

Programming with Rust
Donis Marshall
A NOTE FOR EARLY RELEASE READERS
With Early Release eBooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.
If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to Pearson at PearsonITAcademics@pearson.com

Contents

	Chapter 1. Introduction to Rust

	Chapter 2. Getting Started

	Chapter 3. Variables

	Chapter 4. Strings

	Chapter 5. Console

	Chapter 6. Control Flow

	Chapter 7. Collections

	Chapter 8. Ownership

	Chapter 9. Lifetimes

	Chapter 10. References

	Chapter 11. Functions

	Chapter 12. Error Handling

	Chapter 13. Structs

	Chapter 14. Generics

	Chapter 15. Patterns

	Chapter 16. Closures

	Chapter 17. Traits

	Chapter 18. Threads

	Chapter 19. Threads 2

	Chapter 20. Memory

	Chapter 21. Macros

	Chapter 22. Interoperability

	Chapter 23. Modules

Table of Contents

	Chapter 1. Introduction to Rust
	Introduction

	Features

	Rust Terminology

	Tools

	Summary

	Chapter 2. Getting Started
	Preliminaries

	Rust and Windows

	Installing Rust

	Advanced Rustup

	“Hello, World”

	Compile and Run

	Cargo

	Library

	Comments

	Published Crates

	Main Function

	Command-Line Arguments

	Summary

	Chapter 3. Variables
	Terminology

	Variables

	Primitives

	Integer Types

	Overflow

	Notations

	Floating Point Types

	Floating Point Constants

	Infinity

	NaN

	Numeric Ranges

	Casting

	Boolean Types

	Char

	Pointers

	Operators

	Summary

	Chapter 4. Strings
	Str

	String

	Summary

	Chapter 5. Console
	Print

	Positional Arguments

	Variable Arguments

	Named Arguments

	Padding, Alignment, and Precision

	Base

	Developer Facing

	Write Macro

	Display Trait

	Debug Trait

	Format Macro

	Console Read and Write

	Summary

	Chapter 6. Control Flow
	The if Expression

	The while Expression

	The for Expression

	The loop Expression

	The loop Label

	The Iterator Trait

	Summary

	Chapter 7. Collections
	Arrays

	Vectors

	HashMap

	Summary

	Chapter 8. Ownership
	Stack and Heap Memory

	Shallow versus Deep Copy

	Car Analogy

	Move Semantics

	Borrow

	Copy Semantics

	Clone trait

	Copy Trait

	Clone Trait

	Summary

	Chapter 9. Lifetimes
	Introduction to Lifetimes

	Function Headers and Lifetimes

	Lifetime Annotation

	Lifetime Elision

	Complex Lifetimes

	Sharing a Lifetime

	Static Lifetimes

	Structs and Lifetimes

	Methods and Lifetimes

	Subtyping Lifetimes

	Anonymous Lifetimes

	Generics and Lifetimes

	Summary

	Chapter 10. References
	Declaration

	Borrowing

	Dereferencing

	Comparing References

	Reference Notation

	Reference to Reference

	Mutability

	Limits to Multiple Borrowers

	Summary

	Chapter 11. Functions
	Function Definition

	Parameters

	Function Return

	Const Functions

	Nested Functions

	Function Pointers

	Function Aliases

	Summary

	Chapter 12. Error Handling
	Handling Error Handling

	The Result Enum

	The Option Enum

	Panics

	Unwrapping

	Match Pattern for Result and Option

	Map

	Rich Errors

	Custom Errors

	Summary

	Chapter 13. Structs
	Alternate Initialization

	Move Semantics

	Mutability

	Methods

	Self

	Associated Functions

	Impl Blocks

	Operator Overloading

	Tuple Struct

	Summary

	Chapter 14. Generics
	Generic Functions

	Bounds

	The where Clause

	Structs

	Associated Functions

	Enums

	Generic Traits

	Explicit Specialization

	Summary

	Chapter 15. Patterns
	Core Syntax

	Wildcards

	Hierarchical Patterns

	Ownership

	Irrefutable

	Ranges

	Multiple Patterns

	Control Flow

	Structs

	Functions

	Match Expressions

	Match Guards

	In Conclusion

	Chapter 16. Closures
	“Hello, World”

	Closure Syntax

	Closed Over

	Closures as Function Arguments

	Closures as Function Return Values

	Implementation of Closures

	Matrix Example

	Summary

	Chapter 17. Traits
	Trait Definition

	Default Functions

	Marker Trait

	Associated Functions

	Associated Types

	Extension Methods

	Fully Qualified Syntax

	Supertraits

	Static Dispatch

	Dynamic Dispatch

	Enum and Traits

	In Conclusion

	Chapter 18. Threads
	Synchronous Function Calls

	Threads

	Thread

	Processor Time

	Builder

	Communicating Sequential Process

	Asynchronous channel

	Synchronous Channel

	Rendezvous Channel

	Try Methods

	Store Example

	In Conclusion

	Chapter 19. Threads 2
	Mutex

	Non-scoped Mutex

	Mutex Poisoning

	Reader Writer Lock

	Condition Variables

	Atomic

	Atomic Store and Load

	Fetch and Modify Operations

	Compare and Exchange

	In Conclusion

	Chapter 20. Memory
	Stack

	Static Values

	Heap

	Interior Mutability

	RefCell

	OnceCell

	In Conclusion

	Chapter 21. Macros
	Tokens

	Declarative Macros

	Repetition

	Multiple Macro Matchers

	Procedural Macros

	Derive Macros

	Attribute Macros

	Function-like macro

	In Conclusion

	Chapter 22. Interoperability
	Foreign Function Interface

	Basic Example

	Libc Crate

	Structs

	Bindgen

	C Calling Rust Functions

	Cbindgen

	In Conclusion

	Chapter 23. Modules
	Modules

	Module Files

	Path Attribute

	Functions and Modules

	Crate, Super, and Self keywords

	Old Model

	Summary

Chapter 1. Introduction to Rust
Welcome to Programming with Rust.
Your journey along the Rust super-highway begins here. Fasten your seat belt and prepare to enjoy an amazing journey of learning and exploration. Along this journey, you will uncover the benefits of Rust and how the language is positively changing the perception of modern programming languages. Each leg of the journey will inspect a different area of the language. In this manner, you will explore the entire language and emerge as a Rustacean, a professional Rust practitioner, and hopefully an active member of the growing Rust community.
The goals of this chapter include the following:
 Providing an overview and description of Rust
 Reviewing the Rust programming style
 Listing the many benefits of Rust
 Identifying and explaining Rust terminology
 Reviewing the key elements of a Rust application
 Creating your first Rust program
Introduction
Rust is a general-purpose language for creating safe, secure, and scalable applications. The language has features from several programming paradigms, as described shortly. Rust was originally designed as a systems programming language. However, it has emerged as a more versatile language capable of creating a variety of application types, including systems programming, web services, desktop applications, embedded systems, and more. Although it may sound cliché, what you can accomplish with Rust is only limited by your imagination.
Different! That is an accurate assessment of Rust. Although the Rust syntax is based on the C and C++ languages, the similarity with other C-based languages often ends there. In addition, Rust is not different just to be different; it is a difference with a purpose.
Rust’s borrow checker is an excellent example of a difference with a purpose. The borrow checker is a unique feature within Rust that promotes safe coding practices by enforcing rules related to the single ownership principal. No other language has this feature. For that reason, the borrow checker is a foreign concept to many developers but nonetheless invaluable.
In many ways, Rust represents lessons learned. Some of the unique features in Rust are lessons learned, or instances of a lack of success, from other languages. The willingness of Rust to depart from the normal script when necessary is a major feature of the language. Many programming languages struggle with effective memory management, for example. That is the purpose of the ownership feature in Rust—effective memory management.
Let’s be candid for a moment. Learning Rust can be frustrating at times. It requires an investment of time and the sacrifice of some brain cells. However, you will find that your investment in learning Rust is more than worthwhile. For example, learning to work with the borrow checker, not against it, is invaluable.
My goal in writing this book is to increase the number of Rustaceans—individuals with a high proficiency in the Rust programming language. My hope is that you will become an active member of the Rust community with your new mastery of the language. You have now officially started the journey toward becoming a Rustacean.
Functional Programming
Rust embraces a variety of programming paradigms, including functional programming, expression-oriented programming, and pattern-oriented programming. Let’s explore these various paradigms, starting with functional programming. Since Rust is our focus, I will present just a review of these programming models in this book.
What is functional programming? It is a programming model where functions are the essential building blocks of the language. With functional programming, functions are first-class citizens. You can use functions wherever a variable is normally found: a local variable, function parameter, or as a function return. A function can even perform operations on other functions, described as a higher-order function.
Rust is functional programming light. The language does not include every feature found in functional programming, such as lazy evaluation, a declarative programming style, tail call optimization, and more. However, Rust does support a functional style of programming.
Functional programming languages typically restrict procedural programming capabilities, such as global functions. As they are not incongruent, Rust allows for the comingling of procedural- and functional-style programming.
Pure functions are the centerpiece of functional programming. As a pure functions, a function is fully described through its function interface. There is a direct correlation between the function parameters and a specific return value, without side effects. In addition, the results of a pure function should be repeatable. For example, a function that relies on an internal random number, making the results unpredictable, is not a pure function.
Immutability is an important ingredient of functional programming. Pure functions, for example, lean heavily on immutable state to eliminate side effects. Pointers, global variables, and references are generally omitted from a pure function to avoid side effects that can leak from a function.
To summarize, functional programming offers several benefits:
 Added flexibility, with functions as first-class citizens
 More transparency, with the focus on functions and not individual lines of code
 Immutability, which makes programs easier to maintain by removing common problems such as side effects within functions
Expression Oriented
Rust is also an expression-oriented language, which is a programming style where most operations are expressions that return a value, instead of statements that return nothing. Expression-oriented programming is a close cousin of functional programming. All functional programming languages are also expression-oriented languages.
So what is a statement, and what is an expression?
 Statements do not return a value, but they can cause a side effect. The possible side effects are unlimited, including database manipulation or updating a shared variable. Indeed, the purpose of some statements is the side effect.
 Expressions are one or more operations that return a value, with minimal or no side effects. Pure functions are examples of expressions.
In Rust, expressions are preferred, even transfer of control statements such as the if and while statements are actually expressions.
The many benefits of expression-oriented programming include the following:
 Without side effects, expression-oriented programs are easier to maintain.
 The value of an expression is fully defined through its interface. This makes expressions more transparent.
 Because expressions are interface driven, they are more testable.
 Expression-oriented programming makes documentation easier. Without side effects, the expression can substitute as the documentation.
 Expressions are more easily composed.
The ability to combine the various programming paradigms is another of Rust’s advantages.
Listing 1.1 provides an example of both functional and expression-oriented programming in Rust. The factorial function is a pure function with no side effect. As an expression, the factorial function returns the result of the factorial calculation.
Code Listing 1.1.
Factorial is a pure function and expression.
fn factorial(n:i32) -> i32 {
 match n {
0..=1=>1,
 _=> n*factorial(n-1)
 }
}

Pattern-Oriented
Typically, professional programming in Rust involves an abundance of patterns. Fair to say, patterns have a ubiquitous presence in Rust coding. This nod to pattern matching contributes to the uniqueness of the Rust programming style. Rust source code simply looks different from C++ or Java, for example!
Pattern matching is often associated with switch statements. For example, C++ Java, Go, and other languages have a switch statement. This is single dimensional pattern matching largely based on string or integral expressions. In Rust, pattern matching is extended to instances of user-defined types (i.e., objects) and sequences.
Rust has a match expression instead of a switch statement. However, pattern-oriented programming extends well beyond the match expression. Every instance of any expression in Rust is an opportunity for pattern matching. For example, even a simple assignment or conditional expression can result in pattern matching. This provides interesting ways of reimagining your code.
Pattern-oriented programming in Rust offers several benefits:
 Pattern in Rust are highly expressive. This allows you to collapse complex code into simpler expressions.
 In Rust, pattern-oriented programming is complementary model to expression-oriented programming.
 Rust supports exhaustive pattern matching, which is more dependable and less error prone.
The display_firstname function demonstrates pattern matching, as shown in Listing 1.2. The function parameter is name, which is a tuple. The fields of the tuple are last and first. In the match expression, patterns are used to deconstruct the tuple, extract the first name, and print the name.
Code Listing 1.2.
The display_firstname function displays a first name.
fn display_firstname(name:(&str, &str)){
 match name{
 (_, first)=> println!("{}", first),
 }
}

