
[image: Cover]

Deep Learning for Data ArchitectsUnleash the power of Python’s deep learning algorithms

Shekhar Khandelwal

[image: logo]

www.bpbonline.com

Copyright © 2024 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor BPB Online or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, BPB Online cannot guarantee the accuracy of this information.

First published: 2024

Published by BPB Online

WeWork

119 Marylebone Road

London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55515-391

www.bpbonline.com

Dedicated to

My beloved wife, Niharika

&

My Daughter, Saesha

About the Author

[image:] Shekhar Khandelwal is a distinguished Senior AI & Data Scientist, residing in the bustling harbor city of Hamburg, Germany. His academic career shines bright with a Master’s degree in Data Science, achieving distinction for his thesis work in the realm of Computer Vision. His name can be spotted in top-tier research papers and publications, predominantly in the area of Deep Learning.

Bringing to the table over 15 years of experience, the author has an extensive professional background in the field of AI and machine learning. His journey ranges from coding and crafting enterprise-level AI products to leading data teams and mentoring future data science professionals. He has successfully developed numerous client solutions utilizing big cloud service platforms such as AWS, Google Cloud, Microsoft Azure, and IBM Cloud.

Despite his deep involvement in the tech industry, our author is also a fitness enthusiast. When he’s not making machines smarter, he’s likely to be found flexing his muscles at the gym, attending a crossfit class, cycling, or participating in marathon runs. His zeal for fitness is as strong as his passion for AI, making him a well-rounded professional in all respects.

About the Reviewer

Abonia Sojasingarayar is a Machine Learning Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer, AI Analyst, Technical Writer, and Technical Book Reviewer with over 6 years of experience. In my 6+ years of professional experience, I have dealt with ML domains (predictive analysis, computer vision, NLP), data analysis, data mining, data visualization, problem-solving, decision-making, planning, and software development. I am skilled in solving modern problems using AI and deep learning using familiar frameworks in Python such as TensorFlow, scikit-learn, Keras, etc., open-source toolkits such as openCV and NLTK, etc., and familiar with Web Marketing Strategies, front-end and back-end development tools, and languages. (For more info, don't hesitate to visit the project section)

She has experience in management consulting, commercial industry, cyber security, RH, chemical industry, banking and insurance, public transport industry, telecommunication services, e-commerce, and information technology sectors.

 Her skills and expertise includes Studying and transforming data science prototypes, designing machine learning systems, Research and implement appropriate ML algorithms and tools, Develop machine learning applications according to requirements, Select appropriate datasets and data representation methods, Run machine learning tests and experiments, Perform statistical analysis and fine-tuning using test results, Train and retrain systems when necessary, Extend existing ML libraries and frameworks, Keep abreast of developments in the field, Execute analytical experiments to help solve various problems, making a true impact across various domains and industries, Identify relevant data sources and sets to mine for client business needs and collect large structured/unstructured datasets and variables, Devise and utilize algorithms and models to mine big data stores, perform data and error analysis to improve models, and clean and validate data for uniformity and accuracy, Analyze data for trends and patterns and interpret data with a clear objective in mind, Implement analytical models into production by collaborating with software developers, Communicate analytic solutions to stakeholders and implement improvements as needed to operational systems.

Acknowledgements

First and foremost, this book is dedicated to my uncle, Dinesh Khandelwal. His unwavering faith in me serves as an enduring source of inspiration. A renowned book-seller, his counter is the most honorable stage for my books, each sale symbolizing a cherished victory.

This work is also a tribute to my parents, the architects of my existence, whose love and nurturing have shaped me into the individual I am today.

Lastly, the dedication extends to the two sparkling gems of my life, my wife and daughter. Their smiles, a profound treasure, are the driving forces that fuel my passion.

Special gratitude is extended to BPB Publications for their mentorship and expertise in bringing this work to life. The journey to finalize this book was an enriching process, involving the valuable engagement and collaboration of reviewers, technical experts, and editors.

Acknowledgement is also due to my colleagues and coworkers in the tech industry. Over the years, their wisdom and feedback have been instrumental in my growth and the refinement of my work.

Lastly, my heartfelt thanks go out to every reader who has taken an interest in this book. Your support has been indispensable in transforming this dream into reality. Your enthusiasm fuels my commitment to share my knowledge.

Preface

The world as we know it is undergoing a profound transformation, a digital metamorphosis that is driven by the immense power of data and artificial intelligence. In the center of this revolutionary tide stands a key player - the data architect. Tasked with the responsibility to make sense of vast data oceans and convert it into meaningful insights, the role of a data architect is evolving at a staggering pace. “Deep Learning for Data Architects” is an embodiment of that evolution.

This book aims to illuminate the path for data architects and enthusiasts, guiding them through the labyrinth of modern data structures and artificial intelligence techniques, from the foundations of Python programming to the advanced landscapes of deep learning models. It is a testament to the compelling narrative of change that the industry is experiencing, catering to professionals who aspire to stay at the forefront of this digital transformation.

“Deep Learning for Data Architects” does not simply regurgitate theoretical concepts. Instead, it creates an engaging dialogue with the reader, providing practical Python implementations for complex AI paradigms, creating a bridge between theory and practice. Each chapter builds upon the last, starting with the basics and gradually delving into the deep end of AI and machine learning.

The journey is as important as the destination, and throughout the course of this book, you will encounter real-world data challenges, explore the depths of neural networks, understand the intricacies of convolutional, recurrent neural networks and unravel the mysteries of Generative Adversarial Networks and Transformers. Each step you take will empower you with new insights and skills, enabling you to tackle any challenge that the data landscape might throw your way.

Whether you are a seasoned data architect aiming to add deep learning to your arsenal, or a budding enthusiast stepping into the exciting intersection of these fields, this book is designed for you. As you turn the pages, you will find yourself not just learning, but evolving with the narrative of deep learning, setting the stage for a future-proof career in this dynamic domain.

Embrace this journey of learning and transformation, and let “Deep Learning for Data Architects” be your guide and companion in the exciting odyssey of AI and data science.

Chapter 1: Python for Data Science - serves as a solid foundation, providing an introduction to Python for data science. You will learn essential programming concepts, data structures, and libraries such as NumPy and Pandas. This chapter ensures that you are equipped with the necessary Python skills for the deep learning journey ahead.

Chapter 2: Real-World Challenges for Data Professionals in Converting Data Into Insights - dives into the challenges faced by data professionals when converting raw data into valuable insights. You will explore data cleaning, handling missing values, outlier detection, and feature engineering techniques. This chapter prepares you for the data preprocessing steps crucial for successful deep learning implementations.

Chapter 3: Build a Neural Network-Based Predictive Model - focuses on building predictive models using neural networks. You will learn about the architecture of a neural network, the role of activation functions, and techniques to handle classification and regression tasks. Through Python code implementations, you will gain hands-on experience in building and training neural networks.

Chapter 4: Convolutional Neural Networks - introduces CNNs, a powerful class of neural networks for image analysis tasks. You will understand the key components of CNNs, such as convolutional layers, pooling layers, and fully connected layers. The chapter provides Python code implementations to build CNN models for image classification tasks.

Chapter 5: Optical Character Recognition - explores the exciting field of OCR using deep learning. You will discover techniques to extract text from images, enabling automated text recognition. Through Python code implementations, you will learn how to build OCR models and apply them to real-world scenarios.

Chapter 6: Object Detection - focuses on object detection, an essential task in computer vision. You will explore popular object detection algorithms and architectures, such as Faster R-CNN and YOLO. Through Python code implementations, you will gain hands-on experience in training and deploying object detection models.

Chapter 7: Image Segmentation - delves into image segmentation, a technique used to partition images into meaningful regions. You will learn about popular segmentation algorithms, including U-Net and Mask R-CNN. Through Python code implementations, you will develop a deeper understanding of image segmentation and its applications.

Chapter 8: Recurrent Neural Networks - introduces RNNs, which are widely used for sequential data analysis. You will understand the architecture of RNNs, including LSTM and GRU units. Through Python code implementations, you will learn how to build RNN models for tasks such as natural language processing and time series forecasting.

Chapter 9: Generative Adversarial Networks - explores the fascinating world of GANs, which can generate new data instances based on training data. You will learn about the adversarial training process and different GAN architectures, including DCGAN and CycleGAN. Through Python code implementations, you will gain hands-on experience in generating realistic images and exploring generative modeling.

Chapter 10: Transformers - introduces Transformers, a revolutionary deep learning architecture that has gained prominence in natural language processing tasks. You will learn about the transformer architecture and its variants, such as BERT and GPT. Through Python code implementations, you will gain practical experience in applying transformers to text-related tasks.

Code Bundle and Coloured Images

Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/k8vs91n

The code bundle for the book is also hosted on GitHub at https://github.com/bpbpublications/Deep-Learning-for-Data-Architects. In case there’s an update to the code, it will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos available at https://github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices to ensure the accuracy of our content to provide with an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications’ Family.

Did you know that BPB offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.bpbonline.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at :

business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on BPB books and eBooks.

Piracy

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at business@bpbonline.com with a link to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please visit www.bpbonline.com. We have worked with thousands of developers and tech professionals, just like you, to help them share their insights with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at BPB can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

[image:]

Table of Contents

	1. Python for Data Science

	Structure

	Objectives

	Setting up the development environment

	Installing Anaconda

	Advance Python libraries for data science

	Numpy

	Pandas

	Reading and writing data to and from different file formats

	Format - csv

	Format - Excel

	Format - JSON

	Format - clipboard

	Format - HTML tables

	Format - PDF

	Format - Web scraping

	Improving efficiency with the pandas read_csv method

	Parameter - dtype

	Parameter - usecols

	Parameter - chunksize

	Conclusion

	Questions

	Answers

	2. Real-World Challenges for Data Professionals in Converting Data Into Insights

	Structure

	Objectives

	Pandas profiling

	Analyzing Pandas profile report

	Saving the Pandas profile report to a HTML file

	Creating a Jupyter Notebook widget

	Pandas profile report for big datasets

	Sweetviz

	Installing and getting started with Sweetviz

	Analyzing Sweetviz report

	Generating a report to compare two DataFrames using Sweetviz

	AutoViz

	Installing and getting started with AutoViz

	Analyzing AutoViz report

	Lux

	Installing and getting started with Lux

	Analyzing Lux report

	Generating Lux visualizations based on intent

	Saving Lux report to a HTML file

	Advanced features in Lux reports

	Lazy Predict

	Analyzing Lazy Predict experimentation results

	PyCaret

	Installing and getting started with PyCaret

	Analyzing PyCaret experimentation results

	Advanced features of PyCaret

	Conclusion

	Questions

	Answers

	3. Build a Neural Network-Based Predictive Model

	Structure

	Objectives

	Artificial neural network and its components

	Neurons

	Feed forward

	Activation functions

	Loss function

	Backward propagation

	Epoch

	Batch

	Iteration

	Optimizer

	Learning rate

	Building a classification model using neural network

	Problem statement

	Dataset

	Implementation

	Load Python libraries

	Load data

	Descriptive analytics

	Data pre-processing

	Modeling

	Experiment 1 - Hidden layer -1, epoch-100 – shallow neural network

	Experiment 2 - hidden layer -2, epoch-100 – deep neural network

	Building a regression model using neural network

	Problem statement

	Dataset

	Data pre-processing

	Modeling

	Model evaluation

	Conclusion

	Questions

	Answers

	4. Convolutional Neural Networks

	Structure

	Objectives

	Convolutional neural networks components

	Load required libraries

	Digital image as a numpy array

	Kernels/filters and convolution process

	Stride

	Padding

	Convolution on RGB image

	Convolution operation with multiple filters

	One convolution layer

	Pooling

	Flattening

	Dense layers

	Image classification using CNN

	Problem statement

	Dataset - MNIST

	Implementation

	Data pre-processing

	Modeling

	Plot confusion matrix

	Create a confusion matrix and plot

	Hyperparameters tuning using KerasTuner

	Dataset – Fashion MNIST

	Implementation

	Install KerasTuner

	Conclusion

	Questions

	Answers

	5. Optical Character Recognition

	Introduction

	Structure

	Objectives

	Optical character recognition

	OCR Python libraries and their implementation

	Tesseract OCR

	Tesseract OCR demo

	keras-ocr

	keras-ocr demo

	EasyOCR

	EasyOCR demo

	TrOCR

	TrOCR demo

	Conclusion

	Questions

	Answers

	6. Object Detection

	Structure

	Objectives

	Object localization and detection

	Object detection algorithms and their comparison

	Single shot detector Python implementation

	YOLO v3 Python implementation

	Experiment 2

	Experiment 3

	Experiment 4

	Experiment 5

	Conclusion

	Questions

	Answers

	7. Image Segmentation

	Structure

	Objectives

	Difference between image classification, detection and segmentation

	Image segmentation architectures

	U-Net Python implementation

	FCN-8 Python implementation

	Mask R-CNN Python implementation

	Conclusion

	Questions

	Answers

	8. Recurrent Neural Networks

	Structure

	Objectives

	Algorithms for RNN implementation

	RNN implementation

	Long short-term memory implementation

	Gated Recurrent Unit implementation

	Conclusion

	Multiple choice questions

	Answers

	9. Generative Adversarial Networks

	Structure

	Objectives

	Types of GAN

	Vanilla GAN Python implementation

	Key difference between Vanilla GAN and DCGAN

	DCGAN Python implementation

	StyleGAN Python implementation

	Setup environment

	Conclusion

	Questions

	Answers

	10. Transformers

	Structure

	Objectives

	Introduction to Transformers in deep learning

	Various transformers architectures

	Difference between contextual and non-contextual embeddings

	BERT Python implementation

	GPT Python implementation

	Conclusion

	Questions

	Answers

	Index

CHAPTER 1Python for Data Science

You can’t build a great building on a weak foundation. You must have a solid foundation if you are going to have a super-strong structure.

— Gordon B. Hinkley

Data is the most important component of data science. Python libraries for data science are built specifically to solve various peripheral issues that Data Scientists may face, like data sourcing, cleaning, pre-processing, and working with big data. It is important to know what these libraries have to offer and the sneaky tricks that can be implemented in our day-to-day data wrangling. The high-level methods within these libraries save you a lot of time performing humongous tasks, using just a few lines of code.

Additionally, data has to be sourced from all over the place. Hence, as someone who is building predictive models, maybe in academia or at work, should be familiar with different kinds of data that one can deal with and how to source them using Python.

Plus, when you work on your personal system, you have to be really cautious about how you utilize the available resources in terms of computing hardware and so on. Hence, it is of utmost importance to know various tricks that can help you with memory management. The tricks that usually go unnoticed and unexplored within Python packages, if explored, can significantly improve your efficiency while dealing with data.

Structure

In this chapter, we will cover the following topics:

	Setting up the development environment

	Advance Python libraries for data science

	Reading and writing data to and from various file formats

	Improving efficiency with the pandas read_csv method

Objectives

After studying this chapter, you should be able to set up your laptop with the required tools and technologies to embark on your journey of implementing various deep learning models that will be discussed in this book. Also, you should be able to install various Python packages that are prerequisites for building any predictive model. Once the development environment is set up, you will learn about various Python libraries that are available for scientific computing, machine learning and deep learning. Additionally, you will learn how to maximize your productivity in a limited hardware environment, since machine learning and deep learning are computationally expensive.

Setting up the development environment

As part of the environment setup, we will look at how to install the Anaconda tool, which gives access to almost all the required underlying tools and technologies for development. Further, we will understand how to get started with Jupyter Notebook, which is the IDE for Data Scientists. Finally, we will look at how to enhance the notebook by installing important plugins for better usability of the tool.

Installing Anaconda

The first and foremost tool that has to be installed on your machine is Anaconda. Anaconda is a distribution of packages for the Python and R programming languages. It includes a package manager called conda that can be used to install, update, and manage packages within the Anaconda environment.

Tools that come along with Anaconda are as follows:

	Jupyter Notebook

	Orange

	Spyder

	PyCharm

	VS Code

	RStudio

	IBM Watson Studio

Each of these software can be installed separately as well. However, with anaconda, all of them can be installed in one shot.

Follow the steps to install Anaconda on your machine:

	Go to the home page of Anaconda at https://www.anaconda.com/products/individual.

It will look like as shown in Figure 1.1:

[image:]
Figure 1.1: Anaconda home page

	Click on Download and download the installer of the choice of your operating system, as shown in the following screenshot:
[image:]
Figure 1.2: Anaconda installers

	Double-click on the downloaded installer and follow the installation wizard, as shown in the following screenshot:
[image:]
Figure 1.3: Anaconda installation wizard

	Click the Close button after you complete the installation of Anaconda on your machine.

Now, let’s get started with Jupyter Notebook.

Getting Started with Jupyter Notebook

Once Anaconda is installed, you can proceed to launch the Jupyter Notebook on the web browser:

	Open the Anaconda Navigator app on your machine. The screen will look as shown in Figure 1.4:
[image:]
Figure 1.4: Anaconda Navigator

	Click on the Launch button under the Jupyter Notebook icon. This will launch the Jupyter homepage on your default browser, as shown in the following screenshot:
[image:]
Figure 1.5: Jupyter Notebook

Further, you can navigate to the desired folder in your filesystem and go to the folder where you want to create a notebook to start building your projects.

	Click on the New dropdown and click on the Python 3 option, as shown in the following screenshot:
[image:]
Figure 1.6: Notebook IDE

	This will create a new notebook with the name Untitled, which can be renamed as shown in the following screenshot:
[image:]
Figure 1.7: Notebook cell

	You can start writing Python code in the cells, as shown in Figure 1.6, and run them right there using the respective buttons provided at the top of the IDE:
[image:]
Figure 1.8: Notebook Hello World

Enhancing Jupyter Notebook usability

Many seasoned data scientists usually work on the vanilla setup of Jupyter notebook. However, it is important to know that there are many more amazing features of the Jupyter Notebook that are usually not explored by most users. Once you explore them and start using them, you will realize how important they are to further enhance your usability and productivity with building models and applications using Jupyter Notebook.

These features are the ability to incorporate latex in the markdown cells of the notebook, code prettify for making the code look neater to promote best practices and preserve its integrity, the ability to automatically create a table of contents of your exploratory data analysis steps, code auto-completion with notebook, the ability to save code snippets for reusability, and many more.

Installing the required Python packages

Python, as we know, is a multi-utility programming language. It is also the most preferred programming language for data science due to the amazing scientific computing, visualization and algorithm implementation libraries.

In this section, we will install the most important Python packages that are required to build any machine learning and deep learning model in Python.

Those are as follows:

	Pandas

	NumPy

	Matplotlib

	Seaborn

	Scikit Learn

	TensorFlow

	Keras

	Scikit-image

	OpenCV

Use Code 1.1 snippet and run them on the notebook cell for installing the Python packages on your machine. These are simple pip install commands that can be run on the command line too. In order to run them through the notebook cell, add an “!” before the command. That will make the notebook know that the code has to be interpreted and executed as a shell command:

	import sys

	!{sys.executable} -m pip install -U pandas

	!{sys.executable} -m pip install -U numpy

	!{sys.executable} -m pip install -U matplotlib

	!{sys.executable} -m pip install -U seaborn

	!{sys.executable} -m pip install -U scikit-learn

	!{sys.executable} -m pip install -U tensorflow

	!{sys.executable} -m pip install -U keras

	!{sys.executable} -m pip install -U scikit-image

	!{sys.executable} -m pip install -U opencv-python

Code 1.1: pip install commands

Note that these are some basic Python libraries required for building any machine learning or deep learning model. However, additional libraries required at specific stages of the model building process will be introduced and discussed in their respective chapters.

Advance Python libraries for data science

Python has become the most preferred language for data science, owing to the amazing and easy-to-use scientific computing and model building libraries. Libraries like Pandas and Numpy provide various high-level methods for data processing. Libraries like matplotlib and seaborn make data visualization a piece of cake. Libraries like scikit-learn provide high-level methods to implement almost all machine learning algorithms. Libraries like Keras and PyTorch provide high-level methods to implement almost all deep learning algorithms.

Also, Python for data science has a very active online community, which constantly contributes to building various high-level Python packages for easy and holistic implementation of almost all stages of the data science life cycle. This makes data sourcing, data cleaning, data pre-processing, data visualization, and model building possible with just a couple of lines of code implementation.

Numpy

Numpy is a Python library that is written for scientific computing and data analysis. It stands for Numerical Python.

When it comes to data science, the data is usually big data. Even when we work on sample data for building and evaluating a predictive model, the data is huge enough to give your machine a hard time to process. Now, Python as we know it may not be that efficient in terms of computational speed and efficiency. Hence, the power of vectorization that is inherently present in the advanced Python libraries, like Numpy, comes to the rescue for faster computations.

In standard Python ways, when you need to deal with data in an iterative fashion, “for” loops are the best premise. In a loop, records are treated one row at a time, which is time-consuming and not very efficient.

Vectorization uses the Single Instruction, Multiple Data (SIMD) architectures. SIMD is a class of parallel computing that enables the hardware of your system to perform a single instruction on multiple data points simultaneously.

So, numpy allows you to vectorize the code for faster computations, which is of utmost importance in the world of machine learning and deep learning.

 We’ll conduct a small test to demonstrate the time differences in two methods. First, we’ll use standard Python to perform element-wise multiplication of items in two lists. Then, we’ll use numpy arrays for the same data and carry out a vectorized multiplication operation.

Importing the ‘time’ module to track the time taken for each operation:

	import time

Create two lists with some random data:

	list_1 = [i for i in range(1000000)]

	list_2 = [j**2 for j in range(1000000)]

Capture the start time:

	t0 = time.time()

Find the product of the two lists in a conventional pythonic way:

	list_3 = list(map(lambda x, y: x*y, list_1, list_2))

Capture the end time:

	t1 = time.time()

Print the time taken by this process:

	print("Time taken by a standard python operation : {}".format(t1-t0))

Convert the Python lists into numpy arrays:

	array_1 = np.array(list_1)

	array_2 = np.array(list_2)

Capture the start time:

	t0 = time.time()

Perform numpy multiplication:

	array_3 = array_1*array_2

Capture the end time:

	t1 = time.time()

Time taken by numpy operation:

	print("Time taken by numpy operation : {}".format(t1-t0))

Output:

[image:]
Figure 1.9: Numpy time test result

As it can be seen, the time taken by standard Python operation is approximately 50

times more than the time taken by the same operation using numpy.

That clarifies why numpy is the back end of almost all data science libraries like Pandas, which we will look at next.

Pandas

Pandas is a Python library that is used extensively for data manipulation and visualization activities. The most basic data structure in Pandas is a DataFrame. Pandas DataFrame provides a tabular representation of data and many in-built data manipulation methods, which come in handy in the data exploration and preprocessing stages.

Reading and writing data to and from different file formats

Seaborn library contains various datasets that can be utilized for various demonstrations by loading those datasets in a pandas DataFrame.

First, let us import the pandas and seaborn libraries:

	import pandas as pd

	import seaborn as sns

Then, let us load one of the sample datasets into a pandas DataFrame:

	df = sns.load_dataset("tips")

Output:

[image:]
Figure 1.10: DataFrame head

Format - csv

To unload the Pandas DataFrame into a csv file, use the following:

	df.to_csv("tips.csv", index=False)

[image:]
Figure 1.11: csv file

Use the following to load the csv file into Pandas DataFrame:

	df=pd.read_csv("tips.csv")

Format - Excel

Use the following to unload the Pandas DataFrame into an excel file:

	df.to_excel("tips.xlsx", index=False)

[image:]
Figure 1.12: xlsx file

Use the following to load the excel file into Pandas DataFrame:

	df=pd.read_excel("tips.csv")

Format - JSON

Use the following to unload the Pandas DataFrame into a json file:

	df.to_json("tips.json")

[image:]
Figure 1.13: json file

Use the following to load the json file into Pandas DataFrame:

	df=pd.read_json("tips.csv")

Pandas DataFrames can be written and read not only to and from text files like CSV, JSON and so on. but also to binary files like parquet and pickle. For the entire list of Pandas DataFrame supported file formats and their definitions, refer to this blog:

https://khandelwal-shekhar.medium.com/different-file-formats-pandas-dataframe-can-read-and-write-to-38198e48e439

Format - clipboard

Pandas DataFrames can also be written into the system’s clipboard. They can also be read directly from the clipboard, which can be useful for various kinds of applications.

Use the following to unload the Pandas DataFrame in the clipboard:

	df.to_clipboard()

Use the following to load the content from the clipboard into Pandas DataFrame:

	df=pd.read_clipboard()

Format - HTML tables

Tabular data available on various web pages can be directly read into a Pandas DataFrame.

Various tables are present on any web page. One of the table in a web page is shown as follows:

[image:]
Figure 1.14: HTML table

To read the tabular data from any web page table into a Pandas DataFrame, use the website link that you want to scrape, to read the HTML content in the code:

	df=pd.read_html("https://<webpage url>")

However, if we look at the size of this DataFrame, it is more than 1.

[image:]
Figure 1.15: DataFrame length

That means this command had read all the tables in the web page. If we want to read any specific table from the web page, we can use the table heading as the identifier.

					df=pd.read_html("https://<webpage url>", match='Historical population')

Output:

[image:]
Figure 1.16: DataFrame length

So, now there is only one element in this DataFrame. To see this data, read the first element of the DataFrame.

[image:]
Figure 1.17: DataFrame elements

However, sometimes data is available in a different data source, which is not inherently supported by Pandas DataFrame to read from, like PDF tables, HTML content of a web page, REST APIs, and so on. To read data from such sources, we can use additional Python libraries like requests, Beautiful Soup, tabula-py, and so on.

Format - PDF

Suppose tabular data is stored in a PDF file that we intend to load in a Pandas DataFrame:

	To read tabular data stored in a PDF file, we need to first install the tabula-py library using the following command snippet:

	import sys

	!{sys.executable} -m pip install -U tabula-py

	Install Java 8+ using this website based on your operating system:

https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html

	Import the following libraries:

	import tabula

	import pandas as pd

	Read the PDF data into a Python object, as follows:

	data = tabula.read_pdf("data.pdf", pages="all")

However, this object is a Python list, and the data is not in a very readable format.

Output:

[image:]
Figure 1.18: Data type

1. Tabula provides an option to read and save the data directly from pdf to csv format:

1. tabula.convert_into("data.pdf", "data.csv", output_format="csv", pages="all")

2.	Now, we can read this csv file and load it in the pandas dataFrame using the pandas read_csv method, as follows:

2. df=pd.read_csv("data.csv")

Output:

[image:]
Figure 1.19: DataFrame head

However, we can see that data is not read in a very clean way, and we see that there are a few unwanted columns created during the data transition process; hence, some cleaning will be required before further processing of the DataFrame.

Format - Web scraping

To scrape a web page and extract relevant information from the content, we can use Python libraries like requests and Beautiful Soup:

	Install the required Python packages – requests and Beautiful Soup:

	import sys

	!{sys.executable} -m pip install -U requests

	!{sys.executable} -m pip install -U bs4

	Import the required libraries:
1. import pandas as pd

2.import requests, bs4

	Send the GET request to the desired web page to collect the HTML content of the page:

	url = "https://www.unb.ca/cic/datasets/ids-2017.html"

	req = requests.get(url)

	Use the Beautiful Soup library to parse the HTML content, as follows:

	soup = bs4.BeautifulSoup(req.text, "html5lib")

Output:

[image:]
Figure 1.20: HTML content

Improving efficiency with the pandas read_csv method

As mentioned earlier, most datasets are made available for predictive modelling in a csv file. Hence, it is important to understand the various options available in Pandas library on how to optimally use system memory while reading the data file.

Dataset used for this section demonstrations is available at https://www.kaggle.com/anthonypino/melbourne-housing-market.

The pandas.read_csv method reads the comma-separated values (csv) file into a DataFrame. In this section, we will look at how we can use various parameters available in the read_csv method to improve the pandas DataFrame efficiency and also improve on memory utilization since that is of utmost importance when we work on huge datasets.

First, read the full CSV data into a pandas DataFrame.

Code:

	df=pd.read_csv("melbourne.csv")

	df.head()

Output:

[image:]
Figure 1.21: DataFrame head

Suppose we look at each column and the memory usage, as shown in the following screenshot:

[image:]
Figure 1.22: DataFrame info

The total memory usage is approximately 3.8 MB.

Parameter - dtype

Let us look at the details of all the numerical columns in the DataFrame:

[image:]
Figure 1.23: DataFrame description

You can see that columns like Rooms, Distance, Postcode, Bedroom2, Bathroom, Car and YearBuilt can be easily accommodated in int16 or float16 data types, but by default, pandas reads them all in int64 or float64 data types, which translates to more memory footprint.

Hence, read_csv provides a parameter called “dtype”, which can be used to specify the desired data type for selected columns.

Code:

	df1=pd.read_csv(file, dtype={

	 "Rooms":np.int32,

	 "Distance":np.float16,

	 "Postcode":np.float16,

	 "Bedroom2":np.float16,

	 "Bathroom":np.float16,

	 "Car":np.float16,

	 "YearBuilt":np.float16

	 }

)

	df1.info()

Output:

[image:]
Figure 1.24: DataFrame info

Now, it can be seen that the same data stored in the new pandas DataFrame uses only 2.8 MB of memory space. This can be a huge memory saving technique when working with huge datafiles.

Parameter - usecols

With the preliminary understanding of the features in the dataset, sometimes you may find certain columns that are of no use for the modelling. For example, in the Melbourne housing dataset, assume that columns like Address, latitude, longitude and so on are of no importance. And you are aware of it before even reading the data into a pandas DataFrame. There is always an option to remove them after the DataFrame is created. But when you deal with huge datasets, it would be pretty time consuming and costly to read unnecessary columns, only to remove them later.

The usecols parameter of the read_csv method comes handy at such times. It lets the user define the columns they want to use from the CSV to form the DataFrame.

Code:

	cols = ["Suburb","Rooms","Type","Price","Distance", "Postcode", "Bathroom", "Bedroom2", "BuildingArea", "YearBuilt"]

	df2 = pd.read_csv(file, usecols=cols)

	df2.info()

Output:

[image:]
Figure 1.25: DataFrame info

Memory usage is further reduced to 1.8 MB.

Now, let’s use dtype and usecols together to further optimize the DataFrame.

Code:

	cols = ["Suburb","Rooms","Type","Price","Distance", "Postcode", "Bathroom", "Bedroom2", "BuildingArea", "YearBuilt"]

	df3 = pd.read_csv(file,

	 usecols=cols,

	 dtype={

	 	 "Rooms":np.int16,

	 "Distance":np.float16,

	 "Postcode":np.float16,

	 "Bedroom2":np.float16,

	 "Bathroom":np.float16,

	 "YearBuilt":np.float16

	 })

	df3.info()

Output:

[image:]
Figure 1.26: DataFrame info

Memory usage is further reduced to a few thousand KBs.

Parameter - chunksize

While working with datasets that range from a few GBs or even TBs, even with all the stated hacks, it will not be possible to read the entire dataset in the DataFrame due to memory limitations.

Then, we can use the chunksize parameter to read the data in chunks. The chunksize parameter will give the flexibility to read the dataset in the chunks of the desired number of rows.

Code:

	for chunk in pd.read_csv(file, chunksize=5000):

	 print(chunk.shape)

Output:

[image:]
Figure 1.27: File shapes

Conclusion

In this chapter, we looked at setting up the data science development environment. We also looked at various advanced Python packages and concepts that can help in the day-to-day data wrangling process for anyone who is trying to build a predictive model. This chapter also provided a lot of code snippets that can be readily used for various common data sourcing, data loading, data cleaning and preprocessing, and data visualization tasks.

In the next chapter, we will explore real-world challenges faced by data architects to implement data science techniques for data problems. Also, we will look at how such challenges can be resolved by using ready-to-use automated tools and techniques.

Questions

	Which of the following Python libraries is/are widely used in data science?

	Pandas

	Numpy

	Matplotlib

	All of the above

	NumPy stands for which of the following?

	Number Python

	Numerical Python

	Numbers in Python

	None of the above

	PANDAS stands for which of the following?

	Panel data analysis

	Panel data analyst

	Panel data

	Panel dashboard

	What are different file types that can be read using the pandas library?

	CSV

	Excel

	JSON

	All of the above

	Which Python library can be used for API calls?

	Seaborn

	Beautiful Soup

	Requests

	All of the above

Answers

	(d)

	(b)

	(d)

	(d)

	(c)

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

[image:]

CHAPTER 2Real-World Challenges for Data Professionals in Converting Data Into Insights

The miracle isn’t that I finished. The miracle is that I had the courage to start.

— John Bingham

Well begun is half done! Most of the time, if you have observed that once you define the problem statement and collect the initial set of observations aka data, you find it difficult to get started with data crunching or data analysis. You kind of get dumbstruck on picking up a variable from your dataset to start performing the data understanding process. The first step is the most important step to finishing the marathon.

At such times, various automated data profiling, data visualization, and model building libraries come in handy. These libraries give you a head start in your predictive model building process. Such libraries come with very easy-to-use, high-level functions that can perform various complicated data analysis and plotting tasks with just a few lines of code.

Further, it has also been observed that once you clean and pre-process your data, you find yourself clueless on which algorithm to apply based on your problem statement and the dataset collected. Hence, the question arises, ‘Why not use all the available algorithms?’ Well, that does not seem feasible since there are many, and usually, time is limited. There are automated tools that allow you to implement almost all the popular regression or classification algorithms in one shot, with just a few lines of code.

In this chapter, we will discuss various such amazing Python libraries that automate the most cumbersome model building processes and give you the head start that you are looking for to begin your data science problem-solving journey.

Structure

In this chapter, we will cover the following topics:

	Pandas-profiling

	Sweetviz

	AutoViz

	Lux

	Lazy Predict

	PyCaret

Objectives

After studying this chapter, you should be able to automate various important model building processes like descriptive analytics, exploratory data analysis, and model building experimentations. You will also be able to use various advanced Python libraries to automate all these steps and further build upon this knowledge to enhance your predictive model building processes.

Pandas profiling

Pandas-profiling is a Python library that makes descriptive analytics a matter of just a few lines of code. It provides a detailed analysis of the dataset in just seconds. It may not be everything that you need to know about a dataset, but it is a good starting point to understand your data, with all the basic statistics of the features and an optimum level of visualizations, before starting any kind of exploratory data analytics.

Installing and getting started with pandas profiling

Following are the steps to install Pandas profiling and getting started with it:

Step 1: Install the pandas-profiling Python package, as shown here:

	import sys

	!{sys.executable} -m pip install -U pandas-profiling

Step 2: Import pandas_profiling with the following command:

	import pandas_profiling

Step 3: Call the ProfileReport method within pandas_profiling and pass the DataFrame to the method:

	pandas_profiling.ProfileReport(df)

[image:]
Figure 2.1: Pandas Profile Report

Once completed, a report is generated describing the whole DataFrame. You can navigate through the entire report to completely understand the data they are dealing with. At the top of the report, you will find all the different kind of analysis that has been done on the data by Pandas Profiling, as seen in the following screenshot:

[image:]
Figure 2.2: Profile Report options

Analyzing Pandas profile report

In the Overview section of the report, you will see details like the number of variables, number of observations, how many of them are categorical, and how many are numerical, and so on. This gives a holistic view of the entire dataset, as shown in the following screenshot:

[image:]
Figure 2.3: Pandas Profile overview

The Warnings tab in the overview section will provide more information about dataset variables like cardinality, distinct values, missing values, and correlations among variables in a nutshell for a quick reference. Refer to the following screenshot:

[image:]
Figure 2.4: Pandas Profile warnings

Sample section will show the top and last few records of the dataset, as shown in the following screenshot:

[image:]
Figure 2.5: Sample rows

The Variables section will provide detailed information about each variable in the dataset. Information like the number of records, distinct values, value distributions and so on are shown in this section; refer to the following figure:

[image:]
Figure 2.6: Feature analysis

With every feature in the variable section comes a Toggle details button. If you click on that button, it will present you with detailed statistical information about the feature, as shown in the following screenshot:

[image:]
Figure 2.7: Toggle details

Within those detailed sections, there are various tabs like Statistics, Histogram and Common Values, which provide an even more detailed analysis of the feature, as shown in the following screenshot:

[image:][image:]
Figure 2.8: Feature details

Further, the Interactions section provides a unique capability for users to select various combinations of features to analyze their correlation, as shown here:

[image:]
Figure 2.9: Bivariate analysis

However, the correlations section provides the holistic heatmap to show the correlations between every feature combination, as shown in the following screenshot:

[image:]
Figure 2.10: Correlations Heatmap

Saving the Pandas profile report to a HTML file

In order to broadcast your data findings, the pandas profile report can be exported into an HTML file, as follows:

	from pandas_profiling import ProfileReport

	df_profile = ProfileReport(df, title="Pandas Profiling Report")

	df_profile.to_file("PandasProfiling_report.html")

The preceding code will generate and export the Pandas profile report into an HTML file and display the status of the export:

[image:]
Figure 2.11: Export Report status

Creating a Jupyter Notebook widget

For better usability within Jupyter Notebook, pandas profile report can be converted into a widget within the notebook with this command:

	df_profile.to_widgets()

[image:]
Figure 2.12: Pandas Profile widget

Checking the variables view in the widget :

[image:]
Figure 2.13: Feature analysis in widget view

Pandas profile report for big datasets

If you are dealing with huge datasets, then generating the full-fledged report would be quite time-consuming and sometimes unnecessary. Hence, the pandas profile provides you with an option to generate only a minimalistic report that gives a decent understanding of the dataset.

The following code will generate the profile report for huge datasets:

1. bigData_profile = ProfileReport(df, minimal=True)

1. bigData_profile.to_widgets()

With minimal option as true, you can see that all the tabs are not present in the report, as with the usual report. However, an overview of the dataset and details about all the features available in the dataset are generated in the report, as shown here:

[image:]
Figure 2.14: Big data profile minimal report

To keep yourself updated about the latest improvements in the library, visit the official page of Pandas profiling: https://github.com/pandas-profiling/pandas-profiling.

Sweetviz

Sweetviz is a Python library that provides the complete data report in an interactive HTML file style-report. It does not only explore one dataset but is also capable of exploring two datasets in one shot and provide a well-defined comparison report between the two datasets, which is a very useful feature for certain use cases, which we will discuss in the next section.

Installing and getting started with Sweetviz

Follow the given steps to get started with Sweetviz:

Step 1: Install the Python package of Sweetviz with the following command:

	import sys

	!{sys.executable} -m pip install -U sweetviz

Step 2: Import the sweetviz library, as follows:

	import sweetviz as sv

Step 3: Call the analyze method in the Sweetviz library; that’s all:

	sv.analyze(df).show_html()

[image:]
Figure 2.15: Sweetviz report status

Analyzing Sweetviz report

The Sweetviz report HTML file will be saved automatically on your machine, and the report will also be automatically opened on your browser for you to navigate to.

