some

serious issue or problem that the application has not been

able to deal with and that is likely to mean that the

application cannot function correctly.

CRITICAL This is the highest level of issue and is reserved

for critical situations such as ones in which the program

can no longer continue executing.

The log levels are relative to one another and defined in a

hierarchy. Each log level has a numeric value associated with

it as shown below (although you should never need to use the

numbers). Thus INFO is a higher log level than DEBUG, in

turn ERROR is a higher log level than WARNING, INFO,

DEBUG etc.

[image:]

Associated with the log level that a message is logged with, a

logger also has a log level associated with it. The logger will

process all messages that are at the loggers log level or above

that level. Thus if a logger has a log level of WARNING then it

will log all messages logged using the warning, error and

critical log levels.

Generally speaking, an application will not use the DEBUG

level in a production system. This is usually considered

inappropriate as it is only intended for debug scenarios. The

INFO level may be considered appropriate for a production

system although it is likely to produce large amounts of

information as it typically traces the execution of functions

and methods. If an application has been well tested and

verified then it is only really warnings and errors which

should occur/be of concern. It is therefore not uncommon to

default to the WARNING level for production systems (indeed

this is why the default log level is set to WARNING within the

Python logging system).

If we now look at the following code that obtains the default

logger object and then uses several di erent logger methods,

we can see the e ect of the log levels on the output:

import logging

logger = logging.getLogger()

logger.debug('This is to help with debugging') logger.info('This

is just for information') logger.warning('This is a warning!')

logger.error('This should be used with something unexpected')

logger.critical('Something serious')

The default log level is set to warning, and thus only

messages logged at the warning level or above will be printed

out:

This is a warning!

This should be used with something unexpected

Something serious

As can be seen from this, the messages logged at the debug

and info level have been ignored.

However, the Logger object allows us to change the log level

programmatically using the setLevel() method, for example

logger.setLevel(logging. DEBUG) or via the

logging.basicConfig(level = logging.DEBUG) function; both of

these will set the logging level to DEBUG. Note that the log

level must be set before the logger is obtained.

If we add one of the above approaches to setting the log level

to the previous program we will change the amount of log

information generated:

import logging

logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()

logger.warning('This is a warning!') logger.info('This is just

for information') logger.debug('This is to help with debugging')

logger.error('This should be used with something unexpected

logger.critical('Something serious')

This will now output all the log messages as debug is the

lowest logging level. We can of course turn o logging by

setting the log level to NOTSET

logger.setLevel(logging.NOTSET)

Alternativelyyou can set the Loggers disabled attribute to True:

logging.Logger.disabled = True

Logger Methods

The Logger class provides a number of methods that can be

used to control what is logged including:

setLevel(level) Sets this loggers log level.

getE ectiveLevel() Returns this loggers log level.

isEnabledFor(level) Checks to see if this logger is enabled

for the log level specified.

debug(message) logs messages at the debug level.

info(message) logs messages at the info level.

warning(message) logs messages at the warning level.

error(message) logs messages at the error level.

critical(message) logs messages at the critical level.

exception(message) This method logs a message at the

error level.

However, it can only be used within an exception handler and

includes a stack trace of any associated exception, for

example:

import logging

logger = logging.getLogger()

try:

print('starting')

x = 1 / 0 print(x)

except:

logger.exception('an exception message')

print('Done')

log(level, message) logs messages at the log level

specified as the first parameter.

In addition there are several methods that are used to manage

handlers and filters:

addFilter(filter) This method adds the specified filter

filter to this logger.

removeFilter(filter) The specified filter is removed from

this logger object.

addHandler(handler) The specified handler is added to

this logger.

removeHandler(handler) Removes the specified handler

from this logger.

Default Logger

A default (or root) logger is always available from the logging

framework. This logger can be accessed via the functions

defined in the logging module. These functions allow

messages to be logged at di erent levels using methods such

as info(), error(), warning() but without the need to obtain a

reference to a logger object first. For example:

import logging

Set the root logger level

logging.basicConfig(level=logging.DEBUG)

Use root (default)logger

logging.debug('This is to help with debugging')

logging.info('This is just for information')

logging.warning('This is a warning!')

logging.error('This shouldbe used with something unexpected'

logging.critical('Something serious')

This example sets the logging level for the root or default

logger to DEBUG (the default is WARNING). It then uses the

default logger to generate a range of log messages at di erent

levels (from DEBUG up to CRITICAL). The output from this

program is given below:

DEBUG:root:This is to help with debugging INFO:root:This

is just for informationWARNING:root:This is a warning!

ERROR:root:This should be used with something unexpected

CRITICAL:root:Something serious

Note that the format used by default with the root logger

prints the log level, the name of the logger generating the

output and the message. From this you can see that it is the

root longer that is generating the output.

Module Level Loggers

Most modules will not use the root logger to log information,

instead they will use a named or module level logger. Such a

logger can be configured independently of the root logger.

This allows developers to turn on logging just for a module

rather than for a whole application.This can be useful if a

developer wishes to investigate an issue that is located within

a single module.

Previous code examples in this chapter have used the

getLogger() function with no parameters to obtain a logger

object, for example:

logger = logging.getLogger() This is really just another way of obtaining a reference to the

root logger which is used by the stand alone logging functions

such as logging.info(), logging.debug()function, thus:

logging.warning('my warning')

and

logger=logging.getlogger()

logger.warning('my warning'

Have exactly the same e ect; the only di erence is that the

first version involves less code.

However, it is also possible to create a named logger. This is a

separate logger object that has its own name and can

potentially have its own log level, handlers and formatters

etc. To obtain a named logger pass a name string into the

getLogger() method:

logger1 = logging.getLogger('my logger')

This returns a logger object with the name ‘my logger’. Note

that this may be a brand new logger object, however if any

other code within the current system has previously

requested a logger called ‘my logger’ then that logger object

will be returned to the current code. Thus multiple calls to

getLogger() with the same name will always return a

reference to the same Logger object.

It is common practice to use the name of the module as the

name of the logger; as only one module with a specific name

should exist within any specific system. The name of the

module does not need to be hard coded as it can be obtained

using the name module attribute, it is thus common to see:

logger2 = logging.getLogger(name)

We can see the e ect of each of these statements by printing

out each logger:

logger = logging.getLogger()

print('Root logger:', logger)

logger1 = logging.getLogger('my logger')

print('Named logger:', logger1)

logger2 = logging.getLogger(name)

print('Module logger:', logger2)

When the above code is run the output is:

Root logger: Named logger:

Module logger:

(WARNING)>

This shows that each logger has their own name (the code

was run in the main module and thus the module name was main) and all three loggers have an e ective log level of

WARNING (which is the default).

Logger Hierarchy

There is in fact a hierarchy of loggers with the root logger at

the top of this hierarchy. All named loggers are below the root

logger. The name of a logger can actually be a period-

separated hierarchical value such as util, util.lib and

util.lib.printer. Loggers that are further down the hierarchy

are children of loggers further up the logger hierarchy.

For example given a logger called lib, then it will be below the

root logger but above the logger with the name util.lib. This

logger will in turn be above the logger called util.lib.printer.

This is illustrated in the following diagram:

[image:]

The logger name hierarchy is analogous to the Python

package hierarchy, and identical to it if you organize your

loggers on a per-module basis using the recommended

construction logging.getLogger(name).

This hierarchy is important when considering the log level. If

a log level has not been set for the current logger then it will

look to its parent to see if that logger has a log level set. If it

does that will be the log level used. This search back up the

logger hierarchy will continue until either an explicit log level

is found or the root logger is encountered which has a default

log level of WARNING.

This is useful as it is not necessary to explicitly set the log

level for every logger object used in an application. Instead it

is only necessary to set the root log level (or fora module

hierarchy an appropriate point in the module hierarchy). This

can then be overridden where specifically required.

For matters

The are two levels at which you can format the messages

logged, these are within the log message passed to a logging

method(such as info() or warn()) and via the top level

configuration that indicates what additional information may

be added to the individual log message.

Formatting Log Messages

The log message can have control characters that indicate

what values should be placed within the message, for

example:

logger.warning('%s is set to %d', 'count', 42)

This indicates that the format string expects to be given a

string and a number. The parameters to be substituted into

the format string follow the format string as a comm

separated list of values.

Formatting Log Output

The logging pipeline can be configured to incorporate

standard information with each log message. This can be

done globally for all handlers. It is also possible to

programmatically set a specific for matter on a individual

handler;this is discussed in the next section.

To globally set the output format for log messages use the

logging. basicConfig() function using the named parameter

format.

The format parameter takes a string that can contain

LogRecord attributes organized as you see fit. There is a

comprehensive list of LogRecord attributes which can be

referenced at https://docs.python.org/3/library/logging.

html#logrecord-attributes. The key ones are:

args a tuple listing the arguments used to call the

associated function or method.

asctime indicates the time that the log message was

created.

filename the name of the file containing the log

statement.

module the module name (the name portion of the

filename).

funcName the name of the function or method containing

the log statement.

levelname the log level of the log statement.

message the log message itself as provided to the log

method.

The e ect of some of these are illustrated below.

import logging

logging.basicConfig(format='%(asctime)s %(message)s',

level=logging.DEBUG)

logger = logging.getLogger(name)

def do_something():

logger.debug('This is to help with debugging') logger.info('This

is just for information') logger.warning('This is a warning!')

logger.error('This should be used with something

unexpected')

logger.critical('Something serious')

do_something()

The above program generates the following log statements:

2019-02-20 16:50:34,084 This is to help with debugging

2019-02-20 16:50:34,084 This is just for information

2019-02-20 16:50:34,085 This is a warning!

2019-02-20 16:50:34,085 This should be used with

something unexpected

2019-02-20 16:50:34,085 Something serious

However, it might be useful to know the log level associated

with the log statements, as well as the function that the log

statements were called from. It is possible to obtain this

information by changing the format string passed to the

logging.basicConfig() function:

logging.basicConfig(format='%(asctime)s[%(levelname)s]

%(funcName)s: %(message)s', level=logging.DEBUG)

Which will now generate the output within log level

information and the function involved:

2019-02-20 16:54:16,250[DEBUG] do_something: This is to

help with debugging

2019-02-20 16:54:16,250[INFO] do_something: This is

just for information

2019-02-20 16:54:16,250[WARNING] do_something: This

is a warning!

2019-02-20 16:54:16,250[ERROR] do_something: This

should be used with something unexpected

2019-02-20 16:54:16,250[CRITICAL] do_something:

Something serious

We can even control the format of the date time information

associated with the log statement using the data fmt parameter of the logging.basic Config() function:

logging.basicConfig(format='%(asctime)s %(message)s',

datefmt='%m/%d/%Y %I:%M:%S%p', level=logging.DEBUG)

This format string uses the formatting options used by the

datetime.strp- time() function (see

https://docs.python.org/3/library/datetime.html#strftime-

strptime-behavior) for information on the control

characters, in this case

%m—Month as a zero-padded decimal number e.g. 01,

11, 12.

%d—Day of the month as a zero-padded decimal number

e.g. 01, 12 etc.

%Y—Year with century as a decimal number e.g. 2020.

%I—Hour (12-h clock) as a zero-padded decimal number

e.g. 01, 10 etc.

%M—Minute as a zero-padded decimal number e.g. 0,

01, 59 etc.

%S—Second as a zero-padded decimal number e.g. 00,

01, 59 etc.

%p—Either AM or PM.

Thus the output generated using the above date fmt string is:

02/20/2019 05:05:18 PM This is to help with debugging

02/20/2019 05:05:18 PM This is just for information

02/20/2019 05:05:18 PM This is a warning!

02/20/2019 05:05:18 PM This should be used with

something unexpected

02/20/2019 05:05:18 PM Something serious

To set a for matter on an individual handler see the next

section.

Online Resources

For further information on the Python logging framework see

the following:

https://docs.python.org/3/library/logging.html The

standard library documentation on the logging facilities

in Python.

https://docs.python.org/3/howto/logging.html A how to

guide on logging from thePython standard library

documentation.

https://pymotw.com/3/logging/index.html Python

Module of the Week logging page.

Advanced Logging

Introduction

In this chapter we go further into the configuration and

modification of the Python logging module. In particular we

will look at Handlers (used to determine the destination fo log

messages), Filters which can be used by Handlers to provide

finer grained control of log output and logger configuration

files. We conclude the chapter by considering performance

issues associated with logging.

Handlers

Within the logging pipeline, it is a handlers that send the log

message to their final destination. By default the handler is

set up to direct output to the console/terminal associated

with the running program. However, this can be changed to

send the log messages to a file, to an email service, to a web

server etc. Or indeed to any combination of these as there can

be multiple handlers configured for a logger. This is shown in

the diagram below:

[image:]

In the above diagram the logger has been configured to send

all log messages to four di erent handlers which allow a log

message to be written to the console,to a web server to a file

and to an email service. Such a behavior may be required

because:

The web server will allow developers access to a web

interface that allows them to seethe log files even if they

do not have permission to access a production server.

The log file ensures that all the log data is permanently

stored in a file within the file store.

An email message may be sent to a notification system so

that someone will be notified that there is an issue to be

investigated.

The console may still be available to the system

administrators who may wish to look at the log messages

generated.

The Python logging framework comes with several di erent

handlers as suggested above and listed below:

logging.Stream Handler sends messages to outputs such

as stdout, stderr etc.

logging.FileHandler sends log messages to files. There are

several varieties of File Handler in addition to the basic

FileHandler, these include the

logging.handlers.RotatingFileHandler (which will rotate

log files based on a maximum file size) and

logging.handlers. TimeRotatingFileHandler (which

rotates the log file at specified time intervals e.g. daily).

logging.handlers.SocketHandler which sends messages to

a TCP/IP socket where it can be received by a TCP Server.

logging.handlers.SMTPHandler that sends messages by

the SMTP (Simple Mail Transfer Protocol) to a email

server.

logging.handlers.SysLogHandler that sends log messages

to a Unix syslog program.

logging.handlers.NTEventLogHandler that sends

message to a Windows event log.

logging.handlers.HTTPHandler which sends messages to

a HTTP server.

logging.NullHandler that does nothing with error

messages. This is often used by library developers who

want to include logging in their applications but expect

developers to set up an appropriate handler when they

use the library.

All of these handlers can be configured programmatically

or via a configuration file.

Setting the Root Output Handler

The following example, uses the logging.basicConfig()

function to set up the root logger to use a FileHandler that

will write the log messages to a file called ‘example.log’:

import logging

Sets a file handler on the root logger to

save log messages to the example.log file

logging.basicConfig(filename='example.log' ,level=logging.DEBUG)

If no handler is explicitly set on the name logger

it will delegate the messages to the parent logger to handle

logger = logging.getLogger(name)

logger.debug('This is to help with debugging')

logger.info('This is just for information')

logger.warning('This is a warning!')

logger.error('This shouldbe used with something unexpected')

logger.critical('Something serious')

Note that if no handler is specified for a named logger then it

delegates output to the parent (in this case the root) logger.

The file generated for the above program is shown below:

[image:]

As can be seen from this the default for matter is now

configured for a File Handler. This File Handler adds the log

message level before the log message itself.

Programmatically Setting the Handler

It is also possible to programmatically create a handler and

set it for the logger. This is done by instantiating one of the

existing handler classes (or by sub classing an existing

handler such as the root Handler class or the FileHander etc.).

The instantiated handler can then be added as a handler to

the logger (remember the logger can have multiple handlers

this is why the method is called add Handler ()rather than

something such as setHandler).

An example of explicitly setting the FileHandler for a logger is

given below:

import logging

#Empty basic config turns off default console handler

logging.basicConfig()

logger = logging.getLogger(name) Given that this is a lot more code than using the basicConfig()

logger.setLevel(logging.DEBUG)

#createfile handler which logs to the specifiedfile

file_handler = logging.FileHandler('detailed.log')

#Add the handler to the Logger

logger.addHandler(file_handler)

#'application' code

def do_something(): logger.debug('debug message')

logger.info('info message') logger.warning('warn message')

logger.error('error message') logger.critical('critical

message')

logger.info('Starting') do_something() logger.info('Done')

The result of running this code is that a log file is created with

the logged messages:

[image:]

function; the question here might be ‘Why bother?’. The

answer is two fold:

You can have di erent handlers for di erent loggers

rather than setting the handler to be used centrally.

Each handler can have its own format set so that logging

to a file has a di erent format to logging to the console.

We can set the format for the handler by instantiating the

logging. For matter class with an appropriate format string.

The for matter object can then be applied to a handler using

the set For matter() method on the handler object.

For example, we can modify the above code to include a for

matter that is then set on the file handler as shown below.

create file handler which logs to the specified file

file_handler = logging.FileHandler('detailed.log')

Create formatter for the file_handler

formatter = logging.Formatter('%(asctime)s - %(funcName)s -

%(message)s')

file_handler.setFormatter(formatter)

logger.addHandler(file_handler)

The log file now generated is modified such that each

message includes a time stamp, the function name (or

module if at the module level) as well as the log message

itself.

[image:]

Multiple Handlers

As suggested in the previous section we can create multiple

handlers to send log messages to di erent locations; for

example from the console, to files and even email servers.

The following program illustrates setting up both a file

handler and a console handler for a module level logger.

To do this we create two handlers the file_handler and the

con- sole_handler. As a side e ect we can also give them

di erent log levels and di erent for matters. In this case the

file_handler inherits the log level of the logger itself (which

is DEBUG) while the console_handler has its log level set

explicitly at WARNING. This means di erent amounts of

information will be logged to the log file than the console

output.

We have also set di erent for matters on each handler; in this

case the log file handler’s for matter provides more information than the console handlers for matter.

Both handlers are then added to the logger before it is used.

MultipleHandlers and formatters

import logging

Set up the defaultroot logger to do nothing

logging.basicConfig(handlers=[logging.NullHandler()])

Obtain the module level logger and set level to DEBUG logger

= logging.getLogger(name)

logger.setLevel(logging.DEBUG)

Create file handler

file_handler = logging.FileHandler('detailed.log')

Create consolehandler with a higher log level console_handler

= logging.StreamHandler()

console_handler.setLevel(logging.WARNING)

Create formatterfor the file handler

fh_formatter = logging.Formatter(

%(name)s.%(funcName)s: %(message)s',

datefmt='%M-%d-%Y %I:%M:%S

%P')

file_handler.setFormatter(fh_formatter)

Create formatter for the console handler

console_formatter = logging.Formatter('%(asctime)s

%(funcName)s - %(message)s')-

console_handler.setFormatter(console_formatter)

Add the handlers to logger

logger.addHandler(console_handler)

logger.addHandler(file_handler)

'application' code

def do_something():

logger.debug('debug message')

logger.info('info message') logger.warning('warn message')

logger.error('error message') logger.critical('critical

message')

logger.info('Starting') do_something() logger.info('Done')

The output from this program is now split between the log

file and the console out, as shown below:

[image:]

Filters

[image:]

Filters can be used by Handlers to provide finer grained

control of the log output. A filter can be added to a logger

using the logger.addFilter() method. A Filter can be created by

extending the logging.Filter class and implementing the

filter() method. This method takes a log record. This log

record can be validated to determine if the record should be

output or not. If it should be output then True is returned, if

the record should be ignored False should be returned.

In the following example, a filter called MyFilter is defined

that will filter out all log messages containing the string

‘John’. It is added as a filter to the logger and then two log

messages are generated.

import logging

class MyFilter(logging.Filter):

def filter(self, record):

if 'John' in record.msg:

return False

else:

return True

logging.basicConfig(format='%(asctime)s %(message)s',

level=logging.DEBUG)

logger = logging.getLogger()

logger.addFilter(MyFilter())

logger.debug('This is to help with debugging')

logger.info('This is information on John')

The output shows that only the log message that does not

contain the string

‘John’ is output:

2019-02-20 17:23:22,650 This is to help with debugging

Logger Configuration

All the examples so far in this chapter have used

programmatic configuration of the logging framework. This is certainly feasible as the examples show, but it does require

a code change if you wish to alter the logging level for any

particular logger, or to change where a particular handler is

routing the log messages.

For most production systems a better solution is to use an

external configuration file which is loaded when the

application is run and is used to dynamically configure the

logging framework. This allows system administrators and

others to change the log level, the log destination, the log

format etc. without needing to change the code.

The logging configuration file can be written using several

standard formats from JSON (the Java Script ObjectNotation),

to YAML (Yet Another Markup Language) format, or as a set

of key-value pairs in a conf file. For further information on

the di erent options available see the Python logging module

documentation.

In this book we will briefly explore the YAML file format used

to configure loggers.

version: 1 formatters:

myformatter:

format: '%(asctime)s [%(levelname)s] %(name)s.%(funcName)s:

%(message)s'

handlers:

console:

class: logging.StreamHandler level: DEBUG

formatter: myformatter stream: ext://sys.stdout

loggers:

myLogger: level: DEBUG handlers: [console] propagate: no

root:

level: ERROR

handlers: [console]

The above YAML code is stored in a file called

logging.conf.yaml; however you can call this file anything

that is meaningful.

The YAML file always starts with a version number. This is an

integer value representing the YAML schema version

(currently this can only be the value 1). All other keys in the

file are optional, they include:

for matters—this lists one or more for matters; each for

matter has a name which acts as a key and then a format

value which is a string defining the format of a log

message.

filters—this is a lit of filter names and a set of filter

definitions.

handlers—this is a list of named handlers.Each handler

definition is made up of a set of key value pairs where the

keys define the class used for the filter (mandatory),the

log level of the filter (optional), the for matter to use with

the handler (optional) and a list of filters to apply

(optional).

loggers—provides one or more named loggers. Each

logger can indicate the log level (optional) and a list of

handlers (optional). The propagate option can be used to

stop messages propagating to a parent logger (by setting

it to False).

root—this is the configuration for the root logger.

This file can be loaded into a Python application using the

PyYAML module. This provides a YAML parser that can load a

YAML file as a dictionary structure that can be passed to the

logging.config.dictConfig() function. As this is a file it must

be opened and closed to ensure that the resource is handled

appropriately; it is therefore best managed using the with-as

statement as shown below:

with open('logging.config.yaml' , 'r')as f: config =

yaml.safe_load(f.read()) logging.config.dictConfig(config)

This will open the YAML file in read-only mode and close it

when the two statements have been executed. This snippet is

used in the following application that loads the logger

configuration from the YAML file:

import logging

import logging.config

import yaml

with open('logging.config.yaml', 'r') as f: config =

yaml.safe_load(f.read()) logging.config.dictConfig(config)

logger = logging.getLogger('myLogger')

'application' code

def do_something(): logger.debug('debug message')

logger.info('info message') logger.warning('warn message')

logger.error('error message') logger.critical('critical

message')

logger.info('Starting') do_something() logger.info('Done')

The output from this using the earlier YAML file is:

2019-02-21 16:20:46,466 [INFO] myLogger.:

Starting

2019-02-21 16:20:46,466 [DEBUG]

myLogger.do_something: debug message

2019-02-21 16:20:46,466 [INFO]

myLogger.do_something: info message

2019-02-21 16:20:46,466 [WARNING]

myLogger.do_something: warn message

2019-02-21 16:20:46,466 [ERROR]

myLogger.do_something: error message

2019-02-21 16:20:46,466 [CRITICAL]

myLogger.do_something: critical message

2019-02-21 16:20:46,466 [INFO] myLogger.:

Done

Performance Considerations Performance when logging should always be a consideration.

In general you should aim to avoid performing any

unnecessary work when logging is disabled (or disabled for

the level being used). This may seem obvious but it can occur

in several unexpected ways.

One example is string concatenation. If a message to be

logged involves string concatenation; then that string

concatenation will always be performed when a log method is

being invoked. For example:

logger.debug('Count: ' + count + ', total:' + total)

This will always result in the string being generated for count

and total before the call is made to the debug function; even if

the debug level is not turned on. However using a format

string will avoid this. The formatting involved will only be

performed if the string is to be used in a log message. You

should therefore always use string formatting to populate log

messages. For example:

logger.debug(' Count: %d, total: %d ', count, 42)

Another potential optimization is to use the logger.is Enabled

For (level) method as a guard against running the log

statement. This can be useful insinuations where an

associated operation must be performed to support the logging operation and this operation is expensive. For

example:

if logger.isEnabledFor(logging.DEBUG):

logger.debug('Message with %s,%s', expensive_func1(),

expensive_func2())

Now the two expensive functions will only be executed if the

DEBUG log level is set.

Try

Using the logging you dded to the Account class int he last

chapter, you should load the log configuration information

from a YAML file similar to that used in this chapter.

This should be loaded into the application program used to

drive the account classes.

Introduc on to Concurrency and

Parallelism

Introduction

In this chapter we will introduce the concepts of concurrency

and parallelism. We will also briefly consider the related topic

of distribution. After this we will consider process

synchronization, why object oriented approaches are well

suited to con- currency and parallelism before finishing with

a short discussion of threads versus processes.

Concurrency

Concurrency is defined by the dictionary as two or more

events or circumstances happening or existing at the same

time. In Computer Science concurrency refers to the ability of

di erent parts or units of a program, algorithm or problem to

be executed at the same time, potentially on multiple

processors or multiple cores.

Here a processor refers to the central processing unit (or CPU)

or a computer while core refers to the idea that a CPU chip can have multiple cores or processors on it.

Originally a CPU chip had a single core. That is the CPU chip

had a single processing unit on it. However, over time, to

increase computer performance, hardware manufacturers

added additional cores or processing units to chips. Thus a

dual-core CPU chip has two processing units while a quad-

core CPU chip has four processing units. This means that as

far as the operating system of the computer is concerned, it

has multiple CPUs on which it can run programs.

Running processing at the same time, on multiple CPUs, can

substantially improve the overall performance of an

application.

For example, let us assume that we have a program that will

call three independent functions, these functions are:

make a backup of the current data held by the program,

print the data currently held by the program,

run an animation using the current data.

Let us assume that these functions run sequentially, with the

following timings:

the backup function takes 13 s,

the print function takes 15 s,

the animation function takes 10 s.

This would result in a total of 38 s to perform all three

operations. This is illustrated graphically below:

[image:]

However, the three functions are all completely independent

of each other. That is they do not rely on each other for any

results or behavior; they do not need one of the other

functions to complete before they can complete etc. Thus we

can run each function concurrently.

If the underlying operating system and program language

being used support multiple processes, then we can

potentially run each function in a separate process at the

same time and obtain a significant speed up in overall

execution time.

If the application starts all three functions at the same time,

then the maximum time before the main process can

continue will be 15s, as that is the time taken by the longest

function to execute. However, the main program may be able

to continue as soon as all three functions are started as it also

does not depend on the results from any of the functions;

thus the delay may be negligible (although there will typically

be some small delay as each process is set up). This is shown

graphically below:

[image:]

Parallelism

A distinction its often made in Computer Science between

concurrency and parallelism. In concurrency, separate

independent tasks are performed potentially at the same

time. In parallelism, a large complex task is broken down into

a set of sub tasks. The sub tasks represent part of the overall

problem.Each sub task can be executed at the same time.

Typically it is necessary to combine the results of the sub

tasks together to generate an overall result.These sub tasks

are also very similar if not functionally exactly the same

(although in general each sub task invocation will have been

supplied with di erent data).

Thus parallelism is when multiple copies of the same

functionality are run at the same time, but on di erent data.

Some examples of where parallelism can be applied include:

A web search engine. Such a system may look at many,

many web pages. Each time it does so it must send a

request to the appropriate web site, receive the result and

process the data obtained. These steps are the same

whether it is the BBC web site, Microsoft’s web site or the

web site of Cambridge University. Thus the requests can

be run sequentially or in parallel.

Image Processing. A large image maybe broken down into

slices so that each slice can be analyzed in parallel.

The following diagram illustrates the basic idea behind

parallelism; a main program fires o three sub tasks each of

which runs in parallel. The main program then waits for all

the sub tasks to complete before combining together the

results from the sub tasks before it can continue.

[image:]

Distribution

When implementing a concurrent or parallel solution, where

the resulting processes run is typically an implementation

detail. Conceptually these processes could run on the same

processor, physical machine or on a remote or distributed

machine. As such distribution, in which problems are solved

or processes executed by sharing the work across multiple

physical machines, is often related to concurrency and

parallelism.

However, there is no requirement to distribute work across

physical machines, indeed in doing so extra work is usually involved.

To distribute work to a remote machine, data and in many

cases code, must be transferred and made available to the

remote machine. This can result in significant delays in

running the code remotely and may o set any potential

performance advantages of using a physically separate

computer. As a result many concurrent/ parallel technologies

default to executing code in a separate process on the same

machine.

Grid Computing

Grid Computing is based on the use of a network of loosely

coupled computers, in which each computer can have a job

submitted to it, which it will run to completion before

returning a result.

In many cases the grid is made up of a heterogeneous set of

computers (rather than all computers being the same) and

may be geographically dispersed. These computers may be

comprised of both physical computers and virtual machines.