Features
Professionals regularly select Rust as their favorite programming language in a variety of recent surveys. Much of this recognition pertains to the unique features found in Rust.
Let’s explore the core features that contribute to Rust and its popularity.
Safeness
Safeness is an important crosscutting feature touching almost all aspects of the language. Safe code is robust, predictable, and not prone to unexpected errors. With these attributes, Rust provides a solid foundation where you can confidently develop applications. Immutable variables, the single ownership principle, and other features contribute to this objective.
In addition, Rust enforces safe coding practices at compile time. The ownership model with the borrow checker is a perfect example of this approach. At compile time, the borrow checker performs a series of checks, including ownership. If the ownership check fails, the borrow checker presents an explanation and the compilation does not complete successfully.
Several factors contribute to safe code in Rust:
 Default immutability, which prevents inadvertent changes
 The enforcement of proper lifetimes to prevent anti-patterns, such as dangling references
 References for safe pointers
 A “resource acquisition is initialization” (RAII) strategy for variably sized resources, such as vectors, for dependable memory management
Ownership
The ownership feature provides safe memory access using the single owner principle. This principle consigns a single owner to variables, and never more the one owner.
This approach prevents sharing ownership of same memory. Race conditions, unstable variables, and dangling references are some of the potential problems mitigated with this approach. There are exceptions for sharing ownership as presented later in this book.
Let’s use a car analogy to demonstrate the single owner principle. Here are the basic facts: There is a car, and Bob is its sole owner.
Now here are two scenarios:
 Bob has the car.
 Ari occasionally wants to drive the same car.
As the owner, Bob can always drive the car, except when he has loaned it to someone else. If someone else (Ari) wants to drive the car, there are two possibilities: Bob must either sell or lend the vehicle to Ari. Either way, Bob loses possession of the vehicle, at least temporarily.
Here are the steps if Bob lends Ari the car.
 Bob drives the car.
 Bob lends the car to Ari. Ari drives the car. When Ari is done, he returns the car to Bob.
 Bob drives the car.
The borrow checker is responsible for enforcing correct ownership, including lending, at compile time. We will unlock the mystery of the borrow checker later in the book with the goal of making the borrow checker your best friend.
Lifetimes
Lifetimes is a feature in Rust that prevents accessing references that are no longer available. A reference is a basic pointer in Rust. If allowed, improper access to retired references can cause hanging references and potential program failure. The result would be vulnerable applications that are both unstable and unpredictable. Rust eliminates this problem with the lifetimes model.
The borrow checker manages lifetimes. You are notified at compile time of invalid lifetimes. These sorts of problems are better isolated at compile time, not at runtime.
When there is ambiguity related to lifetimes, lifetime annotations are hints to the borrow checker about the proper lifetime. If determining the lifetime is trivial, lifetime annotations are not required. The borrow checker will just know. This is called lifetime elision.
The benefit of the lifetimes feature is a stable memory model, without the worry of hanging references.
Fearless Concurrency
Fearless concurrency is important and worthy of inclusion in the list of major Rust features. Fearless concurrency provides a safe environment for concurrent programming. In many ways, this safe environment is created from the benefit of the beforementioned features. For example, the ownership model in Rust largely eliminates race conditions in concurrent programming.
When transitioning from serial to concurrent code, a process called hardening is often undertaken to ensure a safe environment for multithreaded code. Removing global variables, as shared data, is typically one step in the hardening process. Fearless concurrency eliminates the need for hardening.
Concurrent programming is often considered the bogeyman of coding. It can add complexity and make applications less maintainable. Worst of all, problems in concurrent programming are often not found until runtime. Fearless concurrency creates a safer environment for concurrent programming.
Zero-Cost Abstraction
Zero-cost abstraction is a feature of Rust features. Yes, you read that correctly. For that reason, it is the final feature mentioned here. Zero-cost abstraction is the policy that Rust features should not incur a performance penalty at runtime, if avoidable.
Generational garbage collection is an intrinsic feature of several popular managed languages, including Java, C#, and Go, for managing dynamic memory. Garbage collection can be costly and nondeterministic. As such, you never know when garbage collection may occur. Compare this to Rust, where there is no memory model. Absolutely none! Ownership, as described earlier in this chapter, provides deterministic memory management without overhead. That is an example of zero-cost abstraction.
Rust Terminology
Many technologies, including programming languages, have their own terminology. Familiarizing yourself with that terminology can be helpful when communicating with peers and others in the larger Rust community.
For Rust, the motif is crates, as in shipping crates. Here are some of the important terms in Rust. These will help you talk Rust.

Rust: Let’s start with the most important term: “Rust” itself. Rust is not an acronym or a special technology term. The name Rust comes from the term rust fungi, which is a robust pathogen that attacks living plants.
Graydon Hoare, the original Rust designer, has been credited with this statement: “I think I named it after fungi. Rusts are amazing creatures.”

Crate: A crate is a compilation unit in Rust. Executable, library, or external crates are the most common.
Executable crate: An executable crate is a binary executable that can be launched independently of other crates.
Library crate: Library crates provide services to other crates and do not execute independently.
External crate: External crates are external dependencies. For example, Crate A references Crate B, but Crate B is not within the same package. Therefore, Crate B is an external crate, or dependency, for Crate A.

Packages: A package consists of multiple crates that provide a specific service. Packages can consist of multiple executable crates and possibly a single library crate.

Modules: Modules in Rust are equivalent to namespaces from other programming languages. You can use modules to create a hierarchical program structure within a crate. Modules also help to avoid name collisions.

Cargo: There are several cargo entities within Rust, which extends the crates motif (cargo in crates).
Cargo tool: The Cargo tool is the Rust package manager.
Cargo.toml: The Cargo.toml file is the manifest and configuration file for Rust.
Cargo.lock: The Cargo.lock file is a record of all dependencies with their specific versions.

RS: RS (Rust source) is the extension for Rust source files.
Figure 1.1 shows the interrelationship of various elements of Rust.

Figure 1.1.
The interrelationship of various elements in Rust
Tools
The Rust environment hosts a variety of tools that span a variety of services, from compiling Rust source code to publishing crates. Understanding these tools will improve your productivity. There are too many tools to list here, and more tools will be introduced throughout the book.
This is a list of the more important Rust tools:

Rustup tool: The Rustup tool is the Rust installer. It also installs the toolchain. You can download the Rust installer at https://rustup.rs. Follow the directions there to successfully install Rust.

Cargo tool: Cargo is a multipurpose tool with package manager as the primary role. Ancillary services include compiling code, formatting source code, and creating new crates.
Here is a Cargo statement that creates a library crate:
 cargo new --lib mylib

Rustc tool: Rustc is the Rust compiler. Rustc can compile a Rust source file (.rs) into an executable or library binary.
Here is the Rustc statement to build a simple crate:
 $ rustc source.rs

Rustdoc tool: The Rustdoc tool compiles document comments embedded in a Rust source file into a help document, rendered in HTML.

Clippy tool: Clippy is a comprehensive testing tool consisting of several lints. The tool identifies common problems and best practices that can benefit your code.

Rustfmt tool: The Rustfmt tool reformats source files to adhere to the style guidelines for Rust.
Cargo is the pivotal tool in the Rust environment. You can use Cargo for many of the tasks required to maintain your environment and packages.
A Note About Security
In the security-conscious world in which we now exist, secure coding practices are an imperative. Few applications are immune to security considerations. In the modern era of computing, applications exist everywhere, including mobile devices, IoT devices, wearables, enterprises, and the cloud. This increases the potential impact of a security failure.
Rust provides a safe coding environment that reduces the attack surface, making development in the language inherently more secure. There are fewer vulnerabilities for cyber attackers to identify and possibly exploit.
Summary
This chapter introduced the software paradigms associated with Rust and many of its notable features.
The availability of the various paradigms provides flexibility and a best-of-all-worlds approach. The following Rust features complement the various programming models and define the important attributes of the language:
 Safeness
 Ownership
 Lifetimes
 Trustworthy concurrency
 Zero-cost abstraction
The chapter ended with your first complete Rust application. In the next chapter, we will expand on this with an exploration of the type system.

Chapter 2. Getting Started
This chapter introduces the core concepts required to create, compile, and run Rust executables and libraries. This includes completing your first Rust application—the illustrious “Hello, World” application. When learning a programming language, this application is often the first example. It is a great tool for learning a new programming language. The first documented example of this familiar application is found in the book The C Programming Language from Brian Kernighan and Dennis Ritchie back in 1972. Who are we to break tradition?
Several variations of the “Hello, World” application will be presented here while we explore different “getting started” topics.
We will also explore the Rust toolchain in this chapter. Knowledge of the tools in the toolchain, such as Cargo and Rustc, is essential to productive interaction with the Rust environment. For this reason, components of the toolchain are introduced here.
Preliminaries
Before we create our first application, Rust must be installed. Rustup is the Rust installer and toolchain manager. Rustup manages the proper installation for specific platforms.
By default, Rustup installs the latest stable build, also called a channel. At the moment, Rust is on a six-week release cycle. The upcoming release schedule is published at Rust Forge (https://forge.rust-lang.org/). The following are the three available channels:

Stable: The latest release

Beta: The next version available with the upcoming release

Nightly: The nightly build, which includes experimental features
You can also request that Rustup install specific versions of the Rust environment. This is especially useful if your organization has not upgraded to the latest release.
Different methods are available to install Rust. Each requires a different level of user involvement, from minimal to moderate. For a standard installation, choose a minimal approach. However, more involvement is required if you want to customize the installation.
Rust and Windows
When installed on the Windows platform, Rust requires the Microsoft C++ Build Tools from a recent version of Microsoft Visual Studio. Linux developers are fortunate and can simply skip this step. If Visual Studio is installed, you may already have the Build Tools. The availability of these tools can be confirmed with the Microsoft Visual C++ Redistributable.
If necessary, follow the instructions here to install the Visual C++ Build Tools:
https://visualstudio.microsoft.com/visual-cpp-build-tools/
You are now ready to install the Rust language.
Installing Rust
The most straightforward approach to installing the Rust language and toolchain is to visit the Rustup website. This is the minimal approach for a quick install of the standard Rust environment. You are presented with minimal options and documentation. Here is the web location:
https://rustup.rs
Alternatively, visit the Install Rust web page for more documentation and options, such as selecting either a 32-bit or 64-bit installation. Here is the location of the Install Rust page:
www.rust-lang.org/tools/install
For even more details, visit the Rust Getting Started page. This page documents how to install Rust, with some options, and it provides some helpful “getting started” commands for the Cargo tool, the Rust build tool and package manager. The bottom of the web page lists various editors and integrated development environments (IDEs) available to Rust developers:
www.rust-lang.org/learn/get-started
Rustup installs the Rust toolchain locally in these directories:

Windows: \users\{user}\.cargo\bin

Linux: home/.cargo/bin

macOS: /users/{user}/.cargo/bin
A great practice is to trust but verify. This would include your Rust installation. This is easily accomplished with either the rustc or the cargo tool, both included in the newly installed Rust toolchain. From an operating system command line, enter these commands:
rustc --version
cargo --version

The proper response is the current version of these tools:
$ cargo --version
 cargo 0.00.0 (a748cf5a3 0000-00-00)