A sample Sweetviz report is shown here:

[image:]
Figure 2.16: Sweeviz report

The report generated by Sweetviz is an interactive one. Clicking on the Associations tab at the top of the report will display the association of every variable with each other in the form of a heatmap in the right pane of the report, as shown in the following screenshot:

[image:]
Figure 2.17: Sweetviz heatmap visualization

Similarly, clicking on the individual variable in the report will open a more detailed analysis of that variable in the right pane of the report, as you can see here:

[image:]
Figure 2.18: Individual feature analysis

Generating a report to compare two DataFrames using Sweetviz

Sweetviz provides an option to compare two DataFrames and generate a detailed comparison report. This feature may come handy in situations when you have different datasets collected to build a predictive model, or when the DataFrame is divided into training and testing sets and you want to compare how the data is distributed.

Create two DataFrames, say df1 and df2, and use the compare method by passing the two DataFrames as an argument to the method. Further, use the show_html method to generate the comparison report:

	df_compare = sv.compare(df1, df2)

	df_compare.show_html('Compare Report.html')

This will generate an HTML report that consists of all metrics of comparison in the report.

A sample comparison report is shown in the following screenshot:

[image:]
Figure 2.19: AutoViz report

To keep yourself updated on the latest improvements in the library, visit the official page of Sweetviz: https://pypi.org/project/sweetviz/.

AutoViz

AutoViz is a Python library that enables users to create different kinds of visualizations that can be generated for the variables in the dataset. This can be considered as a starting point of data analysis through visualization. With just one line of code, a huge number of plots are generated for careful analysis of the variables in the dataset, visually.

Installing and getting started with AutoViz

Following are the steps to install and get started with AutoViz:

Step 1: Install the autoviz Python package with the following command:

	pip install autoviz

Step 2: Import the AutoViz class from the autoviz library, as shown here:

	from autoviz.AutoViz_Class import AutoViz_Class

Step 3: Create an object for the AutoViz class with the given command:

	AV = AutoViz_Class()

Step 4: Pass the datafile and the dependent variable name in the AutoViz method in the AutoViz class object, as shown here:

	df = AV.AutoViz('Train_data.csv', depVar="class")

This will generate the AutoViz report with all the visualization possible, depending upon the features within the dataset.

Analyzing AutoViz report

First, the analysis of the dataset will be provided as the output, as follows:

[image:]
Figure 2.20: Autoviz report

Further, the visualizations will be presented in the report.

Since the dependent variable is the ‘class’ column, all the variables are plotted on a scatter plot against class feature, as seen in the following screenshot:

[image:]
Figure 2.21: Continuous variable scatter plot

The report further contains all the different kinds of plots that can be created based on the feature data types, like scatter plot, box plot, violin plot, heatmaps and so on, as shown in the following screenshot:

[image:]
Figure 2.22: Autoviz heatmap

As can be seen here, with just one line of code, a huge number of plots can be generated using the Autoviz library to analyze data visually, before proceeding with more detailed exploratory data analysis.

To keep yourself updated on the latest improvements in the library, visit the official page of Autoviz: https://autoviz.io.

Lux

Lux is an advanced data visualization library that can be integrated with a Jupyter Notebook as a widget. It enables the notebook cells to display toggle buttons and to display on-demand plots for a given DataFrame if the user chooses to click on the displayed toggle buttons on the notebook output cell.

Installing and getting started with Lux

Here are the steps to install and get started with Lux:

Step 1: Install lux package using pip install:

	import sys

	!{sys.executable} -m pip install -U lux-api

Step 2: In order to enable Lux widget in Jupyter Notebook, luxwidget extensions need to be installed and enabled, as follows:

	!jupyter nbextension install --py luxwidget

	!jupyter nbextension enable --py luxwidget

The output obtained is as shown here:

[image:]
Figure 2.23: Extension install status

Step 3: For demonstration purposes, let’s create a DataFrame using one of the dataset available in seaborn sample data, with the following code:

	import seaborn as sns

	df=sns.load_dataset('titanic')

Step 4: Upon the display of the DataFrame on the notebook cell, in addition to the content of the DataFrame, a Toggle Pandas/Lux button will also be displayed now:

[image:]
Figure 2.24: DataFrame in Lux analysis

Analyzing Lux report

Upon clicking on the toggle button, Lux visualization will be displayed within the notebook cell. The report contains various tabs like ‘Correlation’, ‘Distribution’ and ‘Occurrence’, as shown in the following screenshot:

[image:]
Figure 2.25: LUX visualizations

Generating Lux visualizations based on intent

Lux also provides the flexibility to generate intent-based visualizations. For example, if you want to generate plots against selected features within the dataset, then you can create an intent with the following code:

	df.intent=['age’, 'fare']

Once the intent is created, when the DataFrame is displayed on the notebook cell, the visualizations are automatically created based on the intent defined against the DataFrame, as shown in the following screenshot:

[image:]
Figure 2.26: LUX intent visualization

Another distinguishable feature of Lux is that in addition to the intended plots, it recommends enhancement of the plots by adding another variable against the intended variables to analyze the correlation of all of these variables, as seen here:

[image:]
Figure 2.27: Lux advance intent visualization

Also, note that all these plots are interactive, and the cursor can be used to hover on various data points to get the details of those data points right there on the plot, as shown in the following screenshot:

[image:]
Figure 2.28: LUX visual features

Additionally, all the plots displayed can be downloaded using the Export feature, as shown in the following screenshot:

[image:]
Figure 2.29: LUX report export

Saving Lux report to a HTML file

LUX reports can be saved as an HTML file for sharing purposes, with the following code:

	df.save_as_html('lux_report.html')

The output obtained is as follows:

[image:]
Figure 2.30: Save output message

[image:]
Figure 2.31: LUX export

To clear the intent from the DataFrame, use the following command:

	df.clear_intent()

Advanced features in Lux reports

Lux plots can be further optimized by using classes like VisList. For example, if user wants to see distribution of data based on one variable against all distinct values of another variable, we will write the following code:

	from lux.vis.VisList import VisList

	VisList(['class=?', 'survived'], df)

This will display plots of records distribution based on the survived feature for all the different values of the class feature, as shown here:

[image:]
Figure 2.32: LUX advance

To keep yourself updated on the latest improvements in the library, visit the official page of LUX: https://lux-api.readthedocs.io/en/latest/source/getting_started/installation.html.

Lazy Predict

While working on a data science problem statement, wherein you are supposed to build a predictive model, whether regression or classification, there is always a limitation on the number of experiments that can be conducted in terms of algorithms implementations and comparing the results.

It is usually based on your experience and instinct; you pick a certain algorithm, let us say random forest classifier for a classification use case, and implement it on your dataset. Then, you consider the performance metrics of the model created using random forest as a baseline and move on to tune your model for better performance.

Lazy Predict is a library that enables users to experiment their dataset on almost every popular algorithm available for regression and classification problems, with just a few lines of code.

This expands the horizon of the experiment that a user conducts in terms of algorithms implementations and gives a confidence on setting the baseline performance metrics, which the user can use to build upon for further improvements.

Installing and getting started with Lazy Predict

Follow the given steps to install and get started with Lazy Predict:

Step 1: Install the lazypredict Python library using pip install:

	pip install lazypredict

Step 2: Import the LazyClassifier and LazyRegressor classes, as shown here:

	from lazypredict.Supervised import LazyClassifier, LazyRegressor

Step 3: Import and load the dataset within the sklearn library to create a DataFrame for demonstration purposes, with the following code:

	from sklearn import datasets

	from sklearn.model_selection import train_test_split

	data = datasets.load_breast_cancer()

Step 4: Distribute DataFrame into train and test sets using the train_test_split method from the sklearn library, as shown here:

	X, y = data.data, data.target

	X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2, random_state=42)

Step 5: Create an object for the LazyClassifier class:

	clf = LazyClassifier(predictions=True)

Step 6: Use the fit method within the LazyClassifier class, and pass train and test DataFrames (X_train and X_test) as well as the associated labeled DataFrames (y_train and y_test) to the fit method. That will return two objects: models and predictions:

	models, predictions = clf.fit(X_train, X_test, y_train, y_test)

Analyzing Lazy Predict experimentation results

Models will contain the comparison of all the algorithms implemented on the DataFrame passed to the fit method for classification.

Let us print the models’ content and see for ourselves:

	models

The output obtained is as follows:

[image:]
Figure 2.33: Lazy Predict report

You can see that various performance metrics are captured for various classification algorithms for the dataset used for the classification problem.

Predictions will contain all the predictions made by each algorithm for every record in the test set, as shown here:

	predictions

[image:]
Figure 2.34: Lazy Predict predictions

Official page of Lazy Predict

Welcome to Lazy Predict’s documentation! — Lazy Predict 0.2.9 documentation

PyCaret

PyCaret is another amazing Python library that automates the model building process and experiments your dataset with almost every regression and classification algorithm out there. It also provides the detailed analysis of the model performances built using PyCaret.

The official page of PyCaret is https://pycaret.org/.

Installing and getting started with PyCaret

Follow the given steps to install and get started with PyCaret:

Step 1: Install the pycaret library using pip install:

	pip install pycaret

Step 2: Import sample datasets available within the pycaret library and use a sample dataset for demonstration purposes, as shown here:

	from pycaret.datasets import get_data

	diabetes=get_data('diabetes')

Step 3: Import the classification class within the pycaret library:

	from pycaret.classification import *

Step 4: Use the setup method to initiate the classification experiment on the dataset by passing the DataFrame and the target variable to the method:

	clf=setup(diabetes, target='Class variable')

It will perform some data analysis and ask for confirmation on whether the data types assumed for the provided columns in the DataFrame are correct. If they are correct, you can press Enter, and if you want to change the datatypes before the features are fed into the classifier, then type quit and press Enter.

[image:]
Figure 2.35: PyCaret data analysis

Step 5: Assuming that the data types are correctly identified, you press Enter, and then the classification process upon various supported algorithms within the PyCaret library begins:

[image:]
Figure 2.36: PyCaret experiment description

Analyzing PyCaret experimentation results

Once the processing is completed, use the compare_models method to see the full analysis of all the experimentations:

	compare_models()

The output obtained is as follows:

[image:]
Figure 2.37: PyCaret report

The results are, by default, sorted based on ‘Accuracy’ metrics; you can see that Extra Trees Classifier worked well on this dataset. But based on the performance metrics that you are looking for your problem statement, you can choose the appropriate classifier from the list and create the model using the create_model method:

	et = create_model('et')

This will build the model of your choice and perform the cross-validation for 10 iterations by default and present the final performance metrics, as shown in the following screenshot:

[image:]
Figure 2.38: PyCaret performance metrics

Advanced features of PyCaret

However, this is not the end of the story. PyCaret comes with many more advanced capabilities post the experimentation and model building process.

Tuning the model

Once basic experimentation is completed, the pycaret library also provides the flexibility to tune the model with just a single line of code:

	tuned_et = tune_model(et)

[image:]
Figure 2.39: PyCaret tuned model performance metrics

Plotting the model performance

Once the model is created, you can also plot the model ROC curves with just a single line of code:

	plot_model(et)

[image:]
Figure 2.40: Plot model performance

Plotting confusion matrix of the model

Once the model is created, you can also plot the model confusion matrix with just a single line of code:

	plot_model(et, plot = 'confusion_matrix')

[image:]
Figure 2.41: Confusion matrix

Plotting feature importance

Once the model is created, you can also plot the feature importance with just a single line of code:

	plot_model(et, plot = 'feature')

[image:]
Figure 2.42: Feature importance

We have only scratched the surface of the features available in the PyCaret library. Refer to the official documentation to know about many more things that can be done using this library, which can speed up your model building, optimization, and evaluation processes.

Conclusion

In this chapter, we looked at various advanced Python libraries that help in automating various exploratory data analysis steps. With only a few lines of code, profiling of the dataset, visualizations, and detailed statistical reports can be generated in no time. We also looked at various Python libraries that enable experimenting with implementation of all kinds of classification and regression algorithms, without having to code for each of those individual algorithm implementations. Additionally, we discussed how these automated tools give a head start to the data modeling process and save a lot of time as well.

In the next chapter, we will cover the basics of neural networks and look at how to build the basic neural network-based predictive model from scratch.

Questions

	Which of the following Python libraries can be used for automated data exploration?

	Pandas profiling

	AutoViz

	Sweetviz

	All of the above

	Which of the following Python libraries can be used for automated ML modeling?

	PyCaret

	Lazy Predict

	Both of the above

	None of the above

	What is the confusion matrix?

	Visualization algorithm

	Machine learning algorithm

	Performance metrics

	None of the above

	What are the different types of machine learning?

	Supervised learning

	Unsupervised learning

	Reinforcement learning

	All of the above

	What are the different types of problems that machine learning can solve?

	Classification

	Regression

	Clustering

	Forecasting

	All of the above

	None of the above

Answers

	(d)

	(c)

	(c)

	(d)

	(e)

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

[image:]

CHAPTER 3Build a Neural Network-Based Predictive Model

We are all now connected by the internet, like neurons in a giant brain.

— Stephen Hawking

Have you ever wondered how our brain functions? How does it identify things, understand patterns, and make decisions? This is an age-old mystery, and all one can do is to presume the neurological functioning of the brain, which makes it capable of performing all the incredible cognitive and mathematical analysis. The answer is ‘Biological Neural Networks’. The human brain is a humongous network of neurons, and these neurons are connected in a systematic way that helps interpret data absorbed by the sense organs like the eyes, ears, and nose from the physical world. Artificial Neural Networks (ANN) is structurally inspired by the human brain, wherein connected networks of neurons are artificially developed, which are then trained using training data to make the network understand the pattern of the problems we are making computers to solve.

Structure

In this chapter, we will cover the following topics:

	ANN and its components

	Building a classification model using neural network

	Building a regression model using neural network

Objectives

After studying this chapter, you should be aware of the various components of an artificial neural network. Further, you will build neural network-based classification and regression models using the Python keras library. Once you build a predictive model, it is important to understand the performance of the model. To assess the performance of the model, there are various performance metrics for both classification and regression problems. In this chapter, you will understand what performance metrics one should derive in order to optimally assess the model. Finally, you will understand how to tune the model by tuning various hyperparameters.

Artificial neural network and its components

Artificial Neural Network (ANN), as the name suggests, is an artificially created neural network composed of artificial neurons. These neurons are nothing but interceptors of the incoming data signals, and they fire up based on the underlying mathematical inference.

First, what is a neural network? The word ‘neural’ refers to ‘neurons’, and the word ‘network’ refers to a graph-like structure. Hence, neural networks are just a systematic network of neurons, which can interpret the physical world around us.

These neurons are systematically arranged in various layers, as shown in Figure 3.1:

[image:]
Figure 3.1: Hypothetical depiction of neural network

The first layer is called the input layer, and the last layer is called the output layer. All the layers in between are called hidden layers. Now, if many layers are defined in the hidden layer, the network is called a deep neural network.

Figure 3.2 gives a simple and clear picture of how Artificial Intelligence (AI), Machine Learning (ML), and neural networks are related:

[image:]
Figure 3.2: Subfields of AI

Neurons

Neurons are the most basic components of a neural network. The best way to understand an artificial neuron is by drawing parallels with its biological counterpart, the human brain neuron.

In a human brain, information is intercepted via dendrites to the neuron cell body, and based on some rule within the cell body, the relevant information is passed further via axon terminals, as shown in Figure 3.3:

[image:]
Figure 3.3: Biological neuron and its components

Similarly, in an artificial neuron, as shown in Figure 3.4, the inputs are injected into a cell body (neuron) through one or multiple input neurons. Then, certain mathematical calculations are processed within the cell body, and an output is generated. Now, that output can be passed for further processing. Take a look at the following figure:

[image:]
Figure 3.4: Artificial neuron and its components

The cell body in the artificial neuron, as shown in Figure 3.4, comprises two components: a summation and a function. Now, every input in a neural network is associated with a weight. And every neuron in the network has a bias term associated with it. The summation in the neuron is the sum of the input and weights and the bias term, as shown in Figure 3.5:

[image:]
Figure 3.5: Mathematical depiction of a neuron

Each input with its associated weights is mathematically computed and added to a bias term that is specific to each neuron. Hence, the output from the calculation will be as follows:

[image:]
Figure 3.6: Neuron formula

Consider this happening with each neuron in the network, as shown in Figure 3.7:

[image:]
Figure 3.7: Neurons and associated maths

Now, this output value is treated by a function, as shown in Figure 3.4, called the activation function. Finally, based on the activation function output, the final output from the neuron is generated and passed for further processing in the network.

The full picture of what happens within a neuron is depicted in Figure 3.8:

[image:]
Figure 3.8: End-to-end mathematical depiction of a single neuron pass

This underlying process of inputs interacting with weights and biases, and then the process of activation function treatment within each neuron happens within every artificial neuron in the artificial neural network, as shown in Figure 3.9:

[image:]
Figure 3.9: Neural network

Before we jump into building a deep learning model using the keras library, it is important to understand a few other components of a deep neural network and its training process, that is, the model building process.

Other than neurons, weights, biases, activation functions, input layer, output layer, and hidden layers, as discussed earlier, there are various other important components in an artificial neural network that are important to understand before we delve into building a deep neural network using the keras library.

The first thing to understand here is that this process of training a network or building a model is all about finding the optimum values of weights and biases of each neuron in the network.

Feed forward

When a network is built and before the input data is fed into the network for starting the training process, we must know that the weights and biases of each neuron in the network are randomly generated. Now, with those random weights and biases, the input data is traversed through the network end to end, and the output is generated in the output layer for each input. This process of traversing the input data from input layer till the output layer is called feed forward.

Activation functions

In a neural network, activation functions are used to introduce non-linearity to the output of a neuron. Without activation functions, a neural network would be limited to linear transformations of the input data, which would severely limit its ability to model complex relationships between inputs and outputs.

Activation functions transform the input signal to a neuron into an output signal, which is then passed on to the next layer of the neural network. They can make the output signal more or less sensitive to changes in the input signal, and they can also be used to squash the output signal to a specific range, such as between 0 and 1 or between -1 and 1.

By introducing non-linearity to the output of a neuron, activation functions enable the neural network to model complex patterns and relationships in the input data, allowing it to learn and make decisions based on those patterns.

Here are some commonly used activation functions in neural networks and their descriptions:

	Sigmoid: A function that maps any input to a value between 0 and 1, and is used for binary classification tasks

	Rectified Linear Unit (ReLU): A function that outputs the input value if it is positive, and 0 if it is negative; it is commonly used in deep neural networks due to its simplicity and effectiveness

	Tanh (Hyperbolic Tangent): A function that maps any input to a value between -1 and 1; it is similar to sigmoid but with a range that is symmetric around 0

	Softmax: A function that maps a vector of inputs to a probability distribution over the classes in a multi-class classification task

	Leaky ReLU: A modified version of ReLU that allows for a small positive output when the input is negative, to avoid the “dead neuron” problem

	Exponential Linear Unit (ELU): A function that is similar to ReLU but with a smooth curve that allows for negative inputs.

Each of these activation functions has its own strengths and weaknesses and is appropriate for different types of neural networks and tasks.

Loss function

Once the output is generated from the feed forward process, the predicted output is compared with the actual output, considering we are performing supervised learning. Upon this comparison, an error for each record is captured, and subsequently, the overall error or loss of the network is calculated using the loss function. There are various functions used to calculate the loss, depending on whether it is a classification or a regression problem.

Some of the widely used loss functions are as follows:

	BinaryCrossentropy class

	CategoricalCrossentropy class

	SparseCategoricalCrossentropy class

You can read more about these loss functions here:

https://keras.io/api/losses/

Backward propagation

The overall error or loss generated by the network in a certain forward pass has been captured so that the process can go back into the network and tune the weights and biases of each neuron to produce better results the next time. This process of going back into the network after a forward pass and determining the loss in quest of a better performing model is called backward propagation.

Epoch

This process of forward pass, loss calculation, and backward pass can be performed as many times as required for building the most accurate and optimum model. This end-to-end movement of the entire dataset from the input layer to the output layer and then back to the input layer is called epoch.

Batch

The data used for training a model can be a lot and may not be feasible to be processed all at once. Hence, data must be divided into batches. Let us say there are 1000 records in the input dataset, and it seems to be computationally feasible to compute only 250 records in one pass. Hence, 4 batches will be created with a batch size of 250 records for each pass.

Iteration

As we know, an epoch is considered complete when the entire dataset is passed through the network to and fro once. Now, if the training sample is divided into a certain number of batches, then the number of passes it will require for all the batches to make one pass in the network is called iteration. Hence, if there are 1000 training samples divided into a batch size of 250, it will take 4 iterations to complete 1 Epoch.

Optimizer

As we know, during the backward propagation, the weights and biases are tuned in the network to find their optimum values. The optimizers are the ones that work on the concept of gradient descent in the quest of finding the global minima, which tune these parameters. Without delving deep into this process, understand that it is the optimizer’s task to determine whether the values of weights and biases are to be increased or decreased during the backward propagation.

Some of the widely used optimizers are as follows:

	SGD: The Stochastic Gradient Descent (SGD) optimizer is an iterative optimization algorithm used in machine learning that updates the model parameters in small steps by computing the gradients of the objective function with respect to the parameters, using a random subset of the training data at each iteration.

	RMSprop: The RMSprop optimizer is a variant of the Stochastic Gradient Descent (SGD) algorithm that uses an exponentially weighted moving average of past squared gradients to adjust the learning rate and accelerate convergence for non-convex optimization problems.

	Adam: The Adam optimizer is an adaptive optimization algorithm used in machine learning that combines the advantages of the RMSprop and momentum methods by incorporating first- and second-order moments of the gradients to update the learning rate and improve convergence speed for stochastic optimization problems.

You can read more about these optimizers here:

https://keras.io/api/optimizers/

Learning rate

As we know, the optimizers increase or decrease the weights and biases of the neurons in the network to tune those parameters for the model to produce the best results. The learning rate determines the rate at which these parameters should be increased or decreased by the optimizer in each epoch to test the model performance.

Since we theoretically know the building blocks of neural networks, let us experiment with building a classification model using neural network.

Building a classification model using neural network

Classification models can be binary, multi-class, or multi-label.

When you need to classify the data points into only two categories, like either spam or ham for email classification, it is said to be a binary classification. An email can be classified into any one of the two classes only in a binary classification.

When you need to classify an email into more than two categories, like classifying emails into either ‘primary’, ‘promotional’, ‘social’, or any other class, it is said to be a multi-class classification. An email can be classified into any of the defined classes in multi-class classification.

When you need to tag multiple categories to an email, like an email can be both ‘primary’ and ‘promotional’, multiple labels will be tagged to an email through a classification model. This is multi-label classification.

Let us look at a neural network-based model implementation for a binary classification.

Problem statement

The problem is about classifying a tumor into either ‘malignant’ or ‘benign’ using the characteristics of the breast mass provided in the dataset.

Dataset

We are using the breast cancer dataset from the sklearn.datasets library. The data contains records of the characteristics of breast mass like radius, texture, smoothness, fractal dimensions, and so on. It is a labeled dataset, and each record is labeled as either ‘malignant’ or ‘benign’. This is clearly a problem of binary classification.

Implementation

We will implement a classification model using the Python keras library.

Load Python libraries

Let us start by loading all the required libraries:

	import keras

	import tensorflow as tf

	import pandas as pd

	import numpy as np

	import matplotlib.pyplot as plt

	from sklearn import datasets

Load data

Use the load_breast_cancer method in the datasets module within the sklearn library to load the data into a bunch object, as follows:

	breast_cancer_data = datasets.load_breast_cancer()

The bunch object created is used to separate predictors and target variables into X and y objects separately, as shown:

	X, y = breast_cancer_data.data, breast_cancer_data.target

Let us check the size of the dataset:

	print(X.shape)

	print(y.shape)

[image:]
Figure 3.10: DataFrame shape

So, there are a total of 569 records and 30 features in the dataset. Using those 30 features, a classification model needs to be trained to predict the class of the breast mass as either ‘benign’ or ‘malignant’, as shown in the following code snippet:

	breast_cancer_data.target_names

[image:]
Figure 3.11: Target names

The set of 30 features in the dataset is as follows:

	breast_cancer_data.feature_names

[image:]
Figure 3.12: Feature names

Descriptive analytics

Let us create a pandas DataFrame using X and y for descriptive analytics, as shown:

	df=pd.DataFrame(X, columns=list(breast_cancer_data.feature_names))

	df['malignant']=y

	df.head()

The preceding code prints the first 5 rows of the DataFrame:

[image:]
Figure 3.13: Head of the DataFrame

Let us look at the class distribution:

	df.malignant.value_counts()

[image:]
Figure 3.14: Value counts of dependent variable

So, there are 357 records out of 569 that are of class ‘malignant’ and 212 records out of 569 which are of class ‘benign’.

To set the baseline, if the model predicts all the records as malignant, even then the accuracy of the model will be as follows:

So, the dataset is slightly class imbalanced, and even if the model predicts all the records as one class, the model will be 62.74% accurate.

For now, we will continue modeling without treating the class imbalance.

Data pre-processing

Store the features data in X and the target in y, as shown:

	X, y = breast_cancer_data.data, breast_cancer_data.target

Perform the train-test split; reserve 80% data for training and 20% data for testing:

	from sklearn.model_selection import train_test_split

	X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2, random_state=42)

Scale the data using StandardScaler:

	from sklearn.preprocessing import StandardScaler

	scaler = StandardScaler()

	X_train=scaler.fit_transform(X_train)

	X_test=scaler.transform(X_test)

Scaler is fit using the training dataset and used to transform the training dataset using the fit_transform method. Later, the same scale is used to transform the testing dataset.

Now, both the training and testing datasets are ready to train the model.

Modeling

Import the Sequential and Dense functions from the keras library:

	from keras.models import Sequential

	from keras.layers import Dense

Create a new Sequential object to build the model upon:

	model = Sequential()

Experiment 1 - Hidden layer -1, epoch-100 – shallow neural network

In this experiment, we will build a shallow neural network with just one hidden layer, as shown in Figure 3.15:

[image:]
Figure 3.15: Neural network with one hidden layer

Add the first hidden layer with 16 neurons. The activation function used will be relu, and the name of the layer is dense_1. The input layer will contain the number of neurons equal to the number of features in the dataset, that is, 30, as shown:

	model.add(Dense(16, input_shape=(30,), activation='relu', name='dense_1'))

Finally, create the output layer with the sigmoid activation function. Since we are going to use sparse_categorical_crossentropy as the loss function, the model will spit out the probability of the input belonging to a certain class. Since it is a binary classification problem, we need two neurons in the last layer, as follows:

	model.add(Dense(2, activation='sigmoid', name='dense_output'))

If you plan to use the binary_crossentropy loss function for binary classification problems, then it would be a mandatory step to convert the target data into 0 and 1 format before the training. You can use just one neuron in the output layer, since in that case, the model is just going to spit the probability of the input data belonging to class 1.

Once the whole network is built, we will compile the network using the adam optimizer and sparse categorical cross entropy loss function:

	model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

After compilation, we will see the summary of the model:

model.summary()

Model Summary is depicted in Figure 3.16.

[image:]
Figure 3.16: Model summary

The summary shows exactly what we have built. The artificial neural network we built consists of 30 neurons in the input layer, since there are 30 features in the dataset. Then, there is a hidden layer comprising 16 neurons. And finally, there is an output layer that has two neurons since it is a binary classification. Hence, each output neuron will hold the probability of the input belonging to that class, and the class of the input will be predicted based on the highest probability in both the output neurons.

First, let us fit the model on the training dataset. In this step, the model is being trained using the training dataset X_train and y_train. We will train the model for 100 epochs:

	result = model.fit(X_train, y_train, epochs=100, validation_split=0.05)

Model run summary is depicted in Figure 3.17:

[image:]
Figure 3.17: Model run summary

Model evaluation

Once the model is trained using the training dataset, it is time to evaluate the model performance using the test dataset:

	loss, acc = model.evaluate(X_test, y_test)

	print('Loss on test data: ', loss)

	print('Accuracy on test data: ', acc)

Model evaluation summary is depicted in Figure 3.18:

[image:]
Figure 3.18: Model evaluation summary

We can see that the accuracy of the model is approximately 96% and the loss is 0.069.

Performance metrics

Let us first create an array of the predicted classes, as shown:

	y_pred=model.predict(X_test)

	y_pred=np.argmax(y_pred,axis=1)

Now, since we have both the list of the actual classes and that of the predicted classes for the test data, let us generate the classification report that shows all the important metrics with respect to the model:

	from sklearn.metrics import classification_report, confusion_matrix

	print(classification_report(y_pred, y_test))

This displays the classification report as shown Figure 3.19:

[image:]
Figure 3.19: Classification report

Confusion matrix

Further, let us build and visualize the confusion matrix for the binary classification. We have a function called plot_confusion_matrix() that has been taken directly from scikit-learn’s website. This is the code they provide to plot the confusion matrix. Hence, it can be used as follows:

	def plot_confusion_matrix(cm, classes,

	 normalize=False,

	 title='Confusion matrix',

	 cmap=plt.cm.Blues):

	 """

	 This function prints and plots the confusion matrix.

	 Normalization can be applied by setting `normalize=True`.

	 «»»

	 plt.imshow(cm, interpolation='nearest', cmap=cmap)

	 plt.title(title)

	 plt.colorbar()

	 tick_marks = np.arange(len(classes))

	 plt.xticks(tick_marks, classes, rotation=45)

	 plt.yticks(tick_marks, classes)

	

	 if normalize:

	 cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]

	 print("Normalized confusion matrix")

	 else:

	 print('Confusion matrix, without normalization')

	

	 print(cm)

	

	 import itertools

	 thresh = cm.max() / 2.

	 for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):

	 plt.text(j, i, cm[i, j],

	 horizontalalignment="center",

	 color="white" if cm[i, j] > thresh else "black")

	

	 plt.tight_layout()

	 plt.ylabel('True label')

	 plt.xlabel('Predicted label')

Now, let us create a function that will build and visualize the confusion matrix as shown in the following code snippet:

	def create_confusion_matrix(y_test, y_pred):

	 from sklearn.metrics import confusion_matrix

	 cnf_matrix = confusion_matrix(y_test, y_pred)

	 plot_confusion_matrix(cnf_matrix, [0,1])

Create the confusion matrix for the model built in Experiment 1, as follows:

	create_confusion_matrix(y_test, y_pred)

This generates the confusion matrix shown in Figure 3.20:

[image:]
Figure 3.20: Confusion matrix

Based on the confusion matrix, the following result was obtained:

	Out of 43 benign records, 41 were correctly predicted as benign and 2 were incorrectly predicted as malignant.

	Out of 71 malignant records, 69 were correctly predicted as malignant and 2 were incorrectly predicted as benign.

Experiment 2 - hidden layer -2, epoch-100 – deep neural network

In this experiment, we will build a deep neural network with more than one hidden layer, as shown in Figure 3.21:

[image:]
Figure 3.21: Deep neural network

Since the steps involved in building a neural network are already explained in Experiment 1, we will use the following code to build a deep neural network with two hidden layers, each consisting of 16 neurons. All the other details will remain the same as in Experiment 1:

	model.add(Dense(16, input_shape=(30,), activation='relu', name='dense_1'))

	model.add(Dense(16, activation='relu', name='dense_2'))

	model.add(Dense(2, activation='sigmoid', name='dense_output'))

	model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

	model.summary()

This displays the model summary as per Figure 3.22:

[image:]
Figure 3.22: Model summary

Let us train the model with 100 epochs:

	result = model.fit(X_train, y_train, epochs=100, validation_split=0.05)

This displays the model run summary as per Figure 3.23:

[image:]
Figure 3.23: Model run summary

Model evaluation

Once the model is trained using the training dataset, it is time to evaluate the model performance using the test dataset:

	loss, acc = model.evaluate(X_test, y_test)

	print('Loss on test data: ', loss)

	print('Accuracy on test data: ', acc)

This displays model evaluation summary as per Figure 3.24:

[image:]
Figure 3.24: Model evaluation summary

Here, the accuracy of the model is approximately 99% and the loss is 0.057, which is better than the shallow neural network.

Performance metrics

Let us first create an array of the predicted classes:

	y_pred=model.predict_classes(X_test)

Since we have both the list of the actual and the predicted classes for the test data, let us generate the classification report that shows all the important metrics with respect to the model:

	from sklearn.metrics import classification_report, confusion_matrix

	print(classification_report(y_pred, y_test))

This displays the classification report as shown in Figure 3.25:

[image:]
Figure 3.25: Classification report

Confusion matrix

Since we have already created the create_confusion_matrix function in Experiment 1, we will just pass y_test and y_pred from the model in Experiment 2 to build and visualize the confusion matrix for the deep neural network:

	create_confusion_matrix(y_test, y_pred)

This displays the classification report as per Figure 3.26:

[image:]
Figure 3.26: Confusion Matrix

Based on the confusion matrix, the following result was obtained:

	Out of 43 benign records, 42 were correctly predicted as benign and 1 was incorrectly predicted as malignant.

	Out of 71 malignant records, all 71 were correctly predicted as malignant.

Hence, looking at the performance metrics of Experiment 1 and Experiment 2, it is clear that a deep neural network performs better than a shallow neural network with only 1 hidden layer.

Building a regression model using neural network

As we know, regression models are used to predict continuous variables. We can use linear regression-based traditional machine learning to do the same.

Problem statement

The problem that we are trying to solve here is predicting the price of the house based on various features of the house, like the number of rooms, number of bathrooms, locality, and so on. Now, we know these features do determine the price of the house. With the use of a neural network-based predictive model, we will build an optimum application that can predict the most accurate price of the house based on the various features of the house.

Dataset

We will use the Boston housing dataset within the sklearn.datasets library to build a neural network-based regression model.

Firstly, import the required libraries:

	from sklearn.datasets import load_boston

	import pandas as pd

Then, load the Boston housing dataset:

	boston_housing_dataset = load_boston()

First, let us understand what is there in the boston_housing_dataset object:

	boston_housing_dataset.DESCR.splitlines()

Dataset desription is depicted in Figure 3.27:

[image:]
Figure 3.27: boston_housing_dataset features

In this dataset, there are 506 observations. There are 14 attributes, out of which 13 are predictors and MEDV is the target variable. MEDV is the price of the house, and the other 13 attributes are the features of the house.

We intend to create a neural network-based regression model, which uses the 13 independent variables to predict the dependent variable, that is, the price of the house.

Data pre-processing

First, let us create a pandas DataFrame using boston_housing_dataset:

	df = pd.DataFrame(boston_housing_dataset.data, columns=boston_housing_dataset.feature_names)

Let us see the shape of the newly created DataFrame and print the top 5 records:

	print(df.shape)

	df.head()

First few records of the dataset is depicted in Figure 3.28:

[image:]
Figure 3.28: DataFrame head

So, the newly created DataFrame contains all the 506 records and 13 independent variables. We need to add the target variable MEDV in the DataFrame, as shown here:

	df['MEDV']=boston_housing_dataset.target

Let us again see the shape of the DataFrame and print the top 5 records:

	print(df.shape)

	df.head()

[image:]
Figure 3.29: DataFrame head

Let us see which variable is highly correlated with the target variable MEDV:

	import seaborn as sns

	sns.set(rc={'figure.figsize':(12,8)})

	sns.heatmap(df.corr(), annot=True)

This will display a heatmap for the correlation of all the features, as shown in the following screenshot:

[image:]
Figure 3.30: Correlation heatmap

It is clearly visible from the heatmap that the RM attribute, which is the average number of rooms per dwelling, and LSTAT, which is the % lower status of the population, are highly correlated with the target variable. However, RM is positively correlated and LSTAT is negatively correlated. This is good information to retain for later evaluation purposes.

For now, let us continue with the modeling process.

The next step in the data pre-processing stage will be to distribute the data into train and test datasets, as shown in the following code snippet:

	from sklearn.model_selection import train_test_split

	X = df.loc[:, df.columns != 'MEDV']

	y = df.loc[:, df.columns == 'MEDV']

	X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=123)

Let us see the shape of both training and testing datasets, as shown in the following screenshot:

[image:]
Figure 3.31: Train and test dataset shape

As we can see, 354 records fell into the training dataset and 152 records fell into the testing dataset.

Now, let us see how the data is distributed statistically to figure out if scaling is required:

	df.describe()

This displays the statistical description of the dataset:

[image:]
Figure 3.32: Statistical description of the dataset

As shown, the attribute values are not in the same range and vary significantly. Attributes with significant difference in scales may result in biases in the model toward the attribute that is higher in range as compared to other attributes. Also, the significant difference in the scale of the values of various attributes takes more time for the model to converge.

Hence, we will use the StandardScaler module with the sklearn library to scale the data.

First, let us import the library:

	from sklearn.preprocessing import StandardScaler

Then, we will create an object of the StandardScaler module:

	scaler = StandardScaler()

Further, use the training data to fit the scalar object and transform the training data using the trained scaler:

	X_train_scaled=scaler.fit_transform(X_train)

Since the scaler object has never seen the test data and has been trained only on the training data, we will use only the transform method for the test data, as shown:

	X_test_scaled=scaler.transform(X_test)

Modeling

To build the model, we will first import the Sequential and Dense modules within the keras library, as shown:

	from keras.models import Sequential

	from keras.layers import Dense

We will create a model instance using the Sequential module:

	model = Sequential()

First, create the input layer for all the 13 input variables in the dataset. Further, create the first hidden layer with 128 neurons. Activate the neurons using the relu activation function, and name the layer dense_1:

	model.add(Dense(128, input_shape=(13,), activation='relu', name='dense_1'))

Next, create another hidden layer with 128 neurons and relu activation:

	model.add(Dense(128, activation='relu', name='dense_2'))

Finally, create the output layer with one neuron, which will hold the predicted price of the house. Since we need a regression model, we will use the linear activation function:

	model.add(Dense(1, activation='linear', name='dense_output'))

We will use the adam optimizer to optimize the learnable parameters during the training process. Since this is a regression problem, we will use mean squared error or mse as the loss function. And finally, we will use mean absolute error or mae as the performance metrics to evaluate the performance of the model:

	model.compile(optimizer='adam', loss='mse', metrics=['mae'])

Let us look at the model summary:

	model.summary()

This displays the summary of the model:

[image:]
Figure 3.33: Model summary

As we can see, there are 18,433 trainable parameters, which are the weights of every input to the neurons in the network and biases for each neuron in the network.

Let us start the training process. We will train the model for 100 epochs and validate the model during the training process using the validation split of 5% from the training dataset:

	history = model.fit(X_train, y_train, epochs=100, validation_split=0.05)

This displays the model run summary:

[image:]
Figure 3.34: Model run summary

Model evaluation

Once the model is trained, let us use the testing dataset to evaluate the model performance. Let us use the following code snippet using the plotly Python library to plot the loss and mean absolute error of the model.