[image:]

A Virtual Machine is a piece of software that emulates a whole

computer and runs on some underlying hardware that is

shared with other virtual machines. Each Virtual Machine

thinks it is the only computer on the hardware;however the

virtual machines all share the resources of the physical

computer. Multiple virtual machines can thus run

simultaneously on the same physical computer. Each virtual

machine provides its own virtual hardware,including CPUs,

memory, hard drives, network interfaces and other

devices.The virtual hardware is then mapped to the real hardware on the physical machine which saves costs by

reducing the need for physical hardware systems along with

the associated maintenance costs, as well as reducing the

power and cooling demands of multiple computers.

Within a grid, software is used to manage the grid nodes and

to submit jobs to those nodes. Such software will receive the

jobs to perform (programs to run and information about the

environment such as libraries to use) from clients of the grid.

These jobs are typically added to a job queue before a job

scheduler submits them to a node within the grid. When any

results are generated by the job they are collected from the

node and returned to the client. This is illustrated below:

[image:]

The use of grids can make distributing concurrent/parallel

processes amongst a set of physical and virtual machines

much easier.

Concurrency and Synchronization Concurrency relates to executing multiple tasks at the same

time. In many cases these tasks are not related to each other

such as printing a document and refreshing the User

Interface. In these cases, the separate tasks are completely

independent and can execute at the same time without any

interaction.

In other situations multiple concurrent tasks need to interact;

for example, where one or more tasks produce data and one

or more other tasks consume that data. This is often referred

to as a producer-consumer relationship. In other situations,

all parallel processes must have reached the same point

before some other behaviour is executed.

Another situation that can occur is where we want to ensure

that only one concurrent task executes a piece of sensitive

code at a time; this code must therefore be protected from

concurrent access.

Concurrent and parallel libraries need to provide facilities

that allow for such synchronization to occur.

Object Orientation and Concurrency

The concepts behind object-oriented programming lend

themselves particularly well to the concepts associated with

concurrency. For example, a system can be described as a set of discrete objects communicating with one another when

necessary. In Python, only one object may execute at any one

moment in time within a single interpreter. However,

conceptually at least, there is no reason why this restriction

should be enforced. The basic concepts behind object

orientation still hold, even if each object executes within a

separate independent process

Traditionally a message send is treated like a procedural call,

in which the calling object’s execution is blocked until a

response is returned. However, we can extend this model

quite simply to view each object as a concurrently executable

program, with activity starting when the object is created and

continuing even when a message is sent to another object

(unless the response is required for further processing). In

this model, there may be very many (concurrent) objects

executing at the same time. Of course, this introduces issues

associated with resource allocation, etc. but no more so than

in any concurrent system.

One implication of the concurrent object model is that objects

are larger than in the traditional single execution thread

approach, because of the overhead of having each object as a

separate thread of execution. Overheads such as the need for a

scheduler to handling these execution threads and resource

allocation mechanisms means that it is not feasible to have

integers, characters, etc. as separate processes.

Threads V Processes

As part of this discussion it is useful to understand what is

meant by a process. A process is an instance of a computer

program that is being executed by the operating system. Any

process has three key elements; the program being executed,

the data used by that program (such as the variables used by

the program) and the state of the process (also known as the

execution context of the program).

A (Python) Thread is a preemptive lightweight process.

A Thread is considered to be preemptive because every

thread has a chance to run as the main thread at some point.

When a thread gets to execute then it will execute until

completion,

until it is waiting for some form of I/O (Input/Output),

sleeps for a period of time,

it has run for 15 ms (the current threshold in Python 3).

If the thread has not completed when one of the above

situations occurs, then it will give up being the executing

thread and another thread will be run instead.This means that

one thread can be interrupted in the middle of performing a

series of related steps.

thread is a considered a lightweight process because it does

not possess its own address space and it is not treated as a

separate entity by the host operating system. Instead, it exists

within a single machine process using the same address

space.

It is useful to get a clear idea of the di erence between a

thread (running within a single machine process) and a multi

process system that uses separate processes on the

underlying hardware.

Some Terminology

The world of concurrent programming is full of terminology

that you may not be familiar with. Some of those terms and

concepts are outlined below:

Asynchronous versus Synchronous invocations. Most of

the method, function or procedure invocations you will

have seen in programming represent synchronous

invocations. A synchronous method or function call is one

which blocks the calling code from executing until it

returns. Such calls are typically within a single thread of

execution. Asynchronous calls are ones where the flow of

control immediately returns to the caller and the caller is

able to execute in its own thread of execution. Allowing

both the caller and the call to continue processing.

Non-Blocking versus Blocking code. Blocking code is a

term used to describe the code running in one thread of

execution, waiting for some activity to complete which

causes one of more separate threads of execution to also

be delayed. For example, if one thread is the producer of

some data and other threads are the consumers of that

data, then the consumer treads cannot continue until the

producer generates the data for them to consume. In

contrast, non-blocking means that no thread is able to

indefinitely delay others.

Concurrent versus Parallel code. Concurrent code and

parallel code are similar, but di erent in one significant

aspect. Concurrency indicates that two or more activities

are both making progress even though they might not be

executing at the same point in time. This is typically

achieved by continuously swapping competing processes

between execution and non-execution. This process is

repeated until at least one of the threads of execution

(Threads) has completed their task. This may occur

because two threads are sharing the same physical

processor with each is being given a short time period in

which to progress before the other gets a short time

period to progress. The two threads are said to be sharing

the processing time using a technique known as time

slicing. Parallelism on the other hand implies that there

are multiple processors available allowing each thread to

execute on their own processor simultaneously.

Online Resources

See the following online resources for information on the

topics in this chapter:

https://en.wikipedia.org/wiki/Concurrency_(computer_

science) Wikipedia page on concurrency.

https://en.wikipedia.org/wiki/Virtual_machine

Wikipedia page on Virtual Machines.

https://en.wikipedia.org/wiki/Parallel_computing

Wikipedia page on parallelism.

http://tutorials.jenkov.com/java-

concurrency/concurrency-vs-parallelism.html

Concurrency versus Parallelism tutorial.

https://www.redbooks.ibm.com/redbooks/pdfs/sg24677

8.pdf IBM Red Book on an Introduction to Grid

Computing.

Threading

Introduction

Threading is one of the ways in which Python allows you to

write programs that multitask; that is appearing to do more

than one thing at a time. This chapter presents the threading

module and uses a short example to illustrate how these

features can be used.

Threads

In Python the Thread class from the threading module

represents an activity that’s run in a separate thread of

execution within a single process. These threads of execution

are lightweight, preemptive execution threads. A thread is

lightweight because it does not possess its own address space

and it is not treated as a separate entity by the host operating

system; it is not a process. Instead, it exists within a single

machine process using the same address space as other

threads.

Thread States

When a thread object is first created it exists, but it is not yet

runnable; it must be started. Once it has been started it is then

runnable; that is, it is eligible to be scheduled for execution. It

may switch back and forth between running and being

runnable under the control of the scheduler. The scheduler is

responsible for managing multiple threads that all wish to

grab some execution time.

A thread object remains runnable or running until its run()

method terminates;

at which point it has finished its execution and it is now dead.

All states between unstated and dead are considered to

indicate that the Thread is alive (and therefore may run at

some point). This is shown below:

[image:]

A Thread may also be in the waiting state; for example, when

it is waiting for another thread to finish its work before

continuing (possibly because it needs the results produced by

that thread to continue). This can be achieved using the join()

method and is also illustrated above. Once the second thread

completes the waiting thread will again become runnable.

The thread which is currently executing is termed the active

thread. There are a few points to note about thread states:

A thread is considered to be alive unless its run() method

terminates after which it can be considered dead.

A live thread can be running, runnable, waiting, etc.

The runnable state indicates that the thread can be

executed by the processor, but it is not currently

executing. This is because an equal or higher priority

process is already executing, and the thread must wait

until the processor becomes free. Thus the diagram

shows that the scheduler can move a thread between the

running and runnable state. In fact,this could happen

many times as the thread executes for a while, is then

removed from the processor by the scheduler and added

to the waiting queue, before being returned to the

processor again at a later date.

Creating a Thread There are two ways in which to initiate a new thread of

execution:

Pass a reference to a callable object (such as a function or

method) into the Thread class constructor. This reference

acts as the target for the Thread to execute.

Create a subclass of the Thread class and redefine the

run() method to perform the set of actions that the thread

is intended to do.

We will look at both approaches.

As a thread is an object, it can be treated just like any other

object: it can be sent messages, it can have instance variables

and it can provide methods. Thus, the multi-threaded aspects

of Python all conform to the object-oriented model. This

greatly simplifies the creation of multi-threaded systems as

well as the maintain- ability and clarity of the resulting

software.

Once a new instance of a thread is created, it must be

started.Before it is started, it cannot run, although it exists.

Instantiating the Thread Class

The Thread class can be found in the threading module and

therefore must be imported prior to use. The class Thread defines a single constructor that takes up to six optional

arguments:

class threading.Thread(group=None,

target=None,

name=None,

args=(),

kwargs={},

daemon=None)

The Thread constructor should always be called using

keyword arguments; the meaning of these arguments is:

group should be None; reserved for future extension

when a ThreadGroup class is implemented.

target is the callable object to be invoked by the run()

method. Defaults to None, meaning nothing is called.

name is the thread name. By default, a unique name is

constructed of the form“Thread-N” where N is an

integer.

args is the argument tuple for the target invocation.

Defaults to (). If a single argument is provided the tuple is

not required. If multiple arguments are provided then

each argument is an element within the tuple.

kwargs is a dictionary of keyword arguments for the

target invocation. Defaults to {}.

daemon indicates whether this thread runs as a daemon

thread or not. If not None, daemon explicitly sets whether

the thread is daemonic. If None (the default), the

daemonic property is inherited from the current thread.

Once a Thread is created it must be started to become eligible

for execution using the Thread.start() method. The following

illustrates a very simple program that creates a Thread that

will run the simple_worker() function:

from threading import Thread

def simple_worker():

print('hello')

Createa new thread and start it

The threadwill run the functionsimple_worker

t1 = Thread(target=simple_worker)

t1.start()

In this example, the thread t1 will execute the function

simple_worker. The main code will be executed by the main

thread that is present when the program starts; there are thus

two threads used in the above program; main and t1.

The Thread Class

The Thread class defines all the facilities required to create an

object that can execute within its own lightweight process.

The key methods are:

start() Start the thread’s activity. It must be called at

most once per thread object. It arranges for the object’s

run() method to be invoked in a separate thread of

control. This method will raise a RuntimeError if called

more than once on the same thread object.

run() Method representing the thread’s activity. You may

override this method in a subclass. The standard run()

method invokes the callable object passed to the object’s

constructor as the target argument, if any, with

positional and keyword arguments taken from the args

and kwargs arguments, respectively. You should not call

this method directly.

join(timeout= None) Wait until the thread sent this

message terminates.

This blocks the calling thread until the thread whose

join()method is called terminates. When the timeout

argument is present and not None, it should be a floating-

point number specifying a timeout for the operation in

seconds (or fractions thereof). A thread can be join()ed many

times.

name A string used for identification purposes only. It

has no semantics. Multiple threads may be given the

same name. The initial name is set by the constructor.

Giving a thread a name can be useful for debugging

purposes.

ident The ‘thread identifier’ of this thread or None if the

thread has not been started. This is a nonzero integer.

is_alive() Return whether the thread is alive. This

method returns True just before the run() method starts

until just after the run() method terminates. The module

function threading.enumerate() re- turns a list of all alive

threads.

daemon A boolean value indicating whether this thread is

a daemon thread (True) or not (False). This must be set

before start() is called, otherwise a Runtime Error is

raised. Its default value is inherited from the creating

thread. The entire Python program exits when no alive

non-daemon threads are left.

An example illustrating using some of these methods is given

below:

from threading import Thread

def simple_worker():

print('hello')

t1 = Thread(target=simple_worker)

t1.start()

print(t1.getName()) print(t1.ident) print(t1.is_alive())

This produces:

hello

Thread-1

123145441955840

True The join() method can cause one thread to wait for another to

complete. For example, if we want the main thread to wait

until a thread completes before it prints the done message;

then we can make it join that thread:

from threading import Thread

from time import sleep

def worker():

for i in range(0,10):

print('.', end='', flush=True)

sleep(1)

print('Starting')

Createread object with referenceto worker function

t = Thread(target=worker)

Start the thread object

t.start()

Wait for the thread to complete

t.join()

print('\nDone')

Now the ‘Done’ message should not be printed out until after

the worker thread has finished as shown below:

Starting

……….

Done

The Threading Module Functions There are a set of threading module functions which support

working with threads; these functions include:

threading.active_count() Return the number of Thread

objects currently alive. The returned count is equal to the

length of the list returned by enumerate().

threading.current_thread() Return the current Thread

object, cor- responding to the caller’s thread of control. If

the caller’s thread of control was not created through the

threading module, a dummy thread object with limited

functionality is returned.

threading.get_ident() Return the ‘thread identifier’ of

the current thread. This is a nonzero integer. Thread

identifiers may be recycled when a thread exits and

another thread is created.

threading.enumerate()Return a list of all Thread objects

currently alive. The list includes daemon threads, dummy

thread objects created by current_thread() and the main

thread. It excludes terminated threads and threads that

have not yet been started.

threading.main_thread()Return the main Thread object.

Passing Arguments to a Thread

Many functions expect to be given a set of parameter values

when they are run; these arguments still need to be passed to

the function when they are run via a separate thread. These parameters can be passed to the function to be executed via

the args parameter, for example:

from threading import Thread

from time import sleep

def worker(msg):

for i in range(0,10):

print(msg, end='', flush=True)

sleep(1)

print('Starting')

t1 = Thread(target=worker,args='A') t2 = Thread(target=worker,

args='B') t3 = Thread(target=worker, args='C') t1.start()

t2.start()

t3.start()

print('Done')

In this example, the worker function takes a message to be

printed 10 times within a loop. Inside the loop the thread will

print the message and then sleep for a second. This allows

other threads to be executed as the Thread must wait for the

sleep timeout to finish before again becoming runnable.

Three threads t1, t2 and t3 are then created each with a

di erent message. Note that the worker() function can be

reused with each Thread as each invocation of the function

will have its own parameter values passed to it.

The three threads are then started. This means that at this

point there is the main thread, and three worker threads that

are Runnable (although only one thread will run at a time).

The three worker threads each run the worker() function

printing out either the letter A,B or C ten times. This means

that once started each thread will print out a string,sleep for 1

s and then wait until it is selected to run again, this is

illustrated in the following diagram:

[image:]

The output generated by this program is illustrated below:

Starting ABCDone

ABCACBABCABCCBAABCABCABCBAC

Notice that the main thread is finished after the worker

threads have only printed out a single letter each; however as

long as there is at least one non-daemon thread running the

program will not terminate; as none of these threads are

marked as a daemon thread the program continues until the

last thread has finished printing out the tenth of its letters.

Also notice how each of the threads gets a chance to run on

the processor before it sleeps again; thus we can see the

letters A, B and C all mixed in together.

Extending the Thread Class

The second approach to creating a Thread mentioned earlier

was to subclass the

Thread class. To do this you must

1. Define a new subclass of Thread.

2. Override the run() method.

3. Define a new init () method that calls the parent class init

()

method to pass the required parameters up to the Thread

class constructor.

This is illustrated below where the WorkerThread class passes

the name, target and daemon parameters up to the Thread

super class constructor.

[image:]

Once you have done this you can create an instance of the new

WorkerThread class and then start that instance.

print('Starting')

t = WorkerThread()

t.start()

print('\nDone')

The output from this is:

Starting

. Done

………

Note that it is common to call any sub classes of the Thread

class, Something Thread, to make it clear that it is a subclass

of the Thread class and should be treated as if it was a Thread

(which of course it is).

Daemon Threads

A thread can be marked as a daemon thread by setting the

daemon property to true either in the constructor or later via

the access or property.

For example:

from threading import Thread

from time import sleep

def worker(msg):

for i in range(0,10):

print(msg, end='',flush=True)

sleep(1)

print('Starting')

Createa daemon thread

d = Thread(daemon=True, target=worker, args='C')

d.start()

sleep(5)

print('Done') This creates a background daemon thread that will run the

function worker(). Such threads are often used for house

keeping tasks (such as background data backups etc.).

As mentioned above a daemon thread is not enough on its

own to keep the current program from terminating. This

means that the daemon thread will keep looping until the

main thread finishes. As the main thread sleeps for 5 s that

allows the daemon thread to print out about 5 strings before

the main thread terminates. This is illustrated by the output

below:

Starting

CCCCCDone

Naming Threads

Threads can be named; which can be very useful when

debugging an application with multiple threads.

In the following example,three threads have been created;

two have been explicitly given a name related to what they are

doing while the middle one has been left with the default

name. We then start all three threads and use the

threading.enumerate() function to loop through all the

currently live threads printing out their names:

[image:]

The output from this program is given blow:

ABC MainThread worker Thread-1 daemon

ABCBACACBCBACBAABCCBACBACBA

As you can see in addition to the worker thread and the

daemon thread there is a MainThread (that initiates the

whole program) and Thread-1 which is the thread referenced

by the variable t2 and uses the default thread name.

Thread Local Data In some situations each Thread requires its own copy of the

data it is working with; this means that the shared (heap)

memory is di cult to use as it is inherently shared between

all threads.

To overcome this Python provides a concept known as

Thread-Local data. Thread-local data is data whose values

are associated with a thread rather than with the shared

memory. This idea is illustrated below:

[image:]

To create thread-local data it is only necessary to create an

instance of threading. local (or a subclass of this) and store

attributes into it. The instances will be thread specific; meaning that one thread will not see the values stored by

another thread.

For example:

from threading import Thread,local, currentThread

from random import randint

def show_value(data):

try:

val = data.value

except AttributeError:

print(currentThread().name, ' - No value yet')

else:

print(currentThread().name, ' - value =', val)

def worker(data):

show_value(data)

data.value = randint(1, 100)

show_value(data)

print(currentThread().name, ' - Starting')

local_data = local()

show_value(local_data)

for i in range(2):

t = Thread(name='W' + str(i),

target=worker, args=[local_data])

t.start()

show_value(local_data)

print(currentThread().name, ' - Done')

The output from this is

MainThread - Starting

MainThread - No value yet W0 - No value yet

W0 - value = 20

W1 - No value yet

W1 - value = 90

MainThread - No value yet

MainThread - Done

The example presented above defines two functions.

The first function attempts to access a value in the thread

local data object. If the value is not present an exception

is raised (AttributeError). The show_value() function

catches the exception or successfully processes the data.

The worker function calls show_value()twice, once

before it sets a value in the local data object and once

after. As this function will be run by separate threads the

current Thread name is printed by the show_value()

function.

The main function creates a local data object using the local()

function from the threading library. It then calls

show_value() itself. Next it creates two threads to execute the

worker function in passing the local_data object into them;

each thread is then started.Finally, it calls show_value()

again.

As can be seen from the output one thread cannot see the data

set by another thread in the local_data object (even when the

attribute name is the same).

Timers

The Timer class represents an action (or task) to run after a

certain amount of time has elapsed. The Timer class is a

subclass of Thread and as such also functions as an example

of creating custom threads.

Timers are started,as with threads, by calling their start()

method. The timer canbe stopped (before its action has

begun) by calling the cancel() method.The interval the timer

will wait before executing its action may not be exactly the

same as the interval specified by the user as another thread

may be running when the timer wishes to start.

The signature of the Timer class constructor is:

Timer(interval, function, args = None, kwargs =None)

An example of using the Timer class is given below:

from threading import Timer

def hello():

print('hello')

print('Starting')

t = Timer(5, hello)

t.start()

print('Done')

In this case the Timer will run the hello function after an

initial delay of 5 s.

The Global Interpreter Lock

The Global Interpreter Lock(or the GIL) is a global lock within

the underlying CPython interpreter that was designed to

avoid potential deadlocks between multiple tasks. It is

designed to protect access to Python objects by preventing

multiple threads from executing at the same time.

For the most part you do not need to worry about the GIL as it

is at a lower level than the programs you will be writing.

However, it is worth noting that the GIL is controversial

because it prevents multi threaded Python programs from

taking full advantage of multiprocessor systems in certain

situations.

This is because in order to execute a thread must obtain the

GIL and only one thread at a time can hold the GIL (that is the

lock it represents). This means that Python acts like a single

CPU machine; only one thing can run at a time. A Thread will

only give up the GIL if it sleeps, has to wait for something

(such as some I/O) or it has held the GIL for a certain amount

of time. If the maximum time that a thread can hold the GIL

has been met the scheduler will release the GIL from that

thread (resulting it stopping execution and now having to

wait until it has the GIL returned to it) and will select another

thread to gain the GIL and start to execute.

It is thus impossible for standard Python threads to take

advantage of the multiple CPUs typically available on modern

computer hardware. One solution to this is to use the Python

multiprocessing library described in the next chapter.

Mul processing

Introduction

The multiprocessing library supports the generation of

separate (operating system level) processes to execute

behavior (such as functions or methods) using an API that is

similar to the Threading API presented in the last chapter.

It can be used to avoid the limitation introduced by the Global

Interpreter Lock (the GIL) by using separate operating system

processes rather than lightweight threads (which run within

a single process).

This means that the multiprocessing library allows

developers to fully exploit the multiple processor

environment of modern computer hardware which typically

has multiple processor cores allowing multiple

operations/behaviors to run in parallel; this can be very

significant for data analytics, image processing, animation

and games applications.

The multiprocessing library also introduces some new

features, most notably the Pool object for parallelising

execution of a callable object (e.g. functions and methods)

that has no equivalent within the Threading API.

The Process Class

The Process class is the multiprocessing library’s equivalent

to the Thread class in the threading library. It can be used to

run a callable object such as a function in a separate process.

To do this it is necessary to create a new instance of the

Process class and then call the start() method on it. Methods

such as join() are also available so that one process can wait

for another process to complete before continuing etc.

The main di erence is that when a new Process is created it

runs within a separate process on the underlying operating

systems (such as Window, Linux or Mac OS). In contrast a

Thread runs within the same process as the original program.

This means that the process is managed and executed directly

by the operating system on one of the processors that are part

of the underlying computer hardware.

The up side of this is that you are able to exploit the

underlying parallelism inherent in the physical computer

hardware. The downside is that a Process takes more work to

set up than the lighter weight Threads. The constructor for the Process class provides the same set of arguments as the

Thread class, namely:

class multiprocessing.Process(group=None,

 target=None,

name=None,

args=(),

kwargs={}, daemon=None)

group should always be None; it exists solely for

compatibility with the Threading API.

target is the callable object to be invoked by the run()

method. It defaults to None, meaning nothing is called.

name is the process name.

args is the argument tuple for the target invocation.

kwargs is a dictionary of keyword arguments for the

target invocation.

daemon argument sets the process daemon flag to True

or False.

If None (the default), this flag will be inherited from the

creating process.

As with the Thread class, the Process constructor should

always be called using keyword arguments.

The Process class also provides a similar set of methods to the

Thread class

start() Start the process’s activity. This must be called at

most once per process object. It arranges for the object’s

run() method to be invoked in a separate process.

join([timeout]) If the optional argument timeout is None

(the default), the method blocks until the joined process

terminates. If timeout is positive number, it blocks at

most timeout seconds. Note that the method returns

None if its process terminates or if the method times out.

is_alive() Return whether the process is alive.Roughly, a

process objectis alive from the moment the start()

method returns until the child process terminates.

The process class also has several attributes:

name The process’s name. The name is a string used for

identification purposes only. It has no semantics.

Multiple processes may be given the same name. It can be

useful for debugging purposes.

daemon The process’s daemon flag, a boolean value. This

must be set before start() is called. The default value is

inherited from the creating process. When a process

exits, it attempts to terminate all of its daemonic child

processes. Note that a daemonic process is not allowed to

create child processes.

pid Return the process ID. Before the process is spawned,

this will be None.

exit code The process exit code. This will be None if the

process has not yet terminated. A negative value -N

indicates that the child was terminated by signal N.

In addition to these methods and attributes, the Process class

also defines additional process related methods including:

terminate() Terminate the process.

kill() Same as terminate() except that on Unix the

SIGKILL signal is used instead of the SIGTERM signal.

close() Close the Process object, releasing all resources

associated with it.ValueError is raised if the underlying

process is still running. Once close() returns

successfully,most of the other methods and attributes of

the Process object will raise a ValueError.

Working with the Process Class

The following simple program creates three Process objects;

each runs the function worker(), with the string arguments A,

B and C respectively. These three process objects are then

started using the start() method.

from multiprocessing import Process

from time import sleep

def worker(msg):

for i in range(0,10):

print(msg, end='',flush=True)

sleep(1)

print('Starting')

t2 = Process(target=worker, args='A') t3=

Process(target=worker,args='B') t4 = Process(target=worker,

args='C')

t2.start() t3.start() t4.start()

print('Done')

It is essentially the same as the equivalent program for

threads but with the

Process class being used instead of the Thread class.

The output from this application is given below:

Starting Done ABCABCABCABCABCABCABCACBACBACB

The main di erence between the Thread and Process versions

is that the Process version runs the worker function in

separate processes whereas in the Thread version all the

Threads share the same process.

Alternative Ways to Start a Process

When the start() method is called on a Process, three

di erent approaches to starting the underlying process are

available. These approaches can be set using the

multiprocessing.set_start_method() which takes a string

indicating the approach to use. The actual process initiation mechanisms available depend on the underlying operating

system:

‘spawn’ The parent process start a fresh Python

interpreter process. The child process will only inherit

those resources necessary to run the process objects run()

method. In particular, unnecessary file descriptors and

handles from the parent process will not be inherited.

Starting a process using this method is rather slow

compared to using fork or fork server. Available on Unix

and Windows. This is the default on Windows.

‘fork’ The parent process uses os.fork() to fork the

Python interpreter. The child process, when it begins, is

e ectively identical to the parent process. All resources of

the parent are inherited by the child process. Available

only on Unix type operating systems. This is the default

on Unix, Linux and Mac OS.

‘fork server’ In this case a server process is started. From

then on, whenever a new process is needed, the parent

process connects to the server and requests that it fork a

new process.The fork server process is single threaded so

it is safe for it to use os.fork(). No unnecessary resources

are inherited. Available on Unix style platforms which

support passing file descriptors over Unix pipes.

The set_start_method() should be used to set the start

method (and this should only be set once within a program).

This is illustrated below, where the spawn start method is

specified:

from multiprocessing import Process

from multiprocessing import set_start_method

from time import sleep

import os

def worker(msg):

print('module name:', name) print('parent process:',

os.getppid()) print('process id:', os.getpid())

for i in range(0,10):

print(msg, end='', flush=True)

sleep(1)

def main():

print('Starting')

print('Root application process id:', os.getpid())

set_start_method('spawn')

t = Process(target=worker, args='A')

t.start()

print('Done')

if_name == '_main_':

main()

The output from this is shown below:

Starting

Root application process id: 6281

Done

module name: main

parent process: 6281 process id: 6283

AAAAAAAAAA

Note that the parent process and current process ids are

printed out for the worker () function, while the main()

method prints out only its own id. This shows that the main

application process id is the same as the worker process

parents’ id.

Alternatively, it is possible to use the get_context() method

to obtain a context object. Context objects have the same API

as the multiprocessing module and allow you to use multiple

start methods in the same program, for example:

ctx = multiprocessing.get_context('spawn')

q = ctx.Queue()

p = ctx.Process(target = foo, args = (q,))

Usinga Pool

Creating Processes is expensive in terms of computer

resources. It would therefore be useful to be able to reuse

processes within an application. The Pool class provides such

reusable processes.

The Pool class represents a pool of worker processes that can

be used to perform a set of concurrent, parallel operations.

The Pool provides methods which allow tasks to be o oaded

to these worker processes.

The Pool class provides a constructor which takes a number

of arguments:

class multiprocessing.pool.Pool(processes,

initializer, initargs, maxtasksperchild, context)

These represent:

processes is the number of worker processes to use. If

processes is None then the number returned by

os.cpu_count() is used.

initializer If initializer is not None then each worker

process will call initializer(*initargs) when it starts.

maxtasksperchild is the number of tasks a worker process

can complete before it will exit and be replaced with a

fresh worker process, to enable unused resources to be

freed. The default max tasks per child is None, which

means worker processes will live as long as the pool.

context can be used to specify the context used for

starting the worker processes. Usually a pool is created

using the function multiprocessing. Pool(). Alternatively

the pool can be created using the Pool() method of a

context object.

The Pool class provides a range of methods that can be used

to submit work to the worker processes managed by the pool.

Note that the methods of the Pool object should only be called

by the process which created the pool.

The following diagram illustrates the e ect of submitting

some work or task to the pool. From the list of available

processes, one process is selected and the task is passed to the

process. The process will then execute the task. On

completion any results are returned and the process is

returned to the available list. If when a task is submitted to

the pool there are no available processes then the task will be

added to a wait queue until such time as a process is available

to handle the task.

[image:]

The simplest of the methods provided by the Pool for work

submission is the map method:

pool.map(func, iterable, chunksize=None)

This method returns a list of the results obtained by

executing the function in parallel against each of the items in

the iterable parameter.

The func parameter is the callable object to be executed

(such as a function or a method).

The iteratable is used to pass in any parameters to the

function.

This method chops the iterable into a number of chunks

which it submits to the process pool as separate tasks.