$ rustc --version
 rustc 0.00.0 (a8314ef7d 0000-00-00)

If either command returns an error, the implication is that Rust is not properly installed or the environment variables are not set correctly.
Advanced Rustup
As demonstrated, rustup is an excellent tool for the general installation of Rust. It can also install a specific version of the Rust environment. This could be advantageous for a distinct reason, such as product requirements, reproducing problems found in older builds, or maybe developing on a code branch based on an earlier version of Rust. The rustup install version command installs the indicated version of Rust. For example, Rust 1.34.2 is a version from way back in 2019. Assuming this version is required for some reason, rustup can install that specific version, as follows:
$ rustup install 1.34.2

You can also install Rust from one of three channels, as mentioned earlier. The default channel is the stable release. Here is the syntax for Rustup to install Rust from one of the channels.
$ rustup
$ rustup install beta
$ rustup install nightly

After installation, you can use the rustup self uninstall command to uninstall the Rust environment.
Now that Rust is installed, it’s time for our “Hello, World” application.
“Hello, World”
Listing 2.1 shows the “Hello, World” application. Without a transfer control statement, it runs sequentially, displays the text “Hello, world!”, and then exits.
Code Listing 2.1.
The “Hello, World” program
fn main() {
 println!("Hello, world!");
}

Let’s examine the program.
First of all, the source code for the executable crate is saved in a file with an .rs extension, such as hello.rs. This is the standard extension for Rust source files.
Functions in Rust are preceded with the fn keyword. The function name, parameters, and return value follow, if any. Here is the syntax of a function:
fn func_name(parameters)->returnval

Snake case is the naming convention for functions in Rust. For this convention, each word of the function name starts with a lowercase letter and individual words are separated with underscores.
The main function is the entry point function for a Rust executable crate and the starting point of the application. In Rust, our main function has no function parameters or explicit return value.
Code for a function is encapsulated within curly braces, {} , which demarcates a function block. For the main function, the program concludes at the end of the main function block. It is the primary thread for the application.
In the main function, the println! macro displays the “Hello, world!” message and a linefeed. Function blocks can contain expressions, statements, and the occasional macro. Macros in Rust have an exclamation point (!) after the name. In most instances, expressions and statements are terminated with semicolons.
Compile and Run
Rust is an ahead-of-time compiled language where a crate compiles to a true binary, not an intermediate language requiring a virtual machine for execution. Rust is not a managed language. Once compiled, Rust binaries can probably execute anywhere else, even where Rust is not installed.
As stated earlier, rustc is the Rust compiler and is included in the Rust toolchain. It is installed by default with the remainder of the toolchain. rustc can build different types of binaries, depending on the platform. For Linux, the binary format is Linkable Format (ELF file). rustc can also create portable executables (PEs) when building a binary for the Windows platform.
Here, the rustc tool compiles the “Hello, World” crate to an executable binary:
 rustc hello.rs

When the executable crate is compiled, two files are generated:

cratename.exe: This is the executable binary.

cratename.pdb: This PDB (program database) contains metadata about the binary, such as symbolic names and source line information. Debuggers, such as GDB, read this PDB file to present user-friendly diagnostics information to developers.
From the hello.rs source file, rustc creates the hello.exe and hello.pdb files.
The rustc compiler is talkative, providing verbose warnings and error messages. References may also be provided for more detail. Here is the compiler error message displayed when the println! macro is improperly used without the obligatory exclamation point:
error[E0423]: expected function, found macro `print`
 --> hello.rs:2:2
 |
2 | println("Hello, world!");
 | ^^^^^ not a function
 |
help: use `!` to invoke the macro
 |
2 | print!("Hello, world!");
 | +

error: aborting due to previous error

For more information about this error, try `rustc --explain E0423`.

Despite the talkativeness of the Rust compiler, it is simply impractical at times to display all relevant error information during compilation. When this occurs, an error identifier is provided. Using the rustc --explain erroridentifier command, you can display additional error information. The additional information entails a detailed explanation of the error, suggestions on correcting the problem, sample code, and more.
Cargo
You can use the cargo tool to compile Rust crates and create binaries. This is in lieu of using the rustc compiler directly. cargo is a versatile tool that can perform various tasks, including creating and managing packages, compiling binaries, maintaining a secure environment, and managing dependencies. For compilation, cargo delegates to the rustc compiler.
Because of the diversity of this tool, rustaceans often prefer cargo , instead of rustc , for compilation. In addition, this means learning only one command-line interface instead of two. Since most rustaceans are probably using cargo already for something, such as creating new packages, it is simpler not to switch to a different tool. Keep in mind, though, that the rustc tool will continue to be used, just indirectly.
The cargo new command, shown next, creates a new package for either an executable or library crate. The default is an executable crate. A library crate can be requested with the --lib option.
 cargo new name

The cargo new command also creates a directory structure for the new package. Initially, this includes a root directory and src subdirectory. The tool will add more directories as needed. In the root directory are two files: .gitignore and cargo.toml. Either the main.rs or lib.rs crate is placed in the src subdirectory, depending on whether this is an executable or library package, respectively.
You can also create a package within an existing directory. From that directory, issue the following command, and a package is created at that location:
 cargo init

The .gitignore file lists directories and files excluded from GitHub. This initially includes the target subdirectory, which contains the compiled binaries, and the cargo.lock file.
Cargo.toml is the manifest and configuration file for the package. The TOML suffix is a reference to Tom’s Obvious Minimal Language and is a standard format for a minimal, but readable, configuration file. Cargo.toml contains important configuration details about the package, including the name of the package. The cargo new command creates the initial cargo.toml, as shown in Listing 2.2.
Code Listing 2.2.
Sample cargo.toml file
 [package]
 name = "packagename"
 version = "0.1.0"
 edition = "2021"

 # See more keys and their definitions at https://doc.rust-
 lang.org/cargo/reference/manifest.html

 [dependencies]

Within the cargo.toml file, the following information is presented:

name: The package name is derived from the cargo new command.

version: The three-part semantic version (major.minor.patch).

edition: The current Rust language edition.

dependency: Dependencies are documented within this section.

comments: The # character indicates a comment to the end of the line.
The cargo new command creates the cargo.toml file. Information can be inserted manually in the TOML file, such as license information, a brief description, and the location of the documentation.
In addition to the cargo.toml file, the cargo new command creates a source file in the src subdirectory. For an executable crate, this is the main.rs file that contains sample code for a “Hello, World” application. Of course, feel free to replace this with your actual code. Listing 2.3 shows the main.rs file generated by the cargo tool.
Code Listing 2.3.
Source file generated by the Cargo tool
fn main() {
 println!("Hello, world!");
}

You can compile the crate with the following command and create a binary executable:
 cargo build

This command must be executed from within the package. The cargo build command performs an incremental build. Changes to the crate, modifying the dependencies in cargo.toml, and other reasons may force a full build instead of an incremental one.
The cargo build command creates a packageroot/target directory. Within that directory, a debug or release directory is created, depending on the type of the build target for the binary. The cargo build command defaults to building a debug target. A debug binary has few, if any, optimizations, which is ideal for debugging. The release binary is most often optimized for either performance or size. The cargo build --release command creates a release binary that is placed in the release directory.
You can run an executable crate with the following command:
 cargo run

This must also be done from within the package. If the binary is not already built, cargo build will be done first. For this reason, some skip the separate build step entirely for executable crates and rely entirely on the cargo run command.
Library
When you use cargo to create a library, the primary difference is the creation of a lib.rs file, instead of main.rs and a “Hello, World” application. The lib.rs file contains sample code within a function that performs a trivial mathematical operation. All of this occurs within the context of a unit test. The following command creates a new package with a library crate:
 cargo new --lib packagename

Unlike executable binaries, libraries are not self-executing. Placing the source code for the library within a unit test provides a mechanism for executing that code. You can execute the library crate with the following command:
 cargo test

This command will run unit tests in the crate. For lib.rs, this provides the opportunity to execute and test the source code in the library. As a result, the cargo test command displays whether the unit test passed or failed.
Listing 2.4 shows the lib.rs that cargo creates, with sample code.
Code Listing 2.4.
Cargo-generated lib.rs file.pub
fn add(left: usize, right: usize) -> usize {
 left + right
}

#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 fn it_works() {
 let result = add(2, 2);
 assert_eq!(result, 4);
 }
}

Let’s explore the lib.rs crate. The file starts with the #[cfg(test)] annotation. This annotation asks the cargo build command to ignore unit tests and not to include them in the resulting binary. Within the file, each unit test is labeled with the #[test] annotation. The sample unit test performs a simple addition. The result of the operation is compared to the expected value within the assert_eq! macro. You update the code in the unit tests to reference the specific public functions of your library. There should be a unit test for each public function in the library.
Listing 2.5 provides an example of a library crate with two functions. The get_hello function is public and returns the “Hello, world!” string. The test_get_hello function is a unit test and tests the get_hello function.
Code Listing 2.5.
Example unit test and target function.pub
fn get_hello()->String {
 "Hello, world!".to_string()
}

#[cfg(test)]
mod tests {
 #[test]
 fn test_get_hello() {
 let result = get_hello();
 assert_eq!(result, "Hello, world!");
 }
}

You may want to create an executable crate that uses the library. The cargo.toml file for the executable must be updated to reference the library. Listing 2.6 shows the updated cargo.toml that references a local version of the hello library in the dependency section. The change in the file is highlighted in bold.
Code Listing 2.6.
Updated cargo.toml with hello dependency
[package]
name = "use_hello"
version = "0.1.0"
edition = "2021"

See more keys and their definitions at https://doc.rust-
lang.org/cargo/reference/manifest.html

[dependencies]
hello={path = "../hello" }

With the preceding cargo.toml file, the executable crate can access the public functions of the library. The syntax for accessing functions in the library is libraryname::function . The code in Listing 2.7 calls the get_hello function found in the hello library.
Code Listing 2.7.
Calling get_hello in the hello library
fn main() {
 println!(“{}”, hello::get_hello());
}

You can now use the cargo run command to run the executable crate and display the “Hello, world!” string.
Comments
So far, the source code in this chapter has not contained comments. Comments appear in source code for a variety of reasons, including identifying the author, highlighting license information, documenting functions, explaining complex algorithms, or simply providing important context.
Rust supports C-style comments. The // characters start a comment until the end of the line. You can frame multiline comments within the /* and */ characters.
In Listing 2.8, comments are added to the “Hello, World” source code to identify the author, source file, and the purpose of the application. Both multiline and single-line comments are shown.
Code Listing 2.8.
“Hello, World” program with comments
/* Author: Donis Marshall
 Hello.rs
 Hello, World program
*/

// Displays hello, world message
fn main(){
 println!("Hello, world!");
}

Rust also supports documentation comments. Documentation comments are compiled into an HTML page using the rustdoc tool. This tool is automatically included in the Rust toolchain. Compiling the documentation comments creates several HTML files in the {package}/target/doc/{package} directory. The main HTML file is index.html and can be opened in any browser.
For documentation, there are single-line comments and multiline comments—both support markdown. Single-line documentation comments use the /// characters. Multiline documentation comments are enclosed within the /** and **/ characters. Documentation comments apply to the next entity in the source file, such as a struct or function.
Let’s look at another version of the “Hello, World” application—as a library crate. This library exposes a hello_world function that returns a greeting in various languages. The function accepts a parameter that selects a specific language, using the major-minor language code, for displaying “Hello world!” Listing 2.9 shows the function with documentation comments.
Code Listing 2.9.
Multilingual “Hello, World” program with comments
/** Display hello based on the
 language (major.MINOR) provided.
 Languages support: enUS, enUK,
 frFR, and hiIN.
**/
pub fn hello_world(language:&str)->&'static str {
 match language {
 "enUS"=>"Hello, world!",
 "enUK"=>"Good day, world!",
 "frFR"=>"Bonjour le monde!",
 "hiIN"= !",
 _=>"Hello, world!"
 }
}

The //! characters precede documentation comments that apply to the parent entity, instead of the next. This is most often the current crate. Here is documentation for the hello library crate with markup included:
 The markup highlights the first line in bold:
//! Hello library crate

 The paragraph tags insert linefeeds:
//! <p>Author: Donis Marshall
//! <p>Apache 2.0 License

You can also add sample code to your documentation comments. This can provide invaluable guidance to users of the application. The sample code within documentation code can also be executed as unit tests. Place the sample code in the Examples section. Sections are designated with the /// # characters. Notice there is a space between /// and # . Bracket the code snippet with three backticks (///```) before and after. Listing 2.10 shows the sample code.
Code Listing 2.10.
Sample code within documentation comments
/// # Examples
///
/// ```
/// let greeting=hello::hello_world("hiIN");
/// assert_eq!(greeting, " !");
///
///

The cargo test command will execute both normal and documentation unit tests. In addition, the following command compiles documentation comments using the rustdoc tool, generating the index.html file and other related files:
 cargo doc

Figure 2.1 shows the index.html file in the browser from compiling the previously shown documentation comments.