First, import the required Python libraries:

	from plotly.subplots import make_subplots

	import plotly.graph_objects as go

	import math

	import numpy as np

Further, create the figure using the plotly library:

	fig = go.Figure()

	fig.add_trace(go.Scattergl(y=history.history['loss'],

	 name='Train'))

	fig.add_trace(go.Scattergl(y=history.history['val_loss'],

	 name='Valid'))

	fig.update_layout(height=500, width=700,

	 xaxis_title='Epoch',

	 yaxis_title='Loss')

	fig.show()

This displays a model loss plot, as shown in the following screenshot:

[image:]
Figure 3.35: Model loss

Let us build the same plot for mean absolute error:

	fig = go.Figure()

	fig.add_trace(go.Scattergl(y=history.history['mae'],

	 name='Train'))

	fig.add_trace(go.Scattergl(y=history.history['val_mae'],

	 name='Valid'))

	fig.update_layout(height=500, width=700,

	 xaxis_title='Epoch',

	 yaxis_title='Mean Absolute Error')

	fig.show()

This displays a mean absolute error plot, as shown in the following screenshot:

[image:]
Figure 3.36: Model error plot

Finally, let us use the test dataset to evaluate the model:

	mse_nn, mae_nn = model.evaluate(X_test, y_test)

	print('Mean squared error on test data: ', mse_nn)

	print('Mean absolute error on test data: ', mae_nn)

This displays the model evaluation summary:

[image:]
Figure 3.37: Model evaluation summary

Conclusion

 In this chapter, we delved deep into the world of Artificial Neural Networks (ANN), breaking down its essential components and understanding its foundational mechanisms. Through practical application, we demonstrated how ANNs can be used to construct both classification and regression models. By comparing and contrasting the two types of models, readers should now have a clearer grasp of the versatility of neural networks in handling various types of data problems. Whether you’re predicting categories or continuous outcomes, neural networks offer a powerful toolset for data-driven insights. As we move forward, harnessing the knowledge gained here will be invaluable in our exploration of even more advanced machine learning topics.

In the next chapter, we will look at Convolutional Neural Networks (CNN) and their building blocks. We will conceptually and programmatically understand how to build a CNN model from scratch using Python.

Questions

	What does ANN stand for?

	Augmented Neural Networks

	Auto Neural Networks

	Artificial Neural Networks

	None of the above

	What are the different types of neural networks?

	Artificial Neural Networks (ANN)

	Convolutional Neural Networks (CNN)

	Recurrent Neural Networks (RNN)

	All of the above

	Modeling dataset is usually divided into?

	Train and Test set

	Train and Validation set

	Train, Validation and Test set

	None of the above

	What are different types of activation functions?

	ReLU

	Sigmoid

	Softmax

	Tanh

	All of the above

	What are different types of optimizers in deep learning?

	adam

	adagrad

	rmsprop

	All of the above

Answers

	(c)

	(d)

	(c)

	(e)

	(d)

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

[image:]

CHAPTER 4Convolutional Neural Networks

One picture is worth a thousand words

— Albert Einstein

We give less credit to the intelligence of the human brain than it deserves, simply because this intelligence is just given to us. We are born with it, and it was not explicitly coded. But now, when we try to mimic the intelligence of the human body through artificial neural networks, we realize how easily our brain does certain things that are quite difficult to mimic. For instance, looking at a cat or a dog and identifying them is so natural for us. But if you think about it, once the light rays fall upon these objects, they reflect and are absorbed by our eyes. From the eyes, this information is transferred to the brain to process and conclude that what we are seeing is a cat or a dog. And all this happens naturally and in a fraction of milliseconds. A whole lot of code must be written to mimic this intelligence. The code breaks down an image into data that can be fed into an Artificial Neural Network to further process and classify the respective class of the object. The process of converting the details in an image into manageable data is termed “convolution.” The entire network that applies these convolutions to an image and then classifies it using artificial neural networks is known as a Convolutional Neural Network (CNN).

Structure

In this chapter, we will cover the following topics:

	Convolutional neural networks components

	Image classification using CNN

	Hyperparameters tuning using automated tools

Objectives

After completing this chapter, you should be aware of the various components of convolutional neural networks. You should be familiar with the technology behind digital image processing. You should also be able to solve a problem of image classification by building your own convolutional neural network using the python keras library. Additionally, you understand how to tune the hyperparameters of the deep learning model using an automated hyperparameter tuner, such as KerasTuner.

Convolutional neural networks components

A convolutional neural network comprises various underlying components. Some components are used to build the basic network, and others are used to optimize the network.

Load required libraries

Let us start with loading all the required libraries:

	import keras

	from keras.datasets import mnist

	import numpy as np

	import cv2

	import matplotlib.pyplot as plt

	%matplotlib inline

Digital image as a numpy array

Read the image from the disk:

	image=cv2.imread("mnist_zero.png")

	image.shape

The image is read as a RGB image with 3 channels. Hence, the image is of size (28,28) and 3 channels:

[image:]
Figure 4.1: image array size

First, let us convert the image from a 3 channel (RGB) image to a 1 channel (grayscale) image:

	gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

	gray_image.shape

[image:]
Figure 4.2: Image array size

To display the image as a full matrix that can display the width of the image in 1 line, we will reduce the image size from (28,28) to (18,18):

	gray_image = cv2.resize(gray_image, (18,18))

	gray_image.shape

[image:]
Figure 4.3: Image array size

Print the image object as an image:

	plt.imshow(gray_image, cmap='gray')

[image:]
Figure 4.4: Image display

Now, display the image object as a numpy array:

	print(gray_image)

[image:]
Figure 4.5: Pixel display

You can see that each pixel of the image represents the intensity of white in that pixel. Hence, the pixel that is black in color is represented as 0. The more the number is nearer to 255, the higher the intensity of white in that pixel.

Kernels/filters and convolution process

As we know, an image is nothing but a numpy array, and the dimension of the array is its pixel arrangement in width and height. Additionally, if it is a color image, the same dimension of array will be present for all the 3 channels: Red, Green, and Blue.

Now, we can convert this array into a one-dimensional vector and ingest this vector into a neural network for training a classification model.

But the problem with that is the model will be trained based on the pixel values at a given cell in the array. Hence, the model may fit well for the training data, but as soon as the pixel value changes in the testing data, the model will fail miserably to identify the class of the image in the test data.

For instance, if the model is trained only on the raw pixel values and then if model is trained on the image in Figure 4.6, which is number 4, the model will not be able to identify number 4 in the image in Figure 4.7, just because the pixel values are differently placed in both the images, even though they both represent the same number:

[image:]
Figure 4.6: Training image

[image:]
Figure 4.7: Testing image

Hence, we cannot rely on just the raw pixel values of an image to build a predictive model. This is where the concept of convolutions comes into the picture.

First, let us look at the process of convolution, mathematically.

Let us import the numpy library:

	import numpy as np

Create a matrix matrix_a:

	matrix_a=np.arange(0,9).reshape(3,3)

	print(matrix_a)

[image:]
Figure 4.8: matrix_a

Create another matrix matrix_b:

	matrix_b=np.arange(1,10).reshape(3,3)

	print(matrix_b)

[image:]
Figure 4.9: matrix_b

The element-wise multiplication of both matrices means the number at a particular index in matrix_a should be multiplied by the number at the same index of matrix_b.

For instance,

[image:]
[image:]
Hence, element-wise matrix multiplication will give the resultant matrix value at the same index, as shown here:

[image:]
[image:]
Similarly:

[image:]
[image:]
and so on:

	matrix_c=matrix_a*matrix_b

	print(matrix_c)

[image:]
Figure 4.10: matrix_c

Now, as per definition, a convolution is nothing but an element-wise matrix multiplication of two matrices, and then the addition of all the elements of the output matrix:

	print("Sum of all the elements of the output of matrix_a * matrix_b")

	print((matrix_a * matrix_b).sum())

[image:]
Figure 4.11: Matrix multiplication

Hence, the convolution value of matrix_a and matrix_b is 240.

The process of convolution is to extract features from the images using kernels or filters, which can also be called a convolution matrix.

Now, like an image is a matrix of numbers, a kernel is also a matrix of numbers, just that an image is a bigger matrix and a kernel is a smaller matrix.

Then how do kernels convolve an image, since to convolve, both the matrices should have the same dimensions to perform the element-wise multiplication. For that, the kernels convolve one smaller chunk of the image matrix at a time. The smaller chunk of the image matrix will be of the same dimension as of the kernel matrix.

In this process, the kernel will slide from one chunk to another chunk of the image until the whole image is convolved.

Hence, the kernel slides over the image from left to right and top to bottom for the convolution process, as shown here:

[image:]
Figure 4.12: Kernel display

Every time the kernel convolves a chunk of the image, the convolution value is inscribed on the resultant matrix, as shown here:

[image:]
Figure 4.13: Convolution process

Stride

The number of steps the kernel will move while sliding over the image is based on the stride value.

If the stride value is 1, the kernel will move 1 element at a time while sliding to the right and also while sliding to the bottom, as shown here:

[image:]
Figure 4.14: Stride process

If the stride value is 2, the kernel will move 2 elements at a time while sliding to the right and also while sliding to the bottom, as shown here:

[image:]
Figure 4.15: Stride process for two-step slide

Padding

As we can see, the dimension of the resultant matrix is always smaller than the dimension of the original image. That means some information is lost in the process of convolution. That also means that the deeper the network, the smaller the output matrix will become, which may result in significant loss of information in deeper networks.

Additionally, sometimes it becomes mathematically infeasible to convolve a certain dimension of image using a certain dimension of filter or kernel.

For example, if the image is of the dimension (5,5), the kernel is of the dimension (3,3), and the stride length is 2, the kernel will not be able to slide over the image after first convolution, as there will not be enough pixels left in the remaining steps.

Here comes the need for padding in the convolution process.

Padding is simply adding an additional layer around the original image. The value of the elements in the padding layer can be anything; the most commonly used values in the elements of the padded layer is either 0 or the pixel value of the adjacent cell, as shown in the following screenshot:

[image:]
Figure 4.16: Padding

Now, the dimension of the output matrix is determined by the following formula:

[image:]

Suppose input size = 5, padding = 1, kernel size = 3 and stride = 2.

Then [image:]

Hence, the resultant matrix will be of the dimension (3,3).

Convolution on RGB image

For a color (RGB) image, there are 3 image matrices, one for each channel. Hence, to convolve three image matrices, 3 kernel matrices are required. Hence, as per the definition, the number of channels of the filter is always equal to the number of channels in the image.

Mathematically, the kernel associated with Red channel will convolve the matrix of Red channel of the image, the kernel associated with Green channel will convolve the matrix of Green channel of the image, and the kernel associated with Blue channel will convolve the matrix of Blue channel of the image.

Hence, there will be 3 output matrices. The final output matrix of the convolution process will be the element-wise addition of the 3 output matrices, as shown in the following screenshot:

[image:]
Figure 4.17: Convolution process

Hence, irrespective of whether the input image is a grayscale image (1 channel) or an RGB image (3 channels), the output will always be a single-dimensional matrix.

Convolution operation with multiple filters

The whole purpose of convolving an image is to extract the features from the image. And since we need to extract multiple features from the image, the same image can be convolved by multiple filters. As we know, each filter, irrespective of the number of channels, will produce an output matrix of one dimension. Hence, the number of channels in the final output matrix depends on the number of filters used to convolve an image, as shown in the following screenshot:

[image:]
Figure 4.18: Multiple Filters

One convolution layer

To stitch the entire process of a single convolution layer in a CNN, each filter produces one output matrix from an image. Hence, the number of output matrices from one convolution layer depends on the number of filters or kernels applied.

Once the n-layered output matrix is derived, the activation function is applied on each and every element of the output matrix in all the layers.

Further, the bias term is added on each and every element of the output matrix.

Finally, after activation function is implemented and bias term is added on every element of the n-layered output matrix, the final n-dimensional output is generated from a single convolutional layer of an n-layered CNN, as shown in the following screenshot:

[image:]
Figure 4.19: One convolution layer

Further, the final output matrix from this layer will be the input matrix for the next layer, and the same process continues.

Pooling

In order to make the model more generalised, the pooling operation is performed in subsequent layers.

The pooling process reduces the dimensions of the input matrix, which depends on the pool size and the stride with which the pooling window slides.

If max pooling is applied, then the maximum number in the pooling window of the size (2,2) will be the result of the output matrix. And if average pooling is applied, then the average of the numbers in those 2*2 dimensional matrix will be the result of the output matrix, as shown in the following screenshot:

[image:]
Figure 4.20: Pooling

The pooling layer reduces the size of the image representations, which speeds up calculations. In addition, the pooling process makes some of the features it detects a bit more robust.

For an RGB image, the pooling concept remains the same, just that it is applied on all the channels of the image and produces an equal number of channels in the output, as shown in the following screenshot:

[image:]
Figure 4.21: Max Pool

Flattening

The flattening process refers to converting the n-dimensional matrix into a 1-d vector, as shown in the following screenshot:

[image:]
Figure 4.22: Flattening

The whole purpose of convolving an image is to extract features from the image. The initial layers of the network extract more low-level features like edges, while the layers toward the end extract more high-level features of the image.

Dense layers

After the extracted features from the image are flattened and converted into a 1-d vector, it becomes feasible to ingest this vector into an artificial neural network, which is also known as dense layer, since all the neurons in a layer are connected to all the neurons to the subsequent layers, as shown in the following screenshot:

[image:]
Figure 4.23: Dense layers

It is the dense layer that is responsible to finally perform the task of classification of the images by training the hidden layers of the network and coming up with the optimum values of the weights and biases for each neuron in the neural network.

Now, we could have simply flattened the pixel values in the matrix derived by the input image and fed the pixel values into this dense layer for the model training for the classification task. But, as stated earlier, with even a single pixel value change in the input image, the model would start giving incorrect results. In simple words, the model will not be robust.

Hence, using convolution layers, first the features from the image are extracted using various convolutional layers, and then those features are flattened and ingested into dense layers for classification training, as shown in the following screenshot:

[image:]
Figure 4.24: End-to-end CNN architecture

Image classification using CNN

Classification of images is the most important use case that can be solved using CNN. In this section, we will look at the CNN implementation for a classification problem.

Problem statement

The problem is about classifying the numbers between 0 to 1 in a set of images containing handwritten numbers.

Dataset - MNIST

MNIST dataset is considered to be the “Hello World” program of Data Science. Any tutorial on Computer vision and image classification starts with the MNIST dataset implementation using convolutional neural network.

The MNIST dataset is embedded into the keras.dataset library and can be loaded directly into memory, without the need to load images from the disk.

Implementation

Let us look at how to implement CNN in Python.

Load Python libraries

Let us first import all the required Python libraries:

	import tensorflow as tf

	from keras.datasets import mnist

	import pandas as pd

	import matplotlib.pyplot as plt

	import random

	import numpy as np

	from keras.models import Sequential

	from keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout, BatchNormalization, Activation

Load data

Load the MNIST data into train and test tuples directly from the keras.dataset library:

	(trainX, trainY), (testX, testY) = mnist.load_data()

[image:]
Figure 4.25: Data download status

Let us look at the shape of both train and test datasets:

	print('Train: X=%s, y=%s' % (trainX.shape, trainY.shape))

	print('Test: X=%s, y=%s' % (testX.shape, testY.shape))

[image:]
Figure 4.26: Test and train data shapes

Hence, the training set contains 60,000 images and the testing set contains 10,000 images.

Using the matplotlib library, we can plot the first few images of the dataset shown here:

	for i in range(9):

	 # define subplot

	 plt.subplot(330 + 1 + i)

	 # plot raw pixel data

	 plt.imshow(trainX[i], cmap=plt.get_cmap('gray'))

	# show the figure

	plt.show()

[image:]
Figure 4.27: MNIST numbers random display

Data pre-processing

Reshape the dataset to have a single channel:

	trainX = trainX.reshape((trainX.shape[0], 28, 28, 1))

	testX = testX.reshape((testX.shape[0], 28, 28, 1))

One-hot encode the target values:

	trainY_cat = tf.keras.utils.to_categorical(trainY)

	testY_cat = tf.keras.utils.to_categorical(testY)

	print(trainY[0])

	print(trainY_cat[0])

[image:]
Figure 4.28: One-hot encoding

Normalization by scaling pixels:

	# convert from integers to floats

	trainX = trainX.astype('float32')

	testX = testX.astype('float32')

	# normalize to range 0-1

	trainX = trainX / 255.0

	testX = testX / 255.0

Modeling

We will use the Sequential module with the keras library to create the neural network. The model object is created for defining the CNN architecture:

	model = Sequential()

Add the first convolutional layer in the model object; 32 kernels of the size (3,3) are used in this layer. The shape of the input data needs to be mentioned in the input_data argument:

	model.add(Conv2D(32, (3, 3), input_shape = (28,28,1)))

Batch normalization is used as a regularization technique.

This is a technique used in deep neural networks to improve training speed and stability by normalizing the input to each layer to have zero mean and unit variance, and then scaling and shifting the normalized values using learnable parameters. This helps mitigate the problem of internal covariate shift, where the distribution of the inputs to a layer changes during training and can slow down convergence. By normalizing the inputs to each layer, batch normalization enables more stable and efficient training and can also regularize the model and reduce overfitting.

	model.add(BatchNormalization())

The activation function used here is ‘relu’:

	model.add(Activation("relu"))

Further, add a max pooling layer with a pool size of (2,2):

	model.add(MaxPooling2D(pool_size = (2, 2)))

Create further convolutional layers with similar configurations and different number of kernels:

	model.add(Conv2D(64, (3, 3)))

	model.add(BatchNormalization())

	model.add(Activation("relu"))

	model.add(MaxPooling2D(pool_size = (2, 2)))

	

	model.add(Conv2D(128, (3, 3)))

	model.add(BatchNormalization())

	model.add(Activation("relu"))

	model.add(MaxPooling2D(pool_size = (2, 2)))

Flatten the final feature matrix to create a 1-d vector that can be fed into the dense layers:

	model.add(Flatten())

Create the first dense layer with 128 neurons and relu activation function:

	model.add(Dense(128, activation = 'relu'))

Finally, create the output layer; the number of neurons in this layer will be the number of classes in the dataset, which is 10 in case of the MNIST dataset:

	model.add(Dense(10, activation = 'softmax'))

Further, compile the model. The hyperparameters used are random based on experience:

	model.compile(loss ='categorical_crossentropy', optimizer='adam', metrics =['acc'])

Once the model is compiled, print the model summary to see the overall architecture of the convolutional neural network that we just designed:

	model.summary()

[image:]
Figure 4.29: Model summary

Train the model using the fit function. Validation data used during the training process is the test dataset:

	history = model.fit(trainX, trainY_cat, batch_size = 128, epochs = 10, verbose = 1, validation_data = (testX, testY_cat))

[image:]
Figure 4.30: Model run summary

It can be seen that the CNN we just designed is able to classify the test dataset with more than 98% accuracy with just 10 epochs of training.

Using the matplotlib library, we plot the training and validation accuracy and loss at each epoch, as shown here:

	loss = history.history['loss']

	val_loss = history.history['val_loss']

	epochs = range(1, len(loss) + 1)

	plt.plot(epochs, loss, 'y', label='Training loss')

	plt.plot(epochs, val_loss, 'r', label='Validation loss')

	plt.title('Training and validation loss')

	plt.xlabel('Epochs')

	plt.ylabel('Loss')

	plt.legend()

	plt.show()

[image:]
Figure 4.31: Training and validation loss

	acc = history.history['acc']

	val_acc = history.history['val_acc']

	

	plt.plot(epochs, acc, 'y', label='Training acc')

	plt.plot(epochs, val_acc, 'r', label='Validation acc')

	plt.title('Training and validation accuracy')

	plt.xlabel('Epochs')

	plt.ylabel('Accuracy')

	plt.legend()

	plt.show()

[image:]
Figure 4.32: Training and validation accuracy

Use the predict_classes method to predict the classes of the test dataset to manually compare the predicted values with the ground truth:

	prediction = model.predict(testX)

	prediction = np.argmax(prediction,axis=1)

	print("Actual Labels : ", testY)

	print("Predicted Labels : ", prediction)

[image:]
Figure 4.33: Actual and predicted Labels

Plot a random image and its associated actual and predicted labels:

	i = random.randint(1,len(prediction))

	plt.imshow(testX[i,:,:,0])

	print("Predicted Label: ", int(prediction[i]))

	print("True Label: ", int(testY[i]))

[image:]
Figure 4.34: Actual and predicted label for an image

As you can see, the model predicted a wrong label for this image. The handwritten number is 2, but it's predicted as 7. However, there is no denying that the number is written incorrectly and actually looks more like 7 instead of 2, even to human eyes.

Plot confusion matrix

To plot the confusion matrix, the sklearn library provides this generic function that can be copied from their official documentation at https://scikit-learn.org/0.18/auto_examples/model_selection/plot_confusion_matrix.html.

	def plot_confusion_matrix(cm, classes,

	 normalize=False,

	 title='Confusion matrix',

	 cmap=plt.cm.Blues):

	 """

	 This function prints and plots the confusion matrix.

	 Normalization can be applied by setting `normalize=True`.

	 «»»

	 import itertools

	 if normalize:

	 cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]

	 print("Normalized confusion matrix")

	 else:

	

	 print('Confusion matrix, without normalization')

	 plt.imshow(cm, interpolation='nearest', cmap=cmap)

	 plt.title(title)

	 tick_marks = np.arange(len(classes))

	 plt.xticks(tick_marks, classes, rotation=45)

	 plt.yticks(tick_marks, classes)

	

	 fmt = '.2f' if normalize else 'd'

	 thresh = cm.max() / 2.

	 for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):

	 plt.text(j, i, format(cm[i, j], fmt),

	 horizontalalignment="center",

				color="white" if cm[i, j] > thresh else "black")

	

	 plt.ylabel('True label')

	 plt.xlabel('Predicted label')

	 plt.tight_layout()

	 plt.show()

Create a confusion matrix and plot

To create a confusion matrix, use the following code snippet:

	from sklearn.metrics import confusion_matrix

	test_label_list=list(np.unique(testY))

	cnf_matrix = confusion_matrix(testY, prediction,labels=test_label_list)

	np.set_printoptions(precision=2)

	

	# Plot non-normalized confusion matrix

	plt.figure(figsize=(8,8))

	plot_confusion_matrix(cnf_matrix, classes=test_label_list,

	 title='Confusion matrix')

[image:]
Figure 4.35: Confusion matrix

Confusion matrix gives a complete picture of the actual and predicted classes of all the images in the dataset. Additionally, let us plot the classification report to check the various other performance metrics like precision, recall, and f1-score:

	from sklearn.metrics import classification_report, confusion_matrix

	print(classification_report(testY, prediction))

[image:]
Figure 4.36: Classification report

Hyperparameters tuning using KerasTuner

As we saw in the preceding tutorial where we used a MNIST dataset and trained a CNN model to classify the handwritten digits, we were able to achieve more than 99% accuracy with a very simple neural network. However, that is not the case with most real-world problems. The same network with the specific arrangement of convolutional layers clubbed with other layers like pooling layer, batch normalization layer, or even the selection of activation functions may not work for other problems at hand. The depth of the network plays a significant role in making a robust and generalized model.

Adding more hidden layers in the network may or may not improve the performance of the model. There are various other parameters that can be tuned to improve a model’s performance. Such parameters are called hyperparameters.

Tuning the parameters of a neural network, like weights and biases, can be done by training the model. But tuning the hyperparameters like the number of hidden layers, learning rate, epochs, kernels, and so on is a matter of trial and experimentation. We can create as many permutations and combinations of these hyperparameters and build a neural network for each combination to come up with the most optimum model, but this is not feasible manually, as there can be hundreds or even thousands of such combinations.

Hence, KerasTuner comes to the rescue. KerasTuner is a Python library that automates the process of finding the best hyperparameters for a model.

The official website of the KerasTuner library is given here for further reading:

https://keras-team.github.io/keras-tuner/

For demonstrating the capabilities of KerasTuner, let us work on the Fashion MNIST datasets, which is very similar to MNIST datasets, but instead of handwritten numbers, the images belong to various wearable items.

Dataset – Fashion MNIST

Fashion MNIST dataset is very similar to MNIST dataset in terms of the number of classes and training and testing images available.

Fashion MNIST dataset are as follows:

	60,000 training examples

	10,000 testing examples

	10 classes

	28×28 grayscale/single channel images

The ten fashion class labels are as follows:

	T-shirt/top

	Trouser/pants

	Pullover shirt

	Dress

	Coat

	Sandal

	Shirt

	Sneaker

	Bag

	Ankle boot

Implementation

Since we have already implemented MNIST dataset in the previous tutorial, and fashion-mnist dataset can be implemented using the same set of code by just loading the fashion-mnist dataset from the keras dataset library instead of loading the mnist dataset. Hence, in this KerasTuner implementation, we will not follow the same approach to avoid redundancy.

Instead, we will first load the dataset and plot the images for the basic understanding of the dataset. Further, we will use KerasTuner to find the best model for this problem statement.

Loading the fashion-mnist dataset:

	from tensorflow import keras

	(X_train, y_train), (X_test, y_test) = keras.datasets.fashion_mnist.load_data()

[image:]
Figure 4.37: Fashion-mnist dataset

Let us check the shape of the dataset.

	print('Train: X=%s, y=%s' % (X_train.shape, y_train.shape))

	print('Test: X=%s, y=%s' % (X_test.shape, y_test.shape))

[image:]
Figure 4.38: Train and test data frame shapes

Let us plot the first few images of the dataset:

	import matplotlib.pyplot as plt

	for i in range(9):

	 plt.subplot(330 + 1 + i)

	 plt.imshow(X_train[i], cmap=plt.get_cmap('gray'))

	plt.show()

[image:]
Figure 4.39: Fashion MNIST

Let us build a custom CNN model. Since the basic CNN architecture building process was explained in the previous MNIST tutorial, it has been skipped here, but we are building this baseline model to further compare it with the model we will be creating using KerasTuner:

	from tensorflow import keras

	from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Activation

	

	(X_train, y_train), (X_test, y_test) = keras.datasets.fashion_mnist.load_data()

	# reshape dataset to have a single channel

	

	X_train = X_train.reshape((X_train.shape[0], 28, 28, 1))

	X_test = X_test.reshape((X_test.shape[0], 28, 28, 1))

	

	# Normalize pixel values between 0 and 1

	X_train = X_train.astype('float32') / 255.0

	X_test = X_test.astype('float32') / 255.0

	

	model = keras.models.Sequential()

	

	model.add(Conv2D(32, (3, 3), input_shape=X_train.shape[1:]))

	model.add(Activation('relu'))

	model.add(MaxPooling2D(pool_size=(2, 2)))

	

	model.add(Conv2D(32, (3, 3)))

	model.add(Activation('relu'))

	model.add(MaxPooling2D(pool_size=(2, 2)))

	

	# this converts our 3D feature maps to 1D feature vectors

	model.add(Flatten())

	

	model.add(Dense(128))

	model.add(Activation("relu"))

	model.add(Dense(10))

	model.add(Activation("softmax"))

	

	model.compile(optimizer="adam",

	 loss="sparse_categorical_crossentropy",

	 metrics=["accuracy"])

	

	model.fit(X_train, y_train, batch_size=64, epochs=10, validation_split=0.2)

[image:]
Figure 4.40: Model run summary

Let us evaluate the model on the testing dataset and check the accuracy, as shown here:

	eval_result = model.evaluate(X_test, y_test)

	print("[test loss, test accuracy]:", eval_result)

[image:]
Figure 4.41: Model evaluation summary

Hence, the basic CNN model built here has yielded an accuracy of 90.4%. Now, this model can be improved by tuning the hyperparameters like the number of layers in the network, number of neurons in the dense layers, choice of learning rate, choice of optimizer, choice of loss function, and so on.

But the answer for how to find the optimum hyperparameters is by ‘trial and error’. We need to experiment by building as many models as we can using different permutations and combinations of all the hyperparameters to derive the most desirable ones.

Automated tools for deriving the most optimum hyperparameters perform the same process, but with less coding and less effort. Let us demonstrate the usage of one such tool: KerasTuner.

Install KerasTuner

First, let us install keras-tuner using a pip installer on the notebook cell:

	! pip install keras-tuner

Next, import the libraries required to implement KerasTuner:

	import tensorflow as tf

	from tensorflow import keras

	from keras.datasets import fashion_mnist

	from keras.layers import Dense, Conv2D, MaxPooling2D, Activation, Dense, Flatten

	from keras_tuner import RandomSearch

	from keras_tuner.engine.hyperparameters import HyperParameters

Now, load the data:

	(X_train, y_train), (X_test, y_test) = fashion_mnist.load_data()

	print('Train: X=%s, y=%s' % (X_train.shape, y_train.shape))

	print('Test: X=%s, y=%s' % (X_test.shape, y_test.shape))

[image:]
Figure 4.42: Train and test data shapes

Then, reshape and normalize the data as follows:

	# reshape dataset to have a single channel

	X_train = X_train.reshape((X_train.shape[0], 28, 28, 1))

	X_test = X_test.reshape((X_test.shape[0], 28, 28, 1))

	# Normalize pixel values between 0 and 1

	X_train = X_train.astype('float32') / 255.0

	X_test = X_test.astype('float32') / 255.0

Next, define the function that will build the model using various combinations of hyperparameters for experimentations, as shown here:

	def build_model(hp):

	 model = keras.Sequential()

	 model.add(Conv2D(hp.Int('conv_0_units',

	 min_value=32,

	 max_value=256,

	 step=32),

	 (3, 3),

	 input_shape=X_train.shape[1:]))

	

	 model.add(Activation(hp.Choice(f"conv_0_activation",

	 ['relu']

)))

	 model.add(MaxPooling2D(pool_size=(2, 2)))

	

	

	 for i in range(hp.Int('conv_layers', 2, 5)):

	 model.add(Conv2D(hp.Int(f'conv_{i+1}_units',

	 min_value=32,

	 max_value=256,

	 step=32),

	 (3, 3)))

	 model.add(Activation(hp.Choice(f"conv_{i+1}_activation",

	 ['relu']

)))

	

	 # this converts our 3D feature maps to 1D feature vectors

	 model.add(Flatten())

	

	 for i in range(hp.Int('dense_layers', 2, 5)):

	 model.add(Dense(units=hp.Int(f'dense_{i}_units',

	 min_value=32,

	 max_value=512,

	 step=32)))

	 model.add(Activation(hp.Choice(f"dense_{i}_activation",

	 ['relu', 'sigmoid']

)))

	

	 model.add(Dense(10))

	 model.add(Activation('softmax'))

	

	

	 model.compile(optimizer=keras.optimizers.Adam(

	 # Choose an optimal value from 0.01, 0.001, or 0.0001

	 learning_rate=hp.Choice('learning_rate',

	 values=[1e-2, 1e-3, 1e-4])),

	 loss=hp.Choice('loss_function',

	 values=['sparse_categorical_crossentropy']),

	 metrics=['accuracy'])

	

	 return model

We create the tuner object and pass the required arguments:

	tuner = RandomSearch(

	 build_model,

	 objective='val_accuracy',

	 max_trials=3,

	 executions_per_trial=3,

	 directory='.',

	 project_name='keras_tuner'

)

Further, we create an object for early stopping of the network to avoid overfitting:

	stop_early = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=5)

Further, we search the best model hyperparameters using the tuner search module:

	tuner.search(x=X_train,

	 y=y_train,

	 epochs=10,

	 validation_split=0.2,

	 callbacks=[stop_early])

While the tuner search is in progress, you can see the architecture of the current model in progress and the best architecture found so far, with their respective accuracy, as depicted in Figure 4.43:

[image:]
Figure 4.43: KerasTuner run summary

After the tuner search completes all the defined trials, the output will show the best accuracy achieved during the entire experimentation process, as shown here:

[image:]
Figure 4.44: Best accuracy

To check the best hyperparameter values for the best model identified by the tuner search, use the get_best_hyperparameters method:

	tuner.get_best_hyperparameters()[0].values

[image:]
Figure 4.45: Best hyperparameters

Now, to train the model, we use the best hyperparameters found by the tuner:

	best_hps=tuner.get_best_hyperparameters(num_trials=1)[0]

	model = tuner.hypermodel.build(best_hps)

	history = model.fit(X_train, y_train, epochs=50, validation_split=0.2)

[image:]
Figure 4.46: Model run summary

We check the optimum epoch that gives the highest validation accuracy during the training process. This is to avoid overtraining of the model and train only for the number of epochs required:

	val_acc_per_epoch = history.history['val_accuracy']

	best_epoch = val_acc_per_epoch.index(max(val_acc_per_epoch)) + 1

	print('Best epoch: %d' % (best_epoch,))

[image:]
Figure 4.47: Best epoch

We then create a hypermodel by training against the best hyperparameters and best epoch found:

	hypermodel = tuner.hypermodel.build(best_hps)

	hypermodel.fit(X_train, y_train, epochs=best_epoch, validation_split=0.2)

[image:]
Figure 4.48: Model run summary

Finally, we check the accuracy for the best model created using the test dataset:

	eval_result = hypermodel.evaluate(X_test, y_test)

	print("[test loss, test accuracy]:", eval_result)

[image:]
Figure 4.49: Model evaluation summary

So, we can see that we were able to improve the accuracy by 1% using the KerasTuner tool to find the best hyperparameters. However, this can be improved all the more by further tuning and by increasing the number of trials and experiments that should be performed by the KerasTuner, which was kept as minimum for this demonstration.

This is how KerasTuner automates the process of hyperparameter tuning and facilitates the process of coming up with the best model suited for the problem statement and the dataset available for the model training.

Conclusion

In this chapter, we looked at various components of convolutional neural networks. We understood the process of convolutions and how images are convolved using kernels or filters to generate various feature maps of the image, which can be used to train an artificial neural network for image classification problems. We also saw how tuning the hyperparameters of the network can improve the accuracy of the model. This can be achieved by either manually performing various experimentations or by utilizing the automated tools like KerasTuner to find the optimum hyperparameters for the network you are trying to build.

In the next chapter, we will explore different CNN architectures developed by researchers. The parameters of these models have been made publicly available, allowing others to utilize them in their work. The process of utilizing the learned parameters of other networks in your own problem statement is called transfer learning. We will cover this topic in detail in the next chapter and use Python to solve image classification problems using transfer learning.

Questions

	CNN is mostly used for which of the following?

	Structured data

	Unstructured data

	Both

	None

	What are the different problems that CNN can solve?

	Image classification

	Object detection

	Image segmentation

	All of the above

	A convolutional neural network broadly consists of which of these?

	Convolutional layers

	Fully connected dense layers

	Convolutional and fully connected dense layers

	Convolutional, pooling, and fully connected dense layers

	Which is transforming a two-dimensional feature array into a one-dimensional vector called?

	Pooling

	Padding

	Flattening

	None of the above

	What is adding a layer of pixels in an image array for convolution purposes called?

	Pooling

	Padding

	Flattening

	None of the above

Answers

	(c)

	(d)

	(d)

	(c)

	(b)

CHAPTER 5Optical Character Recognition

OCR technology liberates information trapped on paper.

— anonymous

Introduction

Optical Character Recognition (OCR) is a technology used in computer vision that enables machines to recognize text from images or scanned documents. OCR works by analyzing the pixel patterns of an image to identify the shapes of individual letters and words, and then converting them into machine-readable text.

OCR is used in various fields, such as healthcare, finance, legal, and government, to digitize important documents and make them easier to access and process. OCR involves several steps, including image preprocessing, segmentation, feature extraction, and classification, which are used to improve the accuracy of the recognition process.

The OCR technology has greatly improved the speed and efficiency of document processing and has revolutionized the way we work with large amounts of text-based data. As the technology continues to improve, it is expected to play an even more significant role in the digital transformation of various industries, making it easier to access and analyze data, and improving the speed and accuracy of document processing.

Structure

In this chapter, we will cover the following topics:

	Optical character recognition

	OCR Python libraries and their implementation

	Tesseract OCR

	keras-ocr

	EasyOCR

	TrOCR

Objectives

After studying this chapter, you should be able to understand the concept of Optical character recognition, and you should be familiar with the various libraries available to solve reading text from images and other data sources, like noneditable PDF files.

Optical character recognition

Optical Character Recognition (OCR) is a technique that transforms text in images into machine-readable text. This method is commonly applied to items such as invoices, bank statements, restaurant receipts, signboards, traffic symbols, and handwritten texts. Converting these visual representations to text is beneficial for tasks like extracting information, digitizing books or documents into PDFs, and online processing, such as text-to-speech. This last feature is especially valuable for the visually impaired and is often employed in autonomous vehicles for interpretation. The field of OCR is continuously evolving, with advancements aimed at enhancing accuracy and performance.

Refer to the following figure:

[image:]
Figure 5.1: OCR working principle

OCR Python libraries and their implementation

In this section, we will learn about the OCR Python libraries and their implementation.

Tesseract OCR

Between 1985 and 1994, Hewlett-Packard Laboratories in Bristol, United Kingdom, and Hewlett-Packard Co. in Greeley, Colorado, USA, developed Tesseract. Some additional improvements were made in 1996 to port it to Windows, and some C++ization was done in 1998. HP released the source code for Tesseract in 2005. It was created by Google between 2006 and November 2018.

The most recent stable version, major version 5, was introduced on November 30, 2021, with the release of 5.0.0. Refer to the following figure:

[image:]
Figure 5.2: Tesseract OCR from Google

The classic Tesseract OCR engine, which recognizes character patterns, is still supported, in addition to the new neural net Long Short Term Memory (LSTM)-based OCR engine that is focused on line identification.

Tesseract OCR demo

Let us start with the demo:

	Importing important libraries:

	import cv2

	import pytesseract

	Giving the tesseract.exe file path:
Windows:

	pytesseract.pytesseract.tesseract_cmd=r'C:\Program Files\Tesseract-OCR\tesseract.exe'
Mac:

	pytesseract.pytesseract.tesseract_cmd=r'\usr\local\bin\tesseract'

	Importing image in cv2 and displaying in Windows:

	img = cv2.imread("image.jpg")

	img = cv2.resize(img, (400, 450))

	cv2.imshow("Image", img)
[image:]
Figure 5.3: Sample image with imprinted text

	Passing image to pytesseract and getting image text as output:

	text = pytesseract.image_to_string(img)

	print(text)
Output:

Shekhar Khandelwal

	Destroying all the windows:

	cv2.waitKey(0)

	cv2.destroyAllWindows()

keras-ocr

The keras-ocr library provides a high-level API and end-to-end training pipeline to build new OCR models. In the next section, we will see a step-by-step tutorial using keras-ocr to extract text from multiple images, as shown in the following figure:

[image:]
Figure 5.4: Sample bounding box against imprinted text on images

keras-ocr demo

We will construct a keras-ocr pipeline in this part to extract text from a few test images. For this tutorial, we will use Google Colab.