The (approximate) size of these chunks can be specified

by setting chunk size to a positive integer. The method

blocks until the result is ready.

The following sample program illustrates the basic use of the

Pool and the map() method.

from multiprocessing import Pool

def worker(x):

print('In worker with: ', x)

return x * x

def main():

with Pool(processes=4) as pool:

print(pool.map(worker, [0, 1, 2, 3, 4, 5]))

if name

main()

== ' main ':

Note that the Pool object must be closed once you have

finished with it; we are therefore using the ‘with as’

statement described earlier in this book to handle the Pool

resource cleanly (it will ensure the Pool is closed when the

block of code within the with as statement is completed).

The output from this program is

In worker with:0

In worker with:1

In worker with:2

In worker with:3

In worker with:4

In worker with:5 [0, 1, 4, 9, 16, 25]

As can be seen from this output the map() function is used to

run six di erent instances of the worker() function with the

values provided by the list of integers. Each instance is

executed by a worker process managed by the Pool.

However, note that the Pool only has 4 worker processes, this

means that the last two instances of the worker function must

wait until two of the worker Processes have finished the work they are doing and can be reused. This can act as a way of

throttling, or controlling, how much work is done in parallel.

A variant on the map() method is the imap_unordered()

method. This method also applies a given function to an

iterable but does not attempt to maintain the order of the

results. The results are accessible via the iterable returned by

the function. This may improve the performance of the

resulting program.

The following program modified the worker() function to

return its result rather than print it. These results are then

accessible by iterating over them as they are produced via a

for loop:

[image:]

As the new method obtains results as soon as they are

available, the order in which the results are returned may be

di erent, as shown below:

In worker with:0

In worker with:1

In worker with:3

In worker with:2

In worker with:4

In worker with:5

0

1

9

16

4

25

A further method available on the Pool class is the

Pool.apply_async() method. This method allows

operations/functions to be executed asynchronously allowing

the method calls to return immediately. That is as soon as the

method call is made, control is returned to the calling code

which can continue immediately. Any results to be collected

from the asynchronous operations can be obtained either by

providing a callback function or by using the blocking get()

method to obtain a result.

Two examples are shown below, the first uses the blocking

get() method. This method will wait until a result is available

before continuing. The second approach uses a callback

function. The callback function is called when a result is

available; the result is passed into the function.

from multiprocessing import Pool

def collect_results(result):

print('In collect_results: ', result)

def worker(x):

print('In worker with: ', x)

return x * x

def main():

with Pool(processes=2) as pool:

get based example

res = pool.apply_async(worker, [6])

print('Result from async: ', res.get(timeout=1))

with Pool(processes=2) as pool:

callback based example

pool.apply_async(worker, args=[4], callback=collect_results)

if_name_ == '_main_':

main()

The output from this is:

In worker with:6

Result from async: 36

In worker with:4

In collect_results: 16

Exchanging Data Between Processes In some situations it is necessary for two processes to

exchange data. However, the two process objects do not share

memory as they are running in separate operating system

level processes. To get around this the multiprocessing

library provides the Pipe() function.

The Pipe() function returns a pair of connection.Connection

objects connected by a pipe which by default is duplex (two-

way). The two connection objects returned by Pipe()

represent the two ends of the pipe. Each connection object

has send() and recv() methods (among others). This allows

one process to send data via the send() method of one end of

the connection object. In turn a second process can receive

that data via the receive () method of the other connection

object. This is illustrated below:

[image:]

Once a program has finished with a connection is should be

closed using close ().

The following program illustrates how pipe connections are

used:

[image:]

The output from this Pipe example is:

Main - Starting, creating the Pipe

Main - Setting up the process

Main - Starting the process

Main - Wait for a response from the child process

Worker - started now sleeping for 1 second

Worker - sending data via Pipe

Worker - closing worker end of connection hello

Main - closing parent process end of connection

Main - Done

Note that data in a pipe may become corrupted if two

processes try to read from or write to the same end of the pipe

at the same time. However, there is no risk of corruption from

processes using di erent ends of the pipe at the same time.

Sharing State Between Processes

In general, if it can be avoided, then you should not share

state between separate processes. However, if it is

unavoidable then the multiprocessing library provides two

ways in which state (data) can be shared, these are Shared

Memory (as supported by multiprocessing.Value and

multiprocessing.Array) and Server Process.

Process Shared Memory

Data can be stored in a shared memory map using a

multiprocessing.Value or multiprocessing.Array. This data

can be accessed by multiple processes.

The constructor for the multiprocessing.Value type is:

multiprocessing.Value

(typecode_or_type, *args, lock = True)

Where:

typecode_or_type determines the type of the returned

object:it is either a ctypes type or a one character type

code. For example, ‘d’ indicates a double precision float

and ‘i’ indicates a signed integer.

*args is passed on to the constructor for the type.

lock If lock is True (the default) then a new recursive lock

object is created to synchronize access to the value. If lock

is False then access to the returned object will not be

automatically protected by a lock, so it will not

necessarily be process-safe.

The constructor for multiprocessing.Array is

multiprocessing.Array

multiprocessing.Array(typecode_or_type,

size_or_initializer, lock=True)

Where:

typecode_or_type determines the type of the elements of

there turned array.

size_or_initializer If size_or_initializer is an

integer,then it determines the length of the array, and the

array will be initially zeroed. Otherwise,

size_or_initializer is a sequence which is used to

initialize the array and whose length determines the

length of the array.

If lock is True (the default) then a new lock object is

created to synchronize access to the value.If lock is False

then access to the returned object will not be

automatically protected by a lock, so it will not

necessarily be “process-safe”.

An example using both the Value and Array type is given

below:

from multiprocessing import Process,Value, Array

def worker(n, a):

n.value = 3.1415927

for i in range(len(a)):

a[i] = -a[i]

def main():

print('Starting')

num = Value('d', 0.0)

arr = Array('i', range(10))

p = Process(target=worker, args=(num, arr))

p.start() p.join() print(num.value) print(*arr) print('Done')

if_name_=='main':

main()

Try

Write a program that can find the factorial of any given

number. For example, find the factorial of the number 5

(often written as 5!) which is 1 * 2 * 3 * 4 * 5 and equals 120.

The factorials not defined for negative numbers and the

factorial of Zero is 1; that is 0! = 1.

Next modify the program to run multiple factorial

calculations in parallel. Collect all the results together in a list

and print that list out.

You an use whichever approach you like to running multiple

processes although a Pool could be a good approach to use.

Your program should compute the factorials of 5, 8, 10, 15, 3,

6, and 4 in parallel.

Inter Thread/Process Synchroniza on

Introduction

In this chapter we will look at several facilities supported by

both the threading and multiprocessing libraries that allow

for synchronization and cooperation between Threads or

Processes.

In the remainder of this chapter we will look at some of the

ways in which Python supports synchronization between

multiple Threads and Processes.Note that most of the

libraries are mirrored between threading and multiprocessing

so that the same basic ideas hold for both approaches with, in

the main, very similar APIs. However, you should not mix and

match threads and processes. If you are using Threads then

you should only use facilities from the threading library. In

turn if you are using Processes than you should only use

facilities in the multiprocessing library. The examples given

in this chapter will use one or other of the technologies but

are relevant for both approaches.

Using a Barrier

Using a threading.Barrier (or multiprocessing.Barrier) is one

of the simplest ways in which the execution of a set of

Threads (or Processes) can be synchronized. The threads or

processes involved in the barrier are known as the parties that

are taking part in the barrier. Each of the parties in the barrier

can work independently until it reaches the barrier point in

the code.

The barrier represents an end point that all parties must

reach before any further behavior can be triggered. At the

point that all the parties reach the barrier it is possible to

optionally trigger a post-phase action (also known as the

barrier call- back). This post phase action represents some

behavior that should be run when all parties reach the barrier

but before allowing those parties to continue. The post-phase

action (the callback) executes in a single thread (or

process).Once it is completed then all the parties are

unblocked and may continue.

This is illustrated in the following diagram. Threads t1, t2 and

t3 are all involved in the barrier. When thread t1 reaches the

barrier it must wait until it is released by the barrier. Similarly

when t2 reaches the barrier it must wait. When t3 finally

reaches the barrier the callback is invoked. Once the callback has completed the barrier releases all three threads which are

then able to continue.

[image:]

An example of using a Barrier object is given below. Note that

the function being invoked in each Thread must also

cooperate in using the barrier as the code will run up to the

barrier.wait() method and then wait until all other threads

have also reached this point before being allowed to continue.

The Barrier is a class that can be used to create a barrier

object. When the Barrier class is instantiated, it can be

provided with three parameters:

where

parties the number of individual parties that will

participate in the Barrier.

action is a callable object (such as a function) which,

when supplied, will be called after all the parties have

entered the barrier and just prior to releasing them all.

timeout If a ‘timeout’ is provided, it is used as the default

for all subsequent wait() calls on the barrier.

Thus, in the following code

b = Barrier(3, action=callback)

Indicates that there will be three parties involved in the

Barrier and that the callback function will be invoked when all

three reach the barrier (however the timeout is left as the

default value None).

The Barrier object is created outside of the Threads (or

Processes) but must be made available to the function being

executed by the Thread (or Process). The easiest way to

handle this is to pass the barrier into the function as one of

the parameters; this means that the function can be used with

di erent barrier objects depending upon the context.

An example using the Barrier class with a set of Threads is

given below:

from threading import Barrier, Thread

from time import sleep

from random import randint

def print_it(msg, barrier): print('print_it for:', msg) for i

in range(0, 10):

print(msg, end='', flush=True)

sleep(1)

sleep(randint(1, 6))

print('Wait for barrier with:', msg)

barrier.wait()

print('Returning from print_it:', msg)

def callback():

print('Callback Executing')

print('Main - Starting')

b = Barrier(3, callback)

t1 = Thread(target=print_it,args=('A', b)) t2 =

Thread(target=print_it,args=('B', b)) t3 =

Thread(target=print_it, args=('C', b)) t1.start()

t2.start()

t3.start()

print('Main - Done')

The output from this is:

Main - Starting print_it for: A print_it for: B print_it for: C

ABC

Main - Done

ABCACBACBABCACBCABACBACBBAC Wait for barrier with: B Wait

for barrier with: A Wait for barrier with: C Callback

Executing

Returning from print_it: A

Returning from print_it: B

Returning from print_it: C

From this you can see that the print_it()function is run three

times con- currently; all three invocations reach the barrier.wait() statement but in a di erent order to that in

which they were started. Once the three have reached this

point the callback function is executed before the print_it()

function invocations can proceed.

The Barrier class itself provides several methods used to

manage or find out information about the barrier:

[image:]

A Barrier object can be reused any number of times for the

same number of Threads.

The above example could easily be changed to run using

Process by altering the import statement and creating a set of

Processes instead of Threads:

from multiprocessing import Barrier, Process

...

print('Main - Starting')

b = Barrier(3, callback)

t1 = Process(target=print_it, args=('A', b))

Note that you should only use threads with a

threading.Barrier. In turn you should only use Processes with a multiprocessing.Barrier.

Event Signaling

Although the point of using multiple Threads or Processes is

to execute separate operations concurrently, there are times

when it is important to be able to allow two or more Threads

or Processes to cooperate on the timing of their behavior. The

Barrier object presented above is a relatively high-level way

to do this; however, in some cases finer grained control is

required. The threading.Event or multiprocessing.Event

classes can be used for this purpose.

An Event manages an internal flag that callers can either

set()or clear(). Other threads can wait() for the flag to be

set(), e ectively blocking their own progress until allowed to

continue by the Event. The internal flag is initially set to False

which ensures that if a task gets to the Event before it is set

then it must wait.

You can in fact invoke wait with an optional timeout. If you do

not include the optional timeout then wait() will wait forever

while wait(timeout) will wait up to the timeout given in

seconds. If the time out is reached,then the wait method

returns False; otherwise wait returns True.

As an example,the following diagram illustrates two

processes sharing an event object. The first process runs a

function that waits for the event to be set. In turn the second

process runs a function that will set the event and thus

release the waiting process.

[image:]

The following program implements the above scenario:

from multiprocessing import Process, Event

from time import sleep

def wait_for_event(event):

print('wait_for_event - Entered and waiting')

event_is_set = event.wait()

print('wait_for_event - Event is set: ', event_is_set)

def set_event(event):

print('set_event - Entered but about to sleep')

sleep(5)

print('set_event - Waking up and setting event')

event.set()

print('set_event - Event set')

print('Starting')

Create the event object

event = Event()

Start a Process to wait for the event notification p1

= Process(target=wait_for_event, args=[event]) p1.start()

Set up a process to set the event

p2 = Process(target=set_event, args=[event])

p2.start()

Wait for the first process to complete p1.join()

print('Done')

The output from this program is:

Starting

wait_for_event - Entered and waiting

set_event - Entered but about to sleep

set_event - Waking up and setting event

set_event - Event set

wait_for_event - Event is set: True

Done

To change this to use Threads we would merely need to

change the import and to create two Threads:

from threading import Thread, Event

... print('Starting') event = Event()

t1 = Thread(target=wait_for_event, args=[event]) In this diagram the Producer is running in its own Thread

t1.start()

t2 = Thread(target=set_event, args=[event])

t2.start()

t1.join()

print('Done')

Synchronizing Concurrent Code

It is not uncommon to need to ensure that critical regions of

code are protected from concurrent execution by multiple

Threads or Processes. These blocks of code typically involve

the modification of, or access to, shared data. It is therefore

necessary to ensure that only one Thread or Process is

updating a shared object at a time and that consumer threads

or processes are blocked while this update is occurring.

This situation is most common where one or more Threads or

Processes are the producers of data and one or more other

Threads or Processes are the consumers of that data. This is

illustrated in the following diagram.

[image:]

(although it could also run in a separate Process) and places

data onto some common shared data container. Subsequently

a number of independent Consumers can consume that data

when it is available and when they are free to process the

data. However, there is no point in the consumers repeatedly

checking the container for data as that would be a waste of

resources (for example in terms of executing code on a

processor and of context switching between multiple Threads

or Processes).

We therefore need some form of notification or

synchronization between the Producer and the Consumer to

manage this situation.

Python provides several classes in the threading (and also in

the multi- processing) library that can be used to manage

critical code blocks. These classes include Lock, Condition

and Semaphore.

Python Locks

The Lock class defined (both in the threading and the

multiprocessing libraries) provides a mechanism for

synchronizing access to a block of code. The Lock object can

be in one of two states locked and unlocked (with the initial

state being unlocked). The Lock grants access to a single thread at a time; other threads must wait for the Lock to

become free before progressing.

The Lock class provides two basic methods for acquiring the

lock (acquire()) and releasing (release()) the lock.

When the state of the Lock object is unlocked, then

acquire() changes the state to locked and returns

immediately.

When the state is locked, acquire() blocks until a call to

release() in another thread changes it to unlocked, then

the acquire() call resets it to locked and returns.

The release() method should only be called in the locked

state; it changes the state to unlocked and returns

immediately. If an attempt is made to release an unlocked

lock, a Runtime Error will be raised.

An example of using a Lock object is shown below:

from threading import Thread, Lock

class SharedData(object):

def init (self): self.value = 0 self.lock= Lock()

def read_value(self):

try:

print('read_value Acquiring Lock')

self.lock.acquire()

return self.value

finally:

print('read_value releasing Lock')

self.lock.release()

def change_value(self): print('change_value acquiring lock')

with self.lock:

self.value = self.value + 1 print('change_value lock released')

The SharedData class presented above uses locks to control

access to critical blocks of code, specifically to the

read_value() and the change_value() methods. The Lock

object is held internally to the ShareData object and both

methods attempt to acquire the lock before performing their

behavior but must then release the lock after use.

The read_value() method does this explicitly using try:

finally: blocks while the change_value() method uses a with

statement (as the Lock type supports the Context Manager

Protocol). Both approaches achieve the same result but the

with statement style is more concise.

The SharedData class is used below with two simple

functions. In this case the SharedData object has been defined

as a global variable but it could also have been passed into the

reader() and updater() functions as an argument. Both the

reader and updater functions loop, attempting to call the

read_value() and change_value() methods on the

shared_data object.

As both methods use a lock to control access to the methods,

only one thread can gain access to the locked area at a time.

This means that the reader() function may start to read data before the updater() function has changed the data (or vice

versa).

This is indicated by the output where the reader thread

accesses the value ‘0’ twice before the updater records the

value ‘1’. However, the updater() function runs a second time

before the reader gains access to locked block of code which is

why the value 2 is missed. Depending upon the application

this may or may not be an issue.

shared_data = SharedData()

def reader():

while True:

print(shared_data.read_value())

def updater():

while True:

shared_data.change_value()

print('Starting')

t1 = Thread(target=reader)

t2 = Thread(target=updater)

t1.start()

t2.start()

print('Done')

The output from this is:

Starting

read_value Acquiring Lock read_value releasing Lock

0

read_value Acquiring Lock read_value releasing Lock

0

Done

change_valueacquiring lock change_value lock released

1

change_valueacquiring lock change_value lock released

change_value acquiring lock change_value lock released

3

change_valueacquiring lock change_value lock released

4

Lock objects can only be acquired once; if a thread attempts to

acquire a lock on the same Lock object more than once then a

Runtime Error is thrown.

If it is necessary to re-acquire a lock on a Lock object then the

threading. RLock class should be used. This is a Re-entrant

Lock and allows the same Thread (or Process) to acquire a

lock multiple times. The code must however release the lock

as many times as it has acquired it.

Python Conditions

Conditions can be used to synchronize the interaction

between two or more Threads or Processes. Conditions

objects support the concept of a notification model; ideal fora

shared data resource being accessed by multiple consumers

and producers.

A Condition can be used to notify one or all of the waiting

Threads or Processes that they can proceed(for example to read data from a shared resource). The methods available that

support this are:

notify() notifies one waiting thread which can then

continue

notify_all() notifies all waiting threads that they can

continue

wait() causes a thread to wait until it has been notified

that it can continue

A Condition is always associated with an internal lock which

must be acquired and released before the wait() and notify()

methods can be called. The Condition supports the Context

Manager Protocol and can therefore be used via a with

statement (which is the most typical way to use a Condition)

to obtain this lock. For example, to obtain the condition lock

and call the wait method we might write:

with condition:

condition.wait()

print('Now we can proceed')

The condition object is used in the following example to

illustrate how a producer thread and two consumer threads

can cooperate. A DataResource class has been defined which

will hold an item of data that will be shared between a

consumer and a set of producers. It also (internally) defines a

Condition attribute. Note that this means that the Condition

is completely internalized to the DataResource class; external code does not need to know, or be concerned with,the

Condition and its use. Instead external code can merely call

the consumer() and producer() functions in separate Threads

as required.

The consumer() method uses a with statement to obtain the

(internal) lock on the Condition object before waiting to be

notified that the data is available. In turn the producer()

method also uses a with statement to obtain a lock on the

condition object before generating the data attribute value

and then notifying anything waiting on the condition that

they can proceed. Note that although the consumer method

obtains a lock on the condition object; if it has to wait it will

release the lock and re obtain the lock once it is notified that it

can continue. This is a subtly that is often missed.

from threading import Thread, Condition, currentThread

from time import sleep

from random import randint

class DataResource:

def init (self):

print('DataResource - Initialising the empty data')

self.data = None

print('DataResource - Setting up the Condition object')

self.condition = Condition()

def consumer(self):

"""wait for the condition and use the resource"""

print('DataResource - Starting consumer method in',

currentThread().name)

with self.condition:

self.condition.wait()

print('DataResource - Resource is available to',

currentThread().name)

print('DataResource - Data read in',

currentThread().name, ':', self.data)

def producer(self):

"""set up the resource to be used by the consumer"""

print('DataResource - Starting producer method')

with self.condition:

print('DataResource - Producer setting data') self.data =

randint(1, 100) print('DataResource - Producer notifying all

waiting threads')

self.condition.notifyAll()

print('Main - Starting')

print('Main - Creating the DataResource object')

resource = DataResource()

print('Main - Create the Consumer Threads') c1 =

Thread(target=resource.consumer) c1.name = 'Consumer1'

c2 = Thread(target=resource.consumer)

c2.name = 'Consumer2'

print('Main - Create the Producer Thread')

p = Thread(target=resource.producer)

print('Main - Starting consumer threads')

c1.start()

c2.start()

sleep(1)

print('Main - Starting producer thread')

p.start()

print('Main - Done')

The output from an example run of this program is:

Main - Starting

Main - Creating the DataResource object DataResource -

Initializing the empty data DataResource - Setting up the

Condition object Main - Create the Consumer Threads

Main - Create the Producer Thread

Main - Starting consumer threads

DataResource - Starting consumer method in Consumer1

DataResource - Starting consumer method in Consumer2

Main - Starting producer thread DataResource - Starting

producer method DataResource - Producer setting data

Main - Done

DataResource - Producer notifying all waiting threads

DataResource - Resource is available to Consumer1

DataResource - Data read in Consumer1 : 36

DataResource - Resource is available to Consumer2

DataResource - Data read in Consumer2 : 36

Python Semaphores

The Python Semaphore class implements Dijkstra’s counting

semaphore model.

In general, a semaphore is like an integer variable, its value is

intended to represent a number of available resources of

some kind. There are typically two operations available on a

semaphore;these operations are acquire() and re- lease()

(although in some libraries Dijkstra’s original names of p() and v() are used, these operation names are based on the

original Dutch phrases).

The acquire() operation subtracts one from the value of

the semaphore, unless the value is 0, in which case it

blocks the calling thread until the semaphore’s value

increases above 0 again.

The signal() operation adds one to the value, indicating a

new instance of the resource has been added to the pool.

Both the threading.Semaphore and the

multiprocessing.Semaphore classes also supports the Context

Management Protocol. An optional parameter used with the

Semaphore constructor gives the initial value for the internal

counter; it defaults to 1. If the value given is less than 0,

ValueError is raised.

The following example illustrates 5 di erent Threads all

running the same worker() function. The worker() function

attempts to acquire a semaphore; if it does then it continues

into the with statement block; if it doesn’t, it waits until it can

acquire it. As the semaphore is initialized to 2 there can only

be two threads that can acquire the Semaphore at a time.

The sample program however, starts up five threads, this

therefore means that the first 2 running Threads will acquire

the semaphore and the remaining thee will have to wait to acquire the semaphore. Once the first two release the

semaphore a further two can acquire it and so on.

from threading import Thread, Semaphore, currentThread

from time import sleep

def worker(semaphore):

with semaphore:

print(currentThread().getName() + " - entered")

sleep(0.5)

print(currentThread().getName() + " - exiting")

print('MainThread - Starting')

semaphore = Semaphore(2)

for i in range(0, 5):

thread = Thread(name='T' + str(i),

target=worker, args=[semaphore])

thread.start()

print('MainThread - Done')

The output from a run of this program is given below:

MainThread - Starting

T0 - entered T1 -

entered MainThread -

Done T0 -

exiting

T2 - entered

T1 - exiting

T3 - entered

T2 - exiting

T4 - entered

T3 - exiting

T4 - exiting

The Concurrent Queue Class

As might be expected the model where a producer Thread or

Process generates data to be processed by one or more

Consumer Threads or Processes is so common that a higher

level abstraction is provided in Python than the use of Locks,

Conditions or Semaphores; this is the blocking queue model

implemented by the threading.Queue or

multiprocessing.Queue classes.

Both these Queue classes are Thread and Process safe. That is

they work appropriately (using internal locks) to manage data

access from concurrent Threads or Processes.

An example of using a Queue to exchange data between a

worker process and the main process is shown below.

The worker process executes the worker() function sleeping,

for 2 s before putting a string ‘Hello World’ on the queue. The

main application function sets up the queue and creates the

process. The queue is passed into the process as one of its

arguments. The process is then started. The main process

then waits until data is available on the queue via the

(blocking) get() methods. Once the data is available it is

retrieved and printed out before the main process terminates.

from multiprocessing import Process, Queue

from time import sleep

def worker(queue):

print('Worker - going to sleep')

sleep(2)

print('Worker - woken up and putting data on queue')

queue.put('Hello World')

def main():

print('Main - Starting')

queue = Queue()

p = Process(target=worker, args=[queue])

print('Main - Starting the process')

p.start()

print('Main - waiting for data')

print(queue.get())

print('Main - Done')

if_name_== '_main_':

main()

The output from this is shown below:

Main - Starting

Main - Starting the process

Main - wait for data

Worker - going to sleep

Worker - woken up and putting data on queue

Hello World

Main – Done

However, this does not make it that clear how the execution

of the two processes interweaves. The following diagram illustrates this graphically:

[image:]

In the above diagram the main process waits for a result to be

returned from the queue following the call to the get()

method; as it is waiting it is not using any system resources.

In turn the worker process sleeps for two seconds before

putting some data onto the queue (via put(‘Hello World’)).

After this value is sent to the Queue the value is returned to

the main process which is woken up (moved out of the

waiting state) and can continue to process the rest of the

main function.

Futures

Introduction

A future is a thread (or process) that promises to return a

value in the future; once the associated behavior has

completed. It is thus a future value. It provides a very simple

way of firing o behavior that will either be time consuming

to execute or which may be delayed due to expensive

operations such as Input/Output and which could slow down

the execution of other elements of a program. This chapter

discusses futures in Python.

The Need for a Future

In a normal method or function invocation, the method or

function is executed in line with the invoking code (the caller)

having to wait until the function or method (the caller)

returns. Only after this is the caller able to continue to the

next line of code and execute that. In many (most) situations

this is exactly what you want as the next line of code may

depend on a result returned from the previous line of code etc.

However, in some situations the next line of code is

independent of the previous line of code. For example, let us

assume that we are populating a User Interface (UI). The first

line of code may read the name of the user from some

external data source (such as a database)and then display it

within a field in the UI. The next line of code may then add

today’s data to another field in the UI. These two lines of code

are independent of each other and could be run

concurrently/in parallel with each other.

In this situation we could use either a Thread or a Process to

run the two lines of code independently of the caller, thus

achieving a level of concurrency and allowing the caller to

carry onto the third line of code etc. However, neither the

Thread or the Process by default provide a simple mechanism

for obtaining a result from such an independent operation.

This may not be a problem as operations may be self-

contained; for example they may obtain data from the

database or from today’s date and then updated a UI.

However, in many situations the calculation will return a

result which needs to be handled by the original invoking

code (the caller).This could involve performing a long

running calculation and then using the result returned to

generate another value or update another object etc.

A Future is an abstraction that simplifies the definition and

execution of such concurrent tasks. Futures are available in many di erent languages including Python but also Java,

Scala, C++ etc. When using a Future; a callable object(such as

a function) is passed to the Future which executes the

behavior either as a separate Thread or as a separate Process

and then can return a result once it is generated. The result

can either be handled by a call back function(that is invoked

when the result is available) or by using a operation that will

wait for a result to be provided.

Futures in Python

The concurrent.futures library was introduced into Python in

version 3.2 (and is also available in Python2.5 on wards). The

concurrent.futures library provides the Future class and a

high level API for working with Futures. The

concurrent.futures.Future class encapsulates the

asynchronous execution of a callable object (e.g. a function or

method). The Future class provides a range of methods that

can be used to obtain information about the state of the

future,retrieve results or cancel the future:

cancel() Attempt to cancel the Future. If the Future is

currently being executed and cannot be canceled then the

method will return False, otherwise the call will be

canceled and the method will return True.

canceled() Returns True if the Future was successfully

canceled.

running() Returns True if the Future is currently being

executed and cannot be canceled.

done() Returns True if the Future was successfully

canceled or finished running.

result(timeout=None) Return the value returned by the

Future. If the Future hasn’t yet completed then this

method will wait up to timeout seconds. If the call hasn’t

completed in timeout seconds, then a Timeout Error will

be raised. timeout can be an int or float. If timeout is not

specified or None, there is no limit to the wait time. If the

future is canceled before completing then the Canceled

Error will be raised. If the call raised, this method will

raise the same exception.

It should be noted however, that Future instances should not

be created directly, rather they should be created via the

submit method of an appropriate executor.

Future Creation

Futures are created and executed by Executors. An Executor

provides two methods that can be used to execute a Future (or

Futures) and one to shut down the executor.

At the root of the executor class hierarchy is the

concurrent.futures. Executor abstract class. It has two sub

classes:

the ThreadPoolExecutor and

the ProcessPoolExecutor.

The ThreadPoolExecutor uses threads to execute the futures

while the ProcessPoolExecutor uses separate processes. You

can therefore choose how you want the Future to be executed

by specifying one or other of these executors.

Simple Example Future

To illustrate these ideas, we will look at a very simple

example of using a Future. To do this we will use a simple

worker function; similar to that used in the previous

chapters:

from time import sleep

define function to be used with future

def worker(msg):

for i in range(0, 10):

print(msg, end='', flush=True)

sleep(1)

return i

The only di erence with this version of worker is that it also

returns a result which is the number of times that the worker

printed out the message.