Figure 2.1.
Index.html file result from compiling documentation comments
Figure 2.2 shows the documentation comments for the hello_world function.

Figure 2.2. Documentation comments for the hello_world function
Published Crates
Several approaches to creating a “Hello, World” application have been shown. Next, we will create a variation of the “Hello, World” application using a published crate. Rustascii is a public crate found in crates.io and displays various ASCII art for Rust, such as the Rust logo. The display_rust_ascii function of this crate displays “Hello, Rustaceans!” Here is the result of the function:
 ____ __
 / __ __ _______/ /_
 / /_/ / / / / ___/ __/
 / _, _/ /_/ (__) /_
/_/ |_|__,_/____/__/
Hello, Rustaceans!

You must first locate the rustascii crate in the crates.io repository. Fortunately, crates.io has a search feature at the top of the page. Searching for rustascii will locate the latest version of the crate. When the crate is found, a brief description, current version number, and other helpful information about the published crate is provide, as shown in Figure 2.3.

Figure 2.3.
The rustascii crate in the crates.io repository
In the package using the external crate, you need to update cargo.toml to reference the crate. You need to enter the name and version of the crate in the dependencies section. Find the icon for a clipboard within the rustascii page in crates.io. Select the clipboard to copy the dependency information identifying the current version of the rustascii crate. Finally, paste that information into the dependencies section of the cargo.toml file, as highlighted in Listing 2.11.
Code Listing 2.11.
Cargo.toml file that includes a rustascii dependency
[package]
name = "use_rust_ascii"
version = "0.1.0"
edition = "2021"

See more keys and their definitions at https://doc.rust-
lang.org/cargo/reference/manifest.html

[dependencies]

rustascii = "0.1.1"

After updating the cargo.toml file, call the display_rust_ascii function in the rustascii crate using the :: operator. The syntax is crate::function . Listing 2.12 shows sample code in an executable crate.
Code Listing 2.12.
Displaying “Rust” in ASCII art
fn main() {
 rustascii::display_rust_ascii();
}

When executed, this crate calls the display_rust_ascii function in the rustascii crate to display the greeting.
Main Function
The main function is the entry point function for executable crates. Execution starts at this function. The main function prototype has no parameters and returns either a unit or the Termination trait. In Rust, a unit is an empty tuple, which is () . This is the default return.
From the main function, you can return an integer value to the operating system using the Termination trait. The default implementation of the trait returns libc::EXIT_SUCCESS or libc::EXIT_FAILURE as an exit code. These values are most likely 1 and 0, but that is implementation specific.
Instead of returning directly from main , you can call the exit function (std::process::exit) to prematurely exit an application. However, the exit function immediately terminates the application without performing cleanup for the functions currently on the call stack, possibly preventing an orderly shutdown. The parameter of the exit function sets the process return value for the operating system.
Command-Line Arguments
Command-line arguments are sometimes used to affect application initialization, configuration, or flow control. This is an often-used technique to receive direction from a user. Entered at the command line, the arguments form a zero-based collection of values. The full path of the application itself is usually provided as the first command-line argument. The details about command-line arguments may vary between different environments. Be sure to review the specific documentation for a particular operating system.
The following command line has three arguments:
 myapp arg1 arg2

For the cargo run command, append the command-line arguments. The first argument, which is the full name of the application, is set implicitly. Therefore, arg1 and arg2 of this example are actually the second and third command-line arguments from perspective of the application:
cargo run arg1 arg2

Command-line arguments are provided as input to the main function in many languages. However, the main function in Rust has no parameters. Command-line arguments are instead read programmatically using the std::env::args function, which is found in the std::env module. The args function returns an iterator to the sequence of command-line arguments. Furthermore, iterator functions, such as the nth and collect functions, are available to access the command-line arguments. The nth function returns a specific command-line argument, if available. The collect function returns the arguments as a collection.
Listing 2.13 demonstrates various ways to access the command-line arguments.
Code Listing 2.13.
Various approaches to accessing command-line arguments
fn main() {
 // display arg 0
 if let Some(arg)=std::env::args().nth(0) {
 println!("{}", arg);
 }

 // iterate and display args
 for arg in std::env::args() {
 println!("{}", arg);
 }

 // collect and display args
 let all_arg: String=std::env::args().collect();
 println!("{}", all_arg);
}

Summary
Beginning with how to install Rust, this chapter provided the foundation for Rust programming that will underpin the remainder of this book. We will relentlessly build upon the base established here. Many of the concepts introduced, such as traits, dependency management, iterators, and more, will be revisited later in the book with extra layers of details.
Tools explored, such as rustc , rustdoc , and cargo , are the everyday ingredients of the Rust environment. These are tools that must be fully understood to effectively navigate Rust. You now understand how to accomplish the standard repertoire of tasks using these tools.
Crates.io expands the capabilities of Rust programming. The crates found in the repository often provide unique solutions. As importantly, the repository grows every day with new solutions and capabilities. Anyone in the Rust community can contribute a crate to the crates.io repository. This includes you!
Next, we will explore the Rust type system. Until you have a better understanding of the type safeness and immutability and the various types available in Rust, your applications will be limited in scope and functionality.

Chapter 3. Variables
For a programming language, the type system encompasses the available types with their features and characteristics. Of course, the Rust type system has some unique characteristics that further the overall objective of the language: safeness, security, and scalability.
The type system impacts every aspect of the programming language. Mutability, for example, has a broad impact on the language. The type system is the thread that binds an application. For that reason, it is essential to have a thorough understanding of the sweeping type system in Rust.
Rust is a strongly typed language. As such, variables are statically typed. The variable’s type is determined at declaration and cannot be changed afterwards. Even with type inference, a variable is assigned an inferred type, which will never change. This avoids the type of problems common to languages with weakly typed systems, including errors from the misuse of variables. Also, Rust is more flexible at inferring the correct type than other languages, including indirect inferences.
Immutability is the default in Rust and contributes to the safeness and security of the language. By default, variables are immutable. This prevents inadvertent changes and increases transparency.
Rust provides a full complement of standard types and operators. In addition, you can create custom types or aggregate types for modeling more complex problems. You could model an accounting system, a blockchain, or even the space shuttle!
Another benefit of the Rust type system is the refined types that are uncommon to other languages. These help developers efficiently manage memory utilization, especially in applications where every bit matters.
Terminology
The terms type, variable, and memory are related and frequently appear in this chapter. Actually, these terms have been mentioned a few times already. Memory is where data resides. Variables are named memory storage, and they remove the need to reference data using memory addresses. Symbolic names are much easier to remember! Memory has no intrinsic format. A type describes the memory layout of a value, such as an integer or float value.
Variable binding is another important term in the Rust type system. A declaration, such as the let statement, creates a binding between the variable name and a memory location. Put another way, memory locations are bound to variables. Rust supports flexible binding. A full exploration of binding is found in Chapter 15, “Patterns.”
Variables
Variables resolve to a memory address that identifies a specific memory location. The variable name is more descriptive and consistent than a raw memory address. This is not only helpful when coding but invaluable when maintaining or debugging an application. When you’re writing self-documenting code, descriptive names are essential as variable names.
The following are the rules and naming conventions for variable names:
 They are case-sensitive.
 They consist of alphanumeric characters and underscore.
 They cannot start with a number.
 The naming convention is snake case.
You can declare a nonstatic local variable with the let statement. The type for the variable is set explicitly within the let statement or via type inference. Either way, the variable is statically typed. You can initialize the variable with the let statement or later. However, variables must be initialized before using them in some manner.
Here are different syntaxes for declaring an immutable variable:
 let varname:type=value;
 let varname=value;
 let varname:type;
 let varname;

Listing 3.1 provides examples of various declarations.
Code Listing 3.1.
Example variable declarations
 let var1: i8 = 10; // full declaration
 let var2 = 11; // type inference
 let var3: i8; // uninitialized variable
 let var4; // type inference and uninitialized
 var3 = 12; // delayed initialization
 var4 = 13; // delayed initialization

Primitives
Primitives are the basic types and the building blocks of Rust. You can combine primitives to create more complex types, such as structs and enums. Primitives are intrinsic and implemented by the Rust compiler. Functions and attributes of the primitives are implemented in Rust libraries. For example, i32::MAX is an associated constant implemented for the i32 primitive.
Rust has both scalar and nonscalar primitives. Scalar primitives include the following types:
 signed integer
 unsigned integer
 float
 bool
 reference
Nonscalar primitives include the following:
 array
 tuple
 slice
 String
 str
Other primitive types include these:
 (): unit type
 fn: function pointer types
 raw pointer
In this chapter, we will review scalar primitive types. Other primitives, such as strings and arrays, are reviewed in later chapters.
Integer Types
Except for isize and usize, integer types are fixed sized, where the suffix of the type name defines the bit size. For example, i64 is a signed 64-bit integer.
The following are the signed integer types:
 isize
 i8
 i16
 i32
 i64
 i128
These are the unsigned integer types:
 usize
 u8
 u16
 u32
 u64
 u128
The size of the isize and usize types depends on the operating environment. It is the size of a pointer in the host architecture. If curious, you can confirm the size of any type with the size_of method function, as shown in Listing 3.2. This method is found in the std::mem module.
Code Listing 3.2.
Confirming the size of isize
 let size = mem::size_of::<isize>();
 println!("Size of isize: {}", size);

If inferred, the default type of signed integers is i32. For unsigned integers, the default type is u32. Listing 3.3 displays the default type of an inferred integer value. This code introduces several new topics, including generics, introspection, and the any type. All of this explained in more detail in later chapters.
Code Listing 3.3.
The print_type_of function displays the type of parameter.
fn print_type_of<T>(_: &T) {
 println!("{}", std::any::type_name::<T>()) // i32
}

fn main() {
 let value=1; // inferred typed
 print_type_of(&value);
}

For increased readability, underscores can be inserted as separators within numeric literals, for both integer and floating point values. Typically, underscores demarcate 103 segments. However, Rust is not the underscore police. You can place the underscore anywhere within a number, as demonstrated in Listing 3.4.
Code Listing 3.4.
Adding underscores to numbers as separators
 let typical1=123_456_678;
 let typical2=123_456.67;
 let interesting=12_3_456;

Overflow
An integer overflow or underflow occurs when the minimum or maximum value of an integral type is exceeded. Generally speaking, both are considered overflows. When an overflow occurs, the result is dependent upon whether the binary is a debug or release build. If it’s a debug build, a panic will occur when there is an overflow. Panics are exceptional events that can interrupt an application if unhandled. However, a panic does not occur when an overflow occurs within a release build. The overflow rotates the number from the maximum value to the minimum, or vice versa. In Listing 3.5, the number rotates from a maximum i8 value, 127, to a minimum i8 value, −128, when there is an overflow.
Code Listing 3.5.
Causing an overflow
let mut number = i8::MAX;
 number = number + 1; // overflow result=-128