Using the following code, let us first install the keras-ocr library (supports Python >= 3.6 and TensorFlow >= 2.0.0):

	Installing important libraries:

	!pip install -q keras-ocr

	!pip install matplotlib

	Importing keras_ocr and matplotlib for visualizing images in a notebook only:

	import keras_ocr

	import matplotlib.pyplot as plt

	Importing the keras pipeline:

	pipeline = keras_ocr.pipeline.Pipeline()

[image:]
Figure 5.5: Console output

	Importing images for processing:

	images = [

	 keras_ocr.tools.read(img) for img in ['keras-ocr-sample1.png',

	 'keras-ocr-sample2.png'

]

]

	Plotting image and checking in notebook:

	plt.figure(figsize=(10,20))

	plt.imshow(images[0])
[image:]
Figure 5.6: Text imprinted on images of cartons

	plt.imshow(images[1])
[image:]
Figure 5.7: Text imprinted on the image of letter

	Sending image to the pipeline for detection; you can choose n number of images and put the image objects in an array and pass it:

	prediction_groups = pipeline.recognize(image)
[image:]
Figure 5.8: Console Output

	Passing all the images in keras_ocr and getting prediction and output in the notebook:

	fig, axs = plt.subplots(nrows=len(image), figsize=(10, 20))

	for ax, image, predictions in zip(axs, image, prediction_groups):

	 keras_ocr.tools.drawAnnotations(image=image,

	 predictions=predictions,

	 ax=ax

)

[image:]
Figure 5.9 (a): Bounding box against all detected text for image 1

[image:]
Figure 5.9 (b): Bounding box against all detected text for image 1

The prediction_groups object can be further processed to access the extracted text from the images.

EasyOCR

EasyOCR Python package makes it possible to convert images into text. It has access to over 70 languages, including English, Chinese, Japanese, Korean, and Hindi, and many more are being added. It is, by far, the simplest approach to implementing OCR. Jaided AI is the firm that developed EasyOCR.

EasyOCR demo

Text detection in images with EasyOCR can be done using the following steps:

	Installing important libraries:

	!apt-get install poppler-utils

	!pip install pdf2image

	!pip install easyocr

	Importing libraries:

	from pdf2image import convert_from_path

	import easyocr

	import numpy as np

	import PIL

	from PIL import ImageDraw

	import spacy

	from IPython.display import display, Image

	Setting our language to English, which we want to detect in our images:

	reader=easyocr.Reader(['en'])

	Importing the PDF which we want to detect text in.
Download a sample PDF from this URL: http://solutions.weblite.ca/pdfocrx/scansmpl.pdf

	images=convert_from_path("scansmpl.pdf")

	display(images[0])

[image:]
Figure 5.10: Image of letter with imprinted text

	Reading text from images using readtext from the reader:

	bounds = reader.readtext(np.array(images[0]))

	print(bounds)
This will generate an output like this:

[([[447, 182], [557, 182], [557, 226], [447, 226]], ‘THE’, 0.999958842455258),

([[570, 180], [804, 180], [804, 228], [570, 228]],

 ‘SLEREXE’,

0.7436111647485029),

([[820, 179], [1066, 179], [1066, 227], [820, 227]],

 ‘COMPANY’,

 0.9999328194688163),

([[1080, 180], [1296, 180], [1296, 228], [1080, 228]],

‘LIMITED’,

0.9986524611037886),

([[560, 254], [752, 254], [752, 282], [560, 282]],

‘SAPORS LANE’,

 0.7222110685501141),

([[776, 252], [872, 252], [872, 282], [776, 282]],

‘BOOLE’,

0.9236137994214395),

([[898, 252], [1012, 252], [1012, 282], [898, 282]],

‘DORSET’,

0.9998741940557054),

Truncate the output for documentation limitations.

	Creating a bounding box in the image using the preceding coordinates:

	def draw_boxes(image, bounds, color='yellow', width=2):

	 draw = ImageDraw.Draw(image)

	 for bound in bounds:

	 p0, p1, p2, p3 = bound[0]

	 draw.line([*p0, *p1, *p2, *p3, *p0], fill=color, width=width)

	 return image

	

	draw_boxes(images[0], bounds)

[image:]
Figure 5.11: Bounding box against detected text

	Extracting text from the tensor:

	text=''

	for i in range(len(bounds)):

	 text = text + bounds[i][1] + '\n'

	print(text)
Output:

	1	THE

	SLEREXE

	COMPANY

	LIMITED

	SAPORS LANE

	BOOLE

	DORSET

	BH 25 8 ER

	TELEPHONE

	BOOLE (945 13) 51617

	TELEX 123456

	Our

	Ref .

	350 /PJC /EAC

	18th January,

	1972 .

	Dr _

	P.N,

	Cundall .

	Mining Surveys

	Ltd.

	Holroyd

	Road ,

	Reading,

	Berks

	Dear

	Pete,

	Permit

	me

	to

	introduce

	you

	to

	the facility

	of

	facsimi le

	transmission _
Truncate the output for documentation limitations.

As you can see in the output, all the words are there, but they are not in proper paragraphs, so we are going to use spacy to fix paragraphs and all the issues:

	nlp = spacy.load('en_core_web_sm')

	doc = nlp(text)

	from spacy import displacy

	displacy.render(nlp(doc.text), style='ent', jupyter=True)
Output:

[image:]
Figure 5.12: Console output

TrOCR

TrOCR is a cutting-edge research project that aims to develop a robust OCR system that can recognize text from natural images captured by smartphones without relying on additional sensors or specialized hardware. Traditional OCR systems have limitations in recognizing text from low-quality images with uneven illumination, perspective distortion, and complex backgrounds. TrOCR addresses these challenges by incorporating advanced computer vision and machine learning techniques to improve the accuracy and speed of text recognition. The project has the potential to revolutionize the way we interact with text, making it easier to extract and analyze text from images in various applications, such as augmented reality, image search, and mobile translation.

TrOCR demo

Text detection in images with TrOCR can be done using the following steps:

Installing important libraries:

	!pip install -q transformers

Loading image:

	import requests

	from PIL import Image

	url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg"

	image = Image.open(requests.get(url, stream=True).raw).convert("RGB")

	image

The output will look as follows:

[image:]
Figure 5.13: Console output

Now, the image is prepared for the model using TrOCR processor. Calling the processor is equivalent to calling the feature extractor:

	from transformers import TrOCRProcessor

	processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")

	pixel_values = processor(image, return_tensors="pt").pixel_values

	print(pixel_values.shape)

[image:]
Figure 5.14: Console output

Load the model from the hub: https://huggingface.co/models?other=trocr

	from transformers import VisionEncoderDecoderModel

	

	model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")

[image:]
Figure 5.15: Console Output

Finally, the text is generated:

	generated_ids = model.generate(pixel_values)

	generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]

	print(generated_text)

[image:]
Figure 5.16: Console output

Conclusion

In conclusion, OCR has come a long way in recent years with the development of various open-source libraries and frameworks that make text recognition from images more accessible and accurate. In this chapter, we explored four popular OCR implementations in Python: Tesseract OCR, keras-ocr, EasyOCR, and TrOCR.

Tesseract OCR, the most widely used OCR library, is based on Google’s open-source OCR engine and provides a reliable solution for recognizing text in scanned documents. Keras-ocr, built on top of TensorFlow and keras, offers a deep learning-based approach for recognizing text in images and can handle more complex scenarios.

EasyOCR is another popular OCR library that supports more than 70 languages and provides a simple interface for recognizing text in natural images. Finally, TrOCR is a promising research project that aims to develop a robust OCR system for recognizing text in images captured by smartphones.

Regardless of the OCR library or framework chosen, it is important to carefully consider the use case and requirements to select the most appropriate solution. Furthermore, it is important to fine-tune the OCR system for optimal performance by preprocessing the images, selecting appropriate recognition algorithms, and training the OCR model with sufficient and relevant data.

In the next chapter, we will cover the topic of object detection. Classifying an image is about telling what object is in the image. Taking this one step further, object detection is about telling where exactly the object is located in the image.

Questions

	What does OCR stand for?

	Optical Character Recognition

	Object Character Recognition

	Operating Character Recognition

	Order Character Recognition

	All of the above

	Which of the following is not an application of OCR technology?

	Scanning and digitizing documents

	Translating text from one language to another

	Recognizing handwritten text

	Extracting data from images

	None of the above

	What is the primary function of OCR technology?

	To identify and recognize text in images and documents

	To edit and modify text in digital documents

	To compress and optimize digital images

	To create 3D models from 2D images

	Which of the following types of documents can be processed by OCR technology?

	PDF files

	Scanned images

	Handwritten documents

	All of the above

	Which of the following factors can affect the accuracy of OCR results?

	Image resolution

	Font type and size

	Language of the text

	All of the above

Answers

	a

	b

	a

	d

	d

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

[image:]

CHAPTER 6Object Detection

“You can’t defend. You can’t prevent. The only thing you can do is detect and respond.”

— Bruce Schneier

By now, we have understood that machines are now capable of classifying images using intelligence infused through convolutional neural networks. However, just classifying images does not solve any real-world problems. An image can contain both a dog and a cat, and it would be expected from a machine to tell exactly where in the frame these two objects lie. Also, detecting multiple objects in a single image is of utmost importance. These challenges can be tackled by object detection algorithms. In this chapter, we will discuss various such algorithms in detail. Also, we will see how these trained and ready-to-use algorithms can be applied in projects, without the need to retrain the models from scratch.

Structure

In this chapter, we will cover the following topics:

	Object localization and object detection

	Object detection algorithms and their comparison

	Single Shot Detector (SSD) Python implementation

	You Only Look Once (YOLO) Python implementation

Objectives

After studying this chapter, you should be able to understand the concept of object localization and object detection in an image, and how they add more value to simple image classification tasks. You should also be able to implement various image detection algorithms in Python.

Object localization and detection

The most common use case of computer vision is image classification, which is simply about classifying an image with a class. It only tells whether there is a cat or dog in an image. It has nothing to do with the location of the cat or dog in the image.

Object localization is about finding a relevant object in the image and creating a bounding box against the object.

Object detection is a cumulative result of image classification and object localization. This means not only an object location is detected, but the class of the object is also identified.

Figure 6.1 depicts that in the first image a cat is identified, and the image is classified as ´CAT´. But it does not locate the exact location of the cat. In the second image, a bounding box is created around the cat and labelled as CAT. This feature where an image is not only classified but also localized is the object detection mechanism. Refer to the following figure:

[image:]
Figure 6.1: Various computer vision tasks

Object detection algorithms and their comparison

There are numerous algorithms that can perform object detection and are readily available to be used in real-time projects. Some of them are as follows:

	Region-based Convolutional Neural Network (RCNN)

	Fast RCNN

	Faster RCNN

	Single Shot Detector (SSD)

	You Only Look Once (YOLO)

Figure 6.2 depicts a comparison of all the noted object detection algorithms in terms of accuracy and speed. It can be seen that there is a clear tradeoff between accuracy and speed, which can be a deciding factor when choosing an algorithm for your project based on the specific business needs. Refer to the following figure:

[image:]
Figure 6.2: Comparison of object detection algorithms

Single shot detector Python implementation

Follow these steps for successful Single Shot Detector (SSD) Python implementation:

Step 1

This step installs two Python packages:

	scikit-image version 0.19.1, which is a collection of algorithms for image processing

	ipywidgets, which is used for creating interactive Graphical User Interfaces (GUIs) for Jupyter notebooks

	!pip install scikit-image==0.19.1

	!pip install ipywidgets --trusted-host pypi.org --trusted-host pypi.python.org --trusted-host=files.pythonhosted.org

Step 2

This step imports the torch package, which is the base package for PyTorch. It also disables a check in the torch.hub module that usually prevents the use of repositories that have been forked. This is done by overriding an internal function called _validate_not_a_forked_repo to always return True.

	import torch

	torch.hub._validate_not_a_forked_repo=lambda a,b,c: True

Step 3

This step lists all the available models in the PyTorch Hub provided by NVIDIA under the DeepLearningExamples repository. PyTorch Hub is a pre-trained model repository.

	# List of available models in PyTorch Hub from Nvidia/DeepLearningExamples

	torch.hub.list('NVIDIA/DeepLearningExamples:torchhub')

Step 4

This step loads a pretrained SSD model that is capable of object detection. It specifies the precision of the model to be fp32 (32-bit floating point). The model is loaded from NVIDIA’s DeepLearningExamples repository in the PyTorch Hub:

	# load SSD model pretrained on COCO from Torch Hub

	precision = 'fp32'

	ssd300 = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_ssd', model_math=precision);

Figure 6.3 depicts successful model loading:

[image:]
Figure 6.3: Model loading

Step 5

This step specifies a list of sample image URLs from the COCO validation dataset that will be used for inference by the model:

	# Inference

	# Sample images from the COCO validation set

	uris = [

	 'http://images.cocodataset.org/val2017/000000397133.jpg',

	 'http://images.cocodataset.org/val2017/000000037777.jpg',

	 'http://images.cocodataset.org/val2017/000000252219.jpg'

]

Step 6

For conveniently formatting the input and output of the model, a set of utility methods are loaded from the NVIDIA’s DeepLearningExamples repository. These utilities will help in processing the images and the output:

	# For convenient and comprehensive formatting of input and output of the model, load a set of utility methods.

	utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_ssd_processing_utils')

Step 7

This step processes the images from the specified URLs to make them compatible with the network input requirements. The images are formatted and then converted into tensors that are multi-dimensional arrays containing elements of a single data type:

	# Format images to comply with the network input

	inputs = [utils.prepare_input(uri) for uri in uris]

	tensor = utils.prepare_tensor(inputs, False)

Step 8

As the SSD model was trained on the COCO dataset, this step loads a dictionary that maps class IDs to their respective object names. This is essential for understanding the output of the model:

	# The model was trained on COCO dataset, which we need to access in order to

	# translate class IDs into object names.

	classes_to_labels = utils.get_coco_object_dictionary()

Step 9

This step sets the model to evaluation mode and specifies that the computation should be performed on a GPU (cuda). It then runs object detection on the pre-processed images:

	# Next, we run object detection

	model = ssd300.eval().to("cuda")

	detections_batch = model(tensor)

Step 10

The raw output from the SSD model for each input image contains a large number of bounding boxes. This step filters the output to only include reasonable detections (with confidence over 40%) and formats the results:

	# By default, raw output from SSD network per input image contains 8732 boxes with

	# localization and class probability distribution.

	# Let's filter this output to only get reasonable detections (confidence>40%) in a more comprehensive format.

	results_per_input = utils.decode_results(detections_batch)

	best_results_per_input = [utils.pick_best(results, 0.40) for results in results_per_input]

Results

This part of the code is a function definition called plot_results that takes in the best results per input and plots the images along with the predicted bounding boxes and their confidence scores. The function uses matplotlib, a plotting library for the Python programming language:

	from matplotlib import pyplot as plt

	import matplotlib.patches as patches

	

	

	# The utility plots the images and predicted bounding boxes (with confidence scores).

	def plot_results(best_results):

	 for image_idx in range(len(best_results)):

	 fig, ax = plt.subplots(1)

	 # Show original, denormalized image...

	 image = inputs[image_idx] / 2 + 0.5

	 ax.imshow(image)

	 # ...with detections

	 bboxes, classes, confidences = best_results[image_idx]

	 for idx in range(len(bboxes)):

	 left, bot, right, top = bboxes[idx]

	 x, y, w, h = [val * 300 for val in [left, bot, right - left, top - bot]]

	 rect = patches.Rectangle((x, y), w, h, linewidth=1, edgecolor='r', facecolor='none')

	 ax.add_patch(rect)

	 ax.text(x, y, "{} {:.0f}%".format(classes_to_labels[classes[idx] - 1], confidences[idx]*100), bbox=dict(facecolor='white', alpha=0.5))

	 plt.show()

Finally, this function is called with the best results per input to visualize the object detection results. The images are displayed with bounding boxes around detected objects and labels that indicate what object has been detected, along with the confidence in percentage:

	# Visualize results without Torch-TensorRT

	plot_results(best_results_per_input)

Figures 6.4 , 6.5 and 6.6 depict sample object detection results using SSD model:

[image:]
Figure 6.4: Sample result

[image:]
Figure 6.5: Sample result

[image:]
Figure 6.6: Sample result

YOLO v3 Python implementation

Follow these steps for a successful YOLO v3 Python implementation:

	Git clone the project codes. This will copy all the required files and folders from GitHub repo to the local machine:

	!git clone https://github.com/pjreddie/darknet

This will clone the repository on your local machine.

[image:]
Figure 6.7: Git clone command output

	cd into the darknet folder and look at all the downloaded files and folders:

	cd darknet

	ls

Folder contents depicted in Figure 6.8:

[image:]
Figure 6.8: Darknet folder structure

	Run the make command to build the project locally:

	!make

[image:]
Figure 6.9: Make command output

	Download yolov3.weights using the wget command:

	!wget https://pjreddie.com/media/files/yolov3.weights

Download yolo weights as depicted in Figure 6.10:

[image:]
Figure 6.10: wget yolo weights command output

Run the detect command to perform the predictions:

	!./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg

Output of the detect command is depicted in Figure 6.11:

[image:]
Figure 6.11: Predictions output

To view the objects detected within the sample image, use the Image module in Python. Image and the objects detected are displayed with bounding boxes, as shown in Figure 6.12:

	from PIL import Image

	img=Image.open("predictions.jpg")

	img

[image:]
Figure 6.12: Predictions with bounding boxes

Experiment 2

Animals of different sizes and shapes are also captured by the algorithm. Predictions are depicted in Figure 6.13:

	!./darknet detect cfg/yolov3.cfg yolov3.weights data/giraffe.jpg

	from PIL import Image

	img=Image.open("predictions.jpg")

	img

[image:]
Figure 6.13: Predictions with bounding boxes

Experiment 3

People of different ages and sizes with various background objects are also captured by the algorithm. Predictions are depicted in Figure 6.14:

	!./darknet detect cfg/yolov3.cfg yolov3.weights /content/gdrive/MyDrive/coffee.JPG

	from PIL import Image

	img=Image.open("predictions.jpg")

	img

[image:]
Figure 6.14: Predictions with bounding boxes

Experiment 4

People with different poses, one horizontal and another in vertical positions are also captured by the algorithm. Predictions are depicted in Figure 6.15:

	!./darknet detect cfg/yolov3.cfg yolov3.weights /content/gdrive/MyDrive/yoga.JPG

	from PIL import Image

	img=Image.open("predictions.jpg")

	img

[image:]
Figure 6.15: Predictions with bounding boxes

Experiment 5

Very small objects are also captured by the algorithm. Predictions are depicted in Figure 6.16:

	!./darknet detect cfg/yolov3.cfg yolov3.weights data/kite.jpg

	from PIL import Image

	img=Image.open("predictions.jpg")

	img

[image:]
Figure 6.16: Predictions with bounding boxes

Conclusion

In this chapter, we first understood the difference between image classification, object localization, and object detection. Further, we looked at various object detections algorithms and their prediction efficiencies. Then, we looked at various ways of implementing them using Python.

In the next chapter, we will learn about object segmentation and understand the importance of segmenting an object in an image. We will also go through the advancement in this field and various ready-to-use algorithm implementations that can be used in projects.

Questions

	Image classification and image detection are the same thing. Is this true or false?

	True

	False

	What are the different algorithms for object detection?

	R-CNN

	SSD

	YOLO

	All of the above

	Object localization and object detection are the same thing. Is this true or false?

	True

	False

	TFOD stands for which of the following?

	Tensor Fast Object Detection

	Tensor Flow Object Detection

	Test Flow Object Detection

	None of the above

	Which algorithms can be implemented using TFOD?

	SSD

	Faster R-CNN

	Mask R-CNN

	All of the above

Answers

	b

	d

	b

	b

	d

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

[image:]

CHAPTER 7Image Segmentation

The human eye has the power to find a needle in a haystack, to localize an object in an image, to see beyond the surface and uncover the hidden details.

— anonymous

Image segmentation is a process in computer vision where we divide an image into smaller, more meaningful parts. It is like cutting a big puzzle into smaller pieces, with each piece representing a different object or part of an object in the image. For example, suppose you have a picture of a group of animals, like a lion, a zebra, and a giraffe all standing together. With image segmentation, a computer can be trained to recognize and separate each animal, so we can see the lion, zebra, and giraffe as individual images. This makes it easier to understand the image and analyze different objects present in it. It is a useful technique that helps us extract meaningful information from images and make sense of them.

Structure

In this chapter, we will cover the following topics:

	Difference between image classification, detection, and segmentation

	Image segmentation architectures

	U-Net python implementation

	FCN-8 python implementation

	Mask R-CNN python implementation

Objectives

After studying this chapter, you should be able to understand the concept of image segmentation and how it is different from image classification and object detection techniques. You will also know the process of and the underlying code for implementing image segmentation architectures using Python.

Difference between image classification, detection and segmentation

Image classification is the process of identifying what is in an image. For example, a classifier might be trained to recognize that an image contains a dog.

Object detection is similar to image classification, but it also tells you where in the image the object is located. So, in addition to identifying that an image contains a dog, an object detector would draw a bounding box around the dog in the image.

Image segmentation is a process of dividing an image into multiple segments or regions, each of which corresponds to a different object or part of an object. So, in addition to identifying that an image contains a dog and where the dog is located, image segmentation might identify the dog’s nose, tail, and paws as separate segments.

Figure 7.1 depicts the difference between image classification, detection, and segmentation:

[image:]
Figure 7.1: Image classification vs detection vs segmentation

Image segmentation architectures

There are several popular image segmentation architectures that can be implemented using the Keras Python library, including the following:

	U-Net: This architecture is a Fully Convolutional Neural Network (FCN) that is often used for biomedical image segmentation. It consists of an encoder and a decoder, where the encoder is used to extract features from the image, and the decoder is used to generate the segmentation mask.

	SegNet: This is an FCN architecture that uses a VGG-16 encoder and a decoder made of transpose convolutional layers.

	FCN-8: This is an FCN architecture that uses a pre-trained VGG-16 model as the encoder and a series of upsampling and convolutional layers as the decoder.

	DeepLab: This is an FCN architecture that uses an atrous convolutional layer to increase the resolution of the output segmentation mask.

	Mask R-CNN: This architecture uses a Region-Based Convolutional Neural Network (R-CNN) to predict object bounding boxes and an FCN to generate the segmentation mask.

	PSPNet: This is an extension of the FCN architecture that combines the advantages of global and local context and uses the pyramid pooling module to adaptively reweigh the spatial information at multiple scales.

	Encoder-decoder with Atrous separable convolution (DeepLab V3+): This is an extension of the DeepLab V3 architecture. It uses Atrous separable convolution in the decoder and is considered state-of-the-art for semantic image segmentation tasks.

	Linknet: It is a lightweight version of UNet architecture. It uses pre-trained encoder as a backbone, and segmentation network is built using the decoder block of UNet.

These architectures can be implemented using Keras, along with other libraries like TensorFlow, which helps implement the neural networks, along with other image processing libraries like OpenCV, PIL, and so on.

U-Net Python implementation

The U-Net architecture is a popular image segmentation architecture that was developed for biomedical image segmentation. It is a fully convolutional neural network that is built upon the autoencoder architecture.

Figure 7.2 depicts the U-Net architecture:

[image:]
Figure 7.2: Architecture of U-Net for producing k 256-by-256 image masks for a 256-by-256 RGB image

In this section, we will walk through the implementation of the U-Net architecture, which is widely used for image segmentation tasks. We will be using TensorFlow’s Keras API and the Oxford-IIIT Pet Dataset for demonstration.

Prerequisites

	Python 3

	TensorFlow 2.x

	Knowledge of convolutional neural networks

Step 1 - Installing TensorFlow

	pip install tensorflow

Step 2 - Importing the necessary libraries

	import os

	import numpy as np

	import tensorflow as tf

	from tensorflow import keras

	from tensorflow.keras import layers

	from tensorflow.keras.preprocessing.image import load_img, img_to_array

	import matplotlib.pyplot as plt

Step 3 – Loading the dataset

For this implementation, we will use the Oxford-IIIT Pet dataset, which is available through TensorFlow datasets. This dataset contains images of cats and dogs, with corresponding segmentation masks:

	import tensorflow_datasets as tfds

	# Download the dataset

	dataset, info = tfds.load('oxford_iiit_pet:3.2.0', with_info=True)

Figure 7.3 depicts the output of the data download step:

[image:]
Figure 7.3: Data download

Step 4 - Preprocessing the data

We will define functions for loading and preprocessing the images and the masks:

	def normalize(input_image, input_mask):

	 input_image = tf.cast(input_image, tf.float32) / 255.0

	 input_mask -= 1

	 return input_image, input_mask

	

	@tf.function

	def load_image_train(datapoint):

	 input_image = tf.image.resize(datapoint['image'], (128, 128))

	 input_mask = tf.image.resize(datapoint['segmentation_mask'], (128, 128))

	 if tf.random.uniform(()) > 0.5:

	 input_image = tf.image.flip_left_right(input_image)

	 input_mask = tf.image.flip_left_right(input_mask)

	 input_image, input_mask = normalize(input_image, input_mask)

	 return input_image, input_mask

	

	def load_image_test(datapoint):

	 input_image = tf.image.resize(datapoint['image'], (128, 128))

	 input_mask = tf.image.resize(datapoint['segmentation_mask'], (128, 128))

	 input_image, input_mask = normalize(input_image, input_mask)

	 return input_image, input_mask

Step 5 - Preparing training and test datasets

	TRAIN_LENGTH = info.splits['train'].num_examples

	BATCH_SIZE = 64

	BUFFER_SIZE = 1000

	

	STEPS_PER_EPOCH = TRAIN_LENGTH // BATCH_SIZE

	train = dataset['train'].map(load_image_train, num_parallel_calls=tf.data.experimental.AUTOTUNE)

	test = dataset['test'].map(load_image_test)

	

	train_dataset = train.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()

	train_dataset = train_dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)

	test_dataset = test.batch(BATCH_SIZE)

Step 6: Building the U-Net Model

U-Net is an architecture for semantic segmentation. It’s an encoder-decoder type network, where the encoder downsamples the input image and the decoder upsamples and recovers the segmentation mask:

	def build_unet(input_shape):

	 inputs = keras.Input(shape=input_shape)

	

	 # Encoder

	 conv1 = layers.Conv2D(64, (3, 3), activation='relu', padding='same')(inputs)

	 conv1 = layers.Conv2D(64, (3, 3), activation='relu', padding='same')(conv1)

	 pool1 = layers.MaxPooling2D(pool_size=(2, 2))(conv1)

	

	 conv2 = layers.Conv2D(128, (3, 3), activation='relu', padding='same')(pool1)

	 conv2 = layers.Conv2D(128, (3, 3), activation=’relu', padding='same')(conv2)

	 pool2 = layers.MaxPooling2D(pool_size=(2, 2))(conv2)

	

	 # Decoder

	 conv3 = layers.Conv2D(256, (3, 3), activation='relu', padding='same')(pool2)

	 conv3 = layers.Conv2D(256, (3, 3), activation='relu', padding='same')(conv3)

	

	 up1 = layers.concatenate([layers.UpSampling2D(size=(2, 2))(conv3), conv2], axis=-1)

	 conv4 = layers.Conv2D(128, (3, 3), activation='relu', padding='same')(up1)

	 conv4 = layers.Conv2D(128, (3, 3), activation='relu', padding='same')(conv4)

	

	 up2 = layers.concatenate([layers.UpSampling2D(size=(2, 2))(conv4), conv1], axis=-1)

	 conv5 = layers.Conv2D(64, (3, 3), activation='relu', padding='same')(up2)

	 conv5 = layers.Conv2D(64, (3, 3), activation='relu', padding='same')(conv5)

	

	 # Output Layer

	 outputs = layers.Conv2D(3, (1, 1), activation='softmax')(conv5)

	

	 return keras.Model(inputs=inputs, outputs=outputs)

	

	# Build U-Net model

	model = build_unet((128, 128, 3))

	model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

Step 7 - Training the Model

	EPOCHS = 10

	VAL_SUBSPLITS = 5

	VALIDATION_STEPS = info.splits['test'].num_examples//BATCH_SIZE//VAL_SUBSPLITS

	

	model_history = model.fit(train_dataset, epochs=EPOCHS,

	 steps_per_epoch=STEPS_PER_EPOCH,

	 validation_steps=VALIDATION_STEPS,

	 validation_data=test_dataset)

Figure 7.4 depicts model fitting epochs:

[image:]
Figure 7.4: Model fitting

Step 8 - Visualizing the Results

Let’s plot the training history and visualize the segmentation results on test images:

	# Plot training history

	plt.figure(figsize=(12, 4))

	plt.subplot(1, 2, 1)

	plt.plot(model_history.history["loss"], label="Training Loss")

	plt.plot(model_history.history["val_loss"], label="Validation Loss")

	plt.legend()

	plt.subplot(1, 2, 2)

	plt.plot(model_history.history["accuracy"], label="Training Accuracy")

	plt.plot(model_history.history["val_accuracy"], label="Validation Accuracy")

	plt.legend()

	plt.show()

	

	# Visualize predictions

	for image, mask in test_dataset.take(1):

	 pred_mask = model.predict(image)

	 plt.figure(figsize=(10, 10))

	 for i in range(9):

	 plt.subplot(3, 3, i + 1)

	 plt.imshow(image[i])

	 plt.imshow(np.argmax(pred_mask[i], axis=-1), alpha=0.5)

	 plt.axis("off")

	 plt.show()

Figure 7.5 depicts model train and validation accuracies and loss:

[image:]
Figure 7.5: Model results

Figure 7.6 depicts image segmentation on a sample images:

[image:]
Figure 7.6: Image segmentation on a sample image

In this section, we learned how to implement the U-Net architecture for image segmentation using TensorFlow’s Keras API. We built the model, trained it on the Oxford-IIIT Pet dataset, and visualized the segmentation results. The U-Net model is powerful and versatile, making it a popular choice for various image segmentation tasks.

FCN-8 Python implementation

FCN8 is a fully convolutional neural network architecture for image segmentation. It uses a series of convolutional layers to extract features from the input image, and then it uses transposed convolutional layers to upsample the feature maps to the same size as the input image. The final layer produces a segmentation map with a per-pixel prediction of the class label.

In this section, we will walk through the implementation of Fully Convolutional Networks (FCN-8 variant) for semantic image segmentation.

Prerequisites

	Python 3

	TensorFlow 2.x

	Knowledge of convolutional neural networks

Step 1 - Installing TensorFlow

	pip install tensorflow

Step 2 - Importing the necessary libraries

Let’s begin by importing the necessary libraries and modules:

	import numpy as np

	import tensorflow as tf

	from tensorflow import keras

	from tensorflow.keras.models import Model

	from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Dropout, Conv2DTranspose, concatenate

Step 3: Defining the FCN-8s Model

The function fcn8 builds the FCN-8s model.

	def fcn8(input_shape, num_classes):

	 inputs = Input(input_shape)

This line initializes the input tensor of the model with the specified shape.

Step 4: Encoder (VGG16 Base)

It consists of five blocks with Conv2D layers, followed by MaxPooling. Each block is responsible for extracting features from the input images.

	# Block 1

	 conv1 = Conv2D(64, 3, activation='relu', padding='same')(inputs)

	 conv1 = Conv2D(64, 3, activation='relu', padding='same')(conv1)

	 pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)

	

	 # Block 2

	 conv2 = Conv2D(128, 3, activation='relu', padding='same')(pool1)

	 conv2 = Conv2D(128, 3, activation='relu', padding='same')(conv2)

	 pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)

	

	 # Block 3

	 conv3 = Conv2D(256, 3, activation='relu', padding='same')(pool2)

	 conv3 = Conv2D(256, 3, activation='relu', padding='same')(conv3)

	 pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)

	

	 # Block 4

	 conv4 = Conv2D(512, 3, activation='relu', padding='same')(pool3)

	 conv4 = Conv2D(512, 3, activation='relu', padding='same')(conv4)

	 pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)

	

	 # Block 5

	 conv5 = Conv2D(512, 3, activation='relu', padding='same')(pool4)

	 conv5 = Conv2D(512, 3, activation='relu', padding='same')(conv5)

	 pool5 = MaxPooling2D(pool_size=(2, 2))(conv5)

Step 5: Fully Convolutionalization

Convert the fully connected layers to convolutional layers to make the network fully convolutional:

	# Fully Convolutionalization

	 fc6 = Conv2D(4096, 7, activation='relu', padding='same')(pool5)

	 fc6 = Dropout(0.5)(fc6)

	 fc7 = Conv2D(4096, 1, activation='relu', padding='same')(fc6)

	 fc7 = Dropout(0.5)(fc7)

Step 6: Skipping Connections and decoder

 This section merges high-level and low-level features to refine the segmentation outcomes. The Conv2DTranspose layers are employed to enlarge or upscale the feature maps.

	 # Score Pooling 4

	 score_pool4 = Conv2D(num_classes, 1, activation='relu', padding='same')(pool4)

	 # Score Pooling 7

	 score_fc7 = Conv2D(num_classes, 1, activation='relu', padding='same')(fc7)

	 # Deconvolution 2x

	 upsample_2x = Conv2DTranspose(num_classes, 4, strides=(2, 2), padding='same')(score_fc7)

	 # Score Sum 2

	 score_sum2 = concatenate([score_pool4, upsample_2x], axis=3)

	 # Deconvolution 2x

	 upsample_4x = Conv2DTranspose(num_classes, 4, strides=(2, 2), padding='same')(score_sum2)

	 # Final Prediction

	 upsample_final = Conv2DTranspose(num_classes, 16, strides=(8, 8), padding='same')(upsample_4x)

	 outputs = keras.activations.softmax(upsample_final, axis=-1)

Step 7: Generating sample data

The generate_sample_data function creates random input data and labels for training and evaluation:

	def generate_sample_data(num_samples, image_shape, num_classes):

	 X = np.random.rand(num_samples, *image_shape)

	 y = np.random.randint(0, num_classes, (num_samples, *image_shape[:-1], 1))

	 return X, y

	

	# Define input shape and number of classes

	input_shape = (256, 256, 3)

	num_classes = 10

	

	# Generate sample training data

	X_train, y_train = generate_sample_data(100, input_shape, num_classes)

	

	# Generate sample test data

	X_test, y_test = generate_sample_data(20, input_shape, num_classes)

Step 8: Building the model

Compile the model with the architecture defined earlier:

	 model = Model(inputs=inputs, outputs=outputs)

	 return model

Step 9: Compiling the model

Compile the model with the optimizer, loss function, and metric:

	model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

Step 10: Training the model

Train the model on the sample dataset:

	model.fit(X_train, y_train, batch_size=16, epochs=10, validation_data=(X_test, y_test))

Figure 7.7 depicts model fitting epochs:

[image:]
Figure 7.7: Model fitting epochs

Step 11: Evaluating the model

Evaluate the model’s performance on the test data:

	loss, accuracy = model.evaluate(X_test, y_test)

	print("Test Loss:", loss)

	print("Test Accuracy:", accuracy)

Figure 7.8 depicts model accuracy and loss values:

[image:]
Figure 7.8: Model accuracy and loss

In this section, we implemented the FCN-8 architecture for image segmentation using TensorFlow’s Keras API. FCN-8 is an effective architecture for semantic segmentation that combines deep features with upsampling and skip connections.

Mask R-CNN Python implementation

Mask R-CNN is a popular architecture for instance segmentation tasks, which involves predicting both object bounding boxes and per-pixel mask segmentations for each object in an image.