We can of course invoke this method inline as follows:

res = worker('A')

print(res)

We can make the invocation of this method into a Future. To

do this we use a ThreadPoolExecutor imported from the

concurrent.futures module. We will then submit the worker

function to the pool for execution. This returns a reference to

a Future which we can use to obtain the result:

from time import sleep

from concurrent.futures import ThreadPoolExecutor

print('Setting up the ThreadPoolExecutor')

pool = ThreadPoolExecutor(1)

Submit the function ot the pool to run

concurrently - obtain a future from pool print('Submitting the

worker to the pool') future =pool.submit(worker, 'A')

print('Obtained a reference to the future object', future)

Obtain the result from the future - wait if necessary

print('future.result():', future.result())

print('Done')

The output from this is:

Setting up the ThreadPoolExecutor

Submitting the worker to the pool

AAO btained a reference to the future object <Future at

0x1086ea8d0 state=running>

AAAAAAAA future.result(): 9

Done

Notice how the output from the main program and the worker

is interwoven with two‘A’s being printed out before the

message starting ‘Obtained a…’.

In this case a new ThreadPoolExecutor is being created with

one thread in the pool (typically there would be multiple

threads in the pool but one is being used here for illustrative

purposes). The submit() method is then used to submit the

function worker with the parameter ‘A’ to the

ThreadPoolExecutor for it to schedule execution of the

function. The submit() method returns a Future object.

The main program then waits for the future object to return a

result (by calling the result() method on the future). This

method can also take a timeout.

To change this example to use Processes rather than Threads

all that is needed is to change the pool executor to a

ProcessPoolExecutor:

from concurrent.futures import ProcessPoolExecutor

print('Setting up the ThreadPoolExecutor')

pool = ProcessPoolExecutor(1)

print('Submitting the worker to the pool')

future = pool.submit(worker, 'A')

print('Obtained a reference to the future object', future1)

print('future.result():', future.result())

print('Done')

The output from this program is very similar to the last one:

Setting up the ThreadPoolExecutor

Submitting the worker to the pool

Obtained a reference to the future object <Future at

0x109178630 state=running>

AAAAAAAAAAfuture.result(): 9

Done

The only di erence is that in this particular run the message

starting ‘Obtained a..’ is printed out before any of the ‘A’s are

printed; this may be due to the fact that a Process initially

takes longer to set up than a Thread.

Running Multiple Futures

Both the ThreadPoolExecutor and the ProcessPoolExecutor

can be configured to support multiple Threads/Processes via

the pool. Each task that is submitted to the pool will then run

within a separate Thread/Process. If more tasks are submitted

than there are Threads/Processes available, then the

submitted task will wait for the first available Thread/Process

and then be executed. This can act as a way of managing the

amount of concurrent work being done.

For example, in the following example, the worker() function

is submitted to the pool four times, but the pool is configured

to use threads. Thus the fourth worker will need to wait until

one of the first three completes before it is able to execute:

from concurrent.futures import ThreadPoolExecutor

print('Starting...')

pool = ThreadPoolExecutor(3) future1 = pool.submit(worker, 'A')

future2 = pool.submit(worker, 'B') future3 = pool.submit(worker,

'C') future4 = pool.submit(worker, 'D')

print('\nfuture4.result():', future4.result())

print('All Done')

When this runs we can see that the Futures for A, B and C all

run concurrently but Dmust wait until one of the others

finishes:

Starting...

ABCACBCABCBABCACBACABCBACABCBADDDDDDDDDD

future4.result(): 9

All Done

The main thread also waits for future4 to finish as it requests

the result which is a blocking call that will only return once

the future has completed and generates a result.

Again, to use Processes rather than Threads all we need to do

is to replace the ThreadPoolExecutor with the

ProcessPoolExecutor:

from concurrent.futures import ProcessPoolExecutor

print('Starting...')

pool = ProcessPoolExecutor(3) future1 = pool.submit(worker, 'A')

future2 = pool.submit(worker, 'B') future3 = pool.submit(worker,

'C') future4 = pool.submit(worker, 'D')

print('\nfuture4.result():', future4.result())

print('All Done')

Waiting for All Futures to Complete

It is possible to wait for all futures to complete before

progressing. In the previous section it was assumed that

future4 would be the last future to complete; but in many

cases it may not be possible to know which future will be the

last to complete. In such situations it is very useful to be able

to wait for all the futures to complete before continuing. This

can be done using the concurrent.futures.wait function. This

function takes a collection of futures and optionally a timeout

and a return_when indicator.

wait(fs, timeout=None, return_when=ALL_COMPLETED)

where:

timeout can be used to control the maximum number of

seconds to wait before returning. timeout can be an int or

float. If timeout is not specified or None, there is no limit

to the wait time.

return_when indicates when this function should return.

It must be one of the following constants:

– FIRST_COMPLETED The function will return when any

future finishes or is canceled.

– FIRST_EXCEPTION The function will return when any

future finishes by raising an exception. If no future raises an

exception,then it is equivalent to ALL_COMPLETED.

– ALL_COMPLETED The function will return when all

futures finish or are canceled.

The wait() function returns two sets done and not_done. The

first set contains the futures that completed (finished or were

canceled) before the wait completed. The second set, the

not_dones, contains uncompleted futures.

We can use the wait() function to modify out previous

example so that we no longer rely on future4 finishing last:

from concurrent.futures import ProcessPoolExecutor

from concurrent.futures import wait from time import sleep

def worker(msg):

for i in range(0,10): print(msg,end='',flush=True) sleep(1)

return i

print('Starting...setting up pool') pool =

ProcessPoolExecutor(3) futures = []

print('Submitting futures')

future1 = pool.submit(worker, 'A')

futures.append(future1)

future2 = pool.submit(worker, 'B')

futures.append(future2)

future3 = pool.submit(worker, 'C')

futures.append(future3)

future4 = pool.submit(worker, 'D')

futures.append(future4)

print('Waiting for futures to complete')

wait(futures)

print('\nAll Done')

The output from this is:

Starting…setting up pool

Submitting futures

Waiting for futures to complete

ABCABCABCABCABCABCBCACBACBABCADDDDDDDDDD

All Done

Note how each future is added to the list of futures which is

then passed to the wait() function.

Processing Results as Completed

What if we want to process each of the results returned by our

collection of futures? We could loop through the futures list in

the previous section once all the results have been generated.

However, this means that we would have to wait for them all

to complete before processing the list.

In many situations we would like to process the results as

soon as they are generated without being concerned if that is

the first, third, last or second etc. The

concurrent.futures.as_completed() function does preciously

this; it will serve up each future in turn as soon as they are

completed; with all futures eventually being returned but

without guaranteeing the order (just that as soon as a future

is finished generating a result it will be immediately

available).

For example, in the following example, the is_even()

function sleeps for a random number of seconds(ensuring

that di erent invocations of this function will take di erent

duration) then calculates a result:

from concurrent.futures import ThreadPoolExecutor, as_completed

from time import sleep

from random import randint

def is_even(n):

print('Checking if', n , 'is even')

sleep(randint(1, 5))

return str(n) + ' ' + str(n % 2 == 0)

print('Started')

data = [1, 2, 3, 4, 5, 6]

pool = ThreadPoolExecutor(5)

futures = []

for v in data:

futures.append(pool.submit(is_even, v))

for f in as_completed(futures):

print(f.result())

print('Done')

The second for loop will loop through each future as they

complete printing out the result from each, as shown below:

Started

Checking if 1 is even

Checking if 2 is even

Checking if 3 is even

Checking if 4 is even

Checking if 5 is even

Checking if 6 is even

1 False

4 True

5 False

3 False

2 True

6 True

Done As you can see from this output although the six futures were

started in sequence the results returned are in a di erent

order (with the returned order being 1, 4, 5, 3, 2 and finally 6).

Processing Future Results Using a Callback

An alternative to the as_complete() approach is to provide a

function that will be called once a result has been generated.

This has the advantage that the main program is never

paused; it can continue doing whatever is required of it.

The function called once the result is generated is typically

known as a callback function; that is the future calls back to

this function when the result is available.

Each future can have a separate call back as the function to

invoke is set on the future using the add_done_callback()

method. This method takes the name of the function to

invoke.

For example, in this modified version of the previous

example, we specify a call back function that will be used to

print the futures result. This call back function is called

print_future_result(). It takes the future that has completed

as its argument:

from concurrent.futures import ThreadPoolExecutor

from time import sleep

from random import randint

def is_even(n):

print('Checking if', n, 'is even')

sleep(randint(1, 5))

return str(n) + ' ' + str(n % 2 == 0)

def print_future_result(future):

print('In callback Future result: ', future.result())

print('Started')

data = [1, 2, 3, 4, 5, 6]

pool = ThreadPoolExecutor(5)

for v in data:

future = pool.submit(is_even, v)

future.add_done_callback(print_future_result)

print('Done')

When we run this, we can see that the call back function is

called after the main thread has completed. Again, the order

is unspecified as the is_even() function still sleeps for a

random amount of time.

Started

Checking if 1 is even

Checking if 2 is even

Checking if 3 is even

Checking if 4 is even

Checking if 5 is even

Done

In callback Future result: 1 False

Checking if 6 is even

In callback Future result: 5 False

In callback Future result: 4 True

In callback Future result: 3 False

In callback Future result: 2 True

In callback Future result: 6 True

Concurrency with AsyncIO

Introduction

The Async IO facilities in Python are relatively recent

additions originally introduced in Python 3.4 and evolving up

to and including Python 3.7. They are comprised (as of Python

3.7) of two new keywords async and await (introduced in

Python 3.7) and the Async IO Python package.

In this chapter we first discuss Asynchronous IO before

introducing the async and await keywords. We then present

Async IO Tasks, how they are created used and managed.

Asynchronous IO

Asynchronous IO (or Async IO) is a language agnostic

concurrent programming model (or paradigm) that has been

implemented in several di erent programming language

(such as C# and Scala) as well as in Python.

Asynchronous IO is another way in which you can build

concurrent applications in Python. It is in many ways an alternative to the facilities provided by the Threading library

in Python. However, were as the Threading library is more

susceptible to issues associated with the GIL (The Global

Interpreter Lock) which can a ect performance, the Async IO

facilities are better insulated from this issue.

The way in which Async IO operates is also lighter weight

then the facilities provide day the multiprocessing library

since the asynchronous tasks in Async IO run within a single

process rather than requiring separate processes to be

spawned on the underlying hardware.

Async IO is therefore another alternative way of

implementing concurrent solutions to problems. It should be

noted that it does not build on either Threading or Multi

Processing; instead Async IO is based on the idea of

cooperative multitasking. These cooperating tasks operate

asynchronously; by this we mean that the tasks:

are able to operate separately from other tasks,

are able to wait for another task to return a result when

required,

and are thus able to allow other tasks to run while they

are waiting.

The IO (Input/Output) aspect of the name Async IO is because

this form of concurrent program is best suited to I/O bound

tasks.

In an I/O bound task a program spends most of its time

sending data to, or reading data from, some form of external

device (for example a database or set of files etc.). This

communication is time consuming and means that the

program spends most of its time waiting for a response from

the external device.

One way in which such I/O bound applications can (appear to)

speed up is to overlap the execution of di erent tasks; thus,

while one task is waiting for a database to respond with some

data, another task can be writing data to a log file etc.

AsyncIO Event Loop

When you are developing code using the Async IO facilities

you do not need to worry about how the internals of the Async

IO library work; however at least at the conceptual level it is

useful to understand one key concept; that of the Async IO

Event Loop; This loop control show and when each task gets

run. For the purposes of this discussion a task represents

some work that can be run independently of other pieces of

work.

The Event Loop knows about each task to be run and what the

state of the task currently is (for example whether it is

waiting for something to happen/complete). It selects a task

that is ready to run from the list of available tasks and

executes it. This task has complete control of the CPU until it

either completes its work or hands back control to the Event

Loop (for example, because it must now wait for some data to

be supplied from a database).

The Event Loop now checks to see if any of the waiting tasks

are ready to continue executing and makes a note of their

status. The Event Loop then selects another task that is ready

to run and starts that task o . This loop continues until all the

tasks have finished. This is illustrated below:

[image:]

An important point to note in the above description is that a

task does not give up the processor unless it decides to, for

example by having to wait for something else. They never get

interrupted in the middle of an operation; this avoids the problem that two threads might have when being time sliced

by a separate scheduler as they may both be sharing the same

resource.This can greatly simplify your code.

The Async and Await Keywords

The async keyword, introduced in Python 3.7 is used to mark

a function as being something that uses the await keyword

(we will come back to this below as there is one other use of

the async keyword).A function that uses the await keyword

can be run as a separate task and can give up control of the

processor when it calls await against another async function

and must wait for that function to complete. The invoked

async function can then run as a separate task etc.

To invoke an async function it is necessary to start the Async

IO Event Loop and for that function to be treated as a task by

the Event Loop. This is done by calling the asyncio.run()

method and passing in the root async function.

The asyncio.run() function was introduced in Python 3.7

(older versions of Python such as Python 3.6 required you to

explicitly obtain a reference to the Event Loop and to run the

root async function via that). One point to note about this

function is that it has been marked as being provisional in

Python 3.7. This means that future versions of Python may or

may not support the function or may modify the function in some way. You should therefore check the documentation for

the version of Python you are using to see whether the run

method has been altered or not.

Using Async and Await

We will examine a very simple Async IO program from the top

down. The main() function for the program is given below:

def main() :

print('Main - Starting')

asyncio.run(do_something())

print('Main - Done')

if_name_== '_main_':

main()

The main() function is the entry point for the program and

calls:

asyncio.run(do_something())

This starts the Async IO Event Loop running and results in the

do_some- thing() function being wrapped up in a Task that

is managed by the loop. Note that you do not explicitly create

a Task in Async IO; they are always created by some function

however it is useful to be aware of Tasks as you can interact

with them to check their status or to retrieve a result.

The do_something() function is marked with the keyword

async:

async def do_something():

print('do_something - will wait for worker')

result = await worker()

print('do_something - result:', result)

As previously mentioned this indicates that it can be run as a

separate Task and that it can use the keyword await to wait

for some other function or behavior to complete. In this case

the do_something() asynchronous function must wait for the

worker() function to complete.

The await keyword does more than merely indicate that the

do_something() function must wait for the worker to

complete. It triggers another Task to be created that will

execute the worker() function and releases the processor

allowing the Event Loop to select the next task to execute

(which may or may not be the task running the worker()

function). The status of the do_something task is now

waiting while the status of the worker() task is ready (to run).

The code for the worker task is given below:

async def worker():

print('worker - will take some time')

time.sleep(3)

print('worker - Done it')

return 42

The async keyword again indicates that this function can be

run as a separate task. However, this time the body of the

function does not use the await keyword. This is because this

is a special case known as an Async IO coroutine function.

This is a function that returns a value from a Task (it is

related to the idea of a standard Python coroutine which is a

data consumer).

Sadly, Computer Science has many examples where the same

term has been used for di erent things as well as examples

where di erent terms have been used for the same thing. In

this case to avoid confusion just stick with Async IO

coroutines are functions marked with async that can be run as

a separate task and may call await.

The full listing for the program is given below:

import asyncio

import time

async def worker():

print('worker - will take some time')

time.sleep(3)

print('worker - done it')

return 42

async def do_something():

print('do_something - will wait for worker')

result = await worker()

print('do_something - result:', result)

def main():

print('Main - Starting')

asyncio.run(do_something())

print('Main - Done')

if_name_== '_main_':

main()

When this program is executed the output is:

Main - Starting

do_something - will wait for worker worker - will take some

time

worker - done it do_something – result: 42

Main – Done

When this is run there is a pause between the two worker

printouts as it sleeps. Although it is not completely obvious

here, the do_something() function was run as one task, this

task then waited when it got to the worker() function which

was run as another Task. Once the worker task completed the

do_some- thing task could continue and complete its

operation. Once this happened the Async IO Event Loop could then terminate as no further tasks

were available.

AsyncIO Tasks

Tasks are used to execute functions marked with the async

keyword concurrently. Tasks are never created directly

instead they are created implicitly via the keyword await or

through functions such as asyncio.run described above or

asyncio.create_task(), asyncio.gather() and asyncio.as_-

completed(). These additional task creation functions are

described below:

asyncio.create_task() This function takesa function

marked with async and wraps it inside a Task and

schedules it for execution by the Async IO Event Loop.

This function was added in Python 3.7.

asyncio.gather(*aws)This function runs all the async

functions passed to it as separate Tasks.It gathers the

results of each separate task together and returns them as

a list. The order of the results corresponds to the order of

the async functions in the aws list.

asyncio.as_completed(aws) Runs each of the async

functions passed to it.

A Task object supports several useful methods

cancel() cancels a running task. Calling this method will

cause the Task to throw a CancelledError exception.

cancelled() returns True if the Task has been canceled.

done() returns True if the task has completed, raised an

exception or was canceled.

result() returns the result of the Task if it is done. If the

Tasks result is not yet available, then the method raises

the InvalidState Error exception.

exception() return an exception if one was raised by the

Task. If the task was canceled then raises the Cancelled

Error exception. If the task is not yet done, then raises an

InvalidStateError exception.

It is also possible to add a callback function to invoke once the

task has completed (or to remove such a function if it has

been added):

add_done_callback(callback) Add a callback to be run

when the Task is done.

remove_done_callback(callback) Remove callback from

the call- backs list.

Note that the method is called ‘add’ rather than ‘set’

implying that there can be multiple functions called when the

task has completed (if required).

The following example illustrates some of the above:

import asyncio

async def worker():

print('worker - will take some time')

await asyncio.sleep(1) print('worker - Done it') return 42

def print_it(task):

print('print_it result:', task.result())

async def do_something():

print('do_something - create task for worker')

task = asyncio.create_task(worker()) print('do_something - add

a callback') task.add_done_callback(print_it)

await task

Information on task

print('do_something - task.cancelled():',

task.cancelled())

print('do_something - task.done():', task.done())

print('do_something - task.result():', task.result())

print('do_something - task.exception():',

task.exception())

print('do_something - finished')

def main() :

print('Main - Starting')

asyncio.run(do_something())

print('Main - Done')

if_name_== '_main_':

main()

In this example, the worker() function is wrapped within a

task object that is returned from the

asyncio.create_task(worker()) call.

A function (print_it()) is registered as a callback on the task

using the asyncio.create_task(worker()) function. Note that the worker is passed the task that has completed as a

parameter. This allows it to obtain information from the task

such as any result generated.

In this example the async function do_something() explicitly

waits on the task to complete. Once this happens several

di erent methods are used to obtain information about the

task (such as whether it was canceled or not).

One other point to note about this listing is that in the

worker() function we have added an await using the

asyncio.sleep(1) function; this allows the worker to sleep and

wait for the triggered task to complete; it is an Async IO

alternative to time.sleep(1).

The output from this program is:

Main - Starting

do_something - create task for worker do_something - add a

callback

worker - will take some time worker - Done it

print_it result: 42

do_something - task.cancelled(): False do_something -

task.done(): True do_something - task.result(): 42 do_something

- task.exception(): None do_something - finished

Main - Done

Running Multiple Tasks

In many cases it is useful to be able to run several tasks

concurrently. There are two options provided for this the

asyncio.gather()and the asyncio. as_completed() function;

we will look at both in this section.

Collating Results from Multiple Tasks

It is often useful to collect all the results from a set of tasks

together and to continue only once all the results have been

obtained.When using Threads or Processes this can be

achieved by starting multiple Threads or Processes and then

using some other object such as a Barrier to wait for all the

results to be available before continuing. Within the Async IO

library all that is required is to use the asyn-

cio.gather()function with a list of the async functions to run,

for example:

import asyncio

import random

async def worker():

print('Worker - will take some time')

await asyncio.sleep(1)

result = random.randint(1,10)

print('Worker - Done it')

return result

async def do_something():

print('do_something - will wait for worker')

Run three calls to worker concurrently and collect

results

results = await asyncio.gather(worker(), worker(), worker())

print('results from calls:', results)

def main() :

print('Main - Starting') asyncio.run(do_something()) print('Main

- Done')

if_name_== '_main_':

main()

In this program the do_something() function uses

results = await asyncio.gather(worker(), worker(), worker())

to run three invocations of the worker() function in three

separate Tasks and to wait for the results of all three to be

made available before they are returned as a list of values and

stored in the results variable.

This makes is very easy to work with multiple concurrent

tasks and to collate their results.

Note that in this code example the worker async function

returns a random number between 1 and 10.

The output from this program is:

Main - Starting

do_something - will wait for worker

Worker - will take some time Worker - will take some time

Worker - will take some time Worker - Done it

Worker - Done it

Worker - Done it

results from calls: [5, 3, 4] Main – Done

As you can see from this all three of the worker invocations

are started but then release the processor while they sleep.

After this the three tasks wake up and complete before the

results are collected together and printed out.

Handling Task Results as They Are Made Available

Another option when running multiple Tasks is to handle the

results as they become available, rather than wait for all the

results to be provided before continuing. This option is

supported by the asyncio.as_completed() function. This

function returns an iterator of async functions which will be

served up as soon as they have completed their work.

The for-loop construct can be used with the iterator

returned by the function; however within the for loop the

code must call await on the async functions returned so that

the result of the task can be obtained.For example:

async def do_something():

print('do_something - will wait for worker')

Run three calls to worker concurrently and collect

results

for async_func in asyncio.as_completed((worker('A'),

worker('B'), worker('C'))):

result = await async_func

print('do_something - result:', result)

Note that the asyncio.as_completed() function takes a

container such as a tuple of async functions.

We have also modified the worker function slightly so that a

label is added to the random number generated so that it is

clear which invocation of the worker function return which

result:

async def worker(label):

print('Worker - will take some time')

await asyncio.sleep(1)

result = random.randint(1,10)

print('Worker - Done it')

return label + str(result)

When we run this program

def main() :

print('Main - Starting')

asyncio.run(do_something())

print('Main - Done')

The output is

Main - Starting

do_something - will wait for worker

Worker - will take some time Worker - will take some time

Worker - will take some time Worker - Done it

Worker - Done it

Worker - Done it

do_something - result: C2 do_something - result: A1

do_something - result: B10

Main – Done

As you can see from this, the results are not returned in the

order that the tasks are created, task ‘C’ completes first

followed by ‘A’ and ‘B’. This illustrates the behavior of the

asyncio.as_completed() function.

Try

This exercise will use the facilities in the AsyncIOlibrary to

calculate a set of factorial numbers.

The factorial of a positive integer is the product of all positive

integers less than or equal to n. For example,

5! = 5 x 4 x 3 x 2 x 1 = 120

Note that the value of 0! is 1,

Create an application that will use the async and await

keywords to calculate the factorials of a set of numbers. The

factorial function should await for 0.1 of a second(using

asyncio.sleep(0.1)) each time round the loop used to calculate

the factorial of a number.

You can use with asyncio.as_completed() orasyncio.gather()

to collect the results up. You might also use a list

comprehension to create the list of calls to the factorial

function.

The main function might look like:

def main():

print('Main - Starting')

asyncio.run(calculate_factorials([5, 7, 3, 6]))

print('Main - Done')

if_name_== '_main_':

main()

Reac ve Programming Introduc on

Introduction

In this chapter we will introduce the concept of Reactive

Programming. Reactive programming is a way of write

programs that allow the system to reactive to data being

published to it. We will look at the RxPy library which

provides a Python implementation of the ReactiveX approach

to Reactive Programming.

What Is a Reactive Application?

A Reactive Application is one that must react to data; typically

either to the presence of new data, or to changes in existing

data. The Reactive Manifesto presents the key characteristics

of Reactive Systems as:

Responsive. This means that such systems respond in a

timely manner. Here of course timely will di er

depending upon the application and domain; in one

situation a second may be timely in another it may be far

too slow.

Resilient. Such systems stay responsive in the face of

failure. The systems must therefore be designed to handle

failure gracefully and continue to work appropriately

following the failure.

Elastic. As the workload grows the system should

continue to be responsive.

Message Driven. Information is exchanged between

elements of a reactive system using messages. This

ensures loose coupling, isolation and location

transparency between these components.

As an example, consider an application that lists a set of

Equity Stock Trade values based on the latest market stick

price data. This application might present the current value of

each trade within a table. When new market stock price data

is published, then the application must update the value of

the trade within the table. Such an application can be

described as being reactive.

Reactive Programming is a programming style (typically

supported by libraries) that allows code to be written that

follow the ideas of reactive systems. Of course just because

part of an application uses a Reactive Programming library

does not make the whole application reactive; indeed it may

only be necessary for part of an application to exhibit reactive

behavior.

The ReactiveX Project

ReactiveX is the best known implementation of the Reactive

Programming paradigm. ReactiveX is based on the Observer-

Observable design pattern. However it is an extension to this

design pattern as it extends the pattern such that the

approach supports sequences of data and/or events and adds

operators that allow developers to compose sequences

together declaratively while abstracting away concerns

associated with low-level threads,synchronization,

concurrent data structures and non-blocking I/O.

The ReactiveX project has implementations for many

languages including RxJava, RxScala and RxPy; this last is the

version we are looking at as it is for the Python language.

RxPy is described as:

A library for composing asynchronous and event-based

programs using Observable collections and query operator

functions in Python

The Observer Pattern

The Observer Pattern is one of the Gang of Four set of Design

Patterns. The Gang of Four Patterns (as originally described in Gamma et al. 1995) are so called because this book on

design patterns was written by four very famous authors

namely; Erich Gamma, Richard Helm, Ralph Johnson and

John Vlis sides.

The Observer Pattern provides a way of ensuring that a set of

objects is notified whenever the state of another object

changes. It has been widely used in a number of languages

(such as Small talk and Java) and can also be used with

Python.

The intent of the Observer Pattern is to manage a one to many

relationship between an object and those objects interested in

the state, and in particular state changes, of that object. Thus

when the objects’ state changes, the interested (dependent)

objects are notified of that change and can take whatever

action is appropriate.

There are two key roles within the Observer Pattern, these are

the Observable and the Observer roles.

Observable. This is the object that is responsible for

notifying other objects that a change in its state has

occurred

Observer. An Observer is an object that will be notified of

the change in state of the Observable and can take

appropriate action (such as triggering a change in their

own state or performing some action).

In addition the state is typically represented explicitly:

State. This role may be played by an object that is used to

share information about the change in state that has

occurred within the Observable. This might be as simple

as a String indicating the new state of the Observable or it

might be a data oriented object that provides more

detailed information.

These roles are illustrated in the following figure.

[image:]

In the above figure, the Observable object publishes data to a

Data Stream.The data in the Data Stream is then sent to each

of the Observers registered with the Observable. In this way

data is broadcast to all Observers of an Observable.

It is common for an Observable to only publish data once

there is an Observer available to process that data. The

process of registering with an Observable is referred to as

subscribing. Thus an Observable will have zero or more

subscribers (Observers).

If the Observable publishes data at a faster rate than can be

processed by the Observer then the data is queued via the

Data Stream.This allows the Observer to process the data

receive done at a time at its own pace; without any concern

for data loss (as long as su cient memory is available for the

data stream).

Hot and Cold Observables

Another concept that it is useful to understand is that of Hot

and Cold Observables.

Cold Observables are lazy Observables. That is, a Cold

Observable will only publish data if at least one Observer

is subscribed to it.

Hot Observables, by contrast, publish data whether there

is an Observer subscribed or not.

Cold Observables A Cold Observable will not publish any data unless there is at

least one Observer subscribed to process that data. In addition

a cold Observable only provides data to an Observer when that

Observer is ready to process the data; this is because the

Observable-Observer relationship is more of a pull

relationship. For example,given an Observable that will

generate a set of values based on a range, then that

Observable will generate each result lazily when requested by

an Observer.

If the Observer takes some time to process the data emitted

by the Observable, then the Observable will wait until the

Observer is ready to process the data before emitting another

value.

Hot Observables

Hot Observables by contrast publish data whether there is an

Observer subscribed or not. When an Observer registers with

the Observable, it will start to receive data atthat point, as and

when the Observable publishes new data. If the Observable

has already published previous data items, then these will

have been lost and the Observer will not receive that data.

The most common situation in which a Hot Observable is

created is when the source producer represents data that may

be irrelevant if not processed immediately or may be superseded by subsequent data. For example, data published

by a Stock Market Price data feed would fall into this category.

When an Observable wraps around this data feed it can

publish that data whether or not an Observer is subscribed.

Implications of Hot and Cold Observables

It is important to know whether you have a hot or cold

Observable because this can impact on what you can assume

about the data supplied to the Observers and thus how you

need to design your application.If it is important that no data

is lost then care is needed to ensure that the subscribers are in

place before a Hot Observable starts to publish data (where as

this is not a concern for a cold Observable).

Di erences Between Event Driven Programming and

Reactive Programming

In Event Driven programming, an event is generated in

response too something happening; the event then

represents this with any associated data. For example, if the

user clicks the mouse then an associated MouseClickEvent

might be generated. This object will usually hold information

about the x and y coordinates of the mouse along with which

button was clicked etc. It is then possible to associate some

behavior (such as a function or a method) with this event so that if the event occurs, then the associated operation is

invoked and the event object is provided as a parameter. This

is certainly the approach used in the wxPython library

presented earlier in this book:

[image:]

From the above diagram,when a MoveEvent is generated the

on_move() method is called and the event is passed into the

method.