An underflow is similar, except it rotates the other direction, from −128 to 127, as shown in Listing 3.6.
Code Listing 3.6.
Causing an underflow
 let mut number = i8::MIN;
 number = number - 1; // underflow result=127

The inconsistent results of an overflow, build versus release, can cause problems. The overflowing_add function provides an alternative with consistent results. With this function, the result is the same regardless of the build target. The overflowing_add function performs addition and returns a tuple as the result, which contains the result and the overflow status. If an overflow occurs, the overflow status is set to true . Listing 3.7 provides an example of using the overflowing_add function.
Code Listing 3.7.
Checking for an overflow with the overflowing_add function
let value = i8::MAX;
let result = value.overflowing_add(1); // (127, true)

The overflowing_sub function detects underflows. There are also other variations, such as overflowing_mul , overflowing_div , and overflowing_pow —each appropriately named.
Notations
Base 10 is the default base for integer values. You can change the base with the proper notation:
 0b for binary
 0o for octal
 0x for hexadecimal
Listing 3.8 provides some sample code.
Code Listing 3.8.
Various base notations
println!("{}", 10); // 10
println!("{:04b}", 0b10); // 0010
println!("{}", 0o12); // 10
println!("{}", 0xA); // 10

Floating Point Types
For real numbers, Rust has single- and double-precision primitive types that adhere to the IEEE 754 specification. Each type consists of a sign, exponent, and mantissa component. The f32 type is for single-precision numbers that are 32 bits wide. The f64 type represents double-precision numbers that are 64 bits wide. For type inference, the default floating point type is f64.
Unlike integral types, floating point types, or floats, are always signed. Listing 3.9 is a floating point example.
Code Listing 3.9.
Floating point example
use std::f64::consts;

fn main() {
 let radius=4.234;
 let diameter=2.0*radius;
 let area=consts::PI*radius;

 println!("{} {} {}", radius, diameter, area);
}

Neither float types, f32 or f64, are ideal for fixed-point numbers. This is especially true for currency values where exact precision is important. Lost dollars and pennies can add up! The Decimal type, found in the rust_decimal crate, is the type for fixed-point floating point numbers. You can find the rust_decimal crate in the crates.io repository. Create a Decimal number with the new constructor or the dec! macro, as shown in Listing 3.10.
Code Listing 3.10.
Creating a decimal
use rust_decimal::prelude::*;
use rust_decimal_macros::dec;

fn main() {
 let mut number1 = Decimal::from_str("-1.23656").unwrap();
 let mut number2 = dec!(-1.23656); // alternative

 // round up value to 2 decimal places
 number = number1.round_dp(2);
 println!("{}", number);
}

Floating Point Constants
Well-known floating point constants are available for your convenience. The constants are implemented as f64 primitives in the std::f64::consts module. Table 3.1 is a list of some f64 constants.
Table 3.1.
List of some f64 Constants

Infinity
Rust supports 32-bit and 64-bit versions of infinity and negative infinity. INFINITY and NEG_INFINITY are const values found in either the std::f32 or std::64 module. Here are two examples:
 let space:f32=f32::INFINITY;
 let stars:f64=f64::INFINITY;

Listing 3.11 shows sample code that leverages the INFINITY constant.
Code Listing 3.11.
Example of the INFINITY const
 let circle_radius=10.0;
 let pointw=0.0;
 let number_of_points=circle_radius/pointw;
 if number_of_points==f64::INFINITY {
 // Do something
 } else {
 // Do something else
 }

NaN
Not a Number (NaN) represents a numerically undefined or unknown result. This is sometimes the result of formulas that involve an INFINITY value. The square root of a negative number can also result in NaN, as shown in Listing 3.12.
Code Listing 3.12.
Using the NaN const
 let n=0.0;
 let result=f64::sqrt(n);
 if f64::NAN!=result {
 // handle proper result
 } else {
 // handle NAN
 }

Numeric Ranges
Type sizes in Rust are more discrete than in other languages. This enables developers to craft applications that are more efficient and specific to their requirements. Table 3.2 shows the minimum and maximum boundaries for signed integer types.
Table 3.2.
Range of Values for Signed Integer Types

Table 3.3 presents the range of values for unsigned integer types.
Table 3.3.
Range of Values for Unsigned Integer Types

Table 3.4 lists the range of values for the float types.
Table 3.4.
Range of Values for Floating Point Types

For bounds checking at runtime, MIN and MAX are associated constants that return the minimum and maximum values, respectively, of specific types. Listing 3.13 provides an example.
Code Listing 3.13.
Displaying the MIN and MAX const values
 println!("{} {}", u32::MIN, u32::MAX);
 println!("{} {}", f32::MIN, f32::MAX);

Casting
You can cast a value, variable or literal, from its current type to another type. Rust does not provide wide support for implicit casting. Many languages allow implicit casting when no precision is lost. However, Rust requires explicit casting even in this circumstance. Listing 3.14 provides an example of casting.
Code Listing 3.14.
Casting between types
 let var1=1 as char;
 let var2:f32=123.45;
 let var3=var2 as f64;
 let var4=1.23 as u8 as char;

The preceding code contains a double cast, which is allowed. Because you cannot cast a floating point value directly to a char value in the example, the floating point value is first cast to an unsigned integer. The unsigned integer is then cast to a char.
When casting from a floating point value to an integer, the decimal portion of the floating point number is truncated.
Numeric literals can be explicitly cast with type suffixes. The specification is valueType, where value is a numeric literal and Type is the full type name, such as i32, u32, f64, and so on, as shown next. Note that single-letter suffixes, common to other languages, are not supported in Rust. The approach in Rust is more descriptive.
 let val1=10i8;
 let val2=20f64;

Boolean Types
The Boolean type in Rust is bool and represents logical values. The acceptable values for a bool type are true and false. Here’s an example:
let condition:bool=true;

Internally, bool values are bitwise values 0x01 for true and 0x00 for false. You can cast bool values to i8 types. True becomes 1, while false becomes 0.
Bool values are often used within if keyword, as shown in Listing 3.15.
Code Listing 3.15.
Control path set with a boolean value
 let balance=20;
 let overdrawn:bool=balance < 0;
 if overdrawn {
 println!("Balance: Overdrawn {}", balance,);
 } else {
 println!("Balance is {}", balance,);
 }

Char
The char type is for individual characters. This is a Unicode character, Unicode Scalar Value (USV), with UTF-8 encoding. Furthermore, char values are 4 bytes in size and a code point in the Unicode table. This includes alphanumeric characters, escape characters, symbols, and even emojis. Yes, Unicode now has smiley faces! Unicode has a code point for each character in the various writing systems around the world, providing support for internationalization. ASCII is at the beginning of the Unicode table.
Listing 3.16 shows how to define a literal char value within apostrophes.
Code Listing 3.16.
Literal values
let var1='a';
let var2:char='b';

Assuming a proper Unicode value, you can cast between an integer and char type, as shown in Listing 3.17.
Code Listing 3.17.
Casting literal values
let var1=65 as char; // 'A'
let var2='A' as i32; // 65

Unicode supports various escape characters. Many of these are otherwise hidden characters, such as a newline or tab character. Table 3.5 presents each of the escape characters.
Table 3.5.
Escape Characters

Pointers
Rust has two categories of pointers: references and raw pointers. References are safe pointers. Conversely, raw pointers simply point to a value in memory. There is no implied behavior, such as releasing the memory when the pointer is no longer available. It is similar to a C-style pointer.
The value of a raw pointer is a memory address. This could be a memory address to a value on the stack, heap, or a static memory location. Raw pointers themselves reside in memory somewhere and are often found on the stack. But not always—a raw pointer stored in a node of a link list could be on the heap, for example. The size of the raw pointer (i.e., memory address) depends on the architecture of the host system.
It is important to recognize that raw pointers, references, and regular values are different types. This is a subtle but important distinction. For example, i32 and &i32 are different types. The i32 type refers to a 32-bit integer value. However, &i32 refers to a reference that has a safe pointer to an i32 value. In addition, &i32 is different from a *i32 type, which is a raw pointer type. If desired, you can always cast a reference to a raw pointer of a like type.
Figure 3.1 This example demonstrates raw pointers.

Figure 3.1.
“pa” and “pb” are aw pointers to a and b values.
Pointers are first-class citizens in the Rust language and have the same capabilities as any other type. Pointers can be used as variables, structure fields, function parameters, or return values.
References
References are safe pointers. Various rules apply to references, but not raw pointers, to ensure safeness. References borrow the value at the referenced memory location. Here are some other key points about references to keep in mind:
 References must be non-null.
 The underlying value must be a valid type.
 References have lifetimes.
 There is behavior associated with references, including ownership.
You declare a reference type with an ampersand, as shown previously. In addition, you can reference a value using the ampersand operator (&). In this context, you can interpret the ampersand as “get the reference of.”
The dereference operator (*) dereferences a reference. You will receive the value at the memory address that is referenced. This is the underlying value of the reference. Listing 3.18 provides an example of dereferencing.
Code Listing 3.18.
Example of dereferencing
let aref:&i32=&5;
let value:i32=*aref;

Mathematical operators are implemented for both value and reference types, as shown in Listing 3.19. For a reference, the value is automatically deference before performing a mathematical calculation.
Code Listing 3.19.
References and math operators
let ref1=&15;
let ref2=&20;
let value1=ref1+10;
let value2=ref1*ref2;
println!("{} {}", value1, value2); // 25 300

You can rewrite the preceding declarations for value1 and value2 differently, as shown in the next example. However, the result would be the same. But the following code is less readable. In fact, it is downright ugly! More importantly, the dereferencing is unnecessary. For the mathematical operations, it will automatically occur.
let value1=*ref1+10;
let value2=*ref1**ref2;

Listing 3.20 has examples of references, dereferencing, and mathematical operators.
Code Listing 3.20.
More examples of references
 let fruit_grove=32;

 // orange initialized with a reference to fruit_grove
 let oranges:&i32=&fruit_grove;

 // apples referenced with a reference to a literal value
 let apples:&i32=&10;

 // No need to deference the references
 let basket=oranges+apples;

 println!("{}", basket);

The == operator compares the value at a reference, not the memory location. If you want to compare the actual memory addresses, call the eq function, in the std::ptr module, as shown in Listing 3.21. The arguments for the eq function are the references to compare.
Code Listing 3.21.
Comparing pointers with eq function
let num_of_eggs=10;
let num_of_pizza=10;

let eggs=&num_of_eggs;
let pizza=&num_of_pizza;

eggs==pizza; // true
ptr::eq(eggs, pizza); // false

Operators
The standard operators, listed next, define the core behavior of the scalar primitives:
 Mathematical operators
 Boolean operators
 Logical operators
 Bitwise operators
The mathematical operators, shown in Table 3.6, are primarily binary operators that perform various numerical calculations, such as addition and subtraction.
Table 3.6.
Mathematical Operators a = 25 | b = 10 | y = 25.0 | z = 10.0

Binary operations have a left value and a right value, representing either side of a binary operation. They are often referred to as l-value and r-value, respectively. You can use a compound operator when the l-value is also the variable to be assigned. The behavior of these two operations is the same.
value=value+5; // + operator
value+=5; // compound + operator

Table 3.7 is a list of compound mathematical operators.
Table 3.7.
Mathematical Compound Operators a = 25 | b = 10 | y = 25.0 | z = 10.0

Boolean operators are mostly binary operations and return a true or false value. The success of the operation depends upon whether the values being compared, based on their types, are comparable.
Table 3.8 provides a list of Boolean operators.
Table 3.8.
Boolean Operators a = 25 | b = 10