Here’s an example of how to implement Mask R-CNN in Python using Tensorflow:

Step 1

This step clones the TensorFlow Tensor Processing Unit (TPU) repository from GitHub. Cloning refers to downloading the code and files of this repository to your local machine or environment. This is done by executing the git clone command, followed by the repository URL. The repository contains models and code designed to run on TPUs, which are hardware accelerators specialized in deep learning tasks:

	!git clone https://github.com/tensorflow/tpu/

Step 2

In this step, you are importing various libraries and modules required for the subsequent code. These libraries include the following:

	IPython.display for displaying images

	PIL.Image for handling image data

	numpy for handling arrays

	tensorflow for building and executing machine learning models

	sys to manipulate the Python runtime environment

You are also modifying the system path to include directories within the cloned repository (tpu/models/official and tpu/models/official/mask_rcnn). This allows you to import modules that are inside these directories. You are importing coco_metric and visualization_utils from these directories. Lastly, you are disabling TensorFlow v2 behavior to make sure the code is compatible with TensorFlow version 1:

	from IPython import display

	from PIL import Image

	import numpy as np

	import tensorflow as tf

	import sys

	sys.path.insert(0, 'tpu/models/official')

	sys.path.insert(0, 'tpu/models/official/mask_rcnn')

	import coco_metric

	from mask_rcnn.object_detection import visualization_utils

	import tensorflow.compat.v1 as tf

	tf.disable_v2_behavior()

Step 3

This step initializes a dictionary named ID_MAPPING, which maps integers to names of objects. These integers represent unique identifiers for each object category (for example, ‘person’, ‘bicycle’, ‘car’, and so on.). The category_index is created from ID_MAPPING to store information in a slightly different format, which is likely to be used later for visualization or analysis:

	ID_MAPPING = {

	 1: 'person',

	 2: 'bicycle',

	 3: 'car',

	 4: 'motorcycle',

	 5: 'airplane',

	 6: 'bus',

	 7: 'train',

	 8: 'truck',

	 9: 'boat',

	 10: 'traffic light',

	 11: 'fire hydrant',

	 13: 'stop sign',

	 14: 'parking meter',

	 15: 'bench',

	 16: 'bird',

	 17: 'cat',

	 18: 'dog',

	 19: 'horse',

	 20: 'sheep',

	 21: 'cow',

	 22: 'elephant',

	 23: 'bear',

	 24: 'zebra',

	 25: 'giraffe',

	 27: 'backpack',

	 28: 'umbrella',

	 31: 'handbag',

	 32: 'tie',

	 33: 'suitcase',

	 34: 'frisbee',

	 35: 'skis',

	 36: 'snowboard',

	 37: 'sports ball',

	 38: 'kite',

	 39: 'baseball bat',

	 40: 'baseball glove',

	 41: 'skateboard',

	 42: 'surfboard',

	 43: 'tennis racket',

	 44: 'bottle',

	 46: 'wine glass',

	 47: 'cup',

	 48: 'fork',

	 49: 'knife',

	 50: 'spoon',

	 51: 'bowl',

	 52: 'banana',

	 53: 'apple',

	 54: 'sandwich',

	 55: 'orange',

	 56: 'broccoli',

	 57: 'carrot',

	 58: 'hot dog',

	 59: 'pizza',

	 60: 'donut',

	 61: 'cake',

	 62: 'chair',

	 63: 'couch',

	 64: 'potted plant',

	 65: 'bed',

	 67: 'dining table',

	 70: 'toilet',

	 72: 'tv',

	 73: 'laptop',

	 74: 'mouse',

	 75: 'remote',

	 76: 'keyboard',

	 77: 'cell phone',

	 78: 'microwave',

	 79: 'oven',

	 80: 'toaster',

	 81: 'sink',

	 82: 'refrigerator',

	 84: 'book',

	 85: 'clock',

	 86: 'vase',

	 87: 'scissors',

	 88: 'teddy bear',

	 89: 'hair drier',

	 90: 'toothbrush',

	}

	category_index = {k: {'id': k, 'name': ID_MAPPING[k]} for k in ID_MAPPING}

Step 4

In this step, the required libraries are imported, and an image is downloaded from a specified URL. The image is saved as test1.jpg. The code then reads the image in binary mode, and the image data is converted into a numpy array. The image dimensions (width and height) are extracted and stored. The image is displayed in the IPython environment with a width of 1024 pixels:

	# Import the required libraries

	import numpy as np

	from PIL import Image

	from IPython import display

	

	

	# Download an image from a specific URL and save it as "test1.jpg"

	!wget https://img.theculturetrip.com/768x/smart/wp-content/uploads/2019/11/r9j01k.jpg -O test1.jpg

	

	

	# Set the path of the downloaded image

	image_path = 'test1.jpg'

	

	

	# Open the image file in binary mode

	with open(image_path, 'rb') as file:

	 # Convert the image data into a numpy array

	 np_image_string = np.array([file.read()])

	

	

	# Open the image using the PIL library

	image = Image.open(image_path)

	

	

	# Get the width and height of the image

	width, height = image.size

	

	

	# Convert the image data into a numpy array with the specified dimensions and data type

	np_image = np.array(image.getdata()).reshape(height, width, 3).astype(np.uint8)

	

	

	# Display the image with a width of 1024 pixels

	display.display(display.Image(image_path, width=1024))

Figure 7.9 depicts a sample image for image segmentation demo:

[image:]
Figure 7.9: Sample image for image segmentation

Step 5

A TensorFlow session is created and assigned to the variable session. This session will allow you to run a computation graph. It is part of TensorFlow’s v1.x way of executing models:

session = tf.Session(graph=tf.Graph())

Step 6

In this step, a pre-trained model is loaded from a specified directory in Google Cloud Storage. This directory contains the saved model. The tf.saved_model.loader.load() function is used to load the model into the previously created TensorFlow session:

	# Loading pretarined model

	

	

	saved_model_dir = 'gs://cloud-tpu-checkpoints/mask-rcnn/1555659850' #@param {type:"string"}

	_ = tf.saved_model.loader.load(session, ['serve'], saved_model_dir)

Step 7

This step involves running the instance segmentation on the input image. Instance segmentation is a process where each object instance in an image is detected and delineated. The model’s outputs include the number of detections, bounding boxes, class labels, scores, and masks for the objects detected. The step also processes the raw outputs to make them ready for visualization.

	# Instance Segmentation

	num_detections, detection_boxes, detection_classes, detection_scores, detection_masks, image_info = session.run(

	 ['NumDetections:0', 'DetectionBoxes:0', 'DetectionClasses:0', 'DetectionScores:0', 'DetectionMasks:0', 'ImageInfo:0'],

	 feed_dict={'Placeholder:0': np_image_string})

	

	

	num_detections = np.squeeze(num_detections.astype(np.int32), axis=(0,))

	detection_boxes = np.squeeze(detection_boxes * image_info[0, 2], axis=(0,))[0:num_detections]

	detection_scores = np.squeeze(detection_scores, axis=(0,))[0:num_detections]

	detection_classes = np.squeeze(detection_classes.astype(np.int32), axis=(0,))[0:num_detections]

	instance_masks = np.squeeze(detection_masks, axis=(0,))[0:num_detections]

	ymin, xmin, ymax, xmax = np.split(detection_boxes, 4, axis=-1)

	processed_boxes = np.concatenate([xmin, ymin, xmax - xmin, ymax - ymin], axis=-1)

	segmentations = coco_metric.generate_segmentation_from_masks(instance_masks, processed_boxes, height, width)

Step 8

In this final step, the results are visualized. The code draws the detection boxes and labels on the original image using the processed outputs from the previous step. The number of boxes to draw and the minimum score threshold can be specified. The resulting image with detections is saved as test_results.jpg and is also displayed in the IPython environment:

	# Results

	max_boxes_to_draw = 50 #@param {type:"integer"}

	min_score_thresh = 0.1 #@param {type:"slider", min:0, max:1, step:0.01}

	

	

	image_with_detections = visualization_utils.visualize_boxes_and_labels_on_image_array(

	 np_image,

	 detection_boxes,

	 detection_classes,

	 detection_scores,

	 category_index,

	 instance_masks=segmentations,

	 use_normalized_coordinates=False,

	 max_boxes_to_draw=max_boxes_to_draw,

	 min_score_thresh=min_score_thresh)

	output_image_path = 'test_results.jpg'

	Image.fromarray(image_with_detections.astype(np.uint8)).save(output_image_path)

	display.display(display.Image(output_image_path, width=1024))

Figure 7.10 depicts the sample image with bounding boxes after image segmentation:

[image:]
Figure 7.10: Sample image with bounding boxes after image segmentation

Conclusion

Image segmentation is a powerful technique that allows for the identification of specific objects or regions of interest within an image. There are several approaches to image segmentation, including thresholding, region-based methods, and deep learning-based methods. Each approach has its own strengths and weaknesses and is suited for different types of images and tasks.

FCN and Mask R-CNN are two of the most popular deep learning-based image segmentation architectures. FCN utilizes a series of convolutional and transposed convolutional layers to extract features from an image and then sample the feature maps to produce a segmentation map. Mask R-CNN is an extension of the Faster R-CNN object detector; it includes a branch for predicting an object mask in parallel with the existing branch for bounding box recognition.

Implementing image segmentation models in Keras can be relatively easy with the help of pre-built libraries like keras-fcn, mask-rcnn, and matterport/Mask_RCNN. However, it’s important to keep in mind that the architecture and training parameters may need to be adjusted to suit the specific task and dataset.

In the next chapter, we will learn about RNN, which is an advanced computational model extensively used in the field of data science and architecture. It is specifically designed to process and analyze sequential data, making it an invaluable tool for tasks like natural language processing, time series analysis, and speech recognition.

Questions

	What is the primary goal of image segmentation?

	To classify pixels in an image

	To detect objects in an image

	To enhance the quality of an image

	To separate an image into multiple segments

	Which of the following is not a type of image segmentation?

	Semantic segmentation

	Instance segmentation

	Object detection

	Color-based segmentation

	Which of the following is a popular technique for image segmentation?

	K-means clustering

	Random Forest

	Convolutional Neural Networks (CNN)

	Support Vector Machines

	What is the primary advantage of using Fully Convolutional Networks (FCNs) for image segmentation?

	They are less computationally expensive

	They are better at handling variable-size inputs

	They are better at handling large datasets

	They are better at handling high-dimensional inputs

	What is the main advantage of using deep learning-based methods for image segmentation?

	They can handle large amounts of data

	They can handle high-dimensional inputs

	They can handle complex and non-linear relationships between inputs and outputs

	They can handle all of the above

Answers

	d

	c

	c

	b

	d

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

[image:]

CHAPTER 8Recurrent Neural Networks

One picture is worth a thousand words

— Albert Einstein

A Recurrent Neural Network (RNN) is a type of artificial neural network that is well suited to processing sequential data, such as natural language, time series data, and audio. RNNs have an internal memory that allows them to process information from previous time steps in addition to the current input. This allows them to recognize patterns and dependencies across the input sequence and make predictions about future events based on this information.

One of the key features of RNNs is their ability to process sequences of variable length, which makes them useful for a wide range of applications, such as language translation, language modeling, and speech recognition.

RNNs can be trained using various optimization algorithms, such as gradient descent and stochastic gradient descent, to learn the weights of the network and make accurate predictions.

Overall, RNNs are a powerful tool for analyzing and modeling sequential data and have been widely used in several fields to perform various tasks.

Structure

In this chapter, we will cover the following topics:

	Algorithms for RNN implementation

	RNN implementation

	Long Short-Term Memory implementation

	Gated Recurrent Unit implementation

Objectives

By the end of this chapter, you should understand the different algorithms suitable for RNN implementation. Additionally, you will be well-acquainted with key algorithms such as LSTM and GRU. Furthermore, you will be equipped to address various challenges using RNN, LSTM, and GRU with the help of Python libraries.

Algorithms for RNN implementation

There are several algorithms that can be used to implement and train Recurrent Neural Networks (RNNs), including the following:

	Backpropagation Through Time (BPTT): This is a widely used algorithm that involves unrolling the RNN and treating it as a deep feedforward neural network, allowing the weights of the network to be updated using gradient descent.

	Truncated Backpropagation Through Time (TBPTT): This is a variant of BPTT that involves only unrolling the RNN for a limited number of time steps, which can reduce the computational complexity of training.

	Stochastic Gradient Descent (SGD): This is an optimization algorithm that involves updating the weights of the network using small, random batches of data rather than the entire dataset.

	Adaptive Moment Estimation (Adam): This popular optimization algorithm combines the ideas of SGD and momentum to improve the convergence rate of the training process.

	Long Short-Term Memory (LSTM): This is a type of RNN that includes special units called “memory cells” that can store information for long periods, allowing the network to better capture long-term dependencies in the data.

	Gated Recurrent Unit (GRU): This is another type of RNN that uses “gates” to control the flow of information within the network, allowing it to better capture long-term dependencies in the data.

Overall, the choice of algorithm will depend on the specific requirements of the task and the available computational resources.

RNN implementation

We will start with a very simple RNN implementation for the most famous MNIST dataset.

Following are the steps for an end-to-end RNN implementation using Python Keras library.

Step 1- Import necessary libraries

Firstly, we need to import the necessary libraries. We will need numpy for numerical calculations, keras for building the model, and the string library for working with text data:

	import numpy as np

	from keras.models import Sequential

	from keras.layers import Dense, SimpleRNN

	import string

Step 2- Prepare the dataset

Next, we need to prepare the dataset. For simplicity, we will use a short sequence of characters from the English alphabet:

	# define the raw dataset

	alphabet = string.ascii_lowercase

	

	# create mapping of characters to integers and reverse

	char_to_int = dict((c, i) for i, c in enumerate(alphabet))

	int_to_char = dict((i, c) for i, c in enumerate(alphabet))

	

	# prepare the dataset of input to output pairs encoded as integers

	seq_length = 3

	dataX = []

	dataY = []

	for i in range(0, len(alphabet) - seq_length, 1):

	 seq_in = alphabet[i:i + seq_length]

	 seq_out = alphabet[i + seq_length]

	 dataX.append([char_to_int[char] for char in seq_in])

	 dataY.append(char_to_int[seq_out])

In this step, we are creating a mapping of characters to integers and vice versa. We are then creating our input and output sequences. Each input sequence will be a sequence of three characters from the alphabet, and the output will be the next character in the alphabet.

Step 3- Reshape the data

Next, we need to reshape our input sequences into the form [samples, time steps, features] expected by an RNN:

	X = np.reshape(dataX, (len(dataX), seq_length, 1))

Step 4- Normalize the data

We normalize the input values to the range 0-to-1. This is a common practice when working with neural networks:

	X = X / float(len(alphabet))

Step 5- One hot encode the output variable

We are going to predict the next character in the alphabet, which is a multi-class classification problem. Therefore, we need to one hot encode our output variable:

	from keras.utils import np_utils

	y = np_utils.to_categorical(dataY)

Step 6- Define the RNN model

We can now define our RNN model. We will use a single hidden layer with 32 units. The output layer is a Dense layer using the softmax activation function to output a probability prediction for each of the 26 characters between 0 and 1:

	model = Sequential()

	model.add(SimpleRNN(32, input_shape=(X.shape[1], X.shape[2])))

	model.add(Dense(y.shape[1], activation='softmax'))

Step 7- Compile and train the model

We compile our model using the log loss function (“categorical_crossentropy” in Keras) and use the efficient ADAM optimization algorithm to find the weights.

We then fit the model using batch learning and 500 epochs:

	model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

	model.fit(X, y, epochs=500, batch_size=1, verbose=2)

Figure 8.1 depicts model training epochs:

[image:]
Figure 8.1: Model training epochs

Step 8-Demonstrate predictions

After training, let’s use the model to make predictions:

	for pattern in dataX:

	 x = np.reshape(pattern, (1, len(pattern), 1))

	 x = x / float(len(alphabet))

	 prediction = model.predict(x, verbose=0)

	 index = np.argmax(prediction)

	 result = int_to_char[index]

	 seq_in = [int_to_char[value] for value in pattern]

	 print(seq_in, "->", result)

This code snippet will output the input sequence and the predicted output character.

Figure 8.2 depicts model prediction results:

[image:]
Figure 8.2: Model prediction results

Step 9- Evaluating the model

Finally, let us evaluate the performance of our model:

	scores = model.evaluate(X, y, verbose=0)

	print("Model Accuracy: %.2f%%" % (scores[1]*100))

This will give you the accuracy of the model on the dataset.

Figure 8.3 depicts model accuracy:

[image:]
Figure 8.3: Model accuracy

This is a basic example of how to implement a simple RNN in Keras for a sequence prediction problem. Note that for more complex problems and datasets, you may need to tweak the architecture, use different types of RNNs like LSTM or GRU, and spend more time tuning the hyperparameters.

Long short-term memory implementation

Long short-term memory (LSTM) is a type of RNN that is particularly well-suited for modeling long-term dependencies in time series data. Unlike traditional RNNs, which use a single hidden state to capture the entire history of the input sequence, LSTMs use a series of hidden states, known as memory cells, to selectively remember and forget information from the past. This allows LSTMs to capture long-term dependencies without suffering from the vanishing gradient problem, which occurs when the gradients of the error signal become very small over many time steps. LSTMs have been widely used in natural language processing tasks, such as language translation and language modeling, and also in other areas like speech recognition and financial forecasting.

Let’s look at an example of how you could implement a LSTM network using the Keras library in Python. In this task, we will train an LSTM on a simple and intuitive dataset: the airline passengers’ dataset. This dataset shows the total number of airline passengers in a month, from 1949 to 1960. This problem is common for demonstrating time series prediction because it is a good example where understanding the long-term trend is beneficial for the model.

Step 1- Importing the required libraries

Start by importing the necessary libraries:

	import numpy as np

	import matplotlib.pyplot as plt

	import pandas as pd

	from sklearn.preprocessing import MinMaxScaler

	from sklearn.metrics import mean_squared_error

	from keras.models import Sequential

	from keras.layers import LSTM, Dense

	import urllib.request

Step 2- Loading the dataset

We can download the dataset and read it:

	url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/airline-passengers.csv"

	file = urllib.request.urlopen(url)

	

	data = pd.read_csv(file, usecols=[1], engine='python')

Step 3- Preprocessing the data

We need to normalize the dataset to make the scale of the input features similar:

	scaler = MinMaxScaler(feature_range=(0, 1))

	data = scaler.fit_transform(data)

Step 4- Splitting the dataset

We split the dataset into training and testing sets:

	train_size = int(len(data) * 0.67)

	test_size = len(data) - train_size

	train, test = data[0:train_size, :], data[train_size:len(data), :]

Step 5- Creating a dataset matrix

	def create_dataset(dataset, look_back=1):

	 dataX, dataY = [], []

	 for i in range(len(dataset) - look_back - 1):

	 dataX.append(dataset[i:(i + look_back), 0])

	 dataY.append(dataset[i + look_back, 0])

	 return np.array(dataX), np.array(dataY)

	

	look_back = 3

	trainX, trainY = create_dataset(train, look_back)

	testX, testY = create_dataset(test, look_back)

	

	# reshape input to be [samples, time steps, features]

	trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))

	testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))

Step 6- Building the model

	model = Sequential()

	model.add(LSTM(4, input_shape=(1, look_back)))

	model.add(Dense(1))

	model.compile(loss='mean_squared_error', optimizer='adam')

Step 7- Training the model

	model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)

Figure 8.4 depicts model training epochs:

[image:]
Figure 8.4: Model training epochs

Step 8- Making predictions

	trainPredict = model.predict(trainX)

	testPredict = model.predict(testX)

	

	# Invert predictions back to original scale

	trainPredict = scaler.inverse_transform(trainPredict)

	trainY = scaler.inverse_transform([trainY])

	testPredict = scaler.inverse_transform(testPredict)

	testY = scaler.inverse_transform([testY])

Step 9- Evaluating the model

	trainScore = np.sqrt(mean_squared_error(trainY[0], trainPredict[:, 0]))

	print(f'Train Score: {trainScore:.2f} RMSE')

	testScore = np.sqrt(mean_squared_error(testY[0], testPredict[:, 0]))

	print(f'Test Score: {testScore:.2f} RMSE')

Figure 8.5 depicts model scores:

[image:]
Figure 8.5: Model scores

Step 10- Plotting the results

	plt.plot(scaler.inverse_transform(data))

	trainPredictPlot = np.empty_like(data)

	trainPredictPlot[:, :] = np.nan

	trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict

	

	testPredictPlot = np.empty_like(data)

	testPredictPlot[:, :] = np.nan

	testPredictPlot[len(trainPredict)+(look_back*2)+1:len(data)-1, :] = testPredict

	

	plt.plot(trainPredictPlot)

	plt.plot(testPredictPlot)

	plt.show()

This will plot the original dataset in blue, the predictions for the training dataset in orange, and the predictions on the test dataset in green.

Figure 8.6 depicts model predictions:

[image:]
Figure 8.6: Model predictions

Gated Recurrent Unit implementation

Gated recurrent unit (GRU) is another type of RNN that is designed to address the vanishing gradient problem that can occur when training traditional RNNs on long sequences. Like LSTM networks, GRUs use gates to control the flow of information through the network, but they use a simpler gating mechanism that requires fewer parameters and is easier to train. GRUs have been shown to be competitive with LSTMs on a variety of natural language processing tasks, such as language translation and language modeling, and they are often preferred for their simplicity and efficiency. GRUs have also been used in other areas, such as speech recognition and time series forecasting, where they have demonstrated good performance.

In this section, we will walk you through the steps to implement a GRU with some advanced techniques like dropout and recurrent dropout.

Step 1- Importing the necessary libraries

Let’s begin by importing the necessary libraries:

	import numpy as np

	import tensorflow as tf

	from tensorflow.keras.datasets import imdb

	from tensorflow.keras.models import Sequential

	from tensorflow.keras.layers import Dense, GRU, Embedding

	from tensorflow.keras.preprocessing.sequence import pad_sequences

	from tensorflow.keras.utils import to_categorical

Step 2- Loading the data

We load the IMDB dataset, which is available in TensorFlow Keras. We will restrict the dataset to the top 10,000 words:

	top_words = 10000

	(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=top_words)

Step 3- Preprocessing the data

We need to make sure all sequences have the same length. For this, we will use padding:

	max_review_length = 500

	X_train = pad_sequences(X_train, maxlen=max_review_length)

	X_test = pad_sequences(X_test, maxlen=max_review_length)

Step 4- Building the GRU Model

We will build a simple model with an Embedding layer, followed by a GRU layer with dropout, and finally, a Dense layer for the output:

	embedding_vector_length = 32

	

	model = Sequential()

	model.add(Embedding(top_words, embedding_vector_length, input_length=max_review_length))

	model.add(GRU(units=100, dropout=0.2, recurrent_dropout=0.2))

	model.add(Dense(1, activation='sigmoid'))

Step 5- Compiling the model

We will compile the model using binary cross-entropy as the loss function (since it is a binary classification problem) and ‘adam’ optimizer:

	model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

	print(model.summary())

Figure 8.7 depicts model summary:

[image:]
Figure 8.7: Model summary

Step 6- Training the model

Now, let us train the model using the training dataset. We will also monitor its performance on the test dataset:

	model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=3, batch_size=64)

Figure 8.8 depicts model training epochs:

[image:]
Figure 8.8: Model training epochs

Step 7- Evaluating the model

Let us evaluate the model’s performance on the test dataset:

	scores = model.evaluate(X_test, y_test, verbose=0)

	print("Accuracy: %.2f%%" % (scores[1] * 100))

Figure 8.9 depicts model accuracy:

[image:]
Figure 8.9: Model accuracy

Conclusion

In conclusion, RNNs are a type of neural network that are well-suited for processing sequential data, such as time series data or natural language text. RNNs have the ability to maintain a hidden state that captures information from the past, which allows them to capture dependencies between elements in the sequence. LSTM networks and GRU networks are variants of RNNs that use additional gates to control the flow of information through the network, which allows them to better capture long-term dependencies in the data. LSTMs and GRUs have been widely used in natural language processing tasks, such as language translation and language modeling, and in other areas like speech recognition and financial forecasting. In the Keras library, the LSTM and GRU layers can be easily added to a model, making it easy to experiment with these powerful models.

In the next chapter, we will learn about GANSs. Generative Adversarial Networks (GANs) are an exciting and powerful class of machine learning models that have revolutionized the field of generative modeling.

Multiple choice Questions

	What is a characteristic of RNNs that makes them well-suited for processing sequential data?

	They use convolutional layers to extract features from the data.

	They use a single hidden state to capture the entire history of the input sequence.

	They use a fixed-length input window to process the data.

	They use a series of hidden states to selectively remember and forget information from the past.

	What is a disadvantage of using traditional RNNs to model long-term dependencies in time series data?

	They require a large number of parameters.

	They are computationally inefficient.

	They suffer from the vanishing gradient problem.

	They are prone to overfitting.

	How do LSTM networks address the vanishing gradient problem in traditional RNNs?

	They use a series of hidden states, known as memory cells, to selectively remember and forget information from the past.

	They use a gating mechanism to control the flow of information through the network.

	They use a combination of convolutional and fully connected layers to extract features from the data.

	They use a fixed-length input window to process the data.

	How do GRU networks differ from LSTM networks?

	GRU networks use a simpler gating mechanism that requires fewer parameters.

	GRU networks are more computationally efficient than LSTM networks.

	GRU networks are more powerful than LSTM networks.

	GRU networks are less prone to overfitting than LSTM networks.

	Which of the following is a common use case for RNNs, LSTMs, and GRUs?

	Object detection in images

	Speech recognition

	Language translation

	Financial forecasting

Answers

	b

	c

	a

	a

	b

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

[image:]

CHAPTER 9Generative Adversarial Networks

The true test of artificial intelligence is not the ability to imitate humans but the ability to outdo them.

— Tim Urban

A Generative Adversarial Network (GAN) is a type of neural network used to generate synthetic data that is similar to a given training dataset. A GAN is a type of computer program that is used to create synthetic data that looks like it could be real. For example, a GAN could be used to generate synthetic images of people that look like they could be real photographs.

The way a GAN works is by using two different parts: a generator and a discriminator. The generator is like an artist who creates synthetic images, and the discriminator is like a critic who judges whether the images are real or fake.

The generator and discriminator work together to improve the quality of the synthetic images. The generator creates synthetic images and tries to fool the discriminator into thinking they are real. The discriminator looks at the images and tries to tell if they are real or fake. As the generator gets better at creating synthetic images that the discriminator cannot tell are fake, the discriminator gets better at telling real images from synthetic ones.

Through this process, the GAN is able to learn what real images look like, and it can use this knowledge to create synthetic images that look more and more like real ones. GANs have been used to create a wide range of synthetic data, including images, audio, and text.

Structure

In this chapter, we will cover the following topics:

	Types of GAN

	Vanilla GAN Python implementation

	Key difference between Vanilla GAN and DCGAN

	DCGAN Python implementation

	StyleGAN Python implementation

Objectives

After studying this chapter, you will be aware of the various types of GAN. Additionally, you will be able to implement important GAN architectures in Python.

Types of GAN

There are several types of Generative Adversarial Networks (GANs), including the following:

	Vanilla GAN: This is the original GAN architecture, proposed by Ian Goodfellow et al. in 2014. This type of GAN consists of a generator network and a discriminator network, trained using the adversarial process..

	Conditional GAN (cGAN): This is a variant of the GAN architecture that allows the generation of synthetic data to be controlled by a set of external conditions.

	Deep Convolutional GAN (DCGAN): This is a variant of the GAN architecture that uses deep convolutional neural networks as the generator and discriminator networks. This type of GAN is particularly well suited for generating images.

	Wasserstein GAN (WGAN): This is a variant of the GAN architecture that uses the Wasserstein distance as the loss function for training the generator and discriminator networks.

	Style GAN: This is a variant of the GAN architecture that uses an intermediate latent space to control the style of the generated data. This type of GAN is particularly well suited for generating images with high levels of variability.

These are just a few examples of the many types of GANs that have been developed. GANs are a rapidly evolving field, and new variations and improvements are being proposed and developed all the time.

Vanilla GAN Python implementation

In this section, we will walk you through a step-by-step implementation of a Vanilla GAN using Python and PyTorch. GANs consist of two neural networks, i.e., a generator and a discriminator, that are trained simultaneously. The generator creates new data instances, while the discriminator evaluates them. The goal is to train the generator to create data that is indistinguishable from real data for the discriminator.

Make sure you have PyTorch installed in your environment. Use the below pip command for the installation.

pip install torch torchvision

Step 1 - Importing libraries

Let us begin by importing the necessary libraries.

	import torch

	import torch.nn as nn

	import torch.optim as optim

	import torchvision

	import torchvision.transforms as transforms

	from torch.utils.data import DataLoader

	import matplotlib.pyplot as plt

	import numpy as np

Step 2 - Loading the data

For this tutorial, we will use the MNIST dataset. The dataset consists of handwritten digits and is a common dataset used for training simple models in machine learning.

	transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])

	

	train_dataset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)

	train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)

Step 3 - Defining the generator and discriminator

The generator takes a random noise vector as input and produces an output image. The discriminator takes an image as input and outputs a scalar representing the probability of the input image being real.

	# Generator

	class Generator(nn.Module):

	 def __init__(self):

	 super(Generator, self).__init__()

	 self.main = nn.Sequential(

	 nn.Linear(100, 256),

	 nn.ReLU(),

	 nn.Linear(256, 512),

	 nn.ReLU(),

	 nn.Linear(512, 1024),

	 nn.ReLU(),

	 nn.Linear(1024, 28*28),

	 nn.Tanh()

)

	

	 def forward(self, input):

	 return self.main(input).view(-1, 1, 28, 28)

	

	# Discriminator

	class Discriminator(nn.Module):

	 def __init__(self):

	 super(Discriminator, self).__init__()

	 self.main = nn.Sequential(

	 nn.Linear(28*28, 1024),

	 nn.LeakyReLU(0.2),

	 nn.Linear(1024, 512),

	 nn.LeakyReLU(0.2),

	 nn.Linear(512, 256),

	 nn.LeakyReLU(0.2),

	 nn.Linear(256, 1),

	 nn.Sigmoid()

)

	

	 def forward(self, input):

	 return self.main(input.view(-1, 28*28))

Step 4 - Defining loss function and optimizers

We will use the binary cross entropy loss and the Adam optimizer.

	# Create the Generator and Discriminator

	generator = Generator()

	discriminator = Discriminator()

	

	# Loss function

	criterion = nn.BCELoss()

	

	# Optimizers

	lr = 0.0002

	optimizer_G = optim.Adam(generator.parameters(), lr=lr)

	optimizer_D = optim.Adam(discriminator.parameters(), lr=lr)

Step 5 - Training the GAN

Now, we will train the GAN. For each batch of real data, we train the discriminator with a batch of fake data generated by the generator. We then train the generator to produce more realistic data.

	num_epochs = 30

	latent_vector_size = 100

	

	for epoch in range(num_epochs):

	 for i, (images, _) in enumerate(train_loader):

	 batch_size = images.size(0)

	

	 # Labels

	 real_labels = torch.ones(batch_size, 1)

	 fake_labels = torch.zeros(batch_size, 1)

	

	 # Train Discriminator

	 outputs = discriminator(images)

	 d_loss_real = criterion(outputs, real_labels)

	 real_score = outputs

	

	 z = torch.randn(batch_size, latent_vector_size)

	 fake_images = generator(z)

	 outputs = discriminator(fake_images.detach())

	 d_loss_fake = criterion(outputs, fake_labels)

	 fake_score = outputs

	

	 d_loss = d_loss_real + d_loss_fake

	 optimizer_D.zero_grad()

	 d_loss.backward()

	 optimizer_D.step()

	

	 # Train Generator

	 z = torch.randn(batch_size, latent_vector_size)

	 fake_images = generator(z)

	 outputs = discriminator(fake_images)

	 g_loss = criterion(outputs, real_labels)

	

	 optimizer_G.zero_grad()

	 g_loss.backward()

	 optimizer_G.step()

	

	 print(f'Epoch [{epoch+1}/{num_epochs}], d_loss: {d_loss.item():.6f}, g_loss: {g_loss.item():.6f}, '

	 f'D(x): {real_score.mean().item():.6f}, D(G(z)): {fake_score.mean().item():.6f}')

Figure 9.1 depicts training epoch status:

[image:]
Figure 9.1: Training epoch status

Step 6 - Visualizing the generated images

Finally, let us visualize some images generated by the trained generator:

	z = torch.randn(1, latent_vector_size)

	sample_images = generator(z).detach().numpy().reshape(-1, 28, 28)

	

	plt.figure(figsize=(6, 6))

	for i in range(1):

	 plt.subplot(1, 1, i+1)

	 plt.imshow(sample_images[i], cmap='gray')

	 plt.axis('off')

	plt.show()

Figure 9.2 depicts a GAN generated sample image:

[image:]
Figure 9.2 : GAN generated sample image

You have just trained your first GAN in PyTorch. You can further experiment with different architectures, loss functions, and datasets to improve the performance and quality of generated images.

Key difference between Vanilla GAN and DCGAN

A Deep Convolutional Generative Adversarial Network (DCGAN) is a type of GAN that is composed of convolutional layers. GANs are a type of neural network that is designed to generate new, previously unseen examples from a given dataset, such as images or audio. A GAN consists of two parts: a generator network that creates new examples, and a discriminator network that tries to distinguish the generated examples from the real examples in the dataset.

In a DCGAN, the generator network is composed of transposed convolutional layers, which increase the spatial resolution of the input, while the discriminator network is composed of convolutional layers, which decrease the spatial resolution of the input. The goal of the generator is to create examples that are similar to the real examples in the dataset, while the goal of the discriminator is to distinguish the generated examples from the real ones.

The generator and discriminator are trained together in an adversarial fashion, with the generator trying to create examples that can fool the discriminator and the discriminator trying to correctly identify the generated examples. The training process continues until the generator is able to create examples that are indistinguishable from the real examples to the discriminator.

DCGANs have been used to generate a wide range of data, including images, audio, and text. They have been used for various tasks, such as image generation, style transfer, and super-resolution.

DCGAN are generally considered as one of the first GANs architecture that has been successful on image generation tasks and hence, a benchmark for other image generation techniques.

The key difference between a Vanilla GAN and a DCGAN is the architecture of the generator and discriminator networks.

The generator network in a Vanilla GAN typically consists of a series of fully connected layers, which are not ideal for working with image data. This is because fully connected layers do not take into account the 2D spatial structure of an image and can lead to checkerboard artifacts in the generated images.

On the other hand, the discriminator network in a Vanilla GAN typically consists of a series of fully connected layers, followed by a sigmoid activation function, which outputs a probability of the input being a real image.

In contrast, the generator network in a DCGAN consists of a series of transposed convolutional layers, which increase the spatial resolution of the input and take into account the 2D spatial structure of the images. This leads to generated images with a more natural and smooth appearance.

The discriminator network in a DCGAN typically consists of a series of convolutional layers, followed by batch normalization and LeakyReLU, which is more suited for image data.

In summary, the main difference between a Vanilla GAN and a DCGAN is that the generator and discriminator in a DCGAN use convolutional layers, which are well suited for working with image data and producing visually realistic results, while the generator and discriminator in a Vanilla GAN use fully connected layers, which are not well suited for working with image data and can lead to poor results.

DCGAN Python implementation

In this section, we will walk you through the implementation of a simplified Deep Convolutional Generative Adversarial Network (DCGAN) in Python using TensorFlow. The aim is to create an end-to-end example that you can easily follow and execute. DCGAN is an architecture for training GANs to generate high-quality images.

Prerequisites:

	Python 3

	TensorFlow 2.x

Make sure you have the prerequisites installed:

	pip install tensorflow

Step 1 - Import libraries

Let us start by importing the necessary libraries:

	import tensorflow as tf

	from tensorflow.keras.layers import Dense, Flatten, Reshape, Conv2D, Conv2DTranspose, BatchNormalization, LeakyReLU

	from tensorflow.keras.models import Sequential

	from tensorflow.keras.optimizers import Adam

	import numpy as np

	import matplotlib.pyplot as plt

Step 2 - Load the data

For this example, we will use the MNIST dataset, a classic dataset of handwritten digits:

	(train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data()

	train_images = (train_images - 127.5) / 127.5 # Normalize the images to [-1, 1]

Step 3 - Build the generator

The generator takes a random noise vector as input and generates an image:

	def make_generator_model():

	 model = Sequential()

	

	 # Dense layer

	 model.add(Dense(256 * 7 * 7, input_shape=(100,), use_bias=False))

	 model.add(BatchNormalization())

	 model.add(LeakyReLU())

	

	 # Reshape layer

	 model.add(Reshape((7, 7, 256)))

	

	 # Convolutional Transpose layers

	 model.add(Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False))

	 model.add(BatchNormalization())

	 model.add(LeakyReLU())

	

	 model.add(Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))

	 model.add(BatchNormalization())

	 model.add(LeakyReLU())

	

	 # Output layer

	 model.add(Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))

	

	 return model

	

	generator = make_generator_model()

Step 4 - Build the discriminator

The discriminator takes an image as input and outputs the probability of the image being real:

	def make_discriminator_model():

	 model = Sequential()

	

	 # Convolutional layers

	 model.add(Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[28, 28, 1]))

	 model.add(LeakyReLU())

	 model.add(BatchNormalization())

	

	 model.add(Conv2D(128, (5, 5), strides=(2, 2), padding='same'))

	 model.add(LeakyReLU())

	 model.add(BatchNormalization())

	

	 # Flatten layer

	 model.add(Flatten())

	

	 # Output layer

	 model.add(Dense(1))

	

	 return model

	

	discriminator = make_discriminator_model()

Step 5 - Define the loss functions and optimizers

We will use the binary cross-entropy loss for both the generator and the discriminator. The generator tries to minimize this loss, while the discriminator tries to maximize it:

	cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)

	

	def discriminator_loss(real_output, fake_output):

	 real_loss = cross_entropy(tf.ones_like(real_output), real_output)

	 fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)

	 total_loss = real_loss + fake_loss

	 return total_loss

	

	def generator_loss(fake_output):

	 return cross_entropy(tf.ones_like(fake_output), fake_output)

	

	generator_optimizer = Adam(1e-4)

	discriminator_optimizer = Adam(1e-4)

Step 6 - Training step

This function defines the operations performed in a single training step:

	@tf.function

	def train_step(images):

	 noise = tf.random.normal([batch_size, 100])

	

	 with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:

	 generated_images = generator(noise, training=True)

	

	 real_output = discriminator(images, training=True)

	 fake_output = discriminator(generated_images, training=True)

	

	 gen_loss = generator_loss(fake_output)

	 disc_loss = discriminator_loss(real_output, fake_output)

	 gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)

	

	 gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)

	

	 generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))

	 discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))

Step 7 - Train the DCGAN

We will train the DCGAN and periodically save generated images to visually inspect the progress:

	def generate_and_save_images(model, epoch, test_input):

	 predictions = model(test_input, training=False)

	 predictions = (predictions + 1) * 127.5

	 plt.figure(figsize=(4, 4))

	 for i in range(predictions.shape[0]):

	 plt.subplot(4, 4, i+1)

	 plt.imshow(predictions[i, :, :, 0], cmap='gray')

	 plt.axis('off')

	 plt.savefig('image_at_epoch_{:04d}.png'.format(epoch))

	 plt.show()

	

	epochs = 50

	noise_dim = 100

	num_examples_to_generate = 16

	random_vector_for_generation = tf.random.normal([num_examples_to_generate, noise_dim])

	batch_size = 256

	

	# Batch and shuffle the data

	train_dataset = tf.data.Dataset.from_tensor_slices(train_images.reshape(train_images.shape[0], 28, 28, 1)).shuffle(60000).batch(batch_size)

	

	# Training Loop

	for epoch in range(epochs):

	 for images in train_dataset:

	 train_step(images)

	

	 # Generate and save images

	 if (epoch + 1) % 5 == 0:

	 generate_and_save_images(generator, epoch + 1, random_vector_for_generation)

Step 8 - Display results

Once the training is complete, you can use the saved images to analyze the results:

	# Display the final epoch's image

	generate_and_save_images(generator, epochs, random_vector_for_generation)

Figure 9.3 depicts DCGAN generated sample images:

[image:]
Figure 9.3: DCGAN generated sample images

This completes the DCGAN example. Note that training a GAN can be tricky and may require tweaking hyperparameters or using different architecture choices. However, this simplified example should give you a foundation to build upon. Happy coding!

StyleGAN Python implementation

StyleGAN is a type of GAN architecture that was introduced by NVIDIA in 2018. It is specifically designed for generating high-resolution images, such as photographs of faces. The key innovation of StyleGAN is the use of style-based generator architecture, which separates the high-level structure of the image, such as the pose and identity of a face, from the low-level details, such as the texture of the skin and the color of the eyes. This separation allows the generator to generate highly realistic images while still maintaining the ability to control high-level attributes, such as the pose or the expression of a face. Additionally, StyleGAN uses an Adaptive Instance Normalization (AdaIN) technique that enables transferring the style from a reference image to the generated image. This allows for high-quality control over the fine details of the image, such as the wrinkles and the freckles on a face, while maintaining the overall structure of the image.

Here is an example of how you can implement a StyleGAN in Python.