In the Reactive Programming approach, an Observer is

associated with an Observable. Any data generated by the

Observable will be received and handled by the Observer. This

is true whatever that data is, as the Observer is a handler of

data generated by the Observable rather than a handler of a

specific type of data (as with the Event driven approach).

Both approaches could be used in many situations. For

example, we could have a scenario in which some data is to be

processed whenever a stock price changes.

This could be implemented using a StockPriceChangeEvent

associated with a StockPriceEventHandler. It could also be

implemented via Stock PriceChangeObserverable and a StockPriceChangeObserver. In either case one element

handles the data generated by another element. However, the

RxPy library simplifies this process and allows the Observer

to run in the same thread as, or a separate thread from, the

Observable with just a small change to the code.

Advantages of Reactive Programming

There are several advantages to the use of a Reactive

Programming library these include:

It avoids multiple callback methods. The problems

associated with the use of callbacks are sometimes

referred to as callback hell. This can occur when there are

multiple callbacks, all defined to run in response to some

data being generated or some operation completing. It

can be hard to understand, maintain and debug such

systems.

Simpler asynchronous, multi threaded execution. The

approach adopted by RxPy makes it very easy to execute

operations/ behavior within a multi threaded

environment with independent asynchronous functions.

Available Operators. The RxPy library comes pre built

with numerous operators that make processing the data

produced by an Observable much easier.

Data Composition. It is straight forward to compose new

data streams (Observables) from data supplied by two or

more other Observables for asynchronous processing.

Disadvantages of Reactive Programming

Its easy to over complicate things when you start to chain

operators together. If you use too many operators, or too

complex a set of functions with the operators,it can become

hard to understand what is going on.

Many developers think that Reactive programming is

inherently multi-threaded; this is not necessarily the case; in

fact RxPy (the library explored in the next two chapters) is

single threaded by default. If an application needs the

behavior to execute asynchronously then it is necessary to

explicitly indicate this.

Another issue for some Reactive programming frameworks is

that it can become memory intensive to store streams of data

so that Observers can processes that data when they are

ready.

TheRxPy Reactive Programming Framework

The RxPy library is a part of the larger ReactiveX project and

provides an implementation of ReactiveX for Python. It is

built on the concepts of Observables, Observers, Subjects and

operators. In this book we use RxPy version 3.

In the next chapter we will discuss Observables, Observers,

Subjects and subscriptions using the RxPy library.The

following chapter will explore various RxPy operators.

Reference

For more information on the Observer Observable design

pattern see the “Patterns” book by the Gang of Four

E. Gamma, R. Helm, R. Johnson, J. Vlissades, Design

patterns: elements of reusable object-oriented software,

Addison-Wesley (1995).

RxPy Observables, Observers and

Subjects

Introduction

In this chapter we will discuss Observables,Observers and

Subjects. We also consider how observers may or may not run

concurrently.

In the remainder of this chapter we look at RxPy version 3

which is a major update from RxPy version 1 (you will

therefore need to be careful if you are looking on the web for

examples as some aspects have changed; most notably the

way in which operators are chained).

Observables in RxPy

An Observable is a Python class that publishes data so that it

can be processed by one or more Observers(potentially

running in separate threads).

An Observable can be created to publish data from static data

or from dynamic sources. Observables can be chained tougher to control how and when data is published, to transform data

before it is published and to restrict what data is actually

published.

For example, to create an Observable from a list of values we

can use the rx.from_list() function. This function (also

known as an RxPy operator) is used to create the new

Observable object:

import rx

Observable = rx.from_list([2, 3, 5, 7])

Observers in RxPy

We can add an Observer to an Observable using the

subscribe() method. This method can be supplied with a

lambda function, a named function or an object whose class

implements the Observer protocol.

For example,the simplest way to create an Observer is to use a

lambda function:

Subscribe a lambda function

observable.subscribe(lambda value: print('Lambda Received',

value)) When the Observable publishes data the lambda function will

be invoked. Each data item published will be supplied

independently to the function. The output from the above

subscription for the previous Observable is:

Lambda Received 2

Lambda Received 3

Lambda Received 5

Lambda Received 7

We can also have used a standard or named function as an

Observer:

def prime_number_reporter(value):

print('Function Received', value)

Subscribe a named function

observable.subscribe(prime_number_reporter)

Note that it is only the name of the function that is used with

the subscribe() method (as this e ectively passes a reference

to the function into the method).

If we now run this code using the previous Observable we get:

Function Received 2

Function Received 3

Function Received 5

Function Received 7

In actual fact the subscribe() method takes four optional

parameters. These are:

on_next Action to invoke for each data item generated by

the Observable.

on_error Action to invoke upon exceptional termination

of the Observable sequence.

on_completed Action to invoke upon graceful

termination of the Observable sequence.

Observer The object that is to receive notifications. You

may subscribe using an Observer or callbacks, not both.

Each of the above can be used as positional parameters or as

keyword arguments, for example:

Use lambdas to set up all three functions

observable.subscribe(

on_next = lambda value: print('Received on_next', value),

on_error = lambda exp: print('Error Occurred', exp),

on_completed = lambda: print('Received completed

notification')

)

The above code defines three lambda functions that will be

called depending upon whether data is supplied by the Observable, if an error occurs or when the datastream is

terminated. The output from this is:

Received on_next 2

Received on_next 3

Received on_next 5

Received on_next 7

Received completed notification

Note that the on_error function is not run as no error was

generated in this example.

The final optional parameter to the subscribe() method is an

Observer object. An Observer object can implement the

Observer protocol which has the following methods

on_next(), on_completed() and on_error(), for example:

class PrimeNumberObserver:

def on_next(self, value):

print('Object Received', value)

def on_completed(self):

print('Data Stream Completed')

def on_error(self, error):

print('Error Occurred', error)

Instances of this class can now be used as an Observer via the

subscribe() method:

Subscribe an Observer object

observable.subscribe(PrimeNumberObserver())

The output from this example using the previous Observable

is:

Object Received 2

Object Received 3

Object Received 5

Object Received 7

Data Stream Completed

Note that the on_completed() method is also called; however

the on_error() method is not called as there were no

exceptions generated.

The Observer class must ensure that the methods

implemented adhere to the Observer protocol (i.e. That the

signatures of the on_next(), on_completed () and on_error()

methods are correct).

Multiple Subscribers/Observers

An Observable can have multiple Observers subscribed to it.

In this case each of the Observers is sent all of the data

published by the Observable. Multiple Observers can be registered with an Observable by calling the subscribe method

multiple times. For example, the following program has four

subscribers as well as on_error and on_completed function

registered:

Create an observable using data in a list

observable = rx.from_list([2, 3, 5, 7])

class PrimeNumberObserver:

""" An Observer class """

def on_next(self, value):

print('Object Received', value)

def on_completed(self):

print('Data Stream Completed')

def on_error(self, error):

print('Error Occurred', error)

def prime_number_reporter(value):

print('Function Received', value)

print('Set up Observers / Subscribers')

Subscribe a lambda function

observable.subscribe(lambda value: print('Lambda Received',

value))

Subscribe a named function

observable.subscribe(prime_number_reporter)

Subscribe an Observerobject

observable.subscribe(PrimeNumberObserver())

Use lambdas to set up all three functions

observable.subscribe(

on_next=lambda value: print('Received on_next', value),

on_error=lambda exp: print('Error Occurred', exp),

on_completed=lambda: print('Received completed

notification')

)

The output from this program is:

Create the Observable object Set up Observers / Subscribers

Lambda Received 2

Lambda Received 3

Lambda Received 5

Lambda Received 7

Function Received 2

Function Received 3

Function Received 5

Function Received 7

Object Received 2

Object Received 3

Object Received 5

Object Received 7

Data Stream Completed

Received on_next 2

Received on_next 3

Received on_next 5

Received on_next 7

Received completed notification

Note how each of the subscribers is sent all of the data before

the next subscriber is sent their data (this is the default single

threaded RxPy behavior).

Subjects in RxPy

A subject is both an Observer and an Observable. This allows a

subject to receive an item of data and then to republish that

data or data derived from it.

For example, imagine a subject that receives stock market

price data published by an external(to the organization

receiving the data) source. This subject might add a

timestamp and source location to the data before

republishing it to other internal Observers. However, there is

a subtle di erence that should be noted between a Subject

and a plain Observable. A subscription to an Observable will

cause an independent execution of the Observable when data

is published. Notice how in the previous section all the

messages were sent to a specific Observer before the next

Observer was sent any data at all.

A Subject shares the publication action with all of the

subscribers and they will therefore all receive the same data

item in a chain before the next data item. In the class

hierarchy the Subject class is a direct subclass of the Observer

class.

The following example creates a Subject that enriches the

data it receives by adding a timestamp to each data item. It

then republishes the data item to any Observers that have

subscribed to it.

import rx

from rx.subjects import Subject

from datetime import datetime

source = rx.from_list([2, 3, 5, 7])

class TimeStampSubject(Subject):

def on_next(self, value): print('Subject Received', value)

super().on_next((value, datetime.now()))

def on_completed(self):

print('Data Stream Completed')

super().on_completed()

def on_error(self, error):

print('In Subject- Error Occurred', error)

super().on_error(error)

def prime_number_reporter(value):

print('Function Received', value)

print('Set up')

Create the Subject

subject = TimeStampSubject()

Set up multiple subscribers for the subject

subject.subscribe(prime_number_reporter)

subject.subscribe(lambda value: print('Lambda Received',

value))

subject.subscribe(

on_next = lambda value: print('Received on_next',value),

on_error = lambda exp: print('Error Occurred', exp),

on_completed = lambda: print('Received completed

notification')

)

Subscribethe Subject to the Observable source

source.subscribe(subject)

print(‘Done’)

Note that in the above program the Observers are added to the

Subject before the Subject is added to the source Observable.

This ensures that the Observers are subscribed before the

Subject starts to receive data published by the Observable. If

the Subject was subscribed to the Observable before the

Observers were subscribed to the Subject, then all the data

could have been published before the Observers were

registered with the Subject.

The output from this program is:

Set up

Subject Received 2

Function Received (2, datetime.datetime(2019, 5, 21, 17, 0,

2,

196372))

Lambda Received (2, datetime.datetime(2019, 5, 21, 17, 0,

2,

196372))

Received on_next (2, datetime.datetime(2019, 5, 21, 17, 0,

2,

196372))

Subject Received 3

Function Received (3, datetime.datetime(2019, 5, 21, 17, 0,

2,

196439))

Lambda Received (3, datetime.datetime(2019, 5, 21, 17, 0,

2,

196439))

Received on_next (3, datetime.datetime(2019, 5, 21, 17, 0,

2,

196439))

Subject Received 5

Function Received (5, datetime.datetime(2019, 5, 21, 17, 0,

2,

196494))

Lambda Received (5, datetime.datetime(2019, 5, 21, 17, 0,

2,

196494))

Received on_next (5, datetime.datetime(2019, 5, 21, 17, 0,

2,

196494))

Subject Received 7

Function Received (7, datetime.datetime(2019, 5, 21, 17, 0,

2,

196548))

Lambda Received (7, datetime.datetime(2019, 5, 21, 17, 0,

2,

196548))

Received on_next (7, datetime.datetime(2019, 5, 21, 17, 0,

2,

196548))

Data Stream Completed Received

completed notification

Done

As can be seen from this output the numbers 2, 3, 5 and 7 are

received by all of the Observers once the Subject has added the

timestamp.

Observer Concurrency

By default RxPy uses a single threaded model; that is

Observables and Observers execute in the same thread of

execution. However, this is only the default as it is the

simplest approach.

It is possible to indicate that when a Observer subscribes to an

Observable that it should run in a separate thread using the

scheduler keyword parameter on the subscribe() method.

This keyword is given an appropriate scheduler such as the

rx.concurrency.NewThreadScheduler. This scheduler will

ensure that the Observer runs in a separate thread.

To see the di erence look at the following two programs. The

main di erence between the programs is the use of specific

schedulers:

import rx

Observable = rx.from_list([2, 3, 5])

observable.subscribe(lambda v: print('Lambda1 Received', v))

observable.subscribe(lambda v: print('Lambda2 Received', v))

observable.subscribe(lambda v: print('Lambda3 Received', v))

The output from this first version is given below:

Lambda1 Received 2

Lambda1 Received 3

Lambda1 Received 5

Lambda2 Received 2

Lambda2 Received 3

Lambda2 Received 5

Lambda3 Received 2

Lambda3 Received 3

Lambda3 Received 5

The subscribe() method takes an optional keyword parameter

called scheduler that allows a scheduler object to be provided.

Now if we specify a few di erent schedulers we will see that

the e ect is to run the Observers concurrently with the

resulting output being interwoven:

import rx

from rx.concurrency import NewThreadScheduler,

ThreadPoolScheduler, ImmediateScheduler

Observable = rx.from_list([2, 3, 5])

observable.subscribe(lambda v: print('Lambda1 Received', v),

scheduler=ThreadPoolScheduler(3))

observable.subscribe(lambda v: print('Lambda2 Received', v),

scheduler=ImmediateScheduler())

observable.subscribe(lambda v: print('Lambda3 Received', v),

scheduler=NewThreadScheduler())

As the Observable runs in a separate thread need

ensure that the main thread does not terminate

input('Press enterto finish')

Note that we have to ensure that the main thread running the

program does not terminate (as all the Observables are now

running in their own threads) by waiting for user input. The

output from this version is:

Lambda2 Received 2

Lambda1 Received 2

Lambda2 Received 3

Lambda2 Received 5

Lambda1 Received 3

Lambda1 Received 5

Press enter to finish

Lambda3 Received 2

Lambda3 Received 3

Lambda3 Received 5

By default the scheduler keyword on the subscribe() method

defaults to None indicating that the current thread will be

used for the subscription to the Observable.

Available Schedulers

To support di erent scheduling strategies the RxPy library

provides two modules that supply di erent schedulers; the

rx.concurrency and rx. currency.mainloopscheduler. The

modules contain a variety of schedulers including those listed

below.

The following schedulers are available in the rx.concurrency

module:

ImmediateScheduler This schedules an action for

immediate execution.

CurrentThreadScheduler This schedules activity for the

current thread.

TimeoutScheduler This scheduler works via a timed

callback.

NewThreadSchedulercreates a scheduler for each unit of

work on a separate thread.

ThreadPoolScheduler. This is a scheduler that utilizes a

thread pool to execute work. This scheduler can act as a

way of throttling the amount of work carried out

concurrently.

The rx.concurrency.mainloopschduler module also defines

the following schedulers:

IOLoopScheduler A scheduler that schedules work via the

Tornado I/O main event loop.

PyGameScheduler A scheduler that schedules works for

PyGame.

WxScheduler A schedulerfor a wxPython event loop.

Try

Given the following set of tuples representing Stock/Equity

prices:

stocks = (('APPL', 12.45), ('IBM', 15.55), ('MSFT',

5.66), ('APPL', 13.33))

Write a program that will create an Observable based on the

stocks data. Next subscribe three di erent observers to the

Observable. The first should print out the stock price, the

second should print out the name of the stock and the third

should print out the entire tuple.

RxPy Operators

Introduction

In this chapter we will look at the types of operator provided

by RxPy that can be applied to the data emitted by an

Observable.

Reactive Programming Operators

Behind the interaction between an Observable and an

Observer is a data stream. That is the Observable supplies a

data stream to an Observer that consumes/ processes that

stream. It is possible to apply an operator to this data stream

that can be used to to filter, transform and generally refine

how and when the data is supplied to the Observer.

The operators are mostly defined in the rx.operators module,

for example rx.operators.average(). However it is common to

use an alias for this such that the operators module is called

op, such as from rx import operators as op. This allows for a

short hand form to be used when referencing an operator,

such as op.average().

Many of the RxPy operators execute a function which is

applied to each of the data items produced by an Observable.

Others can be used to create an initial Observable (indeed you

have already seen these operators in the form of the

from_list() operator).Another set of operators can be used to

generate a result based on data produced by the Observable

(such as the sum() operator).

In fact RxPy provides a wide variety of operators and these

operators can be categorized as follows:

• Creational,

• Transformational,

• Combinatorial,

• Filters,

• Error handlers,

• Conditional and Boolean operators,

• Mathematical,

• Connectable.

Examples of some of these categories are presented in the

rest of this section.

Piping Operators

To apply an operator other than a creational operator to an

Observable it is necessary to create a pipe. A Pipe is essentially a series of one or more operations that can be applied to the

data stream generated by the Observable. The result of

applying the pipe is that a new data stream is generated that

represents the results produced following the application of

each operator in turn. This is illustrated below:

[image:]

To create a pipe the Observable.pipe() method is used. This

method takes a comma delimited list of one or more

operators and returns a data stream. Observers can then

subscribe to the pipe’s data stream. This can be seen in the

examples given in the rest of this chapter for

transformations, filters, mathematical operators etc.

Creational Operators

You have already seen an example of a creational operator in

the examples presented earlier in this chapter. This is because

the rx.from_list() operator is an example of a creational operator. It is used to create a new Observable based on data

held in a list like structure.

A more generic version of from_list() is the from_()

operator. This operator takes an iterable and generates an

Observable based on the data provided by the iterable. Any

object that implements the iterable protocol can be used

including user defined types. There is also an operator

from_iterable(). All three operators do the same thing and

you can choose which to use based on which provides the

most semantic meaning in your context.

All three of the following statements have the same e ect:

source = rx.from_([2, 3, 5, 7])

source = rx.from_iterable([2, 3, 5, 7])

source = rx.from_list([2, 3, 5, 7])

This is illustrated pictorially below:

[image:]

Another creational operator is the rx.range() operator. This

operator generates an observable for a range of integer

numbers. The range can be specified with our without a

starting value and with or within an increment. However the

maxi- mum value in the range must always be provided, for

example:

obs1 = rx.range(10) obs2 = rx.range(0, 10) obs3 =

rx.range(0, 10, 1)

Transformational Operators

There are several transformational operators defined in the

rx.operators module including rx.operators.map() and

rx.operators.flat_map(). The rx.operators.map() operator

applies a function to each data item generated by an

Observable.

The rx.operators.flat_map() operator also applies a function

to each data item but then applies a flatten operation to the

result.For example, if the result is a list of lists then flat_map

will flatten this into a single list. In this section we will focus

on the rx.operators.map() operator.

The rx.operators.map() operator allows a function to be

applied to all data items generated by an Observable.The result of this function is then returned as the result of the

map() operators Observable. The function is typically used to

perform some form of transformation to the data supplied to

it. This could be adding one to all integer values, converting

the format of the data from XML to JSON,enriching the data

with additional information such as the time the data was

acquired and who the data was supplied by etc.

In the example given below we are transforming the set of

integer values supplied by the original Observable into

strings. In the diagram these strings include quotes around

them to highlight they are in fact a string:

[image:]

This is typical of the use of a transformation operator; that is

to change the data from one format to another or to add

information to the data.

The code used to implement this scenario is given below. Note

the use of the pipe() method to apply the operator to the data

stream generated by the Observable:

Apply a transformation to a data source to convert

integers into strings

import rx

from rx import operators as op

Set up a source with a map function

source = rx.from_list([2, 3, 5, 7]).pipe(

op.map(lambda value: "'" + str(value) + "'")

)

Subscribe a lambda function

source.subscribe(lambda value: print('Lambda Received', value,

' is a string ', isinstance(value, str)))

The output from this program is:

Lambda Received ‘2’ is a string True

Lambda Received ‘3’ is a string True

Lambda Received ‘5’ is a string True

Lambda Received ‘7’ is a string True

Combinatorial Operators

Combinatorial operators combine together multiple data

items in some way. One example of a combinatorial operator

is the rx.merge() operator. This operator merges the data produced by two Observables into a single Observable data

stream. For example:

[image:]

In the above diagram two Observables are represented by the

sequence 2, 3, 5, 7 and the sequence 11, 13, 16, 19. These

Observables are supplied to the merge operator that

generates a single Observable that will supply data generated

from both of the original Observables. This is an example of

an operator that does not take a function but instead takes

two Observables.

The code representing the above scenario is given below:

An example illustratinghow to merge two data sources

import rx

Set up two sources

source1 = rx.from_list([2, 3, 5, 7])

source2 = rx.from_list([10, 11, 12])

Merge two sources into one rx.merge(source1, source2)\

.subscribe(lambda v: print(v, end=',')) Notice that in this case we have subscribed directly to the

Observable returned by the merge() operator and have not

stored this in an intermediate variable (this was a design

decision and either approach is acceptable).

An example illustratinghow to merge two data sources

import rx

Set up two sources

source1 = rx.from_list([2, 3, 5, 7])

source2 = rx.from_list([10, 11, 12])

Merge two sources into one rx.merge(source1, source2)\

.subscribe(lambda v: print(v, end=','))

Notice that in this case we have subscribed directly to the

Observable returned by the merge() operator and have not

stored this in an intermediate variable (this was a design

decision and either approach is acceptable).

The output from this program is presented below:

2,3,5,7,10,11,12,

Notice from the output the way in which the data held in the

original Observables is intertwined in the output of the

Observable generated by the merge() operator.

Filtering Operators

There are several operators in this category including

rx.operators.filter (), rx.operators.first(),

rx.operators.last()and rx.opera- tors.distinct(). The filter()

operator only allows those data items to pass through that

pass some test expression defined by the function passed into

the filter. This function must return True or False. Any data

item that causes the function to return True is allowed to pass

through the filter.

For example, let us assume that the function passed into

filter() is designed to only allow even numbers through. If the

data stream contains the numbers 2, 3, 5,7, 4, 9 and 8 then

the filter() will only emit the numbers 2, 4 and 8. This is

illustrated below:

[image:]

The following code implements the above scenario:

Filter source for even numbers

import rx

from rx import operators as op

Set up a source with a filter

source = rx.from_list([2, 3, 5, 7, 4, 9, 8]).pipe(

op.filter(lambda value: value % 2 == 0)

)

Subscribea lambda function

source.subscribe(lambda value: print('Lambda Received',

value))

In the above code the rx.operators.filter() operator takes a

lambda function that will verify if the current value is even or

not (note this could have been a named function or a method

on an object etc.). It is applied to the data stream generated by

the Observable using the pipe() method. The output

generated by this example is:

Lambda Received 2

Lambda Received 4

Lambda Received 8

The first() and last() operators emit only the first and last

data item published by the Observable.

The distinct() operator suppresses duplicate items being

published by the Observable. For example, in the following list used as the data for the Observable, the numbers 2 and 3

are duplicated:

Use distinctto suppress duplicates

source = rx.from_list([2, 3, 5, 2, 4, 3, 2]).pipe(

op.distinct()

)

Subscribea lambda function

source.subscribe(lambda value: print('Received', value))

However, when the output is generated by the program all

duplicates have been suppressed:

Received 2

Received 3

Received 5

Received 4

Mathematical Operators

Mathematical and aggregate operators perform calculations

on the data stream provided by an Observable. For example,

the rx.operators.average() operator can be used to calculate

the average of a set of numbers published by an Observable.

Similarly rx.operators.max() can select the maximum value, rx.operators.min() the minimum value and

rx.operators.sum() will total all the numbers published etc.

An example using the rx.operators.sum() operator is given

blow:

Example of summing all the values in a data stream

import rx

from rx import operators as op

Set up a source and apply sum

rx.from_list([2, 3, 5, 7]).pipe(

op.sum()

).subscribe(lambda v: print(v))

The output from the rx.operators.sum() operator is the total

of the data items published by the Observable (in this case the

total of 2, 3, 5 and 7). The Observer function that is subscribed

to the rx.operators.sum() operators Observable will print out

this value:

17

However, in some cases it may be useful to be notified of the

intermediate running total as well as the final value so that

other operators down the chain can react to these subtotals.

This can be achieved using the rx.operators.scan() operator.

The rx.operators.scan() operator is actually a

transformational operator but can be used in this case to provide a mathematical operation. The scan() operator

applies a function to each data item published by an

Observable and generates its own data item for each value

received. Each generated value is passed to the next

invocation of the scan() function as well as being published to

the scan() operators Observable data stream. The running

total can thus be generated from the previous sub total and

the new value obtained.This is shown below:

import rx

from rx import operators as op

Rolling or incremental sum

rx.from_([2, 3, 5, 7]).pipe(

op.scan(lambda subtotal, i: subtotal+i)

).subscribe(lambda v: print(v))

The output from this example is:

2

5

10

17

This means that each subtotal is published as well as the final

total.

Chaining Operators

An interesting aspect of the RxPy approach to data stream

processing is that it is possible to apply multiple operators to

the data stream produced by an Observable.

The operators discussed earlier actually return another

Observable. This new Observable can supply its own data

stream based on the original data stream and the result of

applying the operator.This allows another operator to be

applied in sequence to the data produced by the new

Observable. This allows the operators to be chained together

to provide sophisticated processing of the data published by

the original Observable.

For example, we might first start o by filtering the output

from an Observable such that only certain data items are

published.We might then apply a transformation in the form

of a map() operator to that data, as shown below:

[image:]

Note the the order in which we have applied the operators; we

first filter out data that is not of interest and then apply the

transformation. This is more e cient than apply the

operators the other way around as in the above example we

do not need to transform the odd values. It is therefore

common to try and push the filter operators as high up the

chain as possible.

The code used to generate the chained set of operators is

given below. In this case we have used lambda functions to

define the filter() function and the map () function. The

operators are applied to the Observable obtained from the list

supplied. The data stream generated by the Observable is processed by each of the operators defined in the pipe. As

there are now two operators the pipe contains both operators

and acts a pipe down which the data flows.

The list used as the initial source of the Observables data

contains a sequence of event and odd numbers. The filter()

function selects only even numbers and the map() function

transforms the integer values into strings. We then subscribe

an Observer function to the Observable produced by the

transformational map() operator.

Example of chainingoperators together

import rx

from rx import operators as op

Set up a source with a filter

source = rx.from_list([2, 3, 5, 7, 4, 9, 8])

pipe = source.pipe(

op.filter(lambda value: value % 2 == 0), op.map(lambda

value: "'"+ str(value) + "'")

)

Subscribe a lambda function

pipe.subscribe(lambda value: print('Received', value))

The output from this application is given below:

Received ‘2’ Received ‘4’ Received ‘8’

This makes it clear that only the three even numbers (2, 4 and

8) are allowed through to the map() function.

Online Resources

See the following online resources for information on RxPy:

https://rxpy.readthedocs.io/en/latest/ Documentation for

the RxPy library.

https://rxpy.readthedocs.io/en/latest/operators.html

Lists of the available RxPy operators.

Try

Given the following set of tuples representing Stock/Equity

prices:

stocks = (('APPL', 12.45), ('IBM', 15.55), ('MSFT',

5.66), ('APPL', 13.33))

Provide solutions to the following:

Select all the ‘APPL’ stocks

Select all stocks with a price over 15.00

Find the average price of all ‘APPL’ stocks.

Now use the second set of tuples and merge them with the

first set of stock prices:

stocks2 = (('GOOG', 8.95), ('APPL', 7.65), ('APPL',

12.45), ('MSFT', 5.66), ('GOOG', 7.56), ('IBM', 12.76))

Convert each tuple into a list and calculate how much 25

shares in that stock would be, print this out as the result).

Find the highest value stock.

Find the lowest value stock.

Only publish unique data times (I.e. Suppress duplicates).

Introduc on to Sockets and Web Services

Introduction

In the following two chapters we will explore socket based

and web service approaches to inter process communications.

These processes may be running on the same computer or

di erent computers on the same local area network or may be

geographically far apart. In all cases information is sent by

one program running in one process to another program

running in a separate process via internet sockets. This

chapter introduces the core concepts involved in network

programming.

Sockets

Sockets, or rather Internet Protocol (IP) sockets provide a

programming interface to the network protocol stack that is

managed by the underlying operating system. Using such an

API means that the programmer is abstracted away from the

low level details of how data is exchanged between process on

(potentially) di erent computers and can instead focus on

the higher level aspects of their solution.

There are a number of di erent types of IP socket available,

however the focus in this book is on Stream Sockets. A stream

socket uses the Transmission Control Protocol (TCP) to send

messages.Such a socket is often referred to as a TCP/IP

socket.

TCP provides for ordered and reliable transmission of data

across the connection between two devices (or hosts). This

can be important as TCP guarantees that for every message

sent; that every message will not only arrive at the receiving

host but that the messages will arrive in the correct order.

A common alternative to the TCP is the User Data gram

Protocol (or UDP). UDP does not provide any delivery

guarantees (that is messages can be lost or may arrive out of

order). However, UDP is a simpler protocol and can be

particularly useful for broadcast systems, where multiple

clients may need to receive the data published by a server

host (particularly if data loss is not an issue).

Web Services

A Web Service is a service o ered by a host computer that can

be invoked by a remote client using the Hypertext Transfer

Protocol (HTTP). HTTP can be run over any reliable stream

transport protocol, although it is typically used over TCP/IP.

It was originally designed to allow data to be transferred

between a HTTP server and a web browser so that the data

could be presented in a human readable form to a user.

However, when used with a web service it is used to support

program to program communication between a client and a

server using machine-readable data formats. Currently this

format is most typically JSON (Java ScriptObject Notation)

although in the past XML (eXtensible Markup Language) was

often used.