Binary logical operators are lazy operators. With lazy operators, the r-value is evaluated only when necessary to resolve the overall expression. For example, the r-value of the && operator is evaluated only if the l-value is true. If the l-value of the && operator is false, the r-value would not be evaluated. This is called short-circuiting and can cause inadvertent software bugs. For Boolean operations, make sure that r-values do not cause necessary side effects. That side effect may not occur if there is short-circuiting. This can occur, for example, when you call a function as the r-value and it changes the state of your program, as required. If there is short circuiting, the function is not called and a necessary change may not occur.
For the && and || operators, the & and | operators are companion operators that do not short-circuit. Listing 3.22 provides an example.
Code Listing 3.22.
Display message is an expression that does not short-circuit.
true && {println!("does not short circuit"); false}; // displays message
false && {println!("short circuits"); false}; // does not display
false & {println!("does not short circuit"); false}; // displays message

Table 3.9 is a list of logical operations.
Table 3.9.
Logical Operators

The bitwise operators naturally perform bitwise operations. The input values for the bitwise operation must be integers.
Table 3.10 lists the bitwise operators.
Table 3.10.
Bitwise Operators a = 10 | b = 6

Compound operators are also available for bitwise operations and are listed in Table 3.11.
Table 3.11.
Compound Operators a = 10 | b = 6

Summary
In this chapter, you learned about an assortment of scalar types included in the language. The scalar types include integers, floats, chars, and more.
Rust is a strongly typed language, which, when combined with ownership and lifetimes, presents an extraordinarily safe environment for application development, including the manipulation of scalar types.
Another safety feature of the language is limited casting. Implicit casting between different types is not allowed, even if theoretically safe. For example, you cannot cast from an i8 to an i32 value.
The normal assortment of built-in mathematical, logical, and Boolean operations are provided in Rust. The standard behavior, as related to primitives, was described in this chapter. Operators in Rust are consistent with operators in other languages.
Strings are probably the most well-known and utilized non-scalar types. You have used strings in the various Hello, World programs already! However, strings were not formally reviewed in this chapter, as this chapter is reserved for scalar types. But there is always the next chapter, which is dedicated to strings.

Chapter 4. Strings
This chapter is dedicated entirely to strings. Strings are collections of printable and nonprintable characters. Rust strings adhere to the Unicode Standard with UTF-8 encoding. Unicode is a single codespace with code points for characters from around the world, including various languages and even emojis. Both active and inactive languages, such as hieroglyphics, are included in the standard. This provides support for internationalization, which makes it easier for your application to support users from around the world.
For example, the following is “hello” in hieroglyphics:

For your ancient Egyptian customers, this greeting is easier to provide because of Unicode.
Strings commonly appear in applications and are used in a variety of situations, including prompts, command-line information, user messages, file input, reporting, and more. Because of the ubiquity of strings in many applications, Rust offers safe strings and a wide variety of services for strings in the core language and other crates found at crates.io.
The primary string types in Rust are String and str, pronounced stir. We will discuss both.
Str
The str type is a primitive type and part of the core language. The str type has all the characteristics of a slice, including being unsized and read-only. Because str is a slice, you normally borrow a str, &str . A str consists of two fields: pointer to the string data and length.
String literals, defined within quotes (" … "), are str values that exist for the entirety of the program. As such, the lifetime of a string literal is static. The following is the notation for a string literal including the lifetime. You can find more about lifetimes in Chapter 9, “Lifetimes.”
&'static str

Listing 4.1 is an example of declaring a str type.
Code Listing 4.1.
Displaying a str
static STR_1:&str="Now is the time...";

fn main() {
 println!("{}", STR_1);
}

String
The String type, located in the Rust standard library (std), is implemented as a specialized vector that consists of character values. Strings can be mutable and are growable. Like a vector, the String type consists of three fields: pointer to a backing array, length, and capacity. The backing array contains char values included in the String. Length is the number of characters in the String, and capacity is the size of the backing array.
There are different approaches to creating new String types. Most often, String types are initialized using a string literal (i.e., str). Functions, such as String::from and str::to_string , convert a str to a String. In this book, we will use both functions for this conversion.
In Listing 4.2, we create two Strings from a string literal using both the from and to_string functions.
Code Listing 4.2.
Converting strs to Strings
 let string_1=String::from("Alabama");
 let string_2="Alaska".to_string();

You can create an empty string for String with the new constructor. Typically, this is a mutable String where text can be added later.
In Listing 4.3, we create an empty String, which is mutable, and then append the string “Arizona” to it.
Code Listing 4.3.
Appending to a String
 let mut string_1=String::new();
 string_1.push_str("Arizona");

As mentioned, Strings are a specialized vector—a collection of characters. You can even create a String directly from a vector. Create a vector of Unicode code points first, as integers. Each code point represents an individual character. The next step is to convert the vector to a string with the from_utf8 function.
Listing 4.4 is an example of creating a String from Unicode characters.
Code Listing 4.4.
Converting Unicode characters to a String
 let vec_1=vec![65, 114, 107, 97, 110, 115, 97, 115];
 let string_1=String::from_utf8(vec_1).unwrap();

In this example, the code points for “Arkansas” are delineated within a vector. The code point 65 is the ‘A’ character in the Unicode table, for example. The from_utf function then converts the vector into a String.
Length
What is the length of a specific Unicode string? This is a simple question with a complicated answer. First of all, it depends on whether you are referring to the number characters or bytes in the string. UTF characters can be described in 1 to 4 bytes. ASCII characters, at the beginning of the Unicode codespace, are 1 byte. However, the size of characters located elsewhere in the codespace may be multiple bytes.
Here are the byte sizes for various character sets:
 ASCII characters are a single byte in size.
 Greek characters are 2 bytes in size.
 Chinese characters are 3 bytes in size.
 Emojis are 4 bytes in size.
For ASCII, the length in bytes and the number of characters are identical. However, that may differ for other character sets. The len function returns the number of bytes in the string.
Here is how to get the number of characters within a String: You use the chars function to return an enumerator to the characters of the String, and call the count function on the enumerator to get the number of characters.
The example shown in Listing 4.5 displays both the number of bytes and characters in a string.
Code Listing 4.5.
Hello in different languages.
 let english="Hello".to_string();
 let greek="γεια".to_string();
 let chinese="你好".to_string();

 // English Hello: Bytes 5 Length 5
 println!("English {}: Bytes {} Length {}",
 english, english.len(),
 english.chars().count());

 // Greek γεια: Bytes 8 Length 4
 println!("Greek {}: Bytes {} Length {}",
 greek, greek.len(),
 greek.chars().count());

 // Chinese 你好: Bytes 6 Length 2
 println!("Chinese {}: Bytes {} Length {}",
 chinese, chinese.len(),
 chinese.chars().count());

Extending a String
You can extend the value of a String, but not a str type. String has several functions for this purpose:

 push

 push_str

 insert

 insert_str
For a String, the push function appends a char value, while push_str appends a string. Listing 4.6 provides an example.
Code Listing 4.6.
Appending to a String
 let mut alphabet="a".to_string();
 alphabet.push('b');

 let mut numbers="one".to_string();
 numbers.push_str(" two");

 // ab | one two
 println!("{} | {}", alphabet, numbers);

The mathematical + operator is implemented for the String type. As an alternate to the push_str function, it is another way to concatenate strings. The advantage of using the + operator is convenience.
In Listing 4.7, we create a greeting using the + operator.
Code Listing 4.7.
Appending with + operator
 let mut greeting="Hello".to_string();
 let salutation=" Sir".to_string();
 greeting=greeting+&salutation;

 println!("{}", greeting);

You may not want to append text to a string but rather insert within it. For inserting text within a string, the insert function inserts a char value, while insert_str inserts a string. For the insert function, the first parameter is implicit and refers to the current String. The second parameter is the position where the character should be inserted. The final parameter is the character to insert. The insert_str function is identical to the insert function, except the final parameter inserts a string. Here is the function definition of each:
fn insert(&mut self, position: usize, ch: char)
fn insert_str(&mut self, position: usize, string: &str)

Listing 4.8 provides an example of inserting text within a string.
Code Listing 4.8.
Inserting within a string
 let mut characters="ac".to_string();
 characters.insert(1, 'b');
 println!("{}", characters); // abc

 let mut numbers="one three".to_string();
 numbers.insert_str(3, " two");
 println!("{}", numbers); // one two three

Capacity
As a specialized vector, Strings have a backing array and a capacity. The backing array is storage for the string’s characters. Capacity is the size of the backing array, while length is the current size of the String. When the length exceeds the capacity, the backing array must be reallocated and expanded. There is a performance penalty when the backing array must be reallocated. Therefore, avoiding unnecessary reallocation can improve the performance of an application.
The String type has the same functions for managing the capacity as any vector.
Listing 4.9 provides an example of a mutable String that grows incrementally.
Code Listing 4.9.
Comparing capacity and length
 let mut string_1='快'.to_string(); // a
 println!("Capacity {} Length {}",
 string_1.capacity(), string_1.len()); // Capacity 3 Length 3

 string_1.push('乐'); // b
 println!("Capacity {} Length {}",
 string_1.capacity(), string_1.len()); // Capacity 8 Length 6

 string_1.push_str("的"); // c
 println!("Capacity {} Length {}",
 string_1.capacity(), string_1.len()); // Capacity 16 Length 9

The previous example created the word “happy” in Chinese (Mandarin), a character at a time. “Happy” in the Chinese language is “快乐的.” Two reallocations occur during application execution. Here are the details of the example:
1. Declare a string with the first character of “快乐的.” In Unicode, Chinese characters are 3 bytes wide. The initial capacity and length are 3.
2. Add the next character to the string. The length is now 6 and exceeds the capacity. This forces a reallocation.
3. Add the final character to complete the string. The length is 9, which exceeds the capacity again. This will force another reallocation.
Knowing the required capacity upfront enables a more efficient version of the previous application. The with_capacity function sets the capacity explicitly when you’re declaring a String value. Here is the function definition.
fn with_capacity(capacity: usize) -> String

Listing 4.10 shows a better-performing version of the previous example.
Code Listing 4.10.
Demonstrating the effectiveness of with_capacity
let mut string_1=String::with_capacity(9);

string_1.push('快');
println!("Capacity {} Length {}",
 string_1.capacity(), string_1.len()); // Capacity 9 Length 9

string_1.push('乐');
println!("Capacity {} Length {}",
 string_1.capacity(), string_1.len()); // Capacity 9 Length 9

string_1.push_str("的");
println!("Capacity {} Length {}",
 string_1.capacity(), string_1.len()); // Capacity 9 Length 9

The addition of the with_capacity function is impactful in this example. Initially, we set the capacity large enough to encompass three characters. This requires a capacity of 9 bytes. With the correct capacity, during execution, the backing array is not reallocated and performance is improved.
Accessing a String Value
Let’s start with an example that demonstrates how to access elements of a String. The code in Listing 4.11 appears to access the second character, of the String.
Code Listing 4.11.
Attempting to display a character
 let string_1="hello".to_string();
 let character=string_1[1];

However, the preceding example causes a compiler error:
error[E0277]: the type `String` cannot be indexed by `{integer}`
 --> src\main.rs:3:19
 |
3 | let character=string_1[1];
 | ^^^^^^^^^^^ `String` cannot be indexed by `{integer}`

The error message is accurate but does not completely explain the underlying problem. The concern is that trying to access a string with an index would be ambiguous. Does the index refer to the byte or character position? Without this knowledge, it is impossible, or at least unsafe, to resolve this expression. In Rust, accessing an individual character with an index is not allowed.
You can access characters in a string using a string slice, however. The starting and ending index indicate byte position. The result of the slice notation is a str.
 string[starting index..ending index]

The slice must align with the boundaries of a character. If not, a panic occurs at runtime. The example shown in Listing 4.12 runs successfully.
Code Listing 4.12.
Displaying a Unicode character
 let string_1="快乐的".to_string();
 let slice=&string_1[3..=5];
 println!("{:?}", slice); // 乐

Our diagram shows the byte position of each character in the “快乐的” string. The second character is from position three to five, as shown in the example in Figure 4.1.