Setup environment

Before you begin, make sure you have installed the required libraries. You can install them using pip:

	pip install torch torchvision matplotlib

Step 1 - Import libraries

Start by importing the necessary libraries:

	import torch

	import torch.nn as nn

	import torch.optim as optim

	import torchvision

	import torchvision.transforms as transforms

	from torch.utils.data import DataLoader

	import matplotlib.pyplot as plt

	import numpy as np

Step 2 - Configure device

Use GPU for faster computation if available:

	device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

Step 3 - Load data

For this tutorial, we will use the CIFAR-10 dataset:

	batch_size = 64

	

	transform = transforms.Compose([

	 transforms.Resize(64),

	 transforms.ToTensor(),

	 transforms.Normalize((0.5,), (0.5,))

])

	

	dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)

	dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

Step 4 - Define StyleGAN architecture

Define a class for Generator:

	class Generator(nn.Module):

	 def __init__(self, z_dim=128, channels=3):

	 super().__init__()

	 self.z_dim = z_dim

	

	 self.gen = nn.Sequential(

	 # Input: N x z_dim x 1 x 1

	 self._block(z_dim, 512, 4, 1, 0), # 4x4

	 self._block(512, 256, 4, 2, 1), # 8x8

	 self._block(256, 128, 4, 2, 1), # 16x16

	 self._block(128, 64, 4, 2, 1), # 32x32

	 # Output: N x channels x 64 x 64

	 nn.ConvTranspose2d(64, channels, 4, 2, 1),

	 nn.Tanh()

)

	

	 def _block(self, in_channels, out_channels, kernel_size, stride, padding):

	 return nn.Sequential(

	 nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding, bias=False),

	 nn.BatchNorm2d(out_channels),

	 nn.ReLU(inplace=True),

)

	

	 def forward(self, x):

	 return self.gen(x.view(len(x), self.z_dim, 1, 1))

Define a class for Discriminator

	class Discriminator(nn.Module):

	 def __init__(self, channels=3):

	 super().__init__()

	

	 self.disc = nn.Sequential(

	 # Input: N x channels x 64 x 64

	 self._block(channels, 64, 4, 2, 1), # 32x32

	 self._block(64, 128, 4, 2, 1), # 16x16

	 self._block(128, 256, 4, 2, 1), # 8x8

	 self._block(256, 512, 4, 2, 1), # 4x4

	 # Output: N x 1

	 nn.Conv2d(512, 1, 4, 1, 0),

	 nn.Sigmoid()

)

	

	 def _block(self, in_channels, out_channels, kernel_size, stride, padding):

	 return nn.Sequential(

	 nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False),

	 nn.BatchNorm2d(out_channels),

	 nn.LeakyReLU(0.2, inplace=True),

)

	

	 def forward(self, x):

	 return self.disc(x).view(-1)

Step 5 - Initialize models and optimizers

	z_dim = 128

	lr = 0.0002

	gen = Generator(z_dim).to(device)

	gen_opt = optim.Adam(gen.parameters(), lr=lr)

	disc = Discriminator().to(device)

	disc_opt = optim.Adam(disc.parameters(), lr=lr)

	criterion = nn.BCELoss()

Step 6 - Training loop

	n_epochs = 5

	sample_size = 64

	fixed_noise = torch.randn(sample_size, z_dim, device=device)

	

	for epoch in range(n_epochs):

	 for real, _ in dataloader:

	 real = real.to(device)

	 noise = torch.randn(real.shape[0], z_dim, device=device)

	 fake = gen(noise)

	

	 # Train Discriminator

	 disc_opt.zero_grad()

	 disc_loss = criterion(disc(real), torch.ones(real.size(0), device=device)) + criterion(disc(fake.detach()), torch.zeros(real.size(0), device=device))

	 disc_loss.backward()

	 disc_opt.step()

	

	 # Train Generator

	 gen_opt.zero_grad()

	 gen_loss = criterion(disc(fake), torch.ones(real.size(0), device=device))

	 gen_loss.backward()

	 gen_opt.step()

	

	 # Output Images

	 with torch.no_grad():

	 samples = gen(fixed_noise)

	 samples = (samples + 1) / 2

	 samples = samples.cpu().permute(0, 2, 3, 1).numpy()

	 plt.figure(figsize=(6, 6))

	 for i in range(16):

	 plt.subplot(4, 4, i + 1)

	 plt.imshow(samples[i])

	 plt.axis('off')

	 plt.show()

This implementation of StyleGAN is a simplified version of the original architecture, which uses a more complex generator architecture consisting of multiple levels, where each level is composed of multiple blocks, wherein each block is composed of several layers. Note that the architecture and hyperparameters are simplified and may not generate good results; it is important to experiment with different architectures and hyperparameters to obtain better results.

Conclusion

In this chapter, we explored several important GAN architectures, including Vanilla GANs, DCGANs, and StyleGANs. We also provided example implementations of these architectures in Python using the Python Keras library.

Vanilla GANs are the simplest GAN architecture, consisting of a generator and a discriminator that are both simple fully connected neural networks. DCGANs are an extension of Vanilla GANs, which use deep convolutional neural networks for both the generator and discriminator. And style GANs, which is one of the most advanced architectures that allows the generation of high-resolution images, such as photographs of faces. With Style GANs, the generator learns to produce new data samples that are similar to the training data, while the discriminator learns to distinguish the generated samples from the real samples.

GANs can be used for a wide variety of tasks, such as image synthesis, image-to-image translation, and image super-resolution. With continued advancements in deep learning techniques and increasing computational resources, GANs will likely play an even more important role in the field of artificial intelligence in the future.

In the next chapter, we will discuss the ground-breaking algorithm in the deep learning sphere: Transformers. We will discuss the various Transformers architectures, the difference between contextual and non-contextual embeddings, and finally, Python code implementation on two major NLP libraries: GPT and BERT.

Questions

	What is the main goal of the generator network in a GAN?

	To produce new data samples that are similar to the training data

	To distinguish the generated samples from the real samples

	To optimize the discriminator network

	To classify the input data

	What type of neural networks are typically used for the generator and discriminator in a DCGAN?

	Simple fully-connected neural networks

	Deep convolutional neural networks

	Recurrent neural networks

	Transformer networks

	What is the main difference between a Vanilla GAN and a DCGAN?

	DCGANs use deep convolutional neural networks, while Vanilla GANs use simple fully-connected neural networks

	DCGANs are designed for image generation, while Vanilla GANs are designed for text generation

	DCGANs use an adversarial loss function, while Vanilla GANs use a reconstruction loss function

	DCGANs are designed for image super-resolution, while Vanilla GANs are designed for image-to-image translation

	How does StyleGAN differ from other GAN architectures?

	StyleGAN separates the high-level structure of the image from the low-level details

	StyleGAN uses an adaptive instance normalization technique

	StyleGAN uses progressive growing of GANs

	All of the above

	What is the main disadvantage of GANs?

	GANs are difficult to train and often suffer from stability issues

	GANs are very computationally expensive

	GANs can only be used for a limited set of tasks

	GANs are not interpretable

Answers

	a

	b

	a

	d

	a

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

[image:]

CHAPTER 10Transformers

Transformers are the backbone of data science and natural language processing, they are the key to unlocking the true potential of data.

— Unknown

Transformers are a type of deep learning model that help computers understand and generate language. Think about all the different ways you can say the same thing, like “I’m going to the store” or “I am off to the store”, or “I will go to the store”; they all mean the same thing but are written differently. Transformers help a computer understand all the different ways of saying the same thing. They also help a computer generate new sentences that make sense, like a computer writing a story or a poem. It is like having a good teacher to help you with your writing, but instead of just helping you, it helps the computer understand and write language too!

Transformers are a type of neural network architecture that have become increasingly popular in the field of Natural Language Processing (NLP) and other domains like computer vision, speech recognition and data science. The architecture, introduced in the 2017 paper Attention Is All You Need by Google researchers, utilizes self-attention mechanisms to process input sequences in a parallel manner, allowing for faster and more efficient training and inference. These models have been shown to achieve state-of-the-art performance on a variety of NLP tasks and have also been applied to other domains with promising results.

Structure

In this chapter, we will cover the following topics:

	Introduction to Transformers in deep learning

	Various Transformers architectures

	Difference between contextual and non-contextual embeddings

	BERT Python implementation

	GPT Python implementation

Objectives

After studying this chapter, you should be able to understand the concept of Transformers architectures and how it is transforming NLP domain within data science. You should also have understood the process and the underlying code to implement various Transformer-based architectures using Python.

Introduction to Transformers in deep learning

In recent years, deep learning has made significant progress in the field of NLP. One of the most important contributions to this progress has been the Transformer model. In this chapter, we will explore the Transformer model, its architecture, and how it has revolutionized the field of NLP.

The Transformer model was first introduced in the paper Attention is All You Need by Google researchers in 2017. The Transformer model is a neural network architecture that is designed to process sequences of data, such as sentences or paragraphs of text. The key innovation of the Transformer model is the use of self-attention mechanisms, which allows the model to weigh the importance of different parts of the input sequence when making predictions.

The Transformer model comprises an encoder and decoder. The encoder takes the input sequence and produces a set of hidden representations, called the keys and values. The decoder then takes these hidden representations and uses them to make predictions about the output sequence. The self-attention mechanism is applied in the encoder, where it allows the model to focus on specific parts of the input sequence when producing the hidden representations.

One of the most important applications of the Transformer model is in pre-training large language models. The Bidirectional Encoder Representations from Transformers (BERT) model, developed by Google researchers in 2018, is a transformer-based model that is pre-trained on a massive amount of unlabeled text data. BERT is trained to understand the meaning of words in context and has shown to be very effective in a wide range of NLP tasks.

Generative Pre-training Transformer (GPT) model, developed by OpenAI in 2018, is another large-scale language model that is trained on a massive amount of text data. GPT is trained to generate text and has been used in a wide range of natural language generation tasks, such as language translation and text summarization.

The Transformer architecture has also been used to improve the performance of other deep learning models for NLP tasks. The Robustly Optimized BERT (RoBERT) model, developed by Facebook AI in 2019, is an improved version of BERT that is trained on more data with more advanced techniques. The Text-to-Text Transfer Transformer (T5) model, developed by Google AI in 2019, is designed for a wide range of natural language processing tasks.

In conclusion, the Transformer model has been a major breakthrough in the field of natural language processing. Its self-attention mechanism allows the model to weigh the importance of different parts of the input sequence, and its architecture is particularly well suited to processing sequences of data. The Transformer model has been used to pre-train large language models and improve the performance of other deep learning models for NLP tasks. As the demand for more sophisticated natural language processing continues to grow, the Transformer model will likely continue to be an important part of the deep learning landscape.

Various transformers architectures

There are several variations of the Transformer architecture that have been developed and used in various NLP and other tasks. Some of the most popular Transformer architectures are as follows:

	BERT: This model, developed by Google, is trained on a large corpus of text data and can be fine-tuned for various NLP tasks, such as question answering and sentiment analysis.

	GPT: This model, developed by OpenAI, is trained on a massive amount of text data and can be fine-tuned for various language tasks, such as language translation, text generation and summarization.

	RoBERTa: This model is an optimized version of BERT that uses a larger dataset and other techniques to improve performance.

	XLNet: This model is also developed by Google. It uses a permutation-based architecture that allows it to consider all the context in a given sentence, unlike BERT, which only considers the context to the left of a given word.

	T5: This model, also developed by Google, is trained on a diverse set of data sources and tasks and can be fine-tuned for a wide range of language tasks using a simple text-to-text transfer learning framework.

	ALBERT: This model, developed by Google, is a lite version of BERT that is faster and requires less memory resources but still maintains good performance.

	DeBERTa: This model, developed by Microsoft, is an extension of BERT that uses dynamic masked self-attention, which can improve the performance of the model.

These are some most popular Transformer architectures, but new models and variations are being developed and proposed regularly.

Difference between contextual and non-contextual embeddings

Embeddings are a way to represent words, phrases, or other linguistic units in a numerical format that can be used as input to machine learning models. Embeddings can be either contextual or non-contextual:

	Contextual embeddings take into account the context in which a word or phrase appears. They assign different embeddings to the same word, depending on the context. For example, the embedding for the word “cat” in the sentence “My cat is sleeping” would be different from the embedding for the same word in the sentence “I saw a cat in the park.”

	Non-contextual embeddings, also known as static embeddings, represent a word or phrase with a fixed, pre-trained vector, regardless of the context in which it appears. For example, the embedding for the word “cat” would be the same regardless of whether it appears in the sentence “My cat is sleeping” or in “I saw a cat in the park.”

BERT is a transformer-based model that generates contextual embeddings for words and phrases. It uses a technique called self-attention to analyze the context in which a word appears in a sentence. This allows BERT to generate embeddings that take into account not only that word but also the words that appear before and after it in the sentence. BERT also uses a technique called pre-training, which trains the model on a large corpus of text data before fine-tuning it for a specific task. This allows BERT to generate high-quality embeddings that can be used for various NLP tasks, such as sentiment analysis, question answering, and language translation.

In summary, BERT generates contextual embeddings, which are more informative and accurate than non-contextual embeddings, by using a self-attention mechanism and pre-training on a large corpus of text data. These embeddings are useful for various natural language processing tasks.

BERT Python implementation

In this section, we will discuss an example of how to produce word embeddings using regular methods and BERT.

Using regular methods:

	from gensim.models import Word2Vec

	

	# Train a Word2Vec model on a dataset

	sentences = [['this', 'is', 'the', 'first', 'sentence'], ['this', 'is', 'the', 'second', 'sentence']]

	model = Word2Vec(sentences, size=100, window=5, min_count=1, workers=4)

	

	# Get the embedding for the word 'sentence'

	word_embedding = model.wv['sentence']

Using BERT:

	from transformers import BertTokenizer, BertModel

	

	# Load the BERT tokenizer and model

	tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

	model = BertModel.from_pretrained('bert-base-uncased')

	

	# Tokenize the input text

	text = "This is an example sentence."

	tokenized_text = tokenizer.tokenize(text)

	

	# Convert the tokens to their corresponding IDs

	input_ids = tokenizer.convert_tokens_to_ids(tokenized_text)

	

	# Add the necessary special tokens

	input_ids = [101] + input_ids + [102]

	

	# Create the attention masks

	attention_masks = [1] * len(input_ids)

	

	# Convert the input IDs and attention masks to tensors

	input_ids = torch.tensor(input_ids).unsqueeze(0)

	attention_masks = torch.tensor(attention_masks).unsqueeze(0)

	

	# Pass the input through the model to get the embeddings

	with torch.no_grad():

	 last_hidden_states = model(input_ids, attention_masks)[0]

	

	# Get the embedding for the word 'sentence'

	word_embedding = last_hidden_states[0][tokenized_text.index('sentence')]

BERT can produce more informative and accurate embeddings than regular methods like Word2Vec because of its self-attention mechanism, which allows it to take into account the context in which a word appears in a sentence. BERT also uses pre-training, which trains the model on a large corpus of text data before fine-tuning it for a specific task; this makes its embeddings more generalizable. Additionally, BERT uses a transformer-based architecture that allows it to process input sequences in a parallel manner, which makes the training and inference faster.

In summary, BERT generates embeddings that consider the context in which a word appears that leads to better performance on a wide range of natural language processing tasks than regular methods like Word2Vec.

GPT Python implementation

Here are the steps to use Generative Pre-trained Transformer (GPT) models for NLP tasks in Python:

	Install the Hugging Face’s transformers library:

	pip install transformers

	Load a pre-trained GPT model:

	from transformers import GPT2Tokenizer, GPT2LMHeadModel

	

	# Load the GPT-2 tokenizer

	tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

	

	# Load the GPT-2 model

	model = GPT2LMHeadModel.from_pretrained("gpt2")

	Prepare the input data:

	# Tokenize the input text

	text = "This is an example sentence."

	tokenized_text = tokenizer.tokenize(text)

	

	# Convert the tokens to their corresponding IDs

	input_ids = tokenizer.convert_tokens_to_ids(tokenized_text)

	

	# Add the necessary special tokens

	input_ids = [tokenizer.cls_token_id] + input_ids + [tokenizer.sep_token_id]

	

	# Create the attention masks

	attention_masks = [1] * len(input_ids)

	Perform the NLP task:

	# Perform the language modeling task

	outputs = model(input_ids, attention_mask=attention_masks)

	

	# Get the predicted next token

	predicted_next_token = tokenizer.convert_ids_to_tokens(torch.argmax(outputs[0][-1, :]).item())

	Fine-tune the model on a specific task:
5.	from transformers import AdamW

6.	

7.	# Define the loss function and the optimizer

8.	loss_fn = nn.CrossEntropyLoss()

9.	optimizer = AdamW(model.parameters(), lr=2e-5, eps=1e-8)

10.	

11.	# Fine-tune the model on the task-specific dataset

12.	for _ in trange(epochs, desc="Epoch"):

13.	 # Set the model to training mode

14.	 model.train()

15.	

16.	 # Training loop

17.	 for step, batch in enumerate(train_dataloader):

18.	 # Add batch to GPU

19.	 batch = tuple(t.to(device) for t in batch)

20.	 # Unpack the inputs from our dataloader

21.	 b_input_ids, b_attention_masks, b_labels = batch

22.	 # Clear out the gradients (by default they accumulate)

23.	 optimizer.zero_grad()

24.	 # Forward pass

25.	 outputs = model(b_input_ids, attention_mask=b_attention_masks, labels=b_labels)

26.	 loss = outputs[0]

27.	 # Backward pass

28.	 loss.backward()

29.	 # Update parameters and take a step using the computed gradient

30.	 optimizer.step()

It is important to note that in this example, you should replace train_dataloader and epochs with the appropriate values for your dataset. Also, it is recommended to use the DistributedDataParallel wrapper for multiple gpu support or DataParallel for single gpu support to train the model.

Conclusion

In conclusion, Transformer architectures have revolutionized the field of NLP and other domains like computer vision, speech recognition, and data science. Transformer-based models like BERT and GPT have shown to achieve state-of-the-art performance on a wide range of NLP tasks, such as sentiment analysis, language translation, text generation, summarization, and question answering.

Overall, Transformer-based models have proven to be highly effective for a wide range of NLP tasks. BERT and GPT are some of the most popular models among them; they are pre-trained models that can be fine-tuned on specific NLP tasks. These models’ ability to consider the context of a word in a sentence, thanks to their self-attention mechanism, makes them highly powerful. The Hugging Face’s transformers library provides an easy-to-use interface to fine-tune and use these models. With the growing amount of textual data, the use of Transformer models will continue to increase in the industry, and they will play a significant role in the development of advanced NLP applications. In addition, with the ongoing research on transformer-based models, we can expect to see even more powerful models in the future.

These models are widely adopted in the industry for various NLP applications. With the advancements in language models and Transformer architectures, we can expect to see more exciting NLP applications in the future.

Questions

	What is the main advantage of transformer-based models over traditional models?

	They take into account the context of a word in a sentence

	They are pre-trained on a large corpus of data

	They use self-attention mechanisms

	All of the above

	BERT is a transformer-based model that generates which of the following?

	Non-contextual embeddings

	Contextual embeddings

	Static embeddings

	None of the above

	What is the main difference between BERT and GPT?

	BERT generates contextual embeddings, while GPT generates non-contextual embeddings

	BERT is fine-tuned on specific NLP tasks, while GPT is pre-trained

	BERT is pre-trained on a large corpus of text data, while GPT is fine-tuned on specific NLP tasks

	None of the above

	How can we fine-tune a pre-trained transformer-based model on a specific task?

	By using a pre-defined loss function and optimizer

	By using pre-trained weights as a starting point and training on the specific task

	By using a pre-defined dataset

	All of the above

	What is the purpose of the self-attention mechanism in transformer-based models?

	To take into account the context in which a word appears in a sentence

	To pre-train the model on a large corpus of text data

	To fine-tune the model on a specific task

	None of the above

Answers

	d

	b

	c

	b

	a

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

[image:]

Index

A

activation functions 65

Exponential Linear Unit (ELU) 66

Leaky ReLU 66

Rectified Linear Unit (ReLU) 65

sigmoid 65

Softmax 66

Tanh (Hyperbolic Tangent) 66

Adam optimizer 68

Adaptive Instance Normalization (AdaIN) 220

Adaptive Moment Estimation (Adam) 190

advance Python libraries, for data science 8

Numpy 8-10

Pandas 10

ALBERT model 230

algorithms, for RNN implementation

Adaptive Moment Estimation (Adam) 190

Backpropagation Through Time (BPTT) 190

Gated Recurrent Unit (GRU) 191

Long Short-Term Memory (LSTM) 190

Stochastic Gradient Descent (SGD) 190

Truncated Backpropagation Through Time (TBPTT) 190

Anaconda 2

installing 3, 4

Artificial Neural Networks (ANN) 59-61

activation functions 65, 66

backward propagation 66

batch 67

epoch 67

feed forward 65

iteration 67

learning rate 68

loss function 66

neurons 62-65

optimizers 67

artificial neuron 62

AutoViz 40

installing 40

report, analyzing 41, 42

URL 43

B

Backpropagation Through Time (BPTT) 190

BERT Python implementation 231, 232

Bidirectional Encoder Representations from Transformers (BERT) model 229, 230

C

classification model, with neural network

building 68

data loading 69, 70

data pre-processing 71

dataset 69

deep neural network experiment 77, 78

descriptive analytics 70, 71

implementation 69

modeling 72

problem statement 69

Python libraries 69

shallow neural network experiment 72-74

CNN components 94

convolution, on RGB image 102

convolution operation, with multiple filters 102

convolution process 96-100

digital image, as numpy array 94-96

kernels/filters 96

padding 101

required libraries 94

stride 100

CNN implementation, in Python

data loading 107, 108

Python libraries, loading 107

confusion matrix

creating 115

plotting 113

contextual embeddings 230

Convolutional Neural Network (CNN) 93

D

data 1

DCGAN Python implementation 214

data loading 214

DCGAN training 218

discriminator, building 216

generator, building 215

libraries, importing 214

loss functions and optimizers, defining 216

results, displaying 219

training step 217

DeBERT model 230

Deep Convolutional Generative Adversarial Network (DCGAN) 212-214

DeepLab 165

DeepLab V3+ 165

deep neural network experiment

confusion matrix 79, 80

hidden layer 77, 78

model evaluation 78

performance metrics 79

development environment

Anaconda, installing 2-4

Jupyter Notebook 5, 6

Jupyter Notebook usability, enabling 6, 7

Python packages, installing 7, 8

setting up 2

E

EasyOCR 137

demo 137-142

embeddings 230

contextual embeddings 230

non-contextual embeddings 230

F

Facebook AI 229

FCN-8 165

FCN-8 prerequisites

Conv2DTranspose layers 175

encoder (VGG16 Base) 173

FCN-8s Model, defining 173

fully convolutionalization 174

model building 176

model compiling 176

model evaluation 177

model training 176

necessary libraries, importing 173

sample data generation 175

TensorFlow, installing 173

FCN-8 Python implementation 172

file formats 10

clipboard 14

csv 11

Excel 12

HTML tables 14-16

JSON 13, 14

PDF 16-18

web scraping 18

Fully Convolutional Neural Network (FCN) 165

G

GAN types

Conditional GAN (cGAN) 206

Deep Convolutional GAN (DCGAN) 206

Style GAN 206

Vanilla GAN 206

Wasserstein GAN (WGAN) 206

Gated Recurrent Unit (GRU) 191

Gated Recurrent Unit implementation 199

data loading 200

data preprocessing 200

model building 200

model compiling 201

model evaluation 202

model training 201

necessary libraries, importing 200

Generative Adversarial Network (GAN) 205

Generative Pre-training Transformer (GPT) model 229

Google AI 229

GPT model 229

GPT Python implementation 232-234

H

hyperparameters tuning, with KerasTuner 116, 117

Fashion MNIST dataset 117

implementation 117-121

I

image classification 164

image classification, with CNN 106

confusion matrix, creating 115

confusion matrix, plotting 113

data pre-processing 108

implementation 107

MNIST dataset 106

modeling 109-113

problem statement 106

image detection 164

image segmentation 163, 164

image segmentation architectures 165

DeepLab 165

DeepLab V3+ 165

FCN-8 165

Linknet 165

Mask R-CNN 165

PSPNet 165

SegNet 165

U-Net 165

J

Jupyter Notebook 5, 6

K

keras library 65

keras-ocr library 133

demo 133-136

KerasTuner 116

installing 121-127

keys 228

L

Lazy Predict 48

experimentation results, analyzing 49, 50

installing 48, 49

Linknet 165

long short-term memory implementation 195

data, preprocessing 196

dataset, loading 196

dataset matrix, creating 196

dataset, splitting 196

model building 197

model evaluation 198

model training 197

predictions, making 197

required libraries, importing 195

results, plotting 198, 199

Long Short Term Memory (LSTM) 132, 190

Lux 43

advanced features, in reports 47, 48

installing 43

report, analyzing 44

report, saving to HTML file 46, 47

visualizations, generating based on intent 45, 46

M

Mask R-CNN 165

Mask R-CNN Python implementation 177-185

MNIST dataset 106

multi-class classification 68

N

Natural Language Processing (NLP) 227

neural network 64

neurons 62

non-contextual embeddings 230

Numerical Python 8

Numpy 8-10

O

object detection 148, 164

object detection algorithms

comparison 149

experiment 2 158

experiment 3 159

experiment 4 159

experiment 5 160

Single Shot Detector (SSD) Python implementation 149-154

YOLO v3 Python implementation 155-157

object localization 148

OCR Python libraries

EasyOCR 137

keras-ocr library 133

Tesseract OCR 131, 132

TrOCR 143

one convolution layer 103

dense layers 105, 106

flattening 105

pooling 104

Optical Character Recognition (OCR) 129, 130

Python libraries 131

optimizers

Adam 68

RMSprop optimizer 67

SGD 67

P

Pandas 10

Pandas profiling 28

installing 29

Jupyter Notebook widget, creating 34, 35

report, analyzing 29-33

report, for big datasets 36

report, saving to HTML file 34

pandas read_csv method

efficiency, improving with 19, 20

parameter

chunksize 24

dtype 21, 22

usecols 22-24

PSPNet 165

PyCaret 50

advanced features 53

confusion matrix, plotting 55

experimentation results, analyzing 52, 53

feature importance, plotting 55

installing 50, 51

model performance, plotting 54

model, tuning 54

Python

for data science 1

Python packages

installing 7, 8

R

Recurrent Neural Network (RNN) 189

algorithms, for implementation 190

Region-Based Convolutional Neural Network (R-CNN) 165

regression model, with neural network

building 80

data pre-processing 82-85

dataset 81, 82

model evaluation 87-89

modeling 85-87

problem statement 81

RMSprop optimizer 67

RNN implementation 191

data, normalizing 192

data, reshaping 192

dataset, preparing 191, 192

model compiling 193

model defining 192

model evaluation 194, 195

model training 193

necessary libraries, importing 191

one hot encode output variable 192

predictions, demonstrating 193, 194

Robustly Optimized BERT (RoBERT) model 229

S

SegNet 165

SGD optimizer 67

shallow neural network experiment

confusion matrix 75-77

hidden layer 72-74

model evaluation 74

performance metrics 74, 75

Single Instruction, Multiple Data (SIMD) 9

Single Shot Detector (SSD) Python implementation 149-154

static embeddings 230

Stochastic Gradient Descent (SGD) 190

StyleGAN 220

StyleGAN Python implementation 220

architecture, defining 221, 222

data loading 221

device, configuring 221

libraries, importing 220

loop, training 223, 224

models and optimizers, initializing 223

setup environment 220

Sweetviz 36

DataFrames comparison report, generating 39

installing 37

report, analyzing 37, 38

T

Tesseract OCR 131

demo 132

Text-to-Text Transfer Transformer (T5) model 229, 230

Transformer architectures

ALBERT 230

BERT 229

DeBERT 230

GPT 229

RoBERT 229

T5 230

XLNet 230

Transformer model 228

transformers 227

in deep learning 228, 229

TrOCR 143

demo 143, 144

Truncated Backpropagation Through Time (TBPTT) 190

U

U-Net 165

U-Net prerequisites

data preprocessing 167

dataset loading 167

model training 170

necessary libraries, importing 166

results, visualizing 170-172

TensorFlow installation 166

training and test datasets, preparing 168

U-Net Model, building 168

U-Net Python implementation 165, 166

prerequisites 166

V

values 228

Vanilla GAN

versus DCGAN 212, 213

Vanilla GAN Python implementation 207

data loading 207

GAN training 209-211

generated images, visualizing 211, 212

generator and discriminator, defining 208

libraries, importing 207

loss function and optimizers, defining 209

X

XLNet model 230

Y

YOLO v3 Python implementation 155-157

OPS/images/Figure_1.21.png
df.head()

Subub Address Rooms Type Price Method Selerd

Date Distance Postcode .. Bathroom

Car_Landsize BuidingArea YoarBuit_Co

0 Abbotstors

1 Abbotstors

‘68 Stuctey
st
85 Tumer
St

25
Bioomburg
s

18659
Vicoria st

5 Crares
s

5 rows x 21 columns.

n

n

NN

14800000

14650000

ss

Jotls

Biggn

£

05092016

122018

022016

oec22016

2017

0670

0670

670

1260

220

00

1340

N

™

m0

™

1500

OPS/images/Figure_1.22.jpg
df.info()

<class

RangeIndex: 23

20

dtypes: float64(12),

Column
Suburb
Address
Rooms
Type
Price
Method
SellerG
Date
Distance
Postcode
Bedroom2
Bathroom
Car
Landsize

'pandas.core.frame.DataFrame'>

547 entries, 0 to 23546
Data columns (total 21 columns):

Non-Null Count
23547 non-null
23547 non-null
23547 non-null
23547 non-null
18396 non-null
23547 non-null
23547 non-null
23547 non-null
23546 non-null
23546 non-null
19066 non-null
19063 non-null
18921 non-null
17410 non-null

BuildingArea 10018 non-null

YearBuilt 11540 non-null
CouncilArea 15656 non-null
Lattitude 19243 non-null
Longtitude 19243 non-null
Regionname 23546 non-null
Propertycount 23546 non-null

memory usage:

3.8+ MB

float64
float64
float64
float64
float64
float64
float64
float64
object

float64
float64
object

float64

int64(1), object(8)

OPS/images/Figure_1.2.jpg
Windows &8

64-8it Graphical Installer (457 MB)

32-Bit Graphical Installer (403 MB)

Anaconda Installers

MacOs &

64-8it Graphical Installer (435 MB)

64-8it Command Line Installer (428 M8)

Linux &

64-Bit (x86) Installer (529 MB)

64-Bit (Power8 and Powerd) Installer (279
MB)

OPS/images/Figure_1.20.jpg
13

soup

CEEn

<Ib0CTIPE heml>
<hml langs"en® xalnss"http://vins.w3.0rs/1999 /¥htal"><head>
<script>(function(w,d,s, 1, i) {w{1)=w(1]| |{);w(1] .push({'gtm.start":
new Dato().getTime() ,event: ‘gn.s'}) jvar £-d.getElenentsByTagNane(s) (0],
j=d.creatoElonent (3) d1-11="dataiayor'? sampil='+1: ' 3.async=true; §
“hetpas/ /. gooslotagranagor con/gtn. Js7ida - +L+d1 €. parentliode. insortBefore (S,)1

33 (o menr oement SRt 1 At AT g GOV) £ e ph

<noscript></noscript></haad><body><ifrane height="0" src="https:
style="display:none;visibility:hidden" wideh="0"></ifrane>

funws. goog1etagnanager . con/ns . hem171d=GTH-WHLVTS"

<mta contents="Datasets by CIC and ISCX are used around the world for security testing and malvas
description/>

<titles1os 2017 | patasets | Res:

<mota charsots"ute-5"/>

<mota contents"widthedevice-uidth, initial-scalenl.0” nanes"viewport”/>

<mota content="yes" name="apple-nobile-eb-app-

<meta content="True" nane=

prevention.” nan

xch | Canadian Tnstitute for Cybersecurity | UNBE/title>

OPS/images/Figure_1.18.png
type(data)

list
data
[Unnamed: 0 Year Unnamed: 1 Pop. Unnamed: 2 % Unnamed: 3
0 1698 NaN 4,937 NaN - NaN
1 1712 Nan 5,840 Nan +18.3% Nan
2 1723 NaN 7,248 NaN +24.1% NaN
3 1737 NaN 10,664 NaN +47.1% NaN
4 1746 NaN 11,717 NaN +9.9% Nan
5 1756 NaN 13,046 NaN +11.3% NaN
6 1771 NaN 21,863 NaN +67.6% NaN
7 1790 NaN 49,401 NaN +126.0% NaN
[l 1800 NaN 79,216 NaN +60.4% Nan
9 1810 NaN 119,734 NaN +51.1% NaN
10 1820 NeN 152,056 NaN +27.0% Nany
1 1830 NaN 242,278 NaN +59.3% Nan
12 1840 NaN 391,114 NaN +61.4% NaN
13 1850 NaN 696,115 NaN +78.0% NaN
14 1860 NaN 1,174,779 NaN +68.8% NaN
15 1870 NaN 1,478,103 NaN +25.8% NaN
16 1880 NaN 1,911,698 NaN +29.3% NaN
17 1890 NaN 2,507,414 NaN +31.2% NaN

2,

OPS/images/Figure_1.19.jpg
df .head()

Unnamed:0 Year Umnamed:2 Pop. Unnamed:4 2% Unnamed:
NaN 1698 NaN 4937 NN - NN
NeN 1712 NN 5840 NaN +183% NaN
NaN 1723 NN 7248 NaN +24.1% Na
NeN 1787 NaN 10684 NaN 447.1% NN
NeN 1746 NaN 1717 NN 499% NaN

OPS/images/Figure_1.25.jpg
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 23547 entries, 0 to 23546
Data columns (total 10 columns):
Non-Null Count Dtype

Column

Distance
Postcode
Bedroom2
Bathroom

PNV A WN RO

9 YearBuilt

19063

BuildingArea 10018

11540

non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null

object
int64
object
floaté64
floaté64
float64
float64
float64
float64
floaté64

dtypes: float64(7), int64(1), object(2)

memory usage:

1.8+ MB

OPS/images/Figure_1.26.png
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 23547 entries, 0 to 23546
Data columns (total 10 columns):

Column Non-Null Count Dtype

0 Suburb 23547 non-null object
1 Rooms 23547 non-null intlé

2 Type 23547 non-null object
3 Price 18396 non-null floaté64
4 Distance 23546 non-null floatlé
5 Postcode 23546 non-null floatlé
6 Bedroom2 19066 non-null floatlé
7 Bathroom 19063 non-null floatlé
8 BuildingArea 10018 non-null floaté64
9 YearBuilt 11540 non-null floatlé

dtypes: floatl6(5), float64(2), intl6(1l), object(2)
memory usage: 1011.9+ KB

OPS/images/Figure_1.23.png
df.describe(include=["int64", "floatsd"])

Rooms Prico Distance Postcode Bochoom2 Bathroom Gor Landsize BuldingAren YoarBuit
Count 23547000000 18396006404 23546000000 23546000000 19066,000000 19063000000 18521000000 17410000000 10018000000 11540.000000
mon 2076048 10566970:05 10306515 3100782003 2951986 ST0807 1626205 651780458 154527895 1964696742
4 09SO 64121705 GOSN OASZI0 099602 07164 0970 ISMAZ004 462505765 57595504
min 1000000 850000604 00000 3000000000 000 0000000 000000 00000 0000000 1196000000
2% 20000 63300000:05 6200000 07000000 200000 1000000 1000000 181000000 95000000 1940000000
5% 000 BE0Ne0S 9500000 JIOLOD 300000 100000 2000000 448000000 129000000 1970000000
7% 4000000 13020000:05 13000000 3150000000 4000000 2000000 2000000 656000000 180000000 2000000000
max 12000000 90000006:05 46100000 I7E0000 300000 12000000 26000000 433014000000 44515000000 2106000000

OPS/images/Figure_1.24.jpg
dfl.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 23547 entries, 0 to 23546
Data columns (total 21 columns):

Column Non-Null Count Dtype

[1] Suburb 23547 non-null object
1 Address 23547 non-null object
2 Rooms 23547 non-null intlé

3 Type 23547 non-null object
4 Price 18396 non-null float64
5 Method 23547 non-null object
6 SellerG 23547 non-null object
7 Date 23547 non-null object
8 Distance 23546 non-null floatlé
9 Postcode 23546 non-null floatlé
10 Bedroom2 19066 non-null floatlé
11 Bathroom 19063 non-null floatlé
12 car 18921 non-null floatlé
13 Landsize 17410 non-null float64
14 BuildingArea 10018 non-null float64
15 YearBuilt 11540 non-null floatlé
16 CouncilArea 15656 non-null object
17 Lattitude 19243 non-null float64
18 Longtitude 19243 non-null float64
19 Regionname 23546 non-null object

20 Propertycount 23546 non-null float64
dtypes: floatl6(6), float64(6), intl6(1l), object(8)
memory usage: 2.8+ MB

OPS/images/Figure_1.7.jpg
© D ocamaet 8838 notebooks/Deep Neurs! Networks/notebooks/Untied ipynbZkernel_name=python3 vox e © gy

Z JUPYer Untitied Last hockpcint: fow saconds ago nsaved changes) A
Flo Edt Vew et Col Kemel Wigsts Heb Tses 4 |Pynond O
84 %28 4v A ECH on @

| W ‘

OPS/images/Figure_1.8.jpg
Z Jupyter pandas_advanced Last Checkpont 037282021 (unsaved changes)

Fo

In (11 prine(“Hellow world")

OPS/images/Figure_1.5.jpg
©re e © D locahost ssztee. non.

= Jupyter x| e

s ooy Custen
Sct e 1 o actons o . e

OPS/images/Figure_1.6.jpg
© | O locahost:8483/ree/Deep News! Networkainotabosks ox e © trmoonB

= Jupyter o | o

Fios Mooy Custes

Swc o st o . s [E]
o = 1 Dre et etk / s oy — >
o = e —
ottt ot Tearie

OPS/images/Figure_1.3.png
Introduction

Read Me

License
Destination Select
Installation Type
Installation
PyCharm IDE

o Summary

) ANACONDA.

@ Install Anaconda3

The installation was completed successfully.

Thank you for installing Anaconda Individual Edition.

Here are some helpful tips and resources to get you started. We
recommend you bookmark these links so you can refer back to
them later.

Quick Start Guide

Anaconda Individual Edition Tutorial

Anaconda Cloud Edition

Learn More About Anaconda

OPS/images/Figure_1.4.png
) ANACONDA NAVIGATOR

p——

OPS/images/Figure_1.27.jpg
(5000,
(5000,
(5000,
(5000,
(3547,

21
21)
21
21
21)

OPS/images/logo.jpg

OPS/images/Figure_2.10.jpg
Correlations

Pearson'sr Spearman'sp Kendall'st Phik (¢K) ook conusion et
Cramér's V (¢c)
100
Rooms.
Prce | | 075
Oistance.
poscose | o
Sedeond - 025
Batvoom
car 000
Landsizo
BuildingArea o
ea—— s
Lotitudo
Longitude 015
o
Propartycount .