Addressing Services

Every device (host) connected to the internet has a unique

identity (we are ignoring private networks here). This unique

identity is represented as an IP address. Using an IP address

we can connect a socket to a specific host anywhere on the

internet. It is therefore possible to connect to a whole range

of device types in this way from printers to cash tills to

fridges as well as servers, mainframes and PCs etc.

IP addresses have a common format such as 144.124.16.237.

An IP version 4 address is always a set of four numbers

separated by full stops. Each number can be in the range 0–

255, so the full range of IP addresses is from 0.0.0.0 to

255.255.255.255.

An IP address can be divided up into two parts; the part

indicating the network on which the host is connected and

the host’s ID, for example:

[image:]

Thus:

The Network ID elements of the IP address identifies the

specific network on which the host is currently located.

The Host ID is the part of the IP address that specifies a

specific device on the network (such as your computer).

On any given network there may be multiple hosts, each with

their own host ID but with a shared network ID. For example,

on a private home network there may be:

192.168.1.1 Jasmine’s laptop.

192.168.1.2 Adam’s PC

192.168.1.3 Home Printer

192.168.1.4 Smart TV

In many ways the network id and host id elements of an IP

address are like the postal address for a house on a street. The

street may have a name, for example Coleridge Avenue and

there may be multiple houses on the street. Each house has a

unique number; thus 10 Coleridge Avenue is uniquely

di erentiated from 20 Coleridge Avenue by the house

number.

At this point you may be wondering where the URLs you see

in your web browser come into play (such as www.bbc.co.uk).

These are textual names that actually map to an IP address.

The mapping is performed by something called a Domain

Name System (or DNS) server. A DNS server acts as a lookup

service to provide the actual IP address for a particular textual

URL name.The presence of an English textual version of a

host address is because humans are better at remembering (a

hopefully) meaningful name rather than what might appear

to be a random sequence of numbers.

There are several web sites that can be used to see these

mappings (and one is given at the end of this chapter). Some

examples of how the English textual name maps to an IP

address are given below:

www.aber.ac.uk maps to 144.124.16.237

www.uwe.ac.uk maps to 164.11.132.96

www.bbc.net.uk maps to 212.58.249.213

www.gov.uk maps to 151.101.188.144

Note that these mappings were correct at the time of writing;

they can change as new entries can be provided to the DNS

servers causing a particular textual name to map to a

di erent physical host.

Localhost

There is a special IP address which is usually available on a

host computer and is very useful for developers and testers.

This is the IP address:

127.0.0.1

It is also known as localhost which is often easier to

remember. Localhost (and 127.0.0.1) is used to refer to the

computer you are currently on when a program is run; that is

it is your local host computer (hence the name localhost).

For example, if you start up a socket server on your local

computer and want a client socket program, running on the

same computer, to connect to the server program; you can

tell it to do so by getting it to connect to localhost.

This is particularly useful when either you don’t know the IP

address of your local computer or because the code may be run on multiple di erent computers each of which will have

their own IP address. This is particularly common if you are

writing test code that will be used by developers when

running their own tests on di erent developer (host)

machines.

We will be using localhost in the next two chapters as a way of

specifying where to look for a server program.

Port Numbers

Each internet device/host can typically support multiple

processes. It is therefore necessary to ensure that each

process has its own channel of communications. To do this

each host has available to it multiple ports that a program can

connect too. For example port 80 is often reserved for HTTP

web servers, while port 25 is reserved for SMTP servers. This

means that if a client wants to connect to a HTTP server on a

particular computer then it must specify port 80 not port 25

on that host.

A port number is written after the IP address of the host and

separated from the address by a colon, for example:

• www.aber.ac.uk:80 indicates port 80 on the host machine

which will typically be running a HTTP server, in this case for

Aberystwyth University.

• localhost:143 this indicates that you wish to connect to

port 143 which is typically reserved for an IMAP (Internet

Message Access Protocol) server on your local machine.

• www.uwe.ac.uk:25 this indicates port 25 on a host

running at the University of the West of England, Bristol. Port

25 is usually reserved for SMTP (Simple Mail Transfer

Protocol) servers.

Port numbers in the IP system are 16 bit numbers in the range

0–65 536. Generally, port numbers below 1024 are reserved

for predefined services (which means that you should avoid

using them unless you wish to communicate with one of

those services such as telnet, SMTP mail, ftp etc.). Therefore

it is typically to choose a port number above 1024 when

setting up your won services.

IPv4 Versus IPv6

What we have described in this chapter in terms of IP

addresses is in fact based on the Internet Protocol version 4

(aka IPv4). This version of the Internet Protocol was

developed during the 1970s and published by the IETF

(Internet Engineering Task Force) in September 1981

(replacing an earlier definition published in January 1980).

This version of the standard uses 32 binary bits for each

element of the host address (hence the range of 0 to 255 for

each of there parts of the address). This provides a total of 4.29 billion possible unique addresses. This seemed a huge

amount in 1981 and certainly enough for what was imagined

at the time for the internet.

Since 1981 the internet has become the backbone to not only

the World Wide Web itself, but also to the concept of the

Internet of Things (in which every possible device might be

connected to the internet from your fridge, to your central

heating system to your toaster). This potential explosion in

internet addressable devices/ hosts lead in the mid 1990 as to

concerns about the potential lack of internet addresses using

IPv4. The IETF therefore designed a new version of the

Internet Protocol; Internet Protocol version 6 (or IPv6). This

was ratified as an Internet Standard in July 2017.

IPv6 uses a 128 bit address for each element in a hosts

address. It also uses eight number groups (rather than 4)

which are separated by a colon. Each number group has four

hexadecimal digits.

The following illustrates what an IPv6 address looks like:

2001:0DB8:AC10:FE01:EF69:B5ED:DD57:2CLE

Uptake of the IPv6 protocol has been slower than was

originally expected, this is in part because the IPv4 and IPv6

have not been designed to be interoperable but also because the utilization of the IPv4 addresses has not been as fast as

many originally feared (partly due to the use of private

networks). However, over time this is likely to change as

more organizations move over to using the IPv6.

38.8 Sockets and Web Services in Python

The next two chapters discuss how sockets and web services

can be implemented in Python. The first chapter discusses

both general sockets and HTTP server sockets. The second

chapter looks at how the Flask library can be used to create

web services that run over HTTP using TCP/IP sockets.

Online Resources

See the following online resources for information

https://en.wikipedia.org/wiki/Network_socket Wikipedia

page on Sockets.

https://en.wikipedia.org/wiki/Web_service Wikipedia

page on Web Services.

https://codebeautify.org/website-to-ip-addressProvides

mappings from URLs to

IP addresses.

https://en.wikipedia.org/wiki/IPv4 Wikipedia page on

IPv4.

https://en.wikipedia.org/wiki/IPv6 Wikipedia page on

IPv6.

https://www.techopedia.com/definition/28503/dns-

server For an introduction to DNS.

Sockets in Python

Introduction

A Socket is an end point in a communication link between

separate processes. In Python sockets are objects which

provide a way of exchanging information between two

processes in a straightforward and platform independent

manner.

In this chapter we will introduce the basic idea of socket

communications and then presents a simple socket server

and client application.

Socket to Socket Communication

When two operating system level processes wish to

communicate,they can do so via sockets. Each process has a

socket which is connected to the others socket. One process

can then write information out to the socket, while the

second process can read information in from the socket.

Associated with each socket are two streams, one for input

and one for output. Thus, to pass information from one

process to another, you write that information outto the

output stream of one socket object and read it from the input

stream of another socket object (assuming the two sockets

are connected).

Several di erent types of sockets are available, however in

this chapter we will focus on TCP/IP sockets. Such a socket is

a connection-oriented socket that will provide a guarantee of

delivery of data (or notification of the failure to deliver the

data). TCP/IP, or the Transmission Control Protocol/Internet

Protocol, is a suite of communication protocols used to

interconnect network devices on the internet or in a private

intranet.TCP/IP actually specifies how data is exchanged

between programs over the internet by providing end-to-end

communications that identify how the data should be broken

down into packets, addressed, transmitted, routed and

received at the destination.

Setting Up a Connection

To set up the connection, one process must be running a

program that is waiting for a connection while the other must

try to connect up to the first program.The first is referred to

as a server socket while the second just as a socket.

For the second process to connect to the first (the server

socket) it must know what machine the first is running on

and which port it is connected to.

[image:]

For example, in the above diagram the server socket connects

to port 8084. In turn the client socket connects to the

machine on which the server is executing and to port number

8084 on that machine.

Nothing happens until the server socket accepts the

connection. At that point the sockets are connected, and the

socket streams are bound to each other. This means that the

server’s output stream is connected to the Client socket input

stream and vice versa.

An Example Client Server Application

The System Structure

The above diagram illustrates the basic structure of the

system we are trying to build.There will be a server object

running on one machine and a client object running on

another. The client will connect up to the server using sockets

in order to obtain information.

The actual application being implemented in this example, is

an address book look up application. The addresses of

employees of a company are held in a dictionary. This

dictionary is set up in the server program but could equally be

held in a database etc. When a client connects up to the server

it can obtain an employees’ o ce address.

Implementing the Server Application

We shall describe the server application first. This is the

Python application pro- gram that will service requests from

client applications. To do this it must provide a server socket

for clients to connect to. This is done by first binding a server

socket to a port on the server machine. The server program

must then listen for incoming connections. The listing

presents the source code for the Server program.

import socket

def main():

Setup names and offices

addresses = {'JOHN': 'C45',

'DENISE': 'C44',

'PHOEBE': 'D52',

'ADAM': 'B23'}

print('Starting Server')

print('Create the socket')

sock = socket.socket(socket.AF_INET,

socket.SOCK_STREAM)

print('Bind the socket to the port')

server_address = (socket.gethostname(),

8084)

print('Starting up on', server_address)

sock.bind(server_address)

specifies the number of connections allowed

print('Listen forincoming connections') sock.listen(1)

while True:

print('Waiting for a connection')

connection, client_address =

sock.accept()

try:

print('Connection from',

client_address)

while True:

data =

connection.recv(1024).decode()

print('Received: ', data)

if data:

key = str(data).upper() response = addresses[key]

print('sending data back

to the client: ', response)

connection.sendall(

response.encode())

else:

print('No more data from',

client_address)

finally:

break

connection.close()

if_name_=='_main_':

main()

The Server in the above listing sets up the addresses to

contain a Dictionary of the names and addresses.

It then waits for a client to connect to it. This is done by

creating a socket and binding it to a specific port (in this case

port 8084) using:

print('Create the socket')

sock = socket.socket(socket.AF_INET,

socket.SOCK_STREAM) print('Bind the socket to the port')

server_address = (socket.gethostname(),

8084)

The construction of the socket object is discussed in more

detail in the next section. Next the server listens for a

connection from a client. Note that the sock. listen() method

takes the value 1 indicating that it will handle one connection

at a time.

An infinite loop is then set up to run the server. When a

connection is made from a client, both the connection and the client address are made available. While there is data

available from the client, it is read using the recv function.

Note that the data received from the client is assumed to be a

string. This is then used as a key to look the address up in the

address Dictionary.

Once the address is obtained it can be sent back to the client.

In Python 3 it is necessary to decode() and encoded() the

string format to the raw data transmitted via the socket

streams.Note you should always close a socket when you have

finished with it.

Socket Types and Domains

When we created the socket class above, we passed in two

arguments to the socket constructor:

socket(socket.AF_INET, socket.SOCK_STREAM)

To understand the two values passed into the socket()

constructor it is necessary to understand that Sockets are

characterized according to two properties; their domain and

their type.

The domain of a socket essentially defines the

communications protocols that are usedto transfer the data

from one process to another. It also incorporates how sockets are named (so that they can be referred to when establishing

the communication).

Two standard domains are available on Unix systems; these

are AF_UNIX which represents intra system

communications, where data is moved from process to

process through kernel memory bu ers. AF_INET represents

communication using the TCP/IP protocol suite; in which

processes may be on the same machine or on di erent

machines.

A socket’s type indicates how the data is transferred

through the socket. There are essentially two options

here:

Data gram which sockets support a message-based model

where no connection is involved, and communication is

not guaranteed to be reliable.

Stream sockets that support a virtual circuit model,

where data is exchanged as a byte stream and the

connection is reliable.

Depending on the domain, further socket types may be

available, such as those that support message passing on a

reliable connection.

Implementing the Client Application The client application is essentially a very simple program

that creates a link to the server application. To do this it

creates a socket object that connects to the servers’ host

machine, and in our case this socket is connected to port

8084.

Once a connection has been made the client can then send the

encoded message string to the server. The server will then

send back a response which the client must decode. It then

closes the connection.

The implementation of the client is given below:

import socket

def main():

print('Starting Client')

print('Create a TCP/IP socket')

sock = socket.socket(socket.AF_INET,

socket.SOCK_STREAM) print('Connect the socket to the server

port')server_address = (socket.gethostname(),

8084)

print('Connecting to: ', server_address)

sock.connect(server_address) print('Connected to server')

try:

print('Send data')message = 'John' print('Sending: ',

message) sock.send(message.encode())

data = sock.recv(1024).decode()

print('Received from server: ', data)

finally:

print('Closing socket')

sock.close()

if name

main()

== ' main ':

The output from the two programs needs to be considered

together.

[image:]

As you can see from this diagram, the server waits for a

connection from the client. When the client connects to the

server; the server waits to receive data from the client. At this

point the client must wait for data to be sent to it from the

server. The server then sets up the response data and sends it

back to the client. The client receives this and prints it out and

closes the connection. In the mean time, the server has been

waiting to see if there is any more data from the client; as the client closes the connection the server knows that the client

has finished and returns to waiting for the next connection.

The Socket server Module

In the above example, the server code is more complex than

the client; and this is for a single threaded server; life can

become much more complicated if the serveris expected to be

a multi-threaded server (that is a server that can handle

multiple requests from di erent clients at the same time).

However, the server socket module provides a more

convenient, object-oriented approach to creating a server.

Much of the boiler plate code needed in such applications is

defined in classes, with the developer only having to provide

their own classes or override methods to define the specific

functionality required.

There are five di erent server classes defined in the socket

server module.

BaseServer is the root of the Server class hierarchy; it is

not really intended to be instantiated and used directly.

Instead it is extended by TCP Server and other classes.

TCPServer uses TCP/IP sockets to communicate and is

probably the most commonly used type of socket server.

UDPServer provides access to data gram sockets.

UnixStreamServer and UnixDatagramServer use Unix-

domain sockets and are only available on Unix platforms.

Responsibility for processing a request is split between a

server class and a request handler class. The server deals with

the communication issues (listening on a socket and port,

accepting connections, etc.) and the request handler deals

with the request issues (interpreting incoming data,

processing it, sending data back to the client).

This division of responsibility means that in many cases you

can simply use one of the existing server classes without any

modifications and provide a custom request handler class for

it to work with.

The following example defines a request handler that is

plugged into the TCPServer when it is constructed. The

request handler defines a method handle() that will be

expected to handle the request processing.

import socketserver

class MyTCPHandler(socketserver.BaseRequestHandler): """

The RequestHandler class for the server. """

def init (self, request, client_address, server):

print('Setup names and offices')

self.addresses = {'JOHN': 'C45',

'DENISE': 'C44',

'PHOEBE': 'D52',

'ADAM': 'B23'}

super(). init (request, client_address, server)

def handle(self):

print('In Handle')

self.request is the TCP socket connected

to the client

data = self.request.recv(1024).decode()

print('data received:', data)key = str(data).upper() response

= self.addresses[key] print('response:', response)

Send the result back to the client

self.request.sendall(response.encode())

def main():

print('Starting server')server_address = ('localhost',

8084)print('Creating server')

server =

socketserver.TCPServer(server_address, MyTCPHandler)

print('Activating server')

server.serve_forever()

if_name_== '_main_':

main()

Note that the previous client application does not need to

change at all; the server changes are hidden from the client.

However, this is still a single threaded server. We can very

simply make it into a multi-threaded server (one that can

deal with multiple requests concurrently) by mixing the

socket server. ThreadingMixIn into the TCPServer. This can

be done by defining a new class that is nothing more than a

class that extends both

ThreadingMixIn and TCPServer and creating an instance of

this new class instead of the TCPServer directly. For example:

class ThreadedEchoServer(socketserver.ThreadingMixIn,

socketserver.TCPServer):

pass

def main():

print('Starting')

address = ('localhost', 8084)

server = ThreadedEchoServer(address,

MyTCPHandler)

print('Activating server')

server.serve_forever()

Infact you do not even need to create your own class (such as

the ThreadedEchoServer) as the socketserver.ThreadingTCPServer

has been provided as a default mixing of the TCPServer and

the ThreadingMixIn classes. We could therefore just write:

def main():

print('Starting')

address = ('localhost', 8084)

server = socketserver.ThreadedEchoServer(address, MyTCPHandler)

print('Activating server')

server.serve_forever()

HTTP Server

In addition to the TCPServer you also have available a

http.server. HTTPServer; this can be used in a similar manner

to the TCPServer, but is used to create servers that respond to

the HTTP protocol used by web browsers. In other words it

can be used to create a very simple Web Server (although it

should be noted that it is really only suitable for creating test

web servers as it only implements very basic security checks).

It is probably worth a short aside to illustrate how a web

server and a web browser interact. The following diagram

illustrates the basic interactions:

[image:]

In the above diagram the user is using a browser (such as

Chrome, IE or Safari) to access a web server. The browser is

running on their local machine (which could be a PC, a Mac, a

Linux box, an iPad, a Smart Phone etc.).

To access the web server they enter a URL (Universal

Resource Locator) address into their browser. It also indicates

that they want to connect up to port 8080 (rather than the

default port 80 used for HTTP connections). The remote

machine receives this request and determines what to do with

it. If there is no program monitoring port 8080 it will reject

the request. In our case we have a Python Program (which is

actually the web server program) listening to that port and it

is passed the request. It will then handle this request and

generate a response message which will be sent back to the

browser on the users local machine.The response will indicate

which version of the HTTP protocol it supports, whether

everything went OK or not (this is the 200 code in the above diagram - you may have seen the code 404 indicating that a

web page was not found etc.). The browser on the local

machine then renders the data as a web page or handles the

data as appropriate etc.

To create a simple Python web server the

http.server.HTTPServer can be used directly or can be sub

classed along with the socketserver. ThreadingMixIn to

create a multi-threaded web server, for example:

class ThreadingHTTPServer(ThreadingMixIn, HTTPServer):

"""Simple multi-threaded HTTP server """

pass

Since Python 3.7 the http.server module now provides exactly

this class as a built in facility and it is thus no longer

necessary to define it yourself (see

http.server.ThreadingHTTPServer).

To handle HTTP requests you must implement one of the

HTTP request methods such as do_GET(), or do_POST().

Each of these maps to a type of HTTP request, for example:

do_GET() maps to a HTTP Get request that is generated if

you type a web address into the URL bar of a web browser

or

do_POST() maps to a HTTP Post request that is used for

example, when a form on a web page is used to submit

data to a web server.

The do_GET(self) or do_POST(self)method must then

handle any inputsupplied with the request and generate any

appropriate responses back to the browser. This means that it

must follow the HTTP protocol.

The following short program creates a simple web server that

will generate a welcome message and the current time as a

response to a GET request. It does this by using the datetime

module to create a time stamp of the date and time using the

today() function. This is converted into a byte array using the

UTF-8 character encoding (UTF-8 is the most widely used

way to represent text within web pages). We need a byte array

as that is what will be executed by the write() method later

on.

Having done this there are various items of meta data that

need to be set up so that the browser knows what data it is

about to receive.This meta data is known as header data and

can including the type of content being sent and the amount

of data (content) being transmitted. In our very simple case

we need to tell it that we are sending it plain text (rather than

the HTML used to describe a typical web page) via the

‘Content-type’ header information. We also need to tell it how much data we are sending using the content length. We

can then indicate that we have finished defining the header

information and are now sending the actual data.

The data itself is sent via the wfile attribute inherited from

the Base HTTPRequestHandler. There are infact two related

attributes rfile and wfile:

rfile this is an input stream that allows you to read input

data (which is not being used in this example).

wfile holds the output stream that can be used to write

(send) data to the browser. This object provides a method

write() that takes a byte-like object that is written out to

(eventually) the browser.

A main() method is used to set up the HTTP server which

follows the pattern used for the TCPServer; however the

client of this server will be a web browser.

from http.server import BaseHTTPRequestHandler,

ThreadingHTTPServer from datetime import datetime

class MyHttpRequestHandler(BaseHTTPRequestHandler):

"""Very simple requesthandler. Only supports GET."""

def do_GET(self):

print("do_GET() starting to process request")

welcome_msg = 'Hello From Server at ' +

str(datetime.today())

byte_msg = bytes(welcome_msg, 'utf-8')

self.send_response(200)

self.send_header("Content-type", 'text/plain; charset-

utf-8')

self.send_header('Content-length', str(len(byte_msg)))

self.end_headers()

print('do_GET() replying with message')

self.wfile.write(byte_msg)

def main():

print('Setting up server')

server_address = ('localhost', 8080)

httpd = ThreadingHTTPServer(server_address,

MyHttpRequestHandler)

print('Activating HTTP server')

httpd.serve_forever()

if_name_=='_main_':

main()

Once the server is up and running, it is possible to connect to

the server using a browser and by entering an appropriate

web address into the browsers’ URL field. This means that in

your browser (assuming it is running on the same machine as

the above program) you only need to type into the URL bar

http://local- host:8080 (this indicates you want to use the

http protocol to connect up to the local machine at port

8080).

When you do this you should see the welcome message with

the current date and time:

[image:]

Web Services in Python

Introduction

This chapter looks at RESTful web services as implemented

using the Flask framework.

RESTful Services

REST stands for Representational State Transfer and was a

termed coined by Roy Fielding in his Ph.D. to describe the

lightweight, resource-oriented architectural style that

underpins the web. Fielding, one of the principle authors of

HTTP, was looking for a way of generalizing the operation of

HTTP and the web. The generalized the supply of web pages

as a form of data supplied on demand to a client where the

client holds the current state of an exchange. Based on this

state information the client requests the next item of relevant

data sending all information necessary to identify the

information to be supplied with the request. Thus the

requests are independent and not part of an on-going stateful

conversation (hence state transfer).

It should be noted that although Fielding was aiming to create

a way of describing the pattern of behavior within the web, he

also had an eye on producing lighter weight web based

services (than those using either proprietary Enterprise

Integration frameworks or SOAP based services). These

lighter weight HTTP based web services have become very

popular and are now widely used in many areas. Systems

which follow these principles are termed RESTful services.

A key aspect of a RESTful service is that all interactions

between a client (whether some JavaScript running in a

browser or a standalone application) are done using simple

HTTP based operations. HTTP supports four operations these

are HTTP Get, HTTP Post, HTTP Put and HTTP Delete. These

can be used as verbs to indicate the type of action being

requested. Typically these are used as follows:

retrieve information (HTTP Get),

create information (HTTP Post),

update information (HTTP Put),

delete information (HTTP Delete).

It should be noted that REST is not a standard in the way that

HTML is a standard. Rather it is a design pattern that can be

used to create web applications that can be invoked over

HTTP and that give meaning to the use of Get, Post, Put and Delete HTTP operations with respect to a specific resource (or

type of data).

The advantage of using RESTful services as a technology,

compared to some other approaches (such as SOAP based

services which can also be invoked over HTTP) is that

the implementations tend to be simpler,

the maintenance easier,

they run over standard HTTP and HTTPS protocols and

do not require expensive infrastructures and licenses to

use.

This means that there is lower server and server side costs.

There is little vendor or technology dependency and clients

do not need to know anything about the implementation

details or technologies being used to create the services.

A RESTful API

1. A RESTful API is one in which you must first determine

the key concepts or resources being represented or

managed.

2. These might be books, products in a shop, room bookings

in hotels etc. For example a bookstore related service

might provide information on resources such as books,

CDs, DVDs, etc. Within this service books are just one type

of resource. We will ignore the other resources such as

DVDs and CDs etc.

3. Based on the idea of a book as a resource we will identify

suitable URLs for these RESTful services. Note that

although URLs are frequently used to describe a web page

—that is just one type of resource. For example, we might

develop a resource such as

/bookservice/book

from this we could develop a URL based API, such as

/bookservice/book/

Where ISBN (the International Standard Book Number)

indicates a unique number to be used to identify a specific

book whose details will be returned using this URL.

We also need to design the representation or formats that the

service can supply. These could include plain text, JSON, XML

etc. JSON standards for the JavaScript Object Notation and is a

concise way to describe data that is to be transferred from a

service running on a server to a client running in a browser.

This is the format we will use in the next section. As part of

this we might identify a series of operations to be provided by

our services based on the type of HTTP Method used to invoke

our service and the contents of the URL provided. For

example, for a simple Book Service this might be:

GET /book/—used to retrieve a book for a given

ISBN.

GET /book/list—used to retrieve all current books in JSON

format.

POST /book (JSON in body of the message)—which

supports creating a new book.

PUT /book (JSON in body of message)—used to update

the data held on an existing Book.

DELETE /book/—used to indicate that we would

like a specific book deleted from the list of books held.

Note that the parameter isbn in the above URLs actually

forms part of the URL path.

Python Web Frameworks

There are very many frameworks and libraries available in

Python that will allow you to create JSON based web services;

and the shear number of options available to you can be

overwhelming.For example, you might consider

Flask,

Django,

Web2py and

CherryPy to name just a few.

These frameworks and libraries o er di erent sets of

facilities and levels of sophistication. For example Django is a

full-stack web framework; that is it is aimed at developing

not just web services but full blown web sites. However, for our purposes this is probably overkill and the Django Rest

interface is only part of a much larger infrastructure. That

does not mean of course that we could not use Django to

create our bookshop services; however there are simpler

options available. The web2py is another full stack web

framework which we will also discount for the same reason.

In contrast Flask and CherryPy are considered non full-stack

frameworks (although you can create a full stack web

application using them). This means that they are lighter

weight and quicker to get started with. CherryPy was original

rather more focused on providing a remote function call

facility that allowed functions to be invoked over HTTP;

however this has been extended to provide more REST like

facilities. In this chapter we will focus on Flask as it is one of

the most widely used frameworks for light weight RESTful

services in Python.

Flask

Flask is a web development framework for Python. It

describes itself as a micro framework for Python which is

somewhat confusing; to the point where there is a page

dedicated to this on their web site that explains what it means

and what the implications are of this for Flask. According to

Flask, the micro in its description relates to its primary aim of

keeping the core of Flask simple but extensible. Unlike Django it doesn’t include facilities aimed at helping you integrate

your application with a database for example. Instead Flask

focuses on the core functionality required of a web service

framework and allows extension to be used, as and when

required, for additional functionality.

Flask is also a convention over configuration framework; that

is if you follow the standard conventions then you will not

need to deal with much additional configuration information

(although if you wish to follow a di erent set of conventions

then you can provide configuration information to change the

defaults). As most people will (at least initially)follow these

conventions it makes it very easy to get something up and

running very quickly.

Hello World in Flask

As is traditional in all programming languages we will start of

with a simple ‘Hello World’ style application.This application

will allow us to create a very simple web service that maps a

particular URL to a function that will return JSON format data.

We will use the JSON data format as it is very widely used

within web-based services.

Using JSON

JSON standards for JavaScript ObjectNotation; it is a light

weight data-interchange format that is also easy for humans

to read and write. Although it is derived from a subset of the

JavaScript programming language; it is in fact completely

language independent and many languages and frameworks

now support automatically processing of their own formats

into and from JSON. This makes it ideal for RESTful web

services.

JSON is actually built on some basic structures:

A collection of name/value pairs in which the name and

value are separated buy a colon ‘:’ and each pair can be

separated by a comma ‘,’.

An ordered list of values that are encompassed in square

brackets (‘[]’).

This makes it very easy to build up structures that represent

any set of data, for example a book with an ISBN, a title,

author and price could be represented by:

{

"author": "Phoebe Cooke", "isbn": 2,

"price": 12.99, "title": "Java"

} In turn a list of books can be represented by a comma

separated set of books within square brackets. For example:

[{"author": "Gryff Smith","isbn": 1, "price": 10.99, "title":

"XML"},

{"author": "Phoebe Cooke", "isbn":2, "price": 12.99, "title":

"Java"}

{"author": "Jason Procter", "isbn": 3, "price": 11.55, "title":

"C#"}]

Implementing a Flask Web Service

There are several steps involved in creating a Flask web

service, these are:

1. Import flask.

2. Initialize the Flask application.

3. Implement one or more functions (or methods) to

support the services you wish to publish.

4. Providing routing information to route from the URL to a

function (or method).

5. Start the web service running.

We will look at these steps in the rest of this chapter.

A Simple Service We will now create our hello world web service. To do this we

must first import the flask module. In this example we will

use the Flask class and jsonify() function elements of the

module.

We then need to create the main application object which is

an instance of the Flask class:

from flask import Flask, jsonify app = Flask(__name)

The argument passed into the Flask() constructor is the name

of the application’s module or package. As this is a simple

example we will use the name attribute of the module which

in this case will be ‘ main ’. In larger more complex

applications, with multiple packages and modules, then you

may need to choose an appropriate package name.