Figure 4.1.
Byte diagram of the string “快乐的”
The following slice is an attempt to select the starting two characters of the “快乐的”string slice. However, the slice boundaries within the String are incorrect.
let slice=&string_1[0..=7];

When this is executed, the following panic occurs at runtime. It describes the problem in exceptional detail. The ending index is incorrect and does not align with the ending boundary of the second character. The message is helpful even identifying the correct boundary of the character you are within.
thread 'main' panicked at 'byte index 7 is not a char boundary;
it is inside '的' (bytes 6..9) of `快乐的`'

The is_char_boundary function of the str type confirms whether the indicated position aligns with the start of a char boundary. You can proactively call this function before creating a string slice. If the function returns true, it is more likely that the slice is correctly aligned.
Listing 4.13 provides an example of the function is_char_boundary .
Code Listing 4.13.
Confirming character boundary alignment
 let str_1="快乐的";
 println!("{}", str_1.is_char_boundary(0)); // true
 println!("{}", str_1.is_char_boundary(1)); // false

String Characters
Strings consists of characters. Iterating all the characters is sometimes useful. For example, you can apply some operation to each character, encode each character, count characters, or search and remove all words with the letter e, such as the book Gadsby. The chars function returns an iterator the characters of a str value.
There are plenty of exceptional ski resorts in the Czech Republic, including Špindlerův Mlýn, Keilberg, and Horní Domky. The word for skiing in the Czech language is “lyžování.” The example shown in Listing 4.14 enumerates all the characters in that word.
Code Listing 4.14.
Displaying Czech characters
 let czech_skiing="lyžování".to_string();

 for character in czech_skiing.chars() {
 println!("{}", character);
 }

You can display a character at a certain position using the nth function of the iterator. Here, we display the third character of the String:
 println!("{}", czech_skiing.chars().nth(2).unwrap());

Deref Coercion
You can substitute a borrowed String, &String , anywhere &str is expected. At that time, the String inherits the methods of the str type. This is possible because the String type implements the deref trait for str. Appropriately, this conversion is called deref coercion. The reverse is not available—that is, converting from str to a String type.
Listing 4.15 shows an example of using deref coercion.
Code Listing 4.15.
Deref coercion from String to str reference
 fn FuncA(str_1: &str) {
 println!("{}", str_1);
 }

 fn main() {
 let string_1="Hello".to_string();
 FuncA(&string_1);
 }

For this example, the FuncA function has a &str parameter. In main , we declare a String for "Hello" . FuncA is then called successfully with &String .
Formatted String
For creating fancy strings, the format! macro is convenient. The format! macro is similar to the print family of macros, except it returns a formatted string. That includes identical parameters. The format specifiers are explained in detail in Chapter 5, “Console.” Both the print! and format! macros rely on the std::fmt module.
Listing 4.16 is an example demonstrating the format! macro.
Code Listing 4.16.
Creating formatted Strings with the format! macro
 let left=5;
 let right=10;
 let result=format!("{left} + {right} = {result}", result=left+right);

 println!("{}", result); // 5 + 10 = 15

Helpful Functions
Rust has an impressive assortment of String functions that support string manipulation. Here are some of the more helpful functions for Strings.

 clear : Erases a String but does not reduce the current capacity. If desired, you can reduce the capacity with the shrink_to_fit function.
fn clear(&mut self)

 contains : Searches for a pattern in a String and returns true if found.
fn contains<'a, P>(&'a self, pat: P) -> bool

 ends_with : Returns true if the pattern is found as the String suffix.
fn ends_with<'a, P>(&'a self, pat: P) -> bool

 eq_ignore_ascii_case : Returns true if the String matches a pattern. The comparison is case insensitive.
fn eq_ignore_ascii_case(&self, other: &str) -> bool

 replace : Replaces a pattern found in a String. The modified String is returned.
fn replace<'a, P>(&'a self, from: P, to: &str) -> String

 split : Splits a String into separate Strings at the specified delimiter. An iterator is returned to enumerate the split Strings.
fn split<'a, P>(&'a self, pat: P) -> Split<’a, P>

 starts_with : Returns true if the String starts with this pattern.
fn starts_with<'a, P>(&'a self, pat: P) -> bool

 to_uppercase : Converts the String to uppercase.
fn to_uppercase(&self) -> String

Let’s demonstrate each of these functions.
Listing 4.17 empties an existing String, after which the String does not contain any characters. The shrink_to_fit function then reduces the capacity accordingly. The is_empty function returns true if a String has no characters.
Code Listing 4.17.
Clearing the string and then shrinking to size
 let mut string_1="something ".to_string();
 string_1.clear();
 string_1.shrink_to_fit();

 // string_1 is empty: true
 println!("string_1 is empty: {}",
 string_1.is_empty());

Listing 4.18, the contains function scans the String for the “fun” pattern, and returns true. The println! macro displays the result. A raw string, “r” prefix, is used within the macro because of the nested string within the display string.
Code Listing 4.18.
Finding a substring with the contains function
 let string_2="this is fun.".to_string();
 let result=string_2.contains("fun");

 // "fun" is found in "this is fun.": true
 println!(r#""fun" is found in "{string_2}": {result}"#);

In Listing 4.19, we look for “Topeka” as a suffix to the specified String. The result is true.
Code Listing 4.19.
Confirming a string suffix
 let string_3="going to Topeka".to_string();
 let result=string_3.ends_with("Topeka");

 // "Topeka" suffix for "going to Topeka": true
 println!(r#""Topeka" suffix for "{string_3}": {result}"#);

Non-case-sensitive comparisons are often useful. Listing 4.20 compares two Strings, using the eq_ignore_ascii_case function, that differ only in case. Notice that the second string is borrowed, using a reference (&). Moving the String would render the second String unavailable from that location forward. More about borrow versus move in Chapter 8, Ownership. The function returns true in this example.
Code Listing 4.20.
Case-insensitive comparison
 let string_4="ONE".to_string();
 let string_5="One".to_string();
 let result=string_4.eq_ignore_ascii_case(&string_5);

 // "ONE" equals "One": true
 println!(r#""{string_4}" equals "{string_5}": {result}"#);

In Listing 4.21, the replace function replaces the pattern “Bob” with “Alice”. The result is the updated String.
Code Listing 4.21.
Replacement within a string
 let string_6=
 "Bob went shopping; then Bob went home.".to_string();
 let result_string=string_6.replace("Bob", "Alice");

 // New string: Alice went shopping; then Alice went home.
 println!("New string: {}", result_string);

The split function partitions a String at each instance of a delimiter. In Listing 4.22, the String is delimited at spaces, which is a common delimiter. The function returns an iterator to a collection of Strings created from the operation. You can then iterate them individually.
Code Listing 4.22.
Splitting a String along spaces as delimiters
 let string_7="The magic of words.";
 let iterator=string_7.split(" ");

 // The magic of words.
 for word in iterator {
 print!("{} ", word);
 }

In Listing 4.23, since the String starts with “Sydney”, the starts_with function returns true.
Code Listing 4.23.
Confirming the String prefix
 let string_8="Sydney is scenic.".to_string();
 let result=string_8.starts_with("Sydney");

 // "Sydney" prefix for "Sydney is scenic.": true
 println!(r#""Sydney" prefix for "{string_8}": {result}"#);

In Listing 4.24, the final example, the to_uppercase function converts “Cool!” to uppercase. Naturally, there is also a to_lowercase function.
Code Listing 4.24.
Converting a String to uppercase
 let string_9="Cool!";
 println!("{} : {}", string_9, string_9.to_uppercase());

 // Cool! : COOL!

Summary
We have now reviewed the main collections in Rust: arrays, vectors, hash maps, and now strings. Actually, strings are a specialized vector where the elements must be Unicode characters. Rust does support other types of strings, such as OsString, CStr, CString, and ASCII string.
The standard Rust strings are the str and String types. The str type represents a string slice and is often used for string literals. Typically, strs are borrowed: &str . The String type is mutable, growable, and ownable. With deref coercion, you can freely substitute &string for &str .
Similar to a vector, a String type has three fields: pointer to the backing array, length, and capacity. You cannot access these fields directly except through functions of the String type.
You can access a string slice with slice notation. However, the slice must align on character boundaries. If not, a panic occurs at runtime. Scalar indexes are not allowed on strings.
We detailed some helpful functions for the String type. It may be worthwhile to explore the many other String functions found in the Rust documentation.

Chapter 5. Console
Many applications choose to interact with the console. The command-line of the console is ideal for logging events, configuring applications, accepting user input, accessing developer tools, and more.
Console applications that rely entirely on a command-line interface (CLI) for interacting with users are not uncommon and are an acceptable alternative to a graphical user interface (GUI). Like GUI applications, command-line user interfaces can have a good or bad design. Note that the best practices for designing a CLI for a console application are different from those of a GUI. This chapter, however, focuses on the technical capabilities for reading and writing to a console, not design choices.
Several commands exist to read and write to the console. We will start with the print and println macros, which are the most common.
Print
The print and println macros are frequently used to display information on the console. Both macros insert a formatted string into the standard output stream (stdout). The println macro appends a linefeed to the formatted output; the print macro does not. The first parameter of each macro is a format string and a string literal. The format string may include placeholders, which are the {} characters. The remaining parameters of the print macros are substitution arguments for the placeholders in the format string.
The print and println macros are variadic and can have a variable number of arguments. The print macro must have at least one argument, the format string. The println macro can have no arguments and simply display a linefeed.
The {} placeholders are reserved for public-facing types that implement the Display trait. Public-facing types typically have a well-known representation. Many of the primitive types in the standard library, such as integer and float, are considered public-facing types and implement the the Display trait. Other types, such as structs, may not implement the Display trait. These types cannot be used with the {} placeholder.
The format string of the println macro in Listing 5.1 has three placeholders. The placeholders are replaced with two variable values and a calculation.
Code Listing 5.1.
The println macro and placeholders
 let a = 1;
 let b = 2;
 println!("Total {} + {} = {}",
 a, b, a + b); // Total 1 + 2 = 3

The placeholders within the format string are replaced in order with the arguments a , b , and the result of (a + b). Each {} placeholder evaluates the next parameter in the sequence (see Figure 5.1).

Figure 5.1.
Println! macro with a format string and placeholders.
Positional Arguments
Format strings can have positional arguments as placeholders. You indicate the positional argument within the placeholder using an index: {index}. The index is zero-based and a usize type.
The main benefit of using positional arguments is to allow the unordered display of the parameters, as shown in Listing 5.2. The formatted string in this example displays the arguments in reverse order.
Code Listing 5.2.
Positional arguments in println macro
 let a = 1;
 let b = 2;
 println!("Total {1} + {0} = {2}",
 a, b, a+ b); // Total 2 + 1 = 3

In a format string, you can mix types of placeholders: non-positional and positional. However, the non-positional arguments are evaluated first. The source code shown in Listing 5.3 uses both types of arguments.
Code Listing 5.3.
Mixing non-positional and positional arguments
 let (first, second, third, fourth) = (1, 2, 3, 4);
 let result = first + second + third + fourth;
 println!(
 "{3} + {} + {} + {} = {4}",
 first, second, third,
 fourth, result); // 4 + 1 + 2 +_3 = 10

Figure 5.2 diagrams how the format string is evaluated.