Rooms
Pico
Oistance
Poscod

YoarBuit

b
5

Batvoom

Bedroom2

OPS/images/Figure_1.9.jpg
0.11543798446655273
0.0023651123046875

Time taken by a standard python operation :
Time taken by numpy operation

OPS/images/Figure_2.1.jpg
pandas_profiling.ProfileReport (df)

Summarize dataset: 100% (I 2020 (00:05<00:00, 2.82it/s, Completed]
Gonorteeport scure: 100 [/00020000, 2.07]
Render HTML: 100 [/1 (00:00<00:00, 2.081s]

OPS/images/Page_152_Fig_6_4.png

OPS/images/Page_152_Fig_6_5.png

OPS/images/Figure_8.6.jpg
600

200

100

T T T
0 20 40 60 80 100 120 140

OPS/images/Figure_8.7.jpg
Model: "sequential 1"

Layer (type) Output Shape

embedding_1 (Embedding)

Param #

(None, 500, 32)

320000
gru_1 (GRU) (None, 100) 40200
dense_1 (Dense) (None, 1) 101

Total params: 360,301
Trainable params: 360,301
Non-trainable params: @

None

OPS/images/Figure_8.8.jpg
Epoch 1/3
301/391 [smmmmmmmemmemmmememmmmana] - 8525 25/step - loss: 0.4888 - accuracy: 0.7461 - val_loss

Epoch 2/3
301/30] [smmmmsmememmemememsamsmesana] - 7805 25/step - loss: 0.2662 - accuracy: 0.8955 - val_loss

Epoch 3/3

3817391 - 7955 25/step - loss: 0.2069 - accuracy: 0.9200 - val_loss: 0.3209 - val_accuracy: 0.8660

<keras. callbacks.History at 0x7{11023825c6>

OPS/images/Figure_8.9.jpg
Accuracy: 86.60%

OPS/images/Figure_9.1.jpg
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch

[1/30],
[2/30],
[3/30],
[4/30],
[5/30],
[6/30],
[7/30],
[8/30],
[9/301,
[10/30],
[SEVED)|
[12/30],
[13/30],
[14/30],

[15/30], d
[16/30], d
[17/30], d

[18/30],
[19/30],
[20/30],
[21/30],

[22/30], d

[23/30],
[24/30],
[25/30],
[26/30],

[30/301,

d_loss:
d_loss
d_loss
d_loss
d_loss
d_loss
d_loss
d_loss
d_loss

0.034503, g_loss:
2.263186, g_loss:
0.054215, g_loss:
0.299189, g_loss:
0.638837, g_loss:

0.056091, g_loss:
0.062765, g_loss:
0.233605, g_loss:

5.597266, D(x):
7.456955, D(x):
6.670505, D(x):
3.030844, D(x):
3.418792, D(x):

5.273903, D(x):
6.902851, D(x):
4.602305, D(x):

0.981908, D(G(2)): 0.015206
0.464009, D(G(z)):
0.973806, D(G(2)):
0.898756, D(G(2)):
0.890473, D(G(2)):
1.520650, g_loss: 3.675486, D(x): 0.804356, D(G(z)): 0.091025
0.981668, D(G(z)):
0.968569, D(G(2)):
0.963033, D(G(2)):

0.092408
0.016396
0.089467
0.152273

0.032277
0.014131
0.146686

loss: 0.167798, g_loss: 4.037113, D(x): 0.953258, D(G(z)): 0.046168

d_loss: 0.169272, g_loss
d_loss: 0.379817, g_loss:
d_loss: 0.394333, g_loss:
d_loss: 0.432354, g_loss
loss: 0.450021, g_loss
loss: 0.485036, g_loss
loss: 0.515086, g_loss:
d_loss: 0.775779, g_loss
d_loss: 0.267092, g_loss
d_loss: 0.492119, g_loss
d_loss: 0.526111, g_loss
_loss: 0.422580, g_loss
d_loss: 0.330665, g_loss
d_loss: 0.444560, g_loss
d_loss: 0.501110, g_loss
d_loss: 0.620401, g_loss
d_loss: 0.398090, g_loss:
d_loss: 0.493753, g_loss:

d_loss: 0.414022, g_loss
d_loss: 0.482462, g_loss:

8.13886!
.563625,
3.678597,
2.951236,
5.954128,
4.902407,
3.932154,
5.022182,
3.475733,
2.390257,
.89871
3.601164,
2.849438,
3.321378,
3.022962,
3.614527,
3.066267,
2.11843

D(x): 0.976938,
D(x): 0.862630,
D(x): 0.882327,
D(x): 0.904966,
D(x): 0.928717,
D(x): 0.897131,
D(x): 0.785141,
D(x): 0.778029,
D(x): 0.898639,
D(x): 0.841673,
, D(x): 0.887969,
D(x): 0.915552,
D(x): 0.855336,
D(x): 0.885607,
D(x): 0.806900,
D(x): 0.753634,
D(x): 0.830674,
D(x): 0.839439,
D(x): 0.856553,
D(x): 0.933973,

D(G(2))
D(G(2))
D(G(z))
D(6(2))
D(6(2))
D(6(2))
D(G(2))
D(G(z))
D(6(2))
D(6(2))
D(6(2))
D(6(2))
D(6(2))
D(G(z))
D(6(2))
D(6(2))
D(6(2))
D(G(2))
D(G(z))

D(G(2)):

0.108432
048761
0.022845
0.172249
0.039118
0.115474
0.095748
0.044034
0.113675
0.076158
.214987
0.171813
0.105068
0.114027
0.095951
0.074130

OPS/images/Figure_9.2.jpg

OPS/images/Figure_9.3.jpg

OPS/images/Figure_2.3.jpg
Overview

Wores @ o

Dataset statistics
Number of variables
Number of observations
Missing cells.

Missing cells (%)
Duplicate rows
Duplicate rows (%)
Total size in memory

Average record size in memory

21
23547
66918
135%

<01%
38MB

16808

Variable types

Categorical

Numeric

13

OPS/images/Figure_2.30.jpg
Saved HTML to lux_report.html

OPS/images/Figure_2.37.png
Model Accuracy AUC Recall Prec. F1 Kappa MCC TT (Sec)
« s Trees Ciassfer 07709 02246 05500 07384 05270 04678 04803 0510

b GradentBoostog Cassfer 07634 08B0 06143 07012 OBGT 04709 04800 0157

« Logitic Regression 07633 08194 05605 07070 06235 04550 04625 025

WMa Unew Dscrimoont Avaysis 07542 03159 05395 06971 00065 04322 04408 0028

M FandomFomstClassfr 07541 OBIG 05700 00025 OG201 04414 OMME 0527
Adoe. Pidgn Clnssfor 07523 00000 05342 06624 06013 04265 0431 0025
e AdaBoostCuassfor 07522 08200 05918 06753 08243 04410 04485 0142
b Liht Gradiont Boostng Machine 07485 08220 05927 06648 08217 04355 04407 0321
fan KiNoighbors losslor 07337 07679 05667 06445 05962 0.020 04086 0125

@ Oockion Troo Gasefer 07169 05662 05822 Q6134 05905 03760 03 0023

- NavoBayes 0617 07522 020D 0S4 0JTAS 0TI 01087 0023
om SVM-UnearKomal 05546 00000 04632 032 03858 0025 0074 002
Qs Guscraic Uscrmeant Arayss 03190 05920 059 01 0AUZS DOBRS OB 00Za

max_Leat_nodes

Classifior (sootstrap=False, cop_alpha=o.0, class_weight=Nono,
critorion="gini’, max dopt!
tone, max_samples-ions,

one, max_foatures="auto’,

min_impurity_decrease=0.0, min_impurity splitsNone,

min_samples_leat-1, min_sanples_split=2,

min voight_fraction_loaf=0.0, n_ostimators=100, n_jobs=-1,

o0b_score-False, randon_state~7603, verbose=0,

varm_start=ralse)

OPS/images/Figure_2.38.jpg
Accuracy AUC Recall Prec. F1 Kappa MCC

[} 0.6852 0.7511 0.4211 0.5714 0.4848 0.2656 0.2720

1 0.8519 0.8504 0.6316 0.9231 0.7500 0.6499 0.6736
2 0.8333 0.9098 0.6316 0.8571 0.7273 0.6112 0.6260
3 0.7963 0.8293 0.5789 0.7857 0.6667 0.5248 0.5375
4 0.7407 0.8180 0.5263 0.6667 0.5882 0.4028 0.4088
5 0.7778 0.8737 0.4737 0.8182 0.6000 0.4609 0.4939
6 0.7593 0.8211 0.4737 0.7500 0.5806 0.4236 0.4456
7 0.7736 0.8320 0.6316 0.7059 0.6667 0.4960 0.4978
8 0.6981 0.7477 0.4737 0.6000 0.5294 0.3117 0.3164
9 0.7925 0.8151 0.6667 0.7059 0.6857 0.5310 0.5315
Mean 0.7709 0.8248 0.5509 0.7384 0.6279 0.4678 0.4803
SD 0.0503 0.0468 0.0831 0.1055 0.0812 0.1154 0.1190

OPS/images/Figure_2.35.jpg
Processing: [N

Initiated 202 15:37:04
Status; FeRaN Preprocessing Data

Following data types have been inferred automatically, if they are correct press enter to continue or type 'quit' otherwise.

Data Type
Number of times pregnant Categorical

Plasma glucose concentration a 2 hours in an oral glucose tolerance test Numeric

Diastolic blood pressure (mm Hg) Numeric
Triceps skin fold thickness (mm) Numeric
2-Hour serum insulin (mu U/mi) Numeric

Body mass index (weight in kg/(height in m)A2) Numeric
Diabetes pedigree function Numeric

Age (years) Numeric

Class variable Label

OPS/images/Figure_2.36.jpg
0
"
1w
w0
"
15
1
w
®

Description
session 14

Targat

Tagot e

Labol Encoded
OrghalData

Missiog Values

Nomeri Features
Catogorical Foatures
Ontina Foatures

High Gardinalty Foatures
High Carcinalty Method
Tansformed Tran Sat
Tansfomod Test ot
‘Shuff Train-Test
Sttty TranTost

Fold Generator

Fold Number

CPUabs

UsaGPU

Value
o0

Class variblo
By
011
o9

Fase

7

1

Fase

Faso

Nono
Gar.29
@2y

o

Faso
Stattaciod

0

OPS/images/Figure_2.33.jpg
Accuracy Belanced Accurscy ROCAUC F1 Score. Time Taken

o
098

Mose
Barmoung.
—
e
Pocapion 097
AdsBooncasster 097
Logtsschograssion 037
Soociuser 095
Tciusster 056
Cabateccitocy 097
Randorborsstcssstar 056
Loouciustior 095

[——

QuedrateDieciminiAnsiss 095

Boggogcisster 036
XoBclsatier 09

[ERE T ——
Nesostcantia 036

ave

008
o9
oo
097

oo
097

o9

)
o098
oo
oo
oo
oa7
oa7
oa7
o098
o35
o030
035
03
085
095
085
095
oas
085
o
o
os
om
om

oo
ose
om
os7
osr
osr
osr
oo
om0
0%
oo
om0
0%
om0
os
os
om0
oss
o8
o8
o8¢
o

ggegesegse

o
o2
o1s

oor
o

oo
oo
oz
oo
o2
o2
oo
o0s
oo

OPS/images/Figure_2.34.jpg
AdaBoostClassifier BaggingClassifier BenoullNB CalibratedClassifierCV DecisionTreeClassifier DummyClassifier ExtraTreeClassifier ExtraTreesClassifier

100
110
m
2
it

1

114 rows x 27 columns.

1

1

T

1

1

OPS/images/Figure_2.31.jpg
oy

T I—
[T———

OPS/images/Figure_6.14.jpg

OPS/images/Figure_2.32.jpg
Vis List
‘Shows a vis st defned by the ntent

class = Third clase= First class = Socond

ol ¥

Norbor o Rocorts R

(x: COUNT(Record), y: survived
(x: COUNT(Record), yi survived
(x: CouNT(Record), y: survived

bar, score: 0.00 >,
) mazks baz, score: 0.00 >,
score: 0.00 >)

OPS/images/Figure_6.15.jpg

OPS/images/Figure_5.7.png
<matplotlib.image.AxesImage at 0x7£c0077e4940>

OPS/images/Figure_5.8.jpg
5/5 [=====s==z=====zszzssszssss=====] - 15 180ms/step

OPS/images/Figure_5.9_a.png

OPS/images/Figure_5.9_b.png
handwritten
this
s

c

example

wric
joool
os

OPS/images/Figure_6.1.jpg
Classification
+ Localization

Classification

OPS/images/Figure_6.10.jpg
--2021-08-15 13:46:02-- https://pjreddie.com/media/files/yolov3.ueights
Resolving pjreddie.com (pjreddie.com)... 128.208.4.168

Connecting to pjreddie.com (pjreddie.com)|128.208.4.108|:443... connected.
HTTP request sent, awaiting response... 200 OK

Length: 248007048 (237M) [application/octet-stream]

Saving to: ‘yolov3.ueights’

=>] 236.52M 39.4MB/s in 6.8s

yolov3.ueights 100%(=

2021-88-15 13:46:89 (34.9 MB/s) - ‘yolov3.weights’ saved [248007043/248007048]

OPS/images/Figure_6.11.jpg
filters
conv 32
conv 64
conv 32
conv 64
res 1
conv 128
conv 64
conv 128
res S
conv 64
conv 128
res 8
conv 256
conv 128
conv 256
res 12
conv 128
conv 256
res 15
conv 128
conv 256
res 18
conv 128
conv 256
res 21
conv 128
conv 256
res 24
conv 128
conv 256
res 27
conv 128
conv 256
res 30
conv 128
conv 256
res 33
conv 512
conv 256
conv 512
res 37

I

W ww b

w

608
608
304
304
304
304
152
152
152
152
152
152
152
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
38
=
38

XX X X X X X X X XX X XXX XXX XXX XXXKXKXXNKXKXKXKXKNKXNXX

input
508 x 3
508 x 32
304 x 64
304 x 32
304 x 64
304 x 64
152 x 128
152 x 64
152 x 128
152 x 128
152 x 64
152 x 128
152 x 128
76 x 256
76 x 128
76 x 256
76 x 256
76 x 128
76 x 256
76 x 256
76 x 128
76 x 256
76 x 256
76 x 128
76 x 256
76 x 256
76 x 128
76 x 256
76 x 256
76 x 128
76 x 256
76 x 256
76 x 128
76 x 256
76 x 256
76 x 128
76 x 256
76 x 256
38 x 512
38 x 256
38 x 512

608
304
304
304
304
152
152
152
152
152
152
152
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
38
38
£
38

XX X % X X X X X X X X XX X X X X X X X X X X XX XX XX XX XXXXNXNXNX

output

608
304
304
304
304
152
152
152
152
152
152
152
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
38
38
£
38

3% X % X XX X X X X X XX X X X X X X X X X X XX X X X X XXX KK XN XXX

64

32

64

64
128

64
128
128

64
128
128
256
128
256
256
128
256
256
128
256
236
128
256
236
128
256
236
128
256
256
128
256
256
128
256
256
512
256
512
512

0.379
3.407

0.379
3.407

0.379
3.407

0.379
3.407

0.379
3.407

0.379
.407

3.407
0.379
3.407

BFLOPS
BFLOPs.
BFLOPs.
BFLOPS

BFLOPS.
BFLOPS
BFLOPS

BFLOPS
BFLOPS.

BFLOPS
BFLOPS
BFLOPS.

BFLOPS
BFLOPS

BFLOPS
BFLOPS

BFLOPS
BFLOPS

BFLOPS
BFLOPS

BFLOPS
BFLOPs.

BFLOPs.
BFLOPs.

BFLOPs.
BFLOPs.

BFLOPS
BFLOPS
BFLOPS

OPS/images/Figure_6.12.png

OPS/images/Page_183_Fig_7_10.png

OPS/images/Figure_6.13.jpg

OPS/images/Figure_2.4.jpg
T S

Warnings

Dataset has 1 (< 0.1%) duplicate rows
Suburb has a high cardinality: 33 distinct values
Address has a high cardinality: 23108 distinct values
SellerG has a high cardinal
Date has ahigh cardinalty: 58 distinct values.

330 distinct values.

Roons is highly correlated with Bedroon2
Bedroon? s highly correlated with Roons
Price has 5151 (21.9%) missing values
Bedroon2 has 4481 (19.0%) missing values
Bathroon has 4484 (19.0%) missing values
Car has 4626 (19.6%) missing values
Landsize has 6137 (26.1%) missing values

BuildingArea has 13520 (57.5%) missing values

YearBuilt has 12007 (51.0%) missing values
CouncilArea has 7891 (33.5%) missing values.

Lattitude has 4304 (18.3%) missing values

High cardinalty
High cardinalty
High cardinalty
High cardinalty
High corsiation

High cormiat

OPS/images/Figure_2.40.jpg
ROC Curves for ExtraTreesClassifier

OPS/images/Figure_2.39.jpg
Accuracy AUC Recall Prec. ~ F1 Kappa MCC
0 07407 08030 06842 06190 06500 0.4449 0.4463
1 08889 08812 08421 08421 0.8421 07564 07564
2 08148 08677 07368 0.7368 07368 0.5940 0.5940
3 07222 08211 06842 05909 06341 0.4122 04151
4 06852 08060 06842 05417 06047 03489 0.3555
5 07778 08571 07895 06522 07143 05352 05417
6 07778 08797 07368 0.6667 07000 05242 0.5259
7 08679 09025 08947 07727 08293 07225 07277
8 06981 07848 06842 05652 06190 03728 03775
9 07547 08206 08333 0.6000 06977 05004 05195
Mean 07728 08424 07570 06587 07028 05211 05260
SD 00644 00381 00742 00921 00780 0.1308 0.1298

OPS/images/Figure_2.8b.png
fressasesssd

OPS/images/Figure_2.7.png
Rl rumber B0

Distnct 211
Distinct (%) 09%
Missing 1

Mean 1030651491
Minimum 0
Maximum 48.1

Missing (%) <0.1% Zoos %2

e 0

note o) 0%

26
52
95
1

81
81
o8

Zoros (%) 01%

Momory 181 K5
size

Exvomo vauos.

Descriptive statistics

Cosficient o variaion (CV)

sotesteorz
osass83208
s167155%
1030881491
35

178115852
2772
3610608242

Not
monatonic

OPS/images/Figure_2.8a.png
Sucs o oo

OPS/images/Figure_2.5.png
Sample

First rows

Suburb

pr—

Avbotsiod

Avbotstord

Abbotsord

Asbotsiord

Avbotsord

pr—

Aspotsiord

pr—

Addross
68 Sty St

e tmer st

25 Bloamburg St
10659 Victoria st
5 Chars st
40Fodoraonta
550 Park st

16 Maugost

59 Tumerst

99 Tumer st

Rooms Type Price

2

2

NN

10350000

nNan

14850000

8500000

16000000

Mathod

235 2835 ©

SalorG
setis
sgon
Biggn
Rounds.
Biggn
Biggn
Netson
Neison
Biggn

Colins

Date

02092016

04022016

04022016

04032017

04032017

04082016

06082016

06.08-2016

06082016

25

OPS/images/Figure_2.6.jpg
Variables

e

e

Resarvor |20
Bentoon East | 25
‘Fcnmans [416
Gania 578
o [357

vt) I

SCnwesst 5
25 waamst 3
14Romast 3
13 Rebirsanst 3
cnutes st 3
Otervaes 23109 EECTIN

OPS/images/Figure_7.4.png
Gooms/step
61tas/step
Sotms/step
sstas/step
ssoms/step
ss3ms/step
ssoms/step
s73ms/step
ss5ms/sten

6a3ms/step

toss:

Toss:

Toss:
Toss:

toss:

Toss:

accuracy:
accuracy:

accuracy:

accuracy:
accuracy;

accuracy:

accuracy:

accuracy.

accuracy:

ltoss:

altoss:

l_toss:

ltoss:

al_toss:

wl_toss:

al_toss:
o toss:

v toss:

al_toss:

0.7856.
o.7005
: 0.671
0.5058
05293
0.5567
045
04678
o952

+ .48

L accuracy:
alaccuracy:
Vel accuracy:

vl accuracy:

L accuracy:

U sccuracy:
el accuracy:
val_accuracy.

el sccuracy:

OPS/images/Figure_2.41.jpg
True Class

ExtraTreesClassifier Confusion Matrix

Predicted Class

2

OPS/images/Figure_7.5.jpg
— Training Loss
— Validation Loss

— Training Accuracy
— Validation Accuracy

6 N

OPS/images/Figure_2.42.jpg
Feannes

P hcose cocentaion .2 hous i an ol heosslrace st
sae o)

R re——————

Db podges octon

Dl ood presre (v)

Teps kin ks ()

24w seum i (s)

Nomercf e g

Nomber s prgran 0

Nuber o mes pregrant 8

Feature Importance Plot

| I
—
—

oo a0 0

Variable Imporance.

s

oz

OPS/images/Figure_7.6.jpg

OPS/images/Figure_6.16.jpg

OPS/images/Figure_6.2.jpg
A Foster RONN

powrcr |) rasom

OPS/images/Page_103_Fig_4_23.png

OPS/images/shekhar_khandelwal.jpg

OPS/images/Figure_6.3.jpg
Teing ok found In /7eet/ Cache/ter /N NVIDIA Desploars inglasnples terchiub
Sounlating: = e SR SN
o — 573, (60 00ese 00, e/

Seniertig Checkpeint from o

ratse-087e0041. pth

OPS/images/Page_103_Fig_4_22.png
Flattening

000000

I |

Input layer of a future ANN
Pooling Layer Ut

OPS/images/Figure_6.6.jpg

OPS/images/Figure_6.7.png
Cloning into 'darknet’...

remote: Enumerating objects: 5937, done.

remote: Total 5937 (delta @), reused @ (delta @), pack-reused 5937
Receiving objects: 108% (5937/5937), 6.34 MiB | 23.96 MiB/s, done.
Resolving deltas: 108% (3948/394@), done.

OPS/images/Figure_6.8.png
cfg/ include/ LICENSE.gen LICENSE.mit python/ src/
data/ LICENSE LICENSE.gpl LICENSE.v1l README.md
examples/ LICENSE.fuck LICENSE.meta Makefile scripts/

OPS/images/Figure_6.9.jpg
e 2 resics
e Triciuia) L1 w1
£ee ey e el
B “Hincugey Tiec/ il
e Hincuses T/ il

s resilt e paressemc o cutjgem
Masosted-rendt e s o
Mrasosied-rendt i e o enslesins
Mra-souied-renlt -ktom:prgas W{ata-srvors -fPC OFMSE ¢ _/ore/oeconolutions-aper.¢ -0 o/decoavoltional Loy,

5ce inciuces Tirc/ Hald ‘o urused raslt sk pragens MAtaL scors fPLC Dt ¢ /rc/cumvalutionl yerc o any/comoraticnst Loer.o
e inciuces e s result -kt progas Matalarrors PIC Ofast ¢ /sre/iistc o angiiisto
e i) LI e M e T SR TN e ok L are/imga e o obgingn-o

e i resilt o-nkron pragas st & el e o obycetvations.

e i st
i it
i it

< Jinclimcetoc s sjseito
s soysceiaa

£ eyt el

k sk pragess sl
R “Hinctugey T wall pmaiadorenlt

koo pragess el
koo pragess sl ¥
Mra-iouied-renlt n-ktomnprgas Wfata-srvors -{PC OFSSt ¢ _/ore/uaspool-Loer-c -5 oF/avipool Iy
5EC inciuces Tioc/ Hald ‘o urused reslt ke pragens MAtAL svors FPLC D6st ¢ /arc/sofonst Loer.c

B includes 117/ lal) o-urused result. i ke praghas Watalerrors fPIC “Ofst ¢ L/sr/catarc o oyt
e includes Tirc/ Vald ‘o unused reslt ks prageas MStal srors fPLC D6t ¢ /rc/mstric -5 anglaseix.

B “Hincudey Tiec/ il
£ee Hincuies T/ il

56 inchuce/ Tirc tal) eo-urseed-reslt -k prageas atal-errrs
5cC includes Tirc/ Vall o urused el

& s L el Meeriedcaslt
EEC “Hictudey T vall pmasedorenlt
EEC “Hinctucey T wal) ‘umusederenlt i 5ae ¢ 0 sjepeion st o
£ Hinctugey -t) ‘-umaiadorenlt i dereon ayerc 5 cvgfcetecion Tayer.o
5EC Hinciicey Tioc/ Ha11 o irusad raslt ke pragens MARAL erors fPIC D6t ¢ /rc/raute Lyir ¢ 0 objraste toyer-

e inciuces Tioc/ Hald o urused raslt o s pragnes WARAL arrs fPIC Ot ¢ /se/opsseple Lour.¢ -0 o3/ upsiaple Lyer
S inciuces Tire/ oLl ‘o urused raslt ke pragens MAtaL avors fPLC D6t ¢ /arc/owe.c -6 S/abn:o

e incluge) Tirc val) o-unsesd ekt sk prageas aksl errrs

srcinetvorkec o oofnsvrt.o
< e comectes_ioyar-c o oo comecces_layr.
¢ arcrcont yerec o sbcost ioyr

¢ ircrparsan s -0 osyprsar.o

e inciuses v st -kt pogass Mataarrers o

e incluces o s result < rsrcrioci dayerc o akjitoca Jayer.

ECE Hicluca) i tal] oo arapad rerlt ¢ irersrorcan daje ¢ - /SRR Lape.
ECE THinaicey i Hal) oo cranadrenlt ¢ arcrioglstic e - ae3/iogtstic lavero

ECE THinciucey i/ Hal) oo craned reslt i st ion oy -5 abg/sctivation Toer.
EEC THincaucey Tioc/ Ma1) oo irused raslt sk pragees MSRaL arors SPLC Ot ¢ /rc/onn Toye 0 cby/ e Lo

5 inciuces Tioc/ Mald o urused raslt sk pragnes WAtaL arors fPLC Ot ¢ /src/gru_loyerc o oby/grluper.
5 inciuces Tirc/ Nal1 ‘o urused-reslt ke pragens MStaL svors FPIC DSt ¢ /src/cra Ler.C -0 95cron oy
Sce inciudes Tire/ Nall o urused raslt sk praghas WAtaL srrrs fPIC Ot ¢ /sre/cumacc 1o 3idennts

e Tty T U ST, LTI, ST T N TE e TS agescenson g o
5EE incluces Tine/ Vald ‘o urused raslt ke pragees MFStal avars fOLC Dt ¢ /src/eepion 1aer.¢ o obiregion Joer
5EC inciudes T/ Vall o urused- sl -k prageas Matal scors fPLC D6t ¢ /src/recrg Loyercé -0 oby/reerg iy
5cC includes Tirc/ Vall o urused it sk praghas MAtal srors fPIC Ok ¢ /src/ireesc - hg/irencs

5EC includes T/ Vall ‘o urused el ke prageas MEStal avars OIC st ¢ /src/Lsta iovr-c -0 osylstn_layr.
o b oo e ey 5 ey i ks B Gty b1y ey oy rk

OPS/images/Figure_7.3.jpg
(e iar s Tesmactuy Gtk $74-58 MAN: {dumiomis £ % Wik poscxtuy T 1
oo <1004 [22 14600, 48101

i o 7T 100, 1010
oo ool 10 186107 014500027535).

Dataset axtord_L11_pet dovalosded sad prepered to /root/cansortlov. datasecs/ostord_L1Ls_pets3.1.0. Subsequest calle vill reu

OPS/images/Page_62_Fig_3_9.png
input

Layers

Input Layer | Hidden Layer 1 | Hidden Layer 2

Output Layer

’hul;‘— -

[~
[Neuron——t-
|t

OPS/images/Figure_2.17.png
peatadiibaabiint

CIEIE
L8
pooe
[} “m_“l.l
<[l BBBEAE
o/ o lom
W[[= . u
@mjo [=]e]- O
SR [elal oola]s
OOROOOE0D
m (= OEOB0OnD
[mje omje[[-[[x
e

TS TRVERTRNY

EENERRRNRETRNENNT!

OPS/images/Figure_2.18.png

OPS/images/Figure_2.15.png
Report SWEETVIZ REPORT.html was generated! NOTEBOOK/COLAB USERS: the web browser MAY not pop up, regardless, the repo
¢ 15 saved in your notebook/colab files.

OPS/images/Figure_2.16.jpg
___m_.

E
i

OPS/images/Figure_2.13.jpg
Conelatons

Missing values.

Suburb

Distinct (%)

Missing (%)

» Address

»Type

»Price.

»Method

»SellerG

»Date

»Distance

»Postcode

»Bedroom2.

»Bathroom

»Car

» Landsize

» BuildingArea

» YearBuitt

»GouncilArea

» Lattitude

» Longtitude

»Regionname

» Propertycount

OPS/images/Figure_2.14.jpg
bigbata_profile.to_widgets()

ot o svene: 00 I 000000 45134

Overvn [Varaes 1
Cvanve T Wamigs (19) Reprosucion
Nomberof vrtios 2 Catogrcal
Numberof obsaatons zosar [
Missing cells 66918
Msig ol (4 ey
Ouplcsterows '
[—— <om
ot sizan merory aame
vergorecadszminmomory 16808

1

‘Report generated with pandas-profing.

OPS/images/Figure_2.11.jpg
Export report to file: 100% [1/1 [00:00<00:00, 22.85it/s]

OPS/images/Figure_2.12.jpg
df_profile.to_widgets()

Overview Variabies

Overviow Warnings (22)

Numbeor of variables
Numbeor of obsenvations
Missing ool

Missing colls (%)

Ouplcate ows.
Oupicate ows (%)
Totasize in memory
‘Average record size in memory

Report generated with pandas-profiing.

Interactons.

2t
20847
se01e.

185%

<01%
3amB
16808,

Roproduction

Corrlations

Missing values

Sample

8

OPS/images/Figure_7.7.jpg
Epoch 1/10

573 ememmemmemeemmememmene] - 4305 595/st0p - loss: 2.3026 - accuracy: ALtoss: 2,302 - vaLaccuracy:
Epach 2730

573] ~ 4255 S73/3t6p ~ loss: 23026 - accuracy: VaLtoss: 2.3026 - vaLaccoracy:
Epach 30

77 e e e acaracy VALToss: 2.3026 - aLaceuracys
Erach 4730

573 omamamsmeeeneesemsemsmmsmne] - 4115 575/step - loss: 2.3026 - accuracy: VL loss: 2.3026 - vaLaceuracy:

Epach 5730

e 1 - a11s Sus/step - loss: 2.3025 - accuracy: WLtoss: 2.3827 - vaLacaurs

Esech 630

77 1 ceee) - 4015 578/5t6p — Loss: 2,002 - accurscy: VALtess: 2.3027 - vaaceuracy: 8.1000
Epech 770

577 omeemeemeemeemmemsmeeenee] - 4138 $73/step - loss: 2.3028 - accuracys VALloss: 2.3028 - val aceuracy: 8.1000
Epach 8730

e 1 - e11s Sas/step loss: 2.3024 - accuracy: VALloss: 2,305 - valLaceuracy: 8.1000
Esacn o730

77 e 1~ dass S7a/steo - loss: 2.3024 - accuracys VUtoss: 2.3028 - val sccuracy: 0,099
Epacn 10730

577 ometemeeeeeeeemeememaeenee] - 4335 S78/step - loss: 23028 - accuracy: VALloss: 2.3027 - aLaceuray:

2o == L e e LY

OPS/images/Figure_7.8.jpg
Test Loss: 2.3027305603027344
Test Accuracy: 0.0999603271484375

OPS/images/Figure_8.1.jpg
3/23
Epoch
23/23
Epoch
23/23
Epoch
23/23
Epoch
23/23
Epoch
23/23

- 0s - loss: 0.2395

496/500
- @s — loss:
497/500
- @s - loss:
498/500
= (B = e
499/500
- @s - loss:
500/500
- @s - loss:

0.2392 -
0.2379 -
0.2332 -
0.2341 -

0.2361 -

<keras.callbacks.History at

accuracy: 0.913
accuracy: 0.9565
accuracy: 0.9565
accuracy: 0.9565
accuracy: 0.9130

accuracy: 0.9565
0x7efbb9fa5e70>

71ms/epoch
72ms/epoch
80ms/epoch
94ms/epoch
82ms/epoch

78ms/epoch

3ms/step
3ms/step
3ms/step
4ms/step
4ms/step

3ms/step

OPS/images/Figure_8.2.jpg

OPS/images/Figure_8.3.jpg
Model Accuracy: 95.65%

OPS/images/Figure_8.4.jpg
Epoch 95/100
92/92 - 0s - loss:
Epoch 96/100
92/92 - @s - loss:
Epoch 97/100
92/92 - 0s - loss:
Epoch 98/100
92/92 - @s - loss:
Epoch 99/100
92/92 - 0s - loss:
Epoch 100/100
92/92 - @s - loss:

0

0

.0019

.0019

.0018

.0018

.0018

0.0018 -
<keras.callbacks.History at

330ms/epoch - 4ms/step
333ms/epoch - 4ms/step
356ms/epoch - 4ms/step
298ms/epoch - 3ms/step
275ms/epoch - 3ms/step

270ms/epoch - 3ms/step
0x7142d4516290>

OPS/images/Figure_2.19.png
vee D eciusersshekharshandalmlDoep el Networksratebocks/Compare Repar i

g DataFrame Compared
= = =
Qs

OPS/images/Figure_8.5.jpg
Train Score: 22.37 RMSE
Test Score: 44.75 RMSE

OPS/images/Figure_2.2.jpg
Pandas Profilng Report Overview Variables Interactions Corrlations Missing values Sample

OPS/images/Figure_2.20.jpg
Shape of your Data Set: (25192, 42)
FEEEEAEIIIE CLASS IFYING VARIABLES Ssttttttttittts
Classifying variables in data set...
Number of Numeric Columns = 15
Number of Integer-Categorical Columns = 15
Numbor of String-Catogorical Columns = 2
Number of Factor-Categorical Columns = 0
Number of String-Boolean Columns = 0
Number of Numeric-Boolean Columns = 6
Number of Discrete String Columns = 1
Number of NLP String Columns = 0
Number of Date Time Columns = O
Number of ID Columns = 0
Number of Columns to Delete = 2
41 Predictors classified...
This does not include the Target column(s)
3 variables removed since they were ID or low-information variables

###4##4##4#1##44444 Binary Classification VISUALIZATION Started H#HHH####HH#HHIHIF
Number of variables = 38 exceeds linit, finding top 30 variables through XGBoost

No categorical feature reduction done. All 23 Categorical vars selected

Removing correlated variables from 15 numerics using SULO method

Adding 23 categorical variables to reduced numeric variables of 7
FOROIIIIIIIE FEAT URE SELECTION HEHIIHIHIIN
current number of predictors = 30

FPinding Important Features using Boosted Trees algorithm...

using 30 variables.

Finding top features using XGB is crashing. Continuing with all predictors...

Since number of features selected is greater than max columns analyzed, limiting to 30 variables
MU CLASSTFYING VARIABLES HIHHIHHIIIHIIT
Classifying variables in data set...

Number of Numeric Columns = 7

Number of Integer-Categorical Columns = 15

Number of String-Categorical Columns = 2

Number of Factor-Categorical Columns = 0

Number of String-Boolean Columns = 0

Number of Numeric-Boolean Columns = 6

Number of Discrete String Columns = 0

Number of NLP String Columns = 0

Number of Date Time Columns = 0

Number of ID Columns = 0

Number of Columns to Delete = 0

30 Predictors classified...

This does not include the Target column(s)
e variahlos sascvid sitcs 60 5. oe Iew-dofoenstiog ssiuhion Soosd ia dakn

OPS/images/Figure_2.27.jpg
You might be interested in... Enhance Filter Generalize A

Further breaking down current age, fare intent by additional attribute.

OPS/images/Figure_2.28.png
age: 29
fare: 211.3375

survived
®o
o1

OPS/images/Figure_2.25.jpg

OPS/images/Figure_2.26.jpg
ae
Toggle Pandas/Lux

You might bo interested n... Enhance Fier Generaize A

Current Visualization
based on user spocified intent | Further breaking down current age, fare ntent by additional attrbute. e

OPS/images/Figure_2.23.jpg
Installing /usr/local/anaconda3/1ib/python3.8/site-packages/luxwidget/nbextension/static -> luxwidget
Making directory: /usr/local/share/jupyter/nbextensions/luxvidget/
Copying: /usr/local/anaconda3/1ib/python3.8/site-packages/Luxvidget/nbextension/static/index. js -> /usr/local/share/3

upyter/nbextensions/luxvidget/index. is
Copying: /usr/local/anaconda3/Lib/python3.8/site-packages/luxvidget/nbextension/static/index. js.map -> /usr/local/sha

re/jupyter/nbextensions/luxwidget/index. Js.map
Copying: /usr/local/anaconda3/1ib/python3.8/site-packages/luxvidget/nbextension/static/extension. js -> /usr/local/sha

re/jupyter/nbextensions/luxwidget/extension. s
- Validating: oK

7o initialize this nbextension in the browser every time the notebook (or other app) loads:
Jupyter nbextension enable luxvidget --py

Enabling notebook extension luxwidget/extension...
- Validating: OK

OPS/images/Figure_2.24.jpg
[

w0 ameme o smmm S e e G o T
W mame o smEx oo e € O e

OPS/images/Figure_2.21.jpg
R E0L R CONRNIOUS VITAhIN v Targ (NIMEO50)

£ T
i N v il §

OPS/images/Figure_2.22.jpg

OPS/images/Figure_2.29.jpg
You might be Interested In... Enhance Fiter Generalize Qo &

Furthor broaking down curront age, fao intent by additional attributo. (Exportseectad visuaizatons o variae

]

Seroll for 11 more charts %>

OPS/images/Page_75_Fig_3_21.png
Deep Neural Network

input layer hidden layer 1 hidden layer 2 hidden layer 3

OPS/images/Figure_3.33.jpg
Model: “sequential"

Layer (type) Output Shape

;;;se_l (Dens;; _;None, 128) 1792
dense_2 (Dense) (None, 128) 16512
dense_output (Dense) (None, 1) 129

Total params: 18,433
Trainable params: 18,433
Non-trainable params: 0

OPS/images/Figure_3.34.jpg
Epoch

/1 [

235
Epoch
/1
a9
Epoch
/1
3167
Epoch

/1 [

005
Epoch
u/m
2812
Epoch
/1
148
Epoch
u/m
167
Epoch

/1 [

329
Epoch
przey
647
Epoch
/1
3043

96/10

97/100
l

98/100

99/100
l

os

os

os

os

os

os

os

s

os

4ns/step

4ns/step

3ns/step

3ns/step

ans/step

4ns/step

3ns/step

3ns/step

3ms/step

3ns/step

Toss:

Toss:

Toss:

toss:

Toss:

toss:

toss:

toss:

toss:

8.0313 - nae:
5.6775 - nae:
5.8922 - nae:
7.1212 - nae:
4,618 - nae:
6.1278 - nae:
5.5805 - mae:
6.0811 - nae
4.9699 - nae:
5.7569 - mae:

1.9069

1.7987

: 1.8016

1.9160

: 16438

1.8309

1.7368

: 17383

L85z

17616

val_loss:

val_loss:

val_loss:

val_loss:

val_toss:

val_loss:

val_loss:

val_loss:

val_toss:

val_loss:

8.5953 - val_mae: 2.1

8.8130 - val_mae: 2.1

10.3785 - valumae: 2.