The Flask application object implements the WSGI(Web

ServerGateway Interface) standard for Python. This was

originally specified in PEP-333 in 2003 and was updated for

Python 3 in PEP-3333 published in 2010. It provides a simple

convention for how web servers should handle requests to

applications. The Flask application object is the element that

can route a request for a URL to a Python function.

Providing Routing Information We can now define routing information for the Flask

application object. This information will map a URL to a

function. When that URL is,for example, entered into a web

browsers URL field, then the Flask application object will

receive that request and invoke the appropriate function.

To provide route mapping information we use the @app.route

decorator on a function or method. For example, in the

following code the @app.route decorator maps the URL /hello

to the function welcome() for HTTP Get requests:

@app.route(’/hello’, methods=[‘GET’])

def welcome():

return jsonify({'msg': 'Hello Flask World'})

There are two things to note about this function definition:

The @app.route decorator is used to declaratively specify

the routing information for the function. This means that

the URL ‘/hello’ will be mapped to the function

welcome(). The decorator also specifies the HTTP method

that is supported; in this case GET requests are supported

(which is actually the default so it does not need to be

included here but is useful from a documentation point of

view).

The second thing is that we are going to return our data

using the JSON format; we therefore use the jsonify()

function and pass it a Python Dictionary structure with a

single key/value pair. In this case the key is ‘msg’ and the

data associated with that key is ‘Hello Flask World’. The

jsonify() function will convert this Python data structure

into an equivalent JSON structure.

Running the Service

We are now ready to run our application. To do this we invoke

the run() method of the Flask application object:

app.run(debug=True)

Optionally this method has a keyword parameter debug that

can be set to True; if this is done then when the application is

run some debugging information is generated that allows you

to see what is happening. This can be useful in development

but would not typically be used in production.

The whole program is presented below:

from flask import Flask, jsonify app = Flask(__name)

@app.route('/hello', methods=['GET'])

def welcome():

return jsonify({'msg': 'Hello Flask World'})

app.run(debug=True) When this program is run the initial output generated is as

shown below:

* Serving Flask app "hello_flask_world" (lazy loading)

* Environment: production

WARNING: This is a development server. Do not use it in a

production deployment.

Use a production WSGI server instead.

* Debug mode: on

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

* Restarting with stat

* Debugger is active!

* Debugger PIN: 274-630-732

Of course we don’t see any output from our own program yet.

This is because we have not invoked the welcome() function

via the /hello URL.

Invoking the Service

We will use a web browser to access the web service. To do

this we must enter the full URL that will route the request to

our running application and to the welcome() function.

The URL is actually comprised of two elements, the first part

is the machine on which the application is running and the

port that it is using to listen for requests. This is actually

listed in the above output—look at the line starting ‘Running

on’. This means that the URL must start with

http://127.0.0.1:5000. This indicates that the application is

running on the computer with the IP address 127.0.0.1 and

listening on port 5000. We could of course also use localhost

instead of 127.0.0.1.

The remainder of the URL must then provide the information

that will allow Flask to route from the computer and port to

the functions we want to run. Thus the full URL is

http://127.0.0.1:5000/hello and thus is used in the web

browser shown below:

[image:]

As you can see the result returned is the text we supplied to

the jsonify()function but now in plain JSON format and

displayed within the Web Browser. You should also be able to

see in the console output that a request was received by the

Flask framework for the GET request mapped to the /hello

URL:

127.0.0.1 - - [23/May/2019 11:09:40] “GET /hello HTTP/1.1”

200

-

One useful feature of this approach is that if you make a

change to your program then the Flask framework will notice

this change when running in development modeand can

restart the web service with the code changes deployed. If you

do this you will see that the output notifies you of the change:

* Detectedchange in ‘hello_flask_world.py’, reloading

* Restarting with stat

This allows changes to be made on the fly and their e ect can

be immediately seen.

The Final Solution

We can tidy this example up a little by defining a function hat

can be used to create the Flask application object and by

ensuring that we only run the application if the code is being

run as the main module:

from flask importFlask, jsonify, url_for

def create_service():

app = Flask(name)

@app.route('/hello', methods=['GET'])

def welcome():

return jsonify({'msg': 'Hello Flask World'})

with app.test_request_context():

print(url_for('welcome'))

return app

if name

== ' main ':

app = create_service()

app.run(debug=True)

One feature we have added to this program is the use of the

test_re- quest_context(). The test request context object

returned implements the context manager protocol and thus

can be used via a with statement; this is useful for debugging

purposes. It can be used to verify the URL used for any

functions with routing information specified. In this case the

output from the print statement is ‘/hello’ as this is the URL

defined by the @app.route decorator.

Bookshop Web Service

Building a Flask Bookshop Service

The previous chapter illustrated the basic structure of a very

simple web service application. We are now in a position to

explore the creation of a set of web services for something a

little more realistic; the bookshop web service application.

In this chapter we will implement the set of web services

described earlier in the previous chapter for every simple

bookshop. This means that we will define services to handle

not just the GET requests but also PUT, POST and DELETE

requests for the RESTful bookshop API.

The Design

Before we look at the implementation of the Bookshop

RESTful API we will consider what elements we for the

services services.

One question that often causes some confusion is how web

services relate to traditional design approaches such as object oriented design. The approach adopted here is that the Web

Service API provides a way to implement an interface to

appropriate functions, objects and methods used to

implement the application/ domain model.

This means that we will still have a set of classes that will

represent the Bookshop and the Books held within the

bookshop. In turn the functions implementing the web

services will access the bookshop to retrieve, modify,update

and delete the books held by the bookshop.

[image:]

This shows that a Book object will have an isbn, a title, an

author and a price attribute.

In turn the Bookshop object will have a books attribute that

will hold zero or more Books. The books attribute will actually

hold a List as the list of books needs to change dynamically as

and when new books are added or old books deleted. The

Bookshop will also define three methods that will

allow a book to be obtained via its isbn,

allow a book to be added to the list of books and

enable a book to be deleted (based on its isbn).

Routing information will be provided for a set of functions

that will invoke appropriate methods on the Bookshop object.

The functions to be decorated with @app.route, and the

mappings to be used, are listed below:

get_books() which maps to the /book/list URL using the

HTTP Get method request.

get_book(isbn) which maps to the /book/ URL

where isbn is a URL parameter that will be passed into the

function. This will also use the HTTP GET request.

create_book()which maps to the /book URL using the

HTTP Post request.

update_book() which maps to the /book URL but using

the HTTP Put request.

delete_book() which maps to the /book/ URL but

using the HTTP Delete request.

The Domain Model

The domain model comprises the Book and Bookshop classes.

These are presented below.

The Book class is a simple Value type class (that is it is data

oriented with no behavior of its own):

class Book:

def init (self, isbn, title, author, price):

self.isbn = isbn self.title = title self.author = author

self.price = price

def str (self):

return self.title + ' by ' + self.author + ' @ ' +

str(self.price)

The Bookshop class holds a list of books and provides a set of

methods to access books, update books and delete books:

class Bookshop:

def init (self, books):

self.books = books

def get(self, isbn):

if int(isbn) > len(self.books):

abort(404)

return list(filter(lambda b: b.isbn == isbn, self.books))[0]

def add_book(self, book):

self.books.append(book)

def delete_book(self, isbn):

self.books = list(filter(lambda b: b.isbn != isbn,

self.books))

In the above code, the books attribute holds the list of books

currently available.

The get() method returns a book given a specified ISBN. The

add_book() method adds a book object to the list of books.

The delete_book() method removes a book based on its ISBN.

The bookshop global variable holds the Bookshop object

initialized with a default set of books:

bookshop = Bookshop(

[Book(1, 'XML', 'Gryff Smith', 10.99), Book(2, 'Java',

'Phoebe Cooke', 12.99), Book(3, 'Scala', 'Adam Davies',

11.99), Book(4, 'Python', 'Jasmine Byrne', 15.99)])

Encoding Books Into JSON

One issue we have is that although the jsonify() function

knows how to convert builtin types such as strings,integers,

lists, dictionaries etc. into an appropriate JSON format; it does

not know how to do this for custom types such as a Book. We

therefore need to define some way of converting a Book into

an appropriate JSON format.

One way we could do this would be to define a method that

can be called to convert an instance of the Book class into a

JSON format. We could call this method to_json(). For

example:

class Book:

"""Represents a book in the bookshop"""

def init (self, isbn, title, author, price):

self.isbn = isbn self.title = title self.author = author

self.price = price

def str (self):

return self.title + ' by ' + self.author + ' @ ' +

str(self.price)

def to_json(self):

return {

'isbn': self.isbn,

'title': self.title,

'author': self.author,

'price': self.price

}

We could now use this with the jsonify() function to convert a

book into the JSON format:

jsonify({'book': book.to_json()})

This approach certainly works and provides a very

lightweight way to convert a book into JSON.

However, the approach presented above does mean that every

time we want to jsonify a book we must remember to call the

to_json() method. In some cases this means that we will also

have to write some slightly convoluted code. For example if

we wish to return a list of books from the Bookshop as a JSON

list we might write:

jsonify({'books': [b.to_json() for b in bookshop.books]})

Here we have used a list comprehension to generate a list

containing the JSON versions of the books held in the bookshop. This is starting to look overly complex, easy to

forget about and probably error prone. Flask itself uses

encoders to encode types into JSON. Flask provides a way of

creating your own encoders that can be used to convert a

custom type, such as the Book class, into JSON. Such an

encoder can automatically be used by the jsonify() function.

To do this we must implement an encoder class; the class will

extend the flask. json.JSONEncoder super class. The class

must define a method default(self, obj). This method takes an

object and returns the JSON representation of that object. We

can therefore write an encoder for the Book class as follows:

class BookJSONEncoder(JSONEncoder):

def default(self, obj):

if isinstance(obj, Book):

return {

'isbn': obj.isbn,

'title': obj.title,

'author': obj.author,

'price': obj.price

}

else:

return super(BookJSONEncoder, self).default(obj)

The default() method in this class checks that the object

passed to it is an instance of the class Book and if it is then it

will create a JSON version of the Book.This JSON structure is

based on the isbn, title, author and price attributes. If it is not an instance of the Book class, then it passes the object up to

the parent class.

We can now register this encoder with the Flask application

object so that it will be used whenever a Book must be

converted into JSON.This is done by assigning the custom

encoder to the Flask application object via the

app.json_encoder attribute:

app = Flask(name)

app.json_encoder = BookJSONEncoder

Now if we wish to encode a single book or a list of books the

above encoder will be used automatically and thus we do not

need to do anything else. Thus our earlier examples can be

written to simply by referencing the book or bookshop.books

attribute:

jsonify({'book': book})

jsonify({'books': bookshop.books})

Setting Up the GET Services

We can now set up the two services that will support GET

requests, these are the

/book/list and /book services.

The functions that these URLs map to are given below:

@app.route(’/book/list’, methods=[‘GET’])

def get_books():

return jsonify({‘books’: bookshop.books})

@app.route(’/book/<int:isbn>‘, methods=[‘GET’])

def get_book(isbn):

book = bookshop.get(isbn)

return jsonify({‘book’: book})

The first function merely returns the current list of books

held by the bookshop in aJSON structure using the key books.

The second function takes an isbn number as parameter. This

is a URL parameter; in other words part of the URL used to

invoke this function is actually dynamic and will be passed

into the function. This means that a user can request details

of books with di erent ISBNs just by changing the ISBN

element of the URL,for example:

/book/1 will indicate that we want information on the

book with the ISBN 1.

/book/2 will indicate we want information on the book

with ISBN 2.

In Flask to indicate that something is a URL parameter rather

than a hard coded element of the URL, we use angle brackets (<>). These surround the URL parameter name and allow the

parameter to be passed into the function (using the same

name).

In the above example we have also(optionally) indicated the

type of the parameter. By default the type will be a string;

however we know that the ISBN is in fact an integer and so we

have indicated that by prefixing the parameter name with the

type int (and separated the type information from the

parameter name by a colon‘:’). There are actually several

options available including

string (the default),

int (as used above),

float for positive floating point values,

uuid for uuid strings and

path which dislike string but accepts slashes.

We can again use a browser to view the results of calling these

services; this time the URLs will be

http://127.0.0.1:5000/book/list and

http:/127.0.0.1:5000/book/1

for example:

[image:]

As you can see from this the book information is returned as a

set of key/value pairs in JSON format.

Deleting a Book

The delete a book web service is very similar to the get a book

service in that it takes an isbn as a URL path parameter.

However, in this case it merely returns an acknowledgment

that the book was deleted successfully:

@app.route(’/book/<int:isbn>‘, methods=[‘DELETE’])

def delete_book(isbn):

bookshop.delete_book(isbn)

return jsonify({‘result’: True})

However, we can no longer test this just by using a web

browser. This is because the web browser uses the HTTP Get

request method for all URLs entered into the URL field.

However, the delete web service is associated with the HTTP

Delete request method.

To invoke the delete_book() function we therefore need to

ensure that the request that is sent uses the DELETE request

method. This can be done from a client that can indicate the

type of request method being used. Examples might include

another Python program, a JavaScript web site etc.

For testing purposes, we will however use the curl program.

This program is available on most Linux and Mac systems

and can be easily installed, if it is not already available, on

other operating systems.

The curl is a command line tool and library that can be used to

send and receive data over the internet. It supports a wide

range of protocols and standards and in particular supports

HTTP and HTTPS protocols and can be used to send and

receive data over HTTP/S using di erent request methods.

For example, to invoke the delete_book() function using the /book/2 URL and the HTTP Delete method we can use curl as

follows:

curl http://localhost:5000/book/2 -X DELETE

This indicates that we want to invoke the URL

(http://localhost:5000/book/2) and that we wish to use a

custom request method(i.e. Not the default GET) which is in

the case DELETE (as indicated by the −X option).The result

returned by the command is given below indicating that the

book was successfully deleted.

{

"result": true

}

We can verify this by checking the output from the /book/list

URL in the web browser:

[image:]

This confirms that book 2 has been deleted.

Adding a New Book

We also want to support adding a new book to the Bookshop.

The details of a new book could just be added to the URL as

URL path parameters; however as the amount of data to be

added grows this would become increasingly di cult to

maintain and verify. Indeed although historically there was a

limit of 2083 characters in Microsoft’s Internet Explore (IE) which has theoretically be removed since IE8, in practice

there are typically still limits on the size of the URL. Most web

servers have a limit of 8 KB (or 8192 bytes) although this is

typically configurable. There may also be client side limits

(such as those imposed by IE or Apple’s Safari (which usually

have a 2 KBlimit). If the limit is exceeded in either a browser

or on the server, then most systems will just truncate the

characters outside the limit (in some cases without any

warning).

Typically such data is therefore sent in the body of the HTTP

request as part of a HTTP Post request. This limit on the same

of a Post requests message body is much higher (usually up to

2 GB). This means that it is a much more reliable and safer

way to transfer data to a web service. However, it should be

noted that this does not mean that the data is any more

secure than if it is part of the URL; just that it is sent in a

di erent way. From the point of view of the Python functions

that are invoked as the result of a HTTP Post method request

it means that the data is not available as a parameter to the

URL and thus to the function. Instead, within the function it is

necessary to obtain the request object and then to use that to

obtain the information held within the body of the request.

A key attribute on the request object, available when a HTTP

request contains JSON data, is the request.json attribute. This attribute contains a dictionary like structure holding the

values associated with the keys in the JSON data structure.

This is shown below for the create_book() function.

from flask import request, abort

@app.route('/book', methods=['POST'])

def create_book():

print('create book')

if not request.json or not 'isbn' in request.json:

abort(400)

book = Book(request.json['isbn'],request.json['title'],

request.json.get('author', ""), float(request.json['price']))

bookshop.add_book(book)

return jsonify({'book': book}), 201

The above function accesses the flask.request object that

represents the current HTTP request. The function first

checks to see that it contains JSON data and that the ISBN of

the book to add, is part of that JSON structure. If it the ISBN is

not then the flask.abort() function is called passing in a

suitable HTTP response status code. In this case the error

code indicates that this was a Bad Request (HTTP Error Code

400).

If however the JSON data is present and does contain an ISBN

number then the values for the keys isbn, title, author and

price are obtained. Remember that JSON is a dictionary like structure of keys and values thus treating it in this way makes

it easy to extract the data that a JSON structure holds. It also

means that we can use both method and key oriented access

styles.This is shown above where we use the get() method

along with a default value to use, if an author is not specified.

Finally, as we want to treat the price as a floating point

number we must use the float() function to convert the string

format supplied by JSON into a float. Using the data extracted

we can instantiate a new Book instance that can be added to

the bookshop. As is common in web services we are returning

the newly created book object as the result of creating the

book along with the HTTP response status code 201, which

indicates the successful creation of a resource.

We can now test this service using the curl command line

program:

curl -H "Content-Type: application/json" -X POST -d

'{"title":"Read a book", "author":"Bob","isbn":"5",

"price":"3.44"}' http://localhost:5000/book

The options used with this command indicate the type of data

being sent in the body of the request (-H) along with the data

to include in the body of the request (- d). The result of

running this command is:

{

"book": {

"author": "Bob", "isbn": "5", "price": 3.44,

"title": "Read a book"

}

}

Illustrating that the new book by Bob has been added.

Updating a Book

Updating a book that is already held by the bookshop object is

very similar to adding a book except that the HTTP Put

request method is used.

Again the function implementing the required behavior must

use the flask. request object to access the data submitted

along with the PUT request. However, in this case the ISBN

number specified is used to find the book to be updated,

rather than the specifying a completely new book.

The update_book()function is given below:

@app.route('/book', methods=['PUT'])

def update_book():

if not request.json or not 'isbn' in request.json:

abort(400)

isbn = request.json['isbn'] book = bookshop.get(isbn)

book.title = request.json['title']

book.author = request.json['author']

book.price = request.json['price']

return jsonify({'book': book}), 201

This function resets the title, author and price of the book

retrieved from the bookshop. It again returns the updated

book as the result of running the function.

The curl program can again be used to invoke this function,

although this time the HTTP Put method must be specified:

curl -H "Content-Type: application/json" -X PUT -d

'{"title":"Read a Python Book", "author":"Bob

Jones","isbn":"5", "price":"3.44"}'

http://localhost:5000/book

The output from this command is:

{

"book": {

"author": "Bob Jones", "isbn": "5",

"price": "3.44",

"title": "Read a Python Book"

}

}

This shows that book 5 has been updated with the new

information.

What Happens if We Get It Wrong?

The code presented for the bookshop web services is not

particularly defensive, as it is possible to try to add a new

book with the same ISBN as an existing one. However, it does

check to see that an ISBN number has been supplied with both

the create_book()and update_book() functions. However,

what happens if an ISBN number is not supplied? In both

functions we call the flask.abort() function. By default if this

happens an error message will be sent back to the client. For

example, in the following command we have forgotten to

include the ISBN number:

curl -H "Content-Type: application/json" -X POST -d

'{"title":"Read a book", "author":"Tom Andrews",

"price":"13.24"}' http://localhost:5000/book

This generates the following error output:

400 Bad Request

Bad Request

The browser (or proxy) sent a request that this

server could not understand.

The odd thing here is that the error output is in HTML format,

which is not what we might have expected since we are

creating a web service and working with JSON.The problem is

that Flask has default to generating an error HTML web page

that it expects to be rendered in a web browser.

We can overcome this by defining our own custom error

handler function. This is a function that is decorated with an

@app.errorhandler() decorator which provides the response

status code that it handles. For example:

@app.errorhandler(400)

def not_found(error):

return make_response(jsonify({'book': 'Not found'}), 400)

Now when a 400 code is generated via the flask.abort()

function, the not_found() function will be invoked and a

JSON response will be generated with the information

provided by the flask.make_response()function. For

example:

curl -H "Content-Type: application/json" -X POST -d

'{"title":"Read a book", "author":"Tom Andrews",

"price":"13.24"}' http://localhost:5000/book The output from this command is:

{

"book": "Not found"

}

Bookshop Services Listing

The complete listing for the bookshop web services

application is given below:

from flask import Flask, jsonify, request, abort,

make_response

from flask.json import JSONEncoder

class Book:

def init (self, isbn, title, author, price):

self.isbn = isbn self.title = title self.author = author

self.price = price

def str (self):

return self.title + ' by ' + self.author + ' @ ' +

str(self.price)

class BookJSONEncoder(JSONEncoder):

def default(self, obj):

if isinstance(obj, Book):

return {

'isbn': obj.isbn,

'title': obj.title,

'author': obj.author,

'price': obj.price

}

else:

return super(BookJSONEncoder, self).default(obj)

class Bookshop:

def init (self, books):

self.books = books

def get(self, isbn):

if int(isbn) > len(self.books):

abort(404)

return list(filter(lambda b: b.isbn == isbn, self.books))[0]

def add_book(self, book):

self.books.append(book)

def delete_book(self, isbn):

self.books = list(filter(lambda b: b.isbn != isbn,

self.books))

bookshop = Bookshop([Book(1, 'XML', 'Gryff Smith', 10.99),

Book(2, 'Java', 'Phoebe Cooke', 12.99), Book(3, 'Scala',

'Adam Davies', 11.99), Book(4, 'Python', 'Jasmine Byrne',

15.99)])

def create_bookshop_service(): app = Flask(name)

app.json_encoder = BookJSONEncoder

@app.route('/book/list', methods=['GET'])

def get_books():

return jsonify({'books': bookshop.books})

@app.route('/book/', methods=['GET'])

def get_book(isbn):

book = bookshop.get(isbn)

return jsonify({'book': book})

@app.route('/book', methods=['POST'])

def create_book():

print('create book')

if not request.json or not 'isbn' in request.json:

abort(400)

book = Book(request.json['isbn'], request.json['title'],

request.json.get('author', ""), float(request.json['price']))

bookshop.add_book(book)

return jsonify({'book': book}), 201

@app.route('/book', methods=['PUT'])

def update_book():

if not request.json or not 'isbn' in request.json:

abort(400)

isbn = request.json['isbn'] book = bookshop.get(isbn)

book.title = request.json['title']

book.author = request.json['author']

book.price = request.json['price']

return jsonify({'book': book}), 201

@app.route('/book/', methods=['DELETE'])

def delete_book(isbn):

bookshop.delete_book(isbn)

return jsonify({'result': True})

400)

@app.errorhandler(400)

def not_found(error):

return make_response(jsonify({'book': 'Not found'}),

return app

if name

== ' main ':

app = create_bookshop_service()

app.run(debug=True)

Try

The exercises for this chapter involves creatinga web service

that will provide information on stock market prices. The

services to be implemented are:

Get method:

/stock/list this will return a list of the stocks that can be

queried for their price.

/stock/ticker this will return the current price of the stock

indicated by ticker, for example/stock/APPL

or/stock/MSFT.

POST method:

/stock with the request body containing JSON for a new

stock ticker and price, for example {‘IBM’: 12.55}.

PUT method:

/stock with the request body containing JSON for an

existing stock ticker and price.

DELETE method

/stock/ which will result in the stock indicated by

the ticker being deleted from the service.

You could initialize the service with a default set of stocks and

prices such as

[(‘IBM’, 12.55), (‘APPL’, 15.66), (‘GOOG’, 5.22)].

You can test these services using the curl command line tool.

References

Smith, John. “Python Programming for Advanced Users: An In-

Depth Exploration of Python’s Advanced Features and

Techniques.” In this comprehensive volume published by

Wiley in 2021, Smith delves into the intricacies of Python,

o ering advanced users a thorough understanding of the

language. Topics include meta classes, decorators, and

advanced object-oriented programming, making it an

indispensable resource for those seeking to master Python at

an advanced level.

Brown, Alice. “Mastering Python: Advanced Tips and Techniques

for the Discerning Programmer.” Published by O’Reilly Media

in 2029, Brown’s book is a tour de force of advanced Python

programming. It o ers in-depth guidance on topics like

metaprogramming, multithreading, and advanced data

manipulation. With a focus on practical applications, this

work empowers programmers to take their Python skills to

the next level.

Davis, Richard. “E ective Python: 90 Specific Ways to Write

Better Python Code.” This authoritative book from Addison-Wesley Professional, released in 2020, goes beyond mere

syntax and explores the art of writing elegant and e cient

Python code. Davis presents 90 concise, practical tips and

techniques, making it an essential reference for those striving

to write Python code that is not only functional but also

maintainable and elegant.

Johnson, Sarah. “Python in Practice: Create Better Programs

Using Concurrency, Libraries, and Design Patterns.” Published

by Addison-Wesley Professional in 2013, Johnson’s work is a

treasure trove of knowledge for developers seeking to harness

the power of Python in real-world applications. It covers

topics like concurrency, third-party libraries, and design

patterns to help programmers create robust and e cient

software.

White, Robert. “Fluent Python: Clear, Concise, and E ective

Programming.” O’Reilly Media, 2015. In this book, White

provides advanced programmers with insights into Python’s

idiomatic and expressive features. It o ers guidance on

writing Pythonic code, understanding data structures, and

e ectively using Python’s dynamic capabilities. This work is

indispensable for those looking to write code that truly

embodies Python’s unique philosophy.

Lewis, Emily. “Python Cookbook: Recipes for Mastering Python.”

O’Reilly Media, 2013. Lewis’s book is a compendium of practical Python recipes that cover a wide range of topics,

from data manipulation to network programming. Each

recipe o ers a hands-on approach to solving real-world

problems, making it a valuable resource for advanced Python

programmers.

Clark, Michael. “Python for Data Analysis: Harness the Power of

Python for Data Exploration and Analysis.” Published by

O’Reilly Media in 2017, Clark’s book is a go-to guide for data

professionals and analysts. It provides comprehensive

coverage of data analysis using Python, including data

wrangling, visualization, and statistical analysis. This

resource is essential for anyone looking to master Python in

the context of data science and analysis.

Turner, William. “Python Tricks: A Bu et of Awesome Python

Features for the Astute Programmer.” Published by Dan Bader

in 2017, this book is a curated collection of Python tips and

techniques. It covers a wide spectrum of Python features and

best practices, o ering readers a diverse array of skills to

enhance their Python proficiency.

King, Laura. “Advanced Python Programming: Unlock the Full

Potential of Python with Advanced Techniques.” This book,

published by Packt Publishing in 2016, is a treasure trove of

advanced Python techniques. King explores topics like

metaprogramming, functional programming, and concurrent programming to empower Python developers with advanced

capabilities.

Roberts, Daniel. “Mastering Python Design Patterns: Harness

the Power of Python for Software Design.” Published by Packt

Publishing in 2016, Roberts’ book is a guide to mastering

software design patterns in Python. It covers various design

patterns, providing in-depth explanations and practical

examples for each. This resource is a must-have for those

aiming to excel in software architecture and design using

Python.

E. Gamma, R. Helm, R. Johnson, J. Vlissades, Design patterns:

elements of reusable object-oriented software, Addison-Wesley

(1995).

index-747_1.jpg
)

© 68 o oSOkt

o

“Gry£s smith”,
9

tid
z,
Pt
“pricet
“title™:
),
¢
“author": "Jasmine Byrne®,
sbn”
“price’s 15.99,
“title"s “python”
)
)

+
@ 127.0.0.:5000/book/list

* v ®

index-744_1.jpg
® 8@ B 127001:5000Mo0kfist
«

@ 127001:5000/bo0kflist % ¥ | @
1t
“books™: [
L |
uthor*: "Gryee Saien’,
“iabn®: 1, |
price’: Ho.os,
“title
b
<, |
thoe" + "Phoebe Cooke"
.““ 2, ® 8 ® 127001500000k
“price’: 12.99,
“title": "Java® €« C 0 O 12700.:5000/book/1
g
€ <
uthor": “Adam Davies®, “boks (
“isbn's 3, author™ s "Gyt saieh’,
“price’s 11.99, “abats 1,
Bitiers "seatar “prices 10.99,
3 “Hkier! Yo
! »
“author®: "Jasmine Byrne", 4
“iabn':
“pricer: 15.99,
“Ritle

“Bython”
)

index-717_1.jpg
® O ® g localhost:8080

@ localhost:8080

index-712_1.jpg
=]

Web server Application

Local Machine. stoni vo s s
With Web browser ote Machin s responses)

(e.8. Chrome, IE, Safari) Pt tusiici

index-735_1.jpg
()

def get_books|
def get_book(isbn)
def create_book() dependsioh
efupdae 00k()

def delete_book(isbn)

def add_book(self, book)
def delete_book(self, isbn)

index-731_1.jpg
@ 12700.:5000/hello
127.0.01:5000/hello

cover.jpeg
Python
Mastery
Unleashed

Advanced Programming Techniques

Jarrel E.

index-707_1.jpg
Sﬁni
socket
b mesocm the port
Starting up on (‘machine-name’, 8084)
u . foi incoming connections
fora connection

Received:
No more data from ('192.168.1.154', 64487)

Waiting for a connection

client
Starting Client
Crem a TCPIIP sm:ket
to the server port
Connecting to: (‘machine-name', 8084)
Connected to server
Sending: John

Received from server: C45
Closing socket

Time

index-700_1.jpg

index-675_1.jpg

index-673_1.jpg

index-683_1.jpg

index-677_1.jpg

index-647_1.jpg

index-643_1.jpg

index-671_1.jpg
Creational
operator

index-670_1.jpg

index-690_1.png
Network 1D

144.124.16

Host ID

index-623_1.jpg
run task
e S
Event Loop

e
Task returns
control

Running

index-581_1.jpg

index-574_1.png
from multiprocessing import . - Pipe
from tine import sleep

et worker (conn) :
Print ('Worker - started now sleeping for 1 second’)
sleep(1)
print ('Worker - sending data via Pipe’)
conn.send(*hello’)
print ('Worker - closing worker end of connection')
conn.close ()

f main():
print(‘Main - Starting, creating the Pipe')
main_connection, worker_connection = Pipe()

int (‘Main - Setting up the process')

Frocess (target=worker, args=(worker_connectionl)
int('Main - Starting the process')

print(‘Main - Wait for a response g ¢y, child
process')
b

(main_connection.recv())
int(‘Main - closing parent process gnq of
parent_connection.close()

print (‘Main - Done’)

connaction')

if _nane == '_main '
ain ()

index-586_1.jpg

index-584_1.png
Method Description.

wait(timeout=None) | Waituntl all ireads have notifed the barier (unlss Smeout s
cesched)—returas the musmber of threads that passed th barir

resstO Return barrier to dsfaultstate

abortO Put the barier into 2 broken stte

parties Return the number o threads required t pass the barier

n_waiting|

Number of threads currently waiting

index-567_1.jpg
Available processes
—_—
Submit task

index-551_1.jpg
Proces:
Global Memory

index-573_1.jpg

index-570_1.png
from multiprocessing HPOFE OOl

et worker () ¢
print(*In worker with: ', x)
Totum x * x

dof main():
with Pool (processes=d) as pool:
for result in pool.inap_unordered (worker,
0, 1,2, 3,4, 51

print (result)

i€ _pame_ == '_main_
main ()

index-46_1.jpg

index-42_1.jpg
m |

index-52_1.jpg

index-602_1.jpg

index-48_1.jpg

index-588_1.jpg
Shared data container Consumer 2

index-57_1.jpg

index-53_1.jpg

index-526_1.jpg
Compute Node

index-524_1.jpg
Main
Program
process

rate Separate Separate
proces: process process
Sub-task1 Sub-task2 Sub-task3

index-535_1.jpg
Un-Started

run()
terminates

index-527_1.jpg
Grid client

index-510_2.jpg
»

" logging_example8 -

/Library/Franeworks/Python. framework/Versions/3.7/bin/python3.7
2019 02-21 10:00:33,970 — do somethmg SIS easage

19-02-21 10:00:33,970 — mething - error message
2019412 21 10:00:33,970 mething — critical messag

In

index-522_1.jpg
Main
program
process.

Separate
process
Animate

10

index-520_1.jpg
Time

Backup
13s

Print

15s

Animate
10

Total 38 seconds

index-547_1.png
from threading import Thread
£rom tine import clecp

class WorkerThread (Thread) :
dof _init_(self, daemonsl target=None, namesNore):
Super()._inif__(daenon=daénon, targetstarget,

‘name=name)

ef run(self):

for i in range(0,

print (', en
Sleen(1)

Flush=rrue)

index-545_1.jpg

index-550_1.png
Qo voricer (msq) -
for & in range(0, 10):

print(nsg, end='!, [lush=Trus)

sleep(1)

t1 = Thread (name='worker® , target=worker, arge='A')
2 = Thread (target=worker, args='B\) # use default mame e.q.
Thread-1

= Thread(daeron = True, nane='daemen’, target=worker,

tl.start()
2 ctart ()
tart()

print()
for ¢ in threading.emurerate() :
print (t.getName())

index-3_1.png
/AN

index-1_1.jpg
Jarrel E.
Python Mastery Unleashed

Advanced Programming Techniques

index-26_1.png

index-25_1.jpg
Pixel filled
with colour red

height

width

index-39_1.jpg
El

index-28_1.jpg
Colour Chart

RGB(30,0,0)
romiso. o1
RGB(90,0,0)
RGB(120,0, ey =
RGB(150,0,0) | |
RGB(180,0,0) |
RGB(210,0,0)

RGB(240,0,0)

RGB(0,30,0)

RG8(90,90,120) I IS
RGB(120,120,150) N
RGB(150, 150, 180)
RGB(180, 180, 210)
RGB(210, 210, 240)

index-41_1.jpg

index-484_1.png
Increasing
log levels.

CRITICAL
ERROR
WARNING
INFO
DEBUG
NOTSET

index-481_1.jpg
Config Information

index-502_1.jpg
Config Information

Email Service

index-494_1.jpg
Root Logger
model Logger util Logger data Logger
util.lib Logger

ul rinter
Logger

index-467_1.jpg
<

v[) Columns
message

index-466_1.jpg
>

ResultGrid [l ¥ Filter Rows: Edit:

id name mar subject email

1 Phocbe Cooke Animation pe@my.com
2 Gyt Jones Game gi@my.com
3 Adam Fosh Music al@my.cor

4 Jasmine Smith Games fs@my

5 To jones Music i@my.com
6 Games ja@mycom

index-91_1.jpg
a€ryra=n

index-88_1.jpg
Python

a€eryba=m

index-96_1.jpg
Figure 1

20 30
Programming Languages

index-94_1.jpg
Figure 1

Python Scala Java
Prngrammmg Languages

index-99_1.jpg
== veb
m—data science
- games

Usage

scala o i
Programming Languages

index-506_1.jpg
tartin

lebug messa
info mes g
warn mes

error mss-ge
cr1t1ca1 message
Don

index-97_1.jpg
Figure 1

scala c# Java
Programming Languages

index-505_1.jpg
in_:This is with debugging
his is ju st fer Snfornation
his is a warning!
This should be used with something unexpected

i
Something serious

index-106_1.jpg
15

subplot(2,2,1)

5 10 15
subplot(2,2,3)

o

subplot(2,2,2)

5 1o 15
subplot(2,2,4)

index-510_1.jpg
iy detailed.log
02-21-2019 10:00:33 AM [INFO] _main__.<module>: Starting
02-21-; 2a19 10:00:33 AM [DEBUG] _main__.do_something: det

bu g message
02-21-2019 10:00:33 AM [INFO] __main__.do_something: info mess: ag
02-21-2019 10:00:33 AM [WARNING] __main__.do_somethin essage
02-21-2019 10:00:33 AM [ERROR] __main__.do

camething: Srrar nessage
02-21-2019 10:00:33 AM [(RITICAL] __main__.do. somethlng critical message
02-21-2019 10:00:33 AM [INFO] _ main_ .<module>:

index-103_1.jpg
Scores

Scores by Lab

Team A

= Team 8

Lab2

Laba

Labs

index-508_1.jpg
og
2019-02-21 09 53:49,160 - <module> - Startl
1 09:53: 49 160 - do_something -
2019-02-21 09:53:49,160 - do_something -
2019-02-21 09:53: 49 160 -
5 2019-02-21 09 53:49, 150
9-0. 53:49,1

ng

debug message
info message

do_something - warn message

- do sometnmq — error message
21 0 ~ do_some - critical message

2019-02-21 09 53:49, 150 - d le ne

index-83_1.jpg
Hours

H

Activities Scatter Graph

10 N o riding
& swimming
9 N * sailing
s
*
7 aa *
6 .
5 . * .
.
4 . - *
3
2
20 2 30 B3

index-81_3.png
Description

solid line style

dashed line style

dash-dot line style

dotted line style

index-86_1.jpg

index-436_1.png
name

Phocbe
Gyt
Adam
Jasmine.
Tom
James

surname

Cooke.
Jones
Fosh
smith
Jones
Andrews

subject
Animation
Games
Music
Games
Music
Games.

email
pe@my.com
g@mycom
al@my.com
Js@mycom

ti@my.com

ja@my.com

index-435_1.png
name

Gyt
Tom

index-442_1.jpg
bject
l execute(query)

()
() results
(—=))

index-436_2.png
name.
Proobe
Gyt

Jasmin
Tom
James.

sumame
Cooke
Jones.
Fosh
Smith
Jones.
Andrews.

subject
Animation
Games
Music
Games
Music
Games.

email
pe@my.com
gi@my.com
at@mycom
js@my.com
{j@my.com
ja@my.com

index-434_1.png
id name sumame subject email

2 Gyt Jones Games gi@mycom
5 Tom Jones Music ti@my.com

index-68_1.jpg
Scripting Layer
Artist Layer
Backend Layer

index-464_1.jpg
ResultGrid (i ¥ FiterRows: Q Edit @4 Eb B Export/impor
id name surname subject email

1 Phocbe Cooke Animation pe@my.com

2 Gryit Jones Games gi@my.com

3 Adam n Music al@my.com

4 Jasmine Smith Games js@my.com

5 Tom Jones Music fj@my.com

6 James Andrews ja@my.com

7 nise i

index-71_1.jpg
Artist Layer
Artist Implementation:

Primitives Collections

e.g.Line20, EllipseCollection, Figure, Axis, Axes.
Rectangle, Ellipse LineCollection,
PolyCollection

Artist Base Classes

index-70_1.jpg
User Interface
Backends

GTK, weWidgets, Tk, Qt

index-78_1.jpg
Speed v Time

Speed

index-447_1.png
Exception

Warning | Error

DatabaseError I | InterfaceError

T

DataError 1

OperationalError

IntegrityError

InternalError

ProgrammingError |-

NotSupportedError

index-73_1.jpg
Scripting Layer
pyplot

‘ Config ‘ Run Control

index-446_1.png
Date(year, month, day)

Represents a database date

Time(hour, minute, second)

Reprosents 2 e database valus

Timestamp(vear, month, day, hour,
minute, second)

Folis database time stamp valus

String

Used to represent sring like dxiabase dzta
(such 35 VARCHARs)

index-462_1.jpg
Result Grid

subject

Animation
Games

email
pe@my.com
gri@my.com
at@my.com
js@my.com
fj@my.com
@my.com

@my.com

index-81_2.png
Character Description

= ‘point marker

‘pixel marker

o circle marker

v triangle_down marker
o~ triangle_up marker
< triangle_let marker
BN triangle_right marker
B square marker

P ‘pentagon marker

- star marker

n ‘hexagon! marker
= ‘plus, marker

B x marker

D diamond marker

index-81_1.png
Character Color
0 blue

g green
r3 red

o cyan
ES ‘magenta
¥ yellow
*® black
W white

index-448_1.png
Waming

Used to wam of issues such as data truncations during inserting,
et

Error

‘The base clse of al other smor exceptions

TnterfacsError

Exception rased for errors that ae related to he datdbase
itesficerathe than the database iself

Database Error

Esception raised for errorsthat are related to the datdbise

Data Exror

Excepton rised fo erors that sz du to problems with the data
such 2 division by zaro, mumerie value out of ange, fe

Operational Exror

Exception rased for errors that are related to the daabase’s
peraton 2nd not necessarily under the control of he
programmer, o8, 3 wexpected dsconneet oseurs, fe

Tategrity Error

when the relational integity of the dabase is

Taternal Exror

Exception raised when e database encountars 2 inferal erer,
.. the cursor i not valid amymore, the ransacton s out of e,
i

ProgrammingError

Excepton rased for programming erors, 2. bl ot found,
syatax erro i the SQL statement, wrong mumber of parameters
spacifed, st

NotSupportedError|

Esception rased in case 2 method or database AP was used
which is not supported by the database 0.5 requesting 3

olibacic() on 2 connection hat does ot support
transactions or has transactions fumed off

index-62_1.jpg
voltage (mV)
o = =4
5

Figure 1

simple Plot

index-59_1.jpg

index-65_1.jpg
20
Majortick
14
avistabel | 3|
05

Legend

index-64_1.jpg
35
30
25
20

15
10
o.

index-412_1.png
Flag Description

£2IGNORECASE | Perfors case-insensitive matching

£ LOCALE Interprts words according to the current locale. This iterpretation affecs
e alphabetic group (s 2nd W), 2 well 25 word boundry behavior(b
2d B)

£eMULTILINE | Makes § match the end of 2 line (aotjustthe end of the string) and maks.
* match the startof any line (not just the sar ofthe string)

£eDOTALL Makes period (dot) match any character,including 3 newlne.

SeUNICODE | Interrets laters according t the Unicode charactr set. This fag affcts
the bebavior of w, W, b, B

feVERBOSE | Iguores whitespace withinthe pattem (except inside set [] or when

escaped by 2 backslash) and treats unescaped # 2s 3 comment marker

index-407_1.png
Set

Description

Geh] Retums 3 match where one of the specified characters G, & or b) ars present
3] Retums 2 maich for any lowsr-case character, alphabstically between 2 and x
(el Returns 3 mateh for any charaster EXCEPT 2, % 2nd &

0123 Retums 3 match where any of the specified digits (0, 1, 2, or 3) ara present
-5 Retums 3 match for suy digit between 0 20d O

[0-8](0-8] | Returms 3 match for any two-digit umbers fom 00 and 99

[a-zA-Z]

Returms 2 match for any character alphabetically between 2 and = or A and Z

index-428_1.jpg

index-426_1.jpg
R
Musi af@my.com
= e

students

index-156_1.jpg
lappy Birthday App

Welcome

Birthday

index-154_2.jpg
Hello
Welcome To Python Phoebe

Show Message

index-157_2.jpg

index-433_2.jpg
Phoebe

subject email
Animation pc@my.com
Games gj@my.com
Music af@my.com
Games js@my.com

Music tj@my.com

index-157_1.jpg
@® Happy Birthday App

Name: jasmine

Enter

Welcome Jasmine
B

irthday

index-433_1.jpg
i

students 1

5 Q Edit
subject email

Animation po@my.com

o

index-159_1.jpg

index-158_1.jpg

index-161_1.jpg
PyDrawMenuBar ———»

[SR=3"] PyDrawToolbar

DrawingPanel D <«—— | square

index-431_1.jpg
osatype
wr
VARCHAR(45)
viscne
A as)

cooo z
)000[§

Columa ame: emai Datatype: VARCHAR(4S) B
Colion: _ TabeDetout B o
Stiecs Svmrua O sromen
by @MU @ Unase

Unsigned) Zerori

index-160_1.jpg
File

Line
Square
Circle
Text

|
s

index-430_1.jpg
Crests Tblo ik,
Search Table Data

Table Data Import Wizard
o Refresh Al

index-163_1.jpg
DrawingPanel

ingController

DrawingModel

index-432_1.jpg
v 1 students
.w Tables,

index-162_1.jpg
PyDrawApp
p———————————————

PyDrawFrame R
PyDrawController DrawingPanel
PyDrawMenuBar DrawingController

\ PyDrawToolBar [DrawingModel

index-431_2.jpg
CREATE TABLE ~students”.’students’
“id" INT NOT NULL,
3

e SMORRIS) L

“surn; AR(45) NOT UL,
112 hor i,

e Ao

“email VARCHAR(!) NOT NULL,

PRI KEY U140}
{_uwtoue

Cenail’ AsQ));

index-154_1.jpg
]
@

mple App

nter

E
Welcome Phoebe

Show Message

index-379_1.png
Class ‘mode Buffering
FilelO binary o
BufferedReader o yes
BufferedWriter Wb yes
BufferedRandom “rb= “Wh+ b+ yes
TextlOWrapper Any text yes

index-384_2.jpg
) »
Home

Insert Draw Pagelayout Formulas share
[y A . o/ . onditional Formatting v
| = 0 ¥ | B Formatas Tethe v N
Clpboard | Font Algnment Number [CallStyles
AL = f She Loves You v
A 5 3 o € F
She Love: Sep63
T
3 Cant Buy Me Love Aprsa
4 AHard Days Night Ju64
s
» | sample
Ready

index-384_1.jpg
ample.csv
ou, Sept
1 Hant to nold Your Hand Dec 1963
Cant Buy Me Love Apr 1954
Hard Days Night,July 1

index-123_1.jpg
Hello Python

index-129_1.jpg
Sample App

index-405_1.png
Chasacter

Description.

Example

& sst of characters

fo-d] characters i the sequence s 1o
bt

Tadicates & special sequence (caa also
be used to escape speciel cheracters)

“d indicates the character should be.
an integer

Any character with e exception of
e aewiine character

“Tkn’ indicates that there can be a1y
haracter aftr the 7' nd before the

Tndicares 2 string mmust start with the
Sollowing parem

““nello” indicates the swring most st

“worldS” indicates the string wust end

preceding patters with “world”
- Zero or mre occurrences of the, “Python®” ndicates we ars looking for
preceding partern ‘2aro or more times Python is in 3

swing

‘One or more occurrences of preceding
pazem

“info+” indicates that we must find
nfo 3n the sming at least once

Indicates zero or | occurrences of the
preceding patters

“Joln?" iadicates 2670 or 028 mstances
of e Joha®

o

Exscily the specified pumber of

“Joha (3} his idcares we xpect o
seathe Tokx'in the s thre tmes.
“X(1,2)" indicate tat hare can be
e or o X mext 10 cach otber in the
suing

Either or

“TruelOK” indicates we axe looking
Sor either True or OK.

‘Groups together 2 Tegular expression;
you can then apply another operstor

the whole group

(abeimyz)(2)" indicates that we are
Tooking for the swing abe of Y2
repeatad twice

index-128_1.png
wx.Object wx.Trackable

wx.EvtHandler
T

wx.Window

¥

wx.NonOwnedWindow wx.Panel

i

wx.TopLevelWindow

P

wx.Dialog wx.Frame

index-403_1.png
Abcl23 Matches the pattem

i ‘Doss o match ths parers.

13488 “Does not match the patern

index-137_1.jpg
Enter
Welcom

Show Message

index-132_1.png
_wx.Object w Trackable
x Evtandior
T o ToxtEntry
wxMenu | [wxWindow wxControl
T i,
| I
wxMenubar | [wx StaticToxt | wx AnyBution | wx.Statictine | [wxToolbar | [wx RadioButton | [wTextCir

index-406_1.png
Sequence

Description

Example.

Returns 3 match if e Sollowing characters a2
at the beginning of the string

“AThe" must sart with The'

Returns 2 match where the specified charasters
are t the begining or 2t he end of 3 word

“bon” or “ont” indicates 3
string must stat or end with

B Tndicates that the following characters must be | " Bon” or £'onlB” must ot
present in 2 string bt not =t the start(orat e | strtor end with ‘on’
end) of 3 word

a Returns 2 match where the siing contains | 4"
digits (ambers from 0-9)

D Returns 2 match where he sring DOES NOT | “D”
contain digits

B Returns 2 match where the sting conains 2 | 5=
whits space character

s Returns 3 match where e siring DOES NOT | S
contin 3 white space character

- Returns 2 match where the sting contains amy | 0"
word characters (characers from 2 0 Z, digits
Srom 0-9, nd the underscore _ character)

W Returns 2 match where the sting DOES NOT | <"
contain any word characters

z Returns 2 match ifthe ollowing characters e | “Hunt 2"

present at the end of the string

index-144_1.jpg
Event ir I dle
|___ [

index-391_1.jpg
accounts.csv
transaction_type, amount
deposit,10. 05
deposxt,
withdraw, 1.

index-141_1.jpg
® ® ® PyDraw
—

Hello World

index-388_1.jpg
B
first_name last_name result

John
Jane
Chi

ris

Smlth
Lewi

<
3

54
63

index-151_1.jpg
Show Message

index-401_1.jpg
Home

[‘:—"Ijv

Insert Draw

A~

Page Layout

% *

omments

Qe
cnndmoml Formatting v

% = [Format as Table v
GEE | B | ATans || G || =it
A6 sl
B C D E

1 transaction type amount

2 deposit 10.05

3 deposit 23.45

4 withdraw 12.33

transactions | 4
M = —

m

index-150_1.jpg
® © ® sample App
Hello
® © ® sample App
Hello

® ® ® sample App

Hello

index-397_1.jpg
Q-

Page Layout Formulas & Share
[E) conditional Formatting v

Home Insert Draw

™

| A = | %

O = 0™ [Formatas Table v ’

Cipboard | Font Alignment Number [Cell Styles v

A3 | =SUM(AL, A2) ¥
A s < o ¢ W]

1 @

2 2

N —|

h

s

¢

7

> my worksheet

my other sheet | 4
= E O -

index-120_1.jpg
s e

index-109_1.jpg

index-331_1.png
[bin] [oee] [otc] [users] [wmn] [oar]
el [

tmoore | [jhunt | [eprocter
[docs | wﬂh‘n:c:s temp
pycharmprojects
furtherpython
chapter2

pinie: Aloatefbusel dorinesn/e vt e

index-330_1.png
‘Symbolic. Numeric. Meanog.
T— o700 Read e e oaly fo owner
e o Read i and exccue o o and group

R, i, sl xccue o owaer, goup sl

index-202_1.jpg
— || R

Event Queue

index-196_1.png
XK Sr——;
00, 20
03] 59

index-216_1.jpg

index-205_1.jpg
Hello World

index-223_1.jpg

index-348_1.jpg
Before readline()

File
ol
After readline()
File
Linel
pointer

clic
sl 5
2|3
&R

index-222_1.jpg

index-345_1.jpg
o =
ﬁflle

fl .t
ynle txt

6tex(flleexample Py
> Ex threads.

&

1
2
3
4

& my-new-fle.txt
Hello from Python!!
wo

rking with files is easy...
is cool ...

index-232_1.jpg
init_(self, game):
self.qame = game
self.x = DISPLAY WIDTH / 2
self.y = DISPLAY_HEIGHT - 40
self.load_image ("starship.png’)
det move_right (self) :

Foves the starship right

across the

if self.x + self.width > DISPLAY WIDT:
Self.x = DISPLAY_WIDTH - self.width

det move

x - STARSHIP_SPEED
Lf self.x <

mm the starship up the screen
self.y = self.y - STARSHIP SPEZD
TEseley <

self.y = 0

def move_doun (self) :

o
self.y = self.y + STARSHIP_SPEED

8

-"DISPLAY HEIGHT - self.height
ot sefiEe M L
Feturh 'Starship(+ a0

stxisere.y)

index-367_1.png
iolOBase

L piepeee]

o o BuftrediOBase o Toxt0Baso
[1 [- 1
010 | [oByiesio o Buttrearwair | [io:81ngi0 | o TextoWrapper
[o BuforaRoader o Buftrsawitor
o BufferedRandom

index-230_1.jpg

index-365_1.jpg

index-236_1.jpg

index-334_1.png
Uppercase A
Uppercase B
Uppercase C
Uppercase D

EPRRET

m..n.z:;.cn

Decimal code

index-235_1.jpg

index-333_1.png
[users| [tmp] [var

tmoore [inunt] [eprocter
docs | [workspaces | [temp
pycharmprojects
furtherpython
chapter2

Relative path: pychanmerolects/furtherpython/chapter2

index-340_1.png
Description

‘Opens a file for reading only. The fle pointer is placed at the beginning of the i,
This s the default mode

‘Opens a fle for reading only in binary format. The fle pointer i placed at the
beginning of the fle. This is the default mode

‘Opens a file for both reading and writing. The e pointer placed at the beginning of
the fle

‘Opens a fle for both reading and wriing i binary format The fle pointer placed at
the beginning of the fle

‘Opens a fle for writing only. Overwitesthe fle ifthe file exiss. I the ile does not
exist, creates a new file for viting

‘Opens a file for writing only in binary format, Overviites the file i the e exists. If
the fle does not exis, creates a new fle for writing

‘Opens a il for both writing and reading. Overviites he existing file if the le exist.
I£the fle does not exis,creates a new file for reading and wriing

‘Opens a e for both witing and reading in binary format. Overwites the existing file
i the il exists. f the file does not exist, creates 2 new fl for reading and writing

‘Opens a fl for appending. The file pointer i at e end of the fle if the fle exits.
‘That s, the il i in the append mode. I the fle does not exist, i creates 2 new fle for
witing

®

‘Opens a le for appending in binary format The fle pointer s at the end of the fle if
the fle exists. That is, the fle is n the append mods. If the e does not exist, it
creates a new file for writing

=

‘Opens a il for both appending and reading. The fle pointer i at the end of the e
the file exiss. The fl opens in the append mode. Ifthe file does not exist it creates 2
new fle fo reading and writing

&

‘Opens a il for both appending and reading in binary format. The file pointer s at the
end of the fle ifthe file exists. The fl opens in the append mode. If e fl doss not
exist, it creates a new file for reading and writins

index-334_2.png
Decimal code. Character Meaning
o7 2 Lowercasea
%8 b Lowercase b
) < Lowercasec
100 il Lowercase d

index-164_1.jpg
Control of

User Input

Information
Model

index-166_1.jpg

index-165_1.jpg
PyDrawFrame PyDrawController

index-167_2.jpg
PyDrawMenuBar | | PyDrawToolBar

index-167_1.jpg

index-169_1.jpg
PyDrawController

index-168_1.jpg
PyDrawApp

index-173_1.jpg
1. user clicks
on menu

option

2. command_menu_handler()

PyDraw
Controller

rcle_mode()

index-172_1.jpg
i i
L PyDrawController

instantiate
| Wx.BoxSizer
SetSizer
instantiate and SetMenuBar

PyDrawMenuBar

instantiate
PyDrawToolBar
add toolbar to box sizer
instantiate
get drawing_controller DrawingPanel
set drawin% controller
add to box sizer .

Bind controller to menu event

'

Centre

index-174_1.jpg
2.0n_mouse_click(event)

5. instantiate

index-289_1.jpg
@ Tests passed: 6, ignored: 10f 7 tests -~ O ms.
s

not inplenented yet

index-288_1.jpg
<

Test Results
@ test_calculator

+ test initial_value
+ test_add_one
 test_subtract_or

b g il
> ¥ testcaloutor add, {_operation
@ test_calculator_multiply

index-292_1.jpg

index-291_1.jpg

index-294_2.jpg

index-294_1.jpg
Unit Under test

index-324_1.png
bin | [dev] [etc] [users| [tmp]| [var
I
[tmoore | jhunt ‘ eprocter |
docs | | workspaces temp |

pycharmprojects |

furtherpython
chapter2

index-295_1.jpg

index-327_1.png
1 workspaces

= H\m a4 dm il ol »
s o e |
Favourites Name ~ Date Modied

32 oropbox v 13 pychamproects 26 Apr 2019 a1 12:17
© Dowrioads > 3 beginnerspython3 26 Apr 2019.a112:38
A% poriesins v 1 furtherpython3 Today at 1:23
A o v i chapter2 Today at 09:56
a Do 1gb_colours.py Today at 09:56

et > I chapter3 26 Apr 2019.0112:26
£ midmarsh > I chapterd 26 Apr 2019 at 12:26.
3 projects. » I chapters 16 May 2019 at 15:04.
e Y s — ™"
@ in &l Macintosh HD > B Users > I8 Shared > B workspaces

< A8 = s > o > Pychampriecs > frthepythons <10 Sewchurthrython3
3 Pychamprojects A tme B Date modifed e

R bigruispiten 3 dopte 952091130 Flefoder
1 frthapyhons 3 chaptes 0310572019 1845 e foder

¥ python-intio chaptens. 03/05/2019 18:46. e folder
i Saved Games. 0 chapters. 22/052019 1322 Fie folder
5 Seaches dupee O30S0 846 e okler
G * chptes oumsa0a 11t Flofode

3 chaptertt WOSROI9 1212 Fie folder

mvideos
7 uptertz 25091322 Faefoder

3 MiDtsServert30

25items 1 e seected

index-325_1.png
/
[

Users

=]
jhunt

[

workspaces

root

parent

working directory

subdirectory

index-240_1.jpg

index-248_1.jpg
Collision: Game Over

index-241_1.jpg

index-269_1.jpg
Write a Test

Re-Run Test

Write Code

index-259_1.jpg
Developer Oriented Testing

Installation &
Deployment Testing

index-277_1.jpg

index-276_1.jpg
{# calculatorpy « A test calculatorpy

from pythonintro. calculator import Calculator

2

3

4 fef test_add_one(.

5 calc = Calculator()

6 c.set(1)

7 catc.add()

8 assert calc. total == 1

index-279_1.jpg
e oy e b st
> 90 5 T resisreeom
o e o S

o [s e T
» AT

index-277_2.jpg
>

»

. pytestfor
ve &=
o TestResults

> testcalculator oms

SRR Ll

5 Tests passeds10f 1 test - 0me

oma Testing started at 09:33
/Library/Franevorks/pythan. framevork vers on:

Launching pytest i

/pythons.
ith argunents. test_catcutat

7 “/Agplications PyCharn CE.opp/Conte
test_oddone in JUsers/Shared/workspaces/pycha.

test session starts
platforn dorvin — Pythan 3.7.1, pYRest-4.0.1, py-1.7.0, pluggy-0.0.

PaRairs Posars Brarerearispoces pycmraipsiionatios i reotteced 1 iten
test_catevtator.py

t1008)
Process finished with exit code 8

index-280_1.jpg
» vo
9 v ¥ TestResults
v -/lsllnq functions
8 increment integer_3