8.8911 - val_mae: 2.1

10.0694 - valimae: 2.

9.0606 - val_mae: 2.2
8.8389 - val_mae: 2.1
9.6916 - val_mae: 2.2
9.4850 - val_mae: 2.1
10.3360 - valmae: 2.

OPS/images/Figure_3.31.png
X_train. shape
(354, 13)

X_test.shape
(152, 13)

OPS/images/Page_180_Fig_7_9.png

OPS/images/Figure_3.32.png
cam ™ wous cas Nox AM e os a0 ™ pTRATIO s
‘count 506.000000 506.000000 505000000 506000000 506000000 506.000000 50BO0GO0D 505000000 506000000 506.000000 506,000000 506.000000
mean 361324 113605 111679 006O1T0 0SS4695 624634 GBSTAOO1 G705040 9SAMO7 AOBZITIS 1BASSSA 356674032
M BGDISMS 2032240 GOSN 0250004 ONISE 0702617 2640661 2105710 BI0T250 16BSI7IE 2184046 91204864
min 00060 0G0 046000 OO0 030D 3SCI000 2900000 L1Z9600 1000000 187.000000 12600000 0320000
26% O0G0MS 00000 510000 OG0 0400 SESS0 45025000 2100175 4000000 279000000 17400000 ISITS0
5% 0256510 000000 G600 0X0K0 0SSN0 620800 77500000 3207450 5000000 390000000 19050000 391440000
% S6TIOR 12500000 18100000 000000 OE2M000 G200 S4OTSND 5188425 24000000 665000000 20200000 396225000
max 88976200 100000000 27740000 1000000 0871000 8780000 100000000 12126500 24000000 711000000 22000000 396900000

OPS/images/Figure_3.3.jpg
dendrites

axon
terminals

nucleus

OPS/images/Figure_3.30.jpg
cam
n 08
wous.
Los
ans
Nox =
R
sce oz
os
oo
R0
™ 02
PIRATIO
04
e 044 044 018
LsTAT 08
eV 038 047 051 1

CRM 2N INOUS CHAS NOX RM AGE OIS RAD TAX PTRATIO B LSTAT MEOV

OPS/images/Figure_3.37.png
5/5 [] - 0s 80lus/step - loss: 17.6994 - mae: 2.6583
Mean squared error on test data: 17.699426651000977
Mean absolute error on test data: 2.6582603454589844

OPS/images/Figure_3.4.jpg
X1

X2

X3

Xas

Xsi

X

OPS/images/Figure_3.35.png
Loss

600

500

300

200

100

20

40

Epoch

60

80

—— Train
— valid

OPS/images/Figure_3.36.jpg
—— Train
—— Valid

20

8 =

10443 2N|0SqY UBB

80

60

40

20

Epoch

OPS/images/Figure_4.30.png
Epoch /10
469/469
0.7502
Epoch 2/10
469/469

0.9730
Epoch 3/10
469/469
0.9785
Epoch 4/10
469/469
0.9847
Epoch 5/10
469/469

0.9838
Epoch 6/10
469/469
0.9862
Epoch 7/10
469/469

0.9869

55ms/step

61ns/step

S9ns/step

63ns/step

6dns/step

69ns/step

73ns/step

77ns/step

74ns/step

75ns/step

Toss:

toss:

Toss:

Toss:

Toss:

Toss:

Toss:

Toss:

Toss:

Toss:

0.3022

0.04a8

0.0305

0.0226

0.0187

0.0148

0.0114

0.0136

0.0086

0.0103

: 0.9866

: 0.9001

: 0.9052

: 0.9962

: 0.9963

val_loss:

val_toss:

val_loss:

val_loss

val_loss:

val_loss:

valloss:

val_loss:

val_toss:

val_loss:

0.6941

0.0871

0.0742

0.0518

0.0546

0.0523

0.0631

0.0464

0.0733

0.0530

val_acc:

val_ace:

val ace:

val_ace

val_acc:

val ace:

val ace:

val_acc:

val_acc:

val ace:

OPS/images/Figure_4.31.png
07

06

0s

04

03

02

01

00

Training and validation loss

—— Taining loss
— Validation loss

OPS/images/Figure_4.32.jpg
Training and validation accuracy

—— Taining acc
= Validation acc

~o
-
o
@

10

OPS/images/Figure_4.34.jpg

OPS/images/Figure_4.341.jpg
Predicted Label:
True Label: 2
°

OPS/images/Figure_4.35.jpg
Tue label

Confusion matrix

o 1 3 0 o 1 1 4 o o

Predicted label

OPS/images/Figure_4.36.jpg
5
[e. ©. 0. 0. @. 1. 0. 0. 0. 0.]

OPS/images/Figure_4.36.png
precision recall fl-score support

[0.99 0.99 0.99 980

1 0.99 1.00 1.00 1135

2 0.98 0.99 0.99 1032

3 0.99 0.99 0.99 1010

4 0.99 0.99 0.99 982

5 0.98 0.99 0.99 892

6 0.99 0.99 0.99 958

7 0.98 0.99 0.98 1028

8 0.99 8.99 0.99 974

9 0.99 0.99 0.99 1009
accuracy 0.99 10000
macro avg 0.99 0.99 0.99 10000
weighted avg 0.99 8.99 0.99 10000

OPS/images/Figure_4.37.png
Downloading data from https://storage.googleapis.com, =
32768/20515 [s=======mmmmmmm=emmm==mms=mm====z] - 05 Ous/step
Downloading data from hitps://storage.googleapis.con
26427392/26421880 |
Downloading data from https://storage.googleapis.con, —keras=
8192/5148] - 0s ous/step

s Ous/step

Downloading data from hitps://storage.googleapis.con/tensorflow/tf-keras-datasets,

4423680/4422102 [=========mmmmm=m==mmmmmmmmm=s]

s Ous/step

OPS/images/Figure_4.38.jpg
Train: X=(60000, 28, 28), y=(60000,)
Test: X=(10000, 28, 28), y=(10000,)

OPS/nav.xhtml

Table of Contents

		Cover

		Title Page

		Copyright Page

		Dedication Page

		About the Author

		About the Reviewer

		Acknowledgements

		Preface

		Table of Contents

		1. Python for Data Science

		Structure

		Objectives

		Setting up the development environment

		Installing Anaconda

		Advance Python libraries for data science

		Numpy

		Pandas

		Reading and writing data to and from different file formats

		Format - csv

		Format - Excel

		Format - JSON

		Format - clipboard

		Format - HTML tables

		Format - PDF

		Format - Web scraping

		Improving efficiency with the pandas read_csv method

		Parameter - dtype

		Parameter - usecols

		Parameter - chunksize

		Conclusion

		Questions

		Answers

		2. Real-World Challenges for Data Professionals in Converting Data Into Insights

		Structure

		Objectives

		Pandas profiling

		Analyzing Pandas profile report

		Saving the Pandas profile report to a HTML file

		Creating a Jupyter Notebook widget

		Pandas profile report for big datasets

		Sweetviz

		Installing and getting started with Sweetviz

		Analyzing Sweetviz report

		Generating a report to compare two DataFrames using Sweetviz

		AutoViz

		Installing and getting started with AutoViz

		Analyzing AutoViz report

		Lux

		Installing and getting started with Lux

		Analyzing Lux report

		Generating Lux visualizations based on intent

		Saving Lux report to a HTML file

		Advanced features in Lux reports

		Lazy Predict

		Analyzing Lazy Predict experimentation results

		PyCaret

		Installing and getting started with PyCaret

		Analyzing PyCaret experimentation results

		Advanced features of PyCaret

		Conclusion

		Questions

		Answers

		3. Build a Neural Network-Based Predictive Model

		Structure

		Objectives

		Artificial neural network and its components

		Neurons

		Feed forward

		Activation functions

		Loss function

		Backward propagation

		Epoch

		Batch

		Iteration

		Optimizer

		Learning rate

		Building a classification model using neural network

		Problem statement

		Dataset

		Implementation

		Load Python libraries

		Load data

		Descriptive analytics

		Data pre-processing

		Modeling

		Experiment 1 - Hidden layer -1, epoch-100 – shallow neural network

		Experiment 2 - hidden layer -2, epoch-100 – deep neural network

		Building a regression model using neural network

		Problem statement

		Dataset

		Data pre-processing

		Modeling

		Model evaluation

		Conclusion

		Questions

		Answers

		4. Convolutional Neural Networks

		Structure

		Objectives

		Convolutional neural networks components

		Load required libraries

		Digital image as a numpy array

		Kernels/filters and convolution process

		Stride

		Padding

		Convolution on RGB image

		Convolution operation with multiple filters

		One convolution layer

		Pooling

		Flattening

		Dense layers

		Image classification using CNN

		Problem statement

		Dataset - MNIST

		Implementation

		Data pre-processing

		Modeling

		Plot confusion matrix

		Create a confusion matrix and plot

		Hyperparameters tuning using KerasTuner

		Dataset – Fashion MNIST

		Implementation

		Install KerasTuner

		Conclusion

		Questions

		Answers

		5. Optical Character Recognition

		Introduction

		Structure

		Objectives

		Optical character recognition

		OCR Python libraries and their implementation

		Tesseract OCR

		Tesseract OCR demo

		keras-ocr

		keras-ocr demo

		EasyOCR

		EasyOCR demo

		TrOCR

		TrOCR demo

		Conclusion

		Questions

		Answers

		6. Object Detection

		Structure

		Objectives

		Object localization and detection

		Object detection algorithms and their comparison

		Single shot detector Python implementation

		YOLO v3 Python implementation

		Experiment 2

		Experiment 3

		Experiment 4

		Experiment 5

		Conclusion

		Questions

		Answers

		7. Image Segmentation

		Structure

		Objectives

		Difference between image classification, detection and segmentation

		Image segmentation architectures

		U-Net Python implementation

		FCN-8 Python implementation

		Mask R-CNN Python implementation

		Conclusion

		Questions

		Answers

		8. Recurrent Neural Networks

		Structure

		Objectives

		Algorithms for RNN implementation

		RNN implementation

		Long short-term memory implementation

		Gated Recurrent Unit implementation

		Conclusion

		Multiple choice questions

		Answers

		9. Generative Adversarial Networks

		Structure

		Objectives

		Types of GAN

		Vanilla GAN Python implementation

		Key difference between Vanilla GAN and DCGAN

		DCGAN Python implementation

		StyleGAN Python implementation

		Setup environment

		Conclusion

		Questions

		Answers

		10. Transformers

		Structure

		Objectives

		Introduction to Transformers in deep learning

		Various transformers architectures

		Difference between contextual and non-contextual embeddings

		BERT Python implementation

		GPT Python implementation

		Conclusion

		Questions

		Answers

		Index

		Table of Contents

OPS/images/Figure_4.39.jpg

OPS/images/cover.jpg
" Deep Learnmg
Data Archltects

OPS/images/Figure_4.4.jpg

OPS/images/Figure_4.40.png
Epoch 1/10

Epoch 4/10

Y —

— asms/st
firvchiell prevormegpr e o gy i~ o

385
s
s
s
s
s
s
s
s

4s0s/step
atns/step
atas/step
asns/step
asns/step
asns/step
asns/step
asns/step
asns/step

toss:
toss:
Toss:
toss:
toss:
Toss:
toss:
toss:

Toss:

0.5466
.36
o191

02881

02044

0.2267

0.2107

accuracy:
accuracy:
accuracy:
accuracy:
accuracy:

accuracy:
accuracy:

accuracy:

.00
09029
0.012
o1
0.5229
o028
0.9338

val_loss:

o.a179

val_loss: 0.3345

val_loss:

val_los:

val_los:

0.3
0.3059
0.28
0.2m3

0.29

val_loss: 0.2738

al_los:

val_loss:

0.2551
02531

val_accuracy:
val accuracy:
valaccuracy:
val_accuracy:

val accuracy:

OPS/images/Figure_4.41.jpg
Actual Labels

Predicted Labels :

OPS/images/Figure_4.411.jpg
313/313 [==] - 25 8ms/step - loss: 0.2684 - accuracy: 0.9048
[test loss, test accuracyl: [0.2683779001235962, 0.9047999978065491]

OPS/images/Figure_4.42.jpg
Train: X=(60000, 28, 28), y=(60000,)
Test: X=(10000, 28, 28), y=(10000,)

OPS/images/Figure_4.43.jpg
Trial 1 Complete [08h 06m 09s]
val_accuracy: 0.9003333250681559

Best val_accuracy So Far: 0.9003333250681559

Total elapsed time:

Search: Running Trial #2

Hyperparaneter |Value
conv_0_units 1192
conv_@_activation |signoid
conv_layers |5
conv_1_units 1160
conv_1_activation |relu
conv_2_units 1224
conv_2_activation |relu
dense_layers 3
dense_0_units 1320
_activation|signoid
_units 1320
“activation|signoid
learning_rate]0.001
loss_function |sparse_categori...
conv_3_units 1192
conv_3_activation |relu
conv_4_units 1160
conv_d_activation [relu
conv_5_units 1224
conv_5_activation |relu
dense_2_units 1256
_activation|signoid
_units 132

_activation|signoid

00h 06m 095

|Best Value So Far
1224
Jretu

15

196
[relu
1256
Jretu

14

|64
|signoid
|384
[relu
]0.001
|sparse_categori...
132
|relu
132
|relu
132
|relu
132
|relu
132
Iretu

OPS/images/Figure_4.44.jpg
Trial 3 Complete [08h 06m 17s)
val_accuracy: 0.9143888751665751

Best val_accuracy So Far: 0.9143888751665751
Total elapsed time: 00h 14m 085
INFO: tensorflow:Oracle triggered exit

OPS/images/Figure_4.45.jpg
{'conv_0_activation': 'relu’',
‘conv_0@_units': 96,

‘conv_1_activation': 'relu’,
'conv_1_units': 128,
'conv_2_activation': 'relu’,
‘conv_2_units': 192,
'conv_3_activation': 'relu’,
'conv_3_units': 192,
‘conv_4_activation': 'relu’,

‘conv_4_units': 96,
‘conv_layers': 3,
'dense_0_activation': 'relu',
‘dense_0@_units': 224,
'dense_1_activation': 'sigmoid',
'dense_1_units': 352,
'dense_2_activation': 'sigmoid',
‘dense_2_units': 192,
'dense_layers': 2,
'learning_rate': 0.0001,
'loss_function': 'sparse_categorical_crossentropy'}

OPS/images/Figure_4.46.jpg
Epoch 40/50
500/1500 {sseemseeenssseeemsmeeesserene]
epoch /50

oyt —
Epoch 42/50

T500/1500 [seseemsnesssseeemsmeeessenese]
Epoch 43750

frroy ey R ——
Epoch /50

500/1500 [ssseemseesssseeemsmeeeseress]
Epoch 45750

150071500 1
Epoch d8/50
500/1500 [swseessmeeene
Epoch 47750

58071500
Epoch a8/50
e —
Epoch 49/50

1500/1500 1
Epoch s0/50
B —

-
S
Y
S
-9
-9
-
-
S
-9

-

oassste
sasssten
oassste
es/sten
Gnssste
Gassste
oas/ste
Gassste
oas/ste
Gassste

os/ste

- oss: 0.0m28

toss:

oo

toss: 0.0105

toss:

toss:

~ oss: 0.010

toss:

w3

~ oss: 0.0088

toss:

w0

~ oss: o.0m20

toss:

o007

vl toss: alaccuracy: 0.172
vl tess: vl accuracy: 0.9131

al_toss: L accuracy: 0.9133

vl accuracy: 0.9150

VL toss: 0.4378 - val accuracy: 9.9161

sccuracy: VoL toss: 0.4536 - vol accuracy: 9.9150
accuracy: VaL_toss: 0.4457 - val accuracy: 9.9193
accuracy: VoL toss: 0.4478 - vol accuracy: 9.9120
accuracy: VL toss: 0.4379 - val_accuracy: 0.9198
accuracy: VL toss: 0.4579 - val_accuracy: 0,910
accurac VL toss: 0.4458 - val_accuracy: 9.9169

OPS/images/Figure_3.10.jpg
(569, 30)
(569,)

OPS/images/Figure_3.11.jpg
array(['malignant', 'benign'], dtype='<U9')

OPS/images/Figure_2.9.jpg
Interactions

Rooms
Prce
Distance

Rooms
prco
Josiance]
Postcode
Badroomz
Batrroom Battvoom
car
Lancszo
ButdngAea
Yoarbuit
Latttuce
Longitude
Propertycount

OPS/images/Figure_3.1.jpg
(0]e)

0000000000000

OCOO0O000000000O00

(o100 00 0]0]0]0]0]0)0)0,0)0)0)

0000000000

OPS/images/Figure_3.17.jpg
Epoch 95/100

14/14
ccuracy:

1.0000

Epoch 96/100

14/14
ceurac

Epoch 97/188

1414
ceuracy:

1.0000

Epoch 98/100

14714
ceurac

Epoch 99/100

14714
ceuracy:

14/14
ceurac)

1.0000
Epoch 100/100

1.0000

os

os

os

os

os

3ns/step

3ns/step

3ns/step

3ns/step

3ns/step

3ns/step

Toss:

Toss:

Toss:

loss:

loss:

loss:

0.0276 -
0.0181 - accuracy:
0.0200 - accuracy:
0.0207 - accuracy:
0.0308 - accuracy:
0.0240 - accuracy:

0.9922

0.9947

0.9966

0.9950

0.9860

0.9933

0.0942

0.0940

0.0924

0.0923

val_loss: 0.0930

vala

vala

vala

vala

vala

OPS/images/Figure_3.18.png
4/4] - @s 992us/step - loss: 0.0694 - accuracy: 0.9649
Loss on test data 0.06941806524991989
Accuracy on test data: 0.9649122953414917

OPS/images/Figure_3.14.jpg
1 357
0 212
Name: malignant, dtype: int64

OPS/images/Page_162_Fig_7_1.png
Classification
+ Localization

Instance
‘Segmentation

Classification Object Detection

CAT , DOG, DUCK , DOG, DUCK

Single object Mulliple ubjects

OPS/images/Figure_3.16.jpg
Model: "sequential 1"

Layer (type) Output Shape Param #

dense_ 1 (Dense)

dense_output (Dense)

Total params: 530
Trainable params: 530
Non-trainable params: @

OPS/images/Figure_3.12.jpg
array(['mean radius', 'mean texture', 'mean perimeter', 'mean area’,
‘mean smoothness', ‘mean compactness', ‘mean concavity'
‘mean concave points', 'mean symmetry‘, ‘mean fractal dimension',
‘radius error', 'texture error', 'perimeter error', 'area error',
*smoothness error', ‘compactness error', 'concavity error',
‘concave points error', ‘symmetry error
*fractal dinension error’, 'worst radius', 'worst texture',
‘worst perimeter', ‘worst area', 'worst smoothness',
‘worst compactness', 'worst concavity', ‘worst concave points',
‘worst symmetry', 'worst fractal dimension'l, dtype='<U23')

OPS/images/Figure_3.13.jpg
oy IS ey g (s v s smoctnns compaciens somoony “IER ey g Tk
o oo oz omn - v e e ez ome o o omm om0
oomo oo o omew . e o weo G owes oes o om0 oo ©
o owr oame omws . s w20 RO oM Gaw os o0 o3 oomss 0
cane oo omw omm . s mw w7 oam omes awm oows oss o0 o
oo o0 oo omes . tew wmm wso ows omeo oo ovws oze oowm o

OPS/images/Figure_4.48.jpg
[
e

ey

e T T RS

T g e————
e i s g S -

Lt 00 - vy
J T —
29 - i scersr

Rr—

P —
239 - i accarsr
Lt 0230 - ey

s
T p—

1 - e

Rr—

R

R —

OPS/images/Figure_4.49.jpg
] - 1s 3ms/step - loss: 0.2654 - accuracy: 0.9157

[test loss, test accuracy]: [0.26537665724754333, 0.9157000184059143]

OPS/images/Figure_4.5.jpg
soscccscscsccseSeS

soccccccccosososS S

soscscscscsseseseS

socccccscososososS s

rooseses

21
116
167
168
169
169
108

5

0

Nessess

68
232
248
223
182
208
248
245

52

0
[

130
251

0
108
252
220

[')
o o
6 55
96 244
243 252
247 251
84 159
[3')
[')
')
')
0 16
30 207
234 184
99 0
')
2 o
')

sese

210
234
252
252
253
225

©
soscse8

Boosose

160
184
172

ssess

soscccccccosososes

socccccscscosososes

OPS/images/Figure_4.54.jpg
Best epoch: 18

OPS/images/Figure_4.6.jpg

OPS/images/Figure_4.7.jpg

OPS/images/Figure_4.8.jpg
[[0 1 2]
[3 4 5]
[6 7 811

OPS/images/Figure_4.9.jpg
[[1 2 3]
[4 5 6]
[7 8 9]]

OPS/images/Figure_5.1.jpg
wose — [

Shekhar Khandelwal €= Text

OPS/images/Figure_5.10.jpg
THE SLEREXE COMPANY LIMITED

'SAPORS LANE - BOOLE - DORSET - BH2S 8ER
O Boxe (945 13) SI6IT - TR 129456

Our Ref. 350/PIC/EAC 18th Janvary, 1972.

Dr. P.N. Cundall,
Mining Surveys Led.,
Holroyd Road,
Reading,

Berks.

Dear Pece,

Perait me to introduce you to the facility of facsimile
transmission.

In facsimile a photocell is caused to perform a raster scan over
the subject copy. The variations of print density on the docupent
cause the photocell o generate an anslogous clectrical video sigaal.
This signal is used to modulate a carrier, vhich is transmitted to a
repote destination over a radio or cable commumications link.

At the resote terminal, demodulation reconstructs the video
signal, vhich is used to modulate the density of print produced by a
princing device. This device is scanning in a raster scan synchronised
with that at the transmitting terminal. As a result, a facsimile

copy of the subject document is produced.

Probably you have uses for this facility in your organisation.

Yours sincerely,

P.J. CROSS
Group Leader - Facsinile Research

Roitaces s Eagind: o 2008
agoreres Oree: 5 Viea Lane, et Zaos.

OPS/images/Figure_3.23.png
iy e
14/14 [=

os

ceuracy: 10000

Epoch 96/100
18/14 [S=mmmmmeemmsemmemmenneaaas] - 05
ceuracy: 1.0000

Epoch 97/100
14/14

os

20s/step

2ns/step

3ns/step

20s/step

20s/step

20s/step

Toss:

Toss:

toss:

toss:

toss:

Toss:

0.0052

0.0091

0.0063

0.0069

0.0067

accuracy:

ceuracy:

accuracy:

ccuracy:

accuracy:

accuracy:

0.9997

0,992

0.9994

0.99%2

0.9985

0.9990

val_loss:

val_toss:

val_loss:

val_loss:

val_loss:

val_loss:

o.0011

0.0436

0.0409

0.0387

0.0388

0.0394

vala

vala

vala

vala

OPS/images/Figure_3.24.png
4/4 [- 0s 819us/step - loss: 0.0573 - accuracy: 0.9912
Loss on test data: 0.05727515369653702
Accuracy on test data: @.9912280440330505

OPS/images/Figure_3.20.jpg
Fue label

Confusion matrix

N

g
Predicted label

1

OPS/images/Figure_3.22.png
Model: “sequential 11"

Layer (type) Output Shape Paran #
dense_1 (Dense) (None, 16) 496
dense_2 (Dense) (None, 16) 272
dense_output (Dense) (None, 2) 34

Total params: 802
Trainable params: 802
Non-trainable params: 0

OPS/images/Figure_3.19.png
(506, 14)

M ZN INDUS GHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT MEDV
0 006 180 231 00 053 675 652 400D 10 2060 153 260 490 240
1002731 00 707 00 0469 6421 789 49671 20 220 178 W60 M 216
2 00270 00 707 00 0460 7165 611 49671 20 220 178 2283 403 347
3 0002 00 218 00 045 6% 455 6062 30 220 187 e 204 %4
400605 00 218 00 04S 7147 542 6062 30 220 187 60 53 %62

OPS/images/Figure_3.29.jpg
(506, 14)

CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT MEDV
0 000632 180 231 00 0538 6575 652 4.0900 1.0 296.0 153 39690 498 240
1 002731 00 707 00 0469 6421 789 49671 20 2420 17.8 39690 914 216
2 002729 00 707 00 0469 7.185 61.1 4.9671 2.0 242.0 17.8 39283 403 347
3 003237 00 218 00 0458 6998 458 6.0622 3.0 2220 187 30463 294 334
4 006905 00 218 00 0458 7.147 542 60622 3.0 222.0 187 39690 533 362

OPS/images/Figure_3.27.jpg
['.. _boston_

ataset: ',

" :Nusber of Instances: 506 ',

CRIM
an
Nous.
CHAS
NoX

[

AGE

oIS

RAD

A
PTRATIO
B

LSTAT
HEDY

:Number of Attributes: 13 numeric/categorical predictive. Median Value (attribute 14) is usually the targe

:Attribute Information (in order):',

per capita crine rate by town',
proportion of residential land zoned for lots over 25,000 sq.ft.’,
proportion of non-retail business acres per town',

Charles River dummy variable (= 1 if tract bounds river; @ otherwise)',
nitric oxides concentration (parts per 10 million)',

average number of roons per dwelling’

proportion of owner-occupied units built prior to 140",
weighted distances to five Boston employnent centres’,

index of accessibility to radial highways',

full-value property-tax rate per $10,000',

pupil-teacher ratio by town',

1000(0k - 0.63)°2 where BK is the proportion of blacks by town
 lower status of the population’,

Median value of owner-occupied homes in $1000's",

OPS/images/Figure_3.28.jpg
(506, 13)

CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT

0 0.00632 18.0 231 0.0 0538 6.575 652 4.0900 1.0 296.0 16.3 396.90 4.98
1 002731 00 7.07 0.0 0469 6.421 789 49671 20 2420 17.8 396.90 9.14
002729 0.0 707 00 0469 7.185 611 49671 2.0 242.0 17.8 39283 4.03
0.03237 0.0 218 0.0 0458 6.998 458 6.0622 3.0 222.0 18.7 394.63 2.94

ENETI)

0.06905 0.0 218 0.0 0458 7.147 542 6.0622 3.0 2220 18.7 396.90 5.33

OPS/images/Figure_3.25.png
0
1
accuracy

macro avg
weighted avg

precision

recall fl-score

support

42
72

114
114
114

OPS/images/Figure_3.26.png
Tue label

Confusion matrix

~

Predicted label

70

OPS/images/Figure_5.6.jpg
<matplotlib.image.AxesImage at 0x7£c00e0b5970>

700

600

500

400

300

200

100

OPS/images/Figure_5.11.jpg
No.t

'THE SLEREXE COMPANY LIMITED

‘SAPORS LANE . BOOLE - DORSET - BHLS 88
s s 341 16 - s 1206

Our Ref. 350/PIC/EAC

1972

Pernit e to introduce you to the facility of facsimile
transmission.

1a is caused to perform a raster scan over
the swbject variations of print density on the docunent
cause the photocell to generate an analogous electrical video signal.
Tnlalsigued 1o/ amed to odulate & carrier, which is transaisced '8
remote destination over a radio or cable commumications link.

At the remote terminal, demodulation reconscructs the video
signal, which is used julate the density of print produced by a
printifg device Uinis Gevtee 1o scamnog o “scan synchronised
ich that at the transmitting terminal. As a result, a facsimile
copy of the subject document is produced.

Probably you have

ises for this facility in your organisation

Yours sincerely,

P.J. CROSS
Group Leader - Facsimile Research

L,

OPS/images/Figure_5.12.jpg
THE
COMPANY
umTED

‘SAPORS LANE
BOOLE

350 CARDNAL /PJC /EAC

18ih January oate
1972 oare

Holroyd
Road

Reading,

OPS/images/Figure_5.13.jpg
Msﬁxé/ ‘/7". @MM /a’/)/_,,&/a‘ ﬁwea

OPS/images/Figure_5.14.jpg
Dowcadey (. pocescr.condy o 100% N -21224 20002000, 74185}

Coid e 42 o prcaser el 1 th-imoe prsesor onta o the s cofi. Loding Bsed s, puSar e i Sh sl et exricie coienioe.
oot o g o R 5% 500

ooy o 107 I % 050,740

ooy et o I 1532005, 9001

I L]

OPS/images/Figure_5.15.jpg
e e o 5 105,504
o i o ol e 28 a1, h o] oo 3 i e s s 1 5 sy, 0o e s s ' . i s
TS e ST T S

OPS/images/Figure_5.16.jpg
/usr/local/lib/python3.9/dist-packages/transformers/generat
warnings.warn(
industry, " Mr. Brown commented icily. " Let us have a

OPS/images/Figure_5.2.jpg
G

Tesseract OCR

OPS/images/Figure_5.3.jpg
Shekhar Khandelwal

OPS/images/Figure_5.4.jpg

OPS/images/Figure_5.5.jpg
Looking for /root/.keras-ocr/craft_mlt_25k.h5
Downloading /root/.keras-ocr/craft_mlt_25k.h5
Looking for /root/.keras-ocr/crnn_kurapan.h5
Downloading /root/.keras—-ocr/crnn_kurapan.h5

OPS/images/Page_59_Fig_3_2.png
Artificial
Intelligence

Machine
Learning

Deep
Learning

OPS/images/fm1.png

OPS/images/Page_70_Fig_3_15.png

OPS/images/Page_104_Fig_4_24.png
€3 fea

Fully-Connected Fully-Connected.
Neural Network Neural Network

com 1 oz Ret actvation
‘cConvolution Convolution PN

ot S - S
o Metmen Ly Mo b

weut 1 channels L channels n2chamels 2 channels | §
sxasx1) (2ax26xm) 2x12xn) ©xBxnd) Wxaxnd |

n3units

OPS/images/Figure_3.5.jpg
inputs
g weights

1.0

OPS/images/Figure_3.6.jpg
1.0%0.2 + 2.0%0.8 + 3.0%-0.5 + 2.0 = 2.

OPS/images/Figure_3.7.jpg
1.0%0.2 + 2.0%0.8 + 3.04-0.5 + 2.5%1.0 + 2.0 = 4.8

1.0%0.5 + 2.0%-0.91 + 3.0%0.26 + 2.5%-0.5 + 3.0 = 1.21

1.0%-0.26 + 2.0%-0.27 + 3.0#0.17 + 2.5%0.87 + 0.5 = 2.385

OPS/images/Figure_3.8.png
Inputs Weights ~ Summation and Bias Activation Output

OPS/images/Figure_4.1.jpg
(28, 28, 3)

OPS/images/Figure_4.10.jpg
[[le 2 6]
[12 20 30]
[42 56 72]]

OPS/images/Figure_4.11.jpg
Sum of all the elements of the output of matrix_a * matrix_b
240

OPS/images/Figure_4.12.jpg
matrix_c[0][0] = matrix_a[0][0] + matrix_b[0][0]

OPS/images/Figure_4.121.jpg
157

124

131 (162 | 232

102

155

218

232

OPS/images/Figure_4.13.jpg
matrix_ c[0][0]=0+1 =0

OPS/images/Page_164_Fig_7_2.png
128 6464

3
6 %256 256 X256
l12
64 28 26
363 Cony, ReLU,
28x 128 128x128 ®
|256
512
128 x64 64x64
512 512 1024 s12 | s
256 - - - 1 RolU, Baichnorm
2x32 | 404 | 32x32
— — — —. Copyand
1024 15x15 1024

OPS/images/Figure_4.13.png
0
s[e|2 B
2[5 2
5|65 G
s[7]7 1
s[e|s .

Parameters;
Sie: fu3
Swide: s=1
Padding: p=o

Result

[@eare00szene
S1r80.2h
Zivsorsin

OPS/images/Figure_4.14.jpg
matrix_c[0][1] = matrix_a[0][1] + matrix_b[0][1]

OPS/images/Figure_4.141.jpg
Input
afo]2]s]s
62|40
2[a]s]a]s
s[e|s[e]7
s|7[7]s]2
s|e]s[s]e

Myxn= 6x6

Filter

Result
H
\
\

[=01+20+51+

610204 41)
A1e50ea(h)

e findomicom

OPS/images/Figure_4.15.jpg
matrix c[0][1]= 12 = 2

OPS/images/Figure_4.151.jpg
Result

Wsssaossan
R T
R

[rp—

OPS/images/Figure_4.16.jpg
Dimension: 6x6

Filter

Stride.

|— Padding: p

Result

0140040
01 +40+9
01+9°0+61)

=15

OPS/images/Figure_4.17.png
nxnXR.= 6x6x3

Filter

Size:

Stride

Parameters:

f=3

#channels: n o3
s

Result

hitps:/findoml.com

OPS/images/Figure_4.18.png
Filter 1

Input

3x3x3 i

Filter 2

axaxz

6x6x3

axa [—

OPS/images/Figure_4.19.jpg
matrix_a[0][0] = C

OPS/images/Figure_4.19_1.jpg
A Convolution Layer

mput Fitter 1
3x3
4xdx3
* ReLU-
Filtera
EE Sranz
6x6x3 E]

axaxa [

OPS/images/Figure_1.16.png
len(df)

OPS/images/Figure_1.15.jpg
len(df)

42

OPS/images/Figure_1.17.png
a£0)

Year Pop. =%
o 1698 4907 _
1 2 5840 183%
2 128 7208 “20.1%
3 1757 10664 7.1%
4 1746 1 09%
5 1756 13046 1%
s 171 21888 167.6%
7 17%0 40401 +126.0%
s 1800 79216 160.4%
9 1810 119734 1%
10 1820 152056 127.0%
" 1830 212078 1s03%
12 1840 301114 161.4%
1 1850 69115 +76.0%
1 1860 174779 168.8%

OPS/images/Figure_1.12.jpg
6% To1 Fepuk— Mo
TR T
dor sk Ne
Da Mk Ne S
e s
5» s
i s
208 s
fi s
Lo o
1027 = Tome T
3530 -
o -
124 o
i S Diwer
s -
o -
1020 -
e -
2048 S Dimer
i i Dimer
02 Su Dimer
e r—"—
S0 i D
o5 i
151 S
e i Der
126 T —
i -
1965 -
o —
1035 o
1506 -
200 & Dimer
[i
2imm AV &
e S Dimer
e Dl
560 £ D
BEg i Dmer
. o

tips.xlsx
Microsoft Excel Workbook (.xIsx) - 14 KB

OPS/images/Figure_4.2.jpg
(28, 28)

OPS/images/Figure_1.11.jpg
1659
1034
20
nn
o

e
1027
26
w0
sy
s

tips.csv

1o
Lo
55
o
20
am
so
20
o
s

fenoe o ¢

e o ¢
e wo s
we W sn
we o sn
N
we W sn
Fenoe Mo s
we W sn

3
s

CSV Document - 8 KB

OPS/images/Figure_4.20.png

OPS/images/Figure_1.14.jpg
Year
1698
1712
1723
1737
1746
1756
1771
1790
1800
1810

Historical population

Pop.
4,937
5,840
7,248

10,664
1,717
13,046
21,863
49,401
79,216
119,734

2%
+18.3%
+24.1%
+47.1%

+9.9%
+11.3%
+67.6%
+126.0%
+60.4%
+51.1%

OPS/images/Figure_4.21.jpg
matrix_b[0][0] = 1

OPS/images/Figure_1.13.jpg
{"total bill":

4,59,
"114.78,"10

7,m141°
8,1

."150": 14 151" 13 13."152": 17

tips.json
JSON file - 19 KB

OPS/images/Figure_4.21_1.jpg
Input Max Pool

6x6x3 tps:/indoml.com

OPS/images/Figure_4.23.jpg
((input size) + 2+ padding — (kernel size)) + 1

Output size =
tpu stride

OPS/images/Figure_4.24.jpg
5+2«1-3+1
2

output size =

OPS/images/Figure_1.10.jpg
df .head()

total bill tp sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
11034 166 Male No Sun Dinner 3
2 2101 350 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 2459 3.61 Female No Sun Dinner 4

OPS/images/Figure_4.25.jpg
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/snist.npz
11493376/11490434 [s=sssssmsnsnssmnsnssasnnsnsans] - 05 Ous/step
11501568/11498434 [swssmsaw messssssssssssss) - 0s Ous/step

OPS/images/Figure_1.1.jpg
C)ANACONDA. Producs - prdng Soltors - Resouces - By Campary

Q

Individual Edition

Your data science
toolkit

With over 20 million users worldwide, the open-source Individual
Edition (Distribution) is the easiest way to perform Python/R data
science and machine leamning on a single machine. Developed
for solo practitioners, it is the toolkit that equips you to work with

thousands of open-source packages and libraries.

OPS/images/Figure_4.27.png
SRR caR omR

OPS/images/Figure_4.29.png
Model: “sequential 2"

Toyer Toyper Gtput Shape
Com2d4 (Comva0) ane, 26, 26, 32) £
e noresTization 4 (satch ane, 76, 76, 527 =
SCttvation (hctivation ane, 76, %6, 527 O
X patingia 3 Waxpaoting? Miane, T, T, 527 O
oz s oo Tone, 10, 11, 601 T
e mormatization s (Batch Mone, 10, 10, 641 7%
Sctivation 1 (hetivation ene, 10, 11, 641 v
X poUIngAd_Y axPooting? e, 5, 5, 647 v
s o Tone, 3, 3, 1287 =3
T paratization s Beteh ane, 3, 3, 1207 EY
SCttvation 2 (Rettvation Wane, 3, 3, 1287 g
e pootingid_s (axPooting? Mane, T, 1, 1287 v
Tatten T (Flatten Tiane, T307 g
Gense 2 (oenser Thene, 1207 T
ovees Toemae) Tione, 107 50

Total parans: 111,370
Trainable parans: 110,922
Non-trainable parans: 44

OPS/images/Figure_4.3.png
(18, 18)