Figure 5.2.
Depiction of normal and positional arguments in a format string
Variable Arguments
Placeholders in the format string can also reference variables. A variable argument is a type of positional argument. The referenced variable must be within scope and visible at the time. In Listing 5.4, the first, second, third, fourth, and result variables are referenced within placeholders in the format string.
Code Listing 5.4.
A println macro with variables as placeholders
 let (first, second, third, fourth) = (1, 2, 3, 4);
 let result = first + second + third + fourth;
 println!("{first} + {second} + {third} + {fourth}
 = {result}");

Named Arguments
The print macros can use named arguments. The syntax is name=value . These arguments can then be used within placeholders in the format string. In Listing 5.5, result is a named argument and referenced within the last placeholder of the format string.
Code Listing 5.5.
Named arguments in println
 let (first, second, third, fourth) = (1, 2, 3, 4);

 println!(
 "{} + {} + {} + {} = {result}", first,
 second, third, fourth,
 result = first + second + third + fourth
);

Both named and positional arguments can appear within placeholders in the format string. However, positional arguments cannot follow the named arguments in the parameter list. In Listing 5.6, prefix , a named argument, precedes any positional arguments in the println macro.
Code Listing 5.6.
A println macro with named and positional parameters
 let (first, second, third, fourth) = (1, 2, 3, 4);
 let result = first + second + third + fourth;

 println!(
 "{prefix} {first} + {second} + {third} + {fourth}
 = {result}",
 prefix = "Average: ",
 result = result as f32 / 4.0
);

Padding, Alignment, and Precision
Within the format string, you can set the padding, alignment, or numeric precision of the placeholders. This is great for creating professional looking displays and reports. You can fine-tune the format specification after a : (colon) character in the placeholder, {:format }.
You set the padding, or the column width, for a placeholder using the { :width } syntax. Within the column, the default alignment for numerical values is right alignment. Left alignment is the default for strings. You can override the default alignment with these characters:

The source code shown in Listing 5.7 demonstrates how to define the width and alignment of a placeholder.
Code Listing 5.7.
Defining the width and alignment of a placeholder
 let numbers = [("one", 10), ("two", 2000), ("three", 400)];
 println!("{:7}{:10}", "Text", "Value");
 println!("{:7}{:10}", "====", "=====");
 for (name, value) in numbers {
 println!("{:7}{:<10}", name, value);
 }

The result is a report consisting of two columns of data. The first column is seven characters wide and contains text that defaults to left alignment. The second column is ten characters and consists of numbers. However, alignment is explicitly set as left alignment.
Here is the report:
 Text Value
 ==== =====
 one 10
 two 2000
 three 400

For floating point numbers, you can add precision within the placeholder. You can control the number of positions displayed after the decimal place. In the placeholder, stipulate floating point precision after the padding. The syntax is padding.precision . If padding is not present, the syntax is simply .precision . For integral types, precision in the placeholder is ignored.
In Listing 5.8, two floating point numbers are displayed. The first is displayed with the precision of two decimal places within a column ten characters wide. The second is shown with four decimal places and a default width.
Code Listing 5.8.
Setting decimal places in the println macro
 let (f1, f2) = (1.2, 3.45678);
 println!("Result: {:<10.2} {:.4}",
 f1, f2); // Result: 1.20 3.4568

You can parameterize either the precision or width with the $ character. In the format string, precede the $ with the position of the argument within the parameter list.
In Listing 5.9, the println macro displays two floating point numbers. Notice the placement of the $ characters, each identifying the precision specification as an argument. The same argument, zero, is chosen to set the precision of both placeholders to three.
Code Listing 5.9.
Using the $ to select a replacement argument
 let (f1, f2) = (1.2, 3.45678);
 println!("Result: {1:<10.0$} {2:.0$}", 3, f1, f2);

Figure 5.3 is a diagram of the format string displaying floating point numbers.

Figure 5.3.
Depiction of the $ substitution parameter in a format string.
Here is the result. Both floating point numbers have the same precision.
 Result: 1.200 3.457

You can also parameterize both the padding and precision in the format string, as shown next. This is similar to the preceding example, except the padding specified in the first placeholder is also parameterized.
 println!("Result: {2:<0$.1$} {3:.1$}", 10, 2, f1, f2);

Figure 5.4 shows how the substitutions are applied to the format string at three locations.

Figure 5.4.
Parameterizing the padding and precision format specification.
Here is the result of the preceding println macro in the formatted string:
 Result: 1.20 3.46

Base
For the print macros, the default base for numbers is Base 10. However, you can specify a wide variety of other bases, including binary and hexadecimal. There is a letter designation for each supported base type. For hexadecimal, there are two designations: upper- and lowercase “x” for upper- and lowercase hexadecimal characters.

Listing 5.10 is an example demonstrating the various base types.
Code Listing 5.10.
Setting the base in the format specification
 println!("Default {}", 42); // 42
 println!("Binary {:b}", 42); // 101010
 println!("Octal {:o}", 42); // 52
 println!("Hexadecimal {:x}", 42); // 2a
 println!("HEXADECIMAL {:X}", 42); // 2A

Developer Facing
For the print macros, the public-facing types implement the Display trait for the {} placeholder. Other types are considered “developer facing” and use the {:?} placeholder. The {:?} placeholder requires an implementation of the Debug trait. Developer-facing format is from the developer perspective and is not necessarily user friendly. Some primitives and other types in the std library implement both the Display and Debug trait. Other types, such as arrays and vectors, implement the Debug trait but not the Display trait.
Listing 5.11 is an example of the {:?} placeholder.
Code Listing 5.11.
Displaying a vector with the {:?} placeholder
 let vec1=vec![1,2,3];
 println!("{:?}", vec1);

Most notably, user-defined types do not implement either the Display or Debug trait. You can add a default implementation of the Debug trait with the following derive attribute:
#[derive(Debug)]

In Listing 5.12, the Planet struct is assigned a default implementation of the Debug trait using the derive attribute. Planet is then used later in the program in the println macro with the {:?} placeholder.
Code Listing 5.12.
Displaying struct in the println macro
 #[derive(Debug)]
 struct Planet<'a> {
 name: &'a str,
 radius: f64,
 }

 fn main() {
 let earth = Planet {
 name: "Earth",
 radius: 3958.8,
 };

 // Planet { name: "Earth", radius: 3958.8
 println!("{:?}", earth); }
 }

The developer-facing view may not be as “pretty” as the public-facing view. The emphasis of the developer-facing view is practicality, and it can be rather pedantic. There is an option with developer-facing types for pretty print using the {:#?} placeholder. This adds a linefeed between each element displayed. The following displays the earth value using pretty printing:
 println!("{:#?}", earth);

Here is the result:
 Planet {
 name: "Earth",
 radius: 3958.8222,
 }

Write Macro
The print! and println! macros display to standard output. The write macro is more flexible and can forward formatted strings to different targets that implement either the fmt::Write or io::Write trait. The parameters for the macros are the target value, format string, and format parameters. The formatted string is written to the target. For that reason, the target should be mutable and an out value.
The Vec type, for example, implements the std::io::Write trait and therefore can be used as a target within the write macro, as shown in Listing 5.13.
Code Listing 5.13.
Displaying a vector using the write and println macros
 let mut v1 = Vec::new();
 write!(&mut v1, "{}", 10);
 println!("{:?}", v1); // [49, 48]

The write macro converts the value 10 into a string. The implementation of the macro for vec converts each character within the string into a Unicode character that is stored as separate elements in the vector.
Standard output is also a possible target for the write! macro. The write macro behavior is then similar to the print! macro. In Rust, Stdout represents the standard output stream. It is found in std::io module. Call the stdout function to obtain the Stdout. The code in Listing 5.14 displays a format string to the console, like the print macro.
Code Listing 5.14.
Displaying the result of the write macro to stdout
 let res = write!(
 &mut std::io::stdout(),
 "The radius of {} is {} {}", "the Earth",
 3958.8, "miles")
 .unwrap();

Display Trait
The {} placeholder of a format string accepts arguments that implement the Display trait for a public-facing view. You may want to implement the Display trait for selected types.
Found in the std::fmt module, the Display trait consists of the fmt function:
 pub trait Display {
 fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>;
 }

The fmt function creates the public-facing representation of the type. This is an instance method. For that reason, the first parameter is self . The second parameter of the fmt function, Formatter , is an out parameter containing the public-facing rendering of the type. The function returns a Result type to indicate whether the function succeeded.
 Exponent is a user-defined type that consists of a base and pow fields, which are inputs for evaluating an exponent. By default, structs do not implement the Display strait and therefore not available to use with the {} placeholder.
 struct Exponent {
 base: i32,
 pow: u32,
 }

Let’s implement the Display trait for Exponent , which requires the fmt function. The public-facing view of the Exponent structure is naturally the result of the exponentiation calculation. Listing 5.15 is the implementation of the Display trait for the Exponent structure.
Code Listing 5.15.
Implementing the Display trait for Exponent
 impl fmt::Display for Exponent {
 fn fmt(&self, formatter: &mut fmt::Formatter)
 -> fmt::Result {
 write!(formatter, "{}",
 i32::pow(self.base, self.pow))
 }
 }

In the function, the write macro calculates the exponent value and places the formatted string into the formatter argument.
With the implementation shown in Listing 5.16, the Exponent structure can now be used with the {} placeholder.
Code Listing 5.16.
Using the Exponent type in the println macro
 let value = Exponent { base: 2, pow: 4 };
 println!("{}", value); // 16

Debug Trait
The {:?} placeholder renders the developer-facing view of a value. Values used with the {:?} placeholder must implement the Debug trait found in the std::fmt module. Similar to the Display trait, the Debug trait consists of a fmt method:
 pub trait Debug {
 fn fmt(&self, f: &mut Formatter<'_>)
 -> Result<(), Error>;
 }

The Rectangle structure does not have a developer-facing view. For debugging, we decide to implement the Debug trait for the type:
struct Rectangle {
 top_left: (isize, isize),
 bottom_right: (isize, isize),
}

Listing 5.17 shows the implementation of the Debug trait. In the fmt function, the write macro renders the developer-facing view to the formatter. For the Rectangle type, the developer-facing view consists showing the top-left and bottom-right corners.
Code Listing 5.17.
Implementing the Debug trait for the Rectangle type
 use std::fmt;
 impl fmt::Debug for Rectangle {
 fn fmt(&self, formatter: &mut fmt::Formatter)
 -> fmt::Result {
 write!(formatter, "({} {}) ({} {})",
 self.top_left.0, self.top_left.1,
 self.bottom_right.0, self.bottom_right.1)
 }
 }}

A rectangle value can now be used within the {:?} placeholder, as shown in Listing 5.18.
Code Listing 5.18.
Using the Rectangle type in the println macro
 let value = Rectangle {
 top_left: (10, 10),
 bottom_right: (40, 25),
 };
 println!("{:?}", value); // (10 10) (40 25)

Format Macro
Until now, we have mainly focused on the print macros, print and println , which send formatted strings to standard output. However, there are several other related macros that create formatted strings:

 print : Sends a formatted string to standard output

 println : Sends a formatted string with an appended linefeed to standard output

 eprint : Sends a formatted string to standard error

 eprintf : Sends a formatted string with an appended linefeed to standard error

 format : Creates a formatted string

 lazy_format : Creates a formatted string with delayed rendering
Console Read and Write
You may want to create a fully interactive console application for the user. This, of course, would include exchanging information with the user via the console. The std::io module provides these helpful functions to access the console:

 stdout : Returns a handle to the standard output stream as a Stdout type

 stdin : Returns a handle to the standard input stream as a Stdin type

 stderr : Returns a handle to the standard error stream as a Stderr type
For reading input from the console, Stdin implements the BufRead and Read traits. These traits provide several functions for reading from the console. Here is the shortlist:

 read : Reads input into a byte buffer

 read_line : Reads a line of input into a string buffer

 read_to_string : Reads input to EOF into a string buffer
In Listing 5.19, the user is first presented a prompt using the println! macro. The user is prompted to enter their name. The read_line function reads the response and saves to an out argument. Afterwards, the String::trim_end function removes extraneous non-printable characters that can appear at the end of an input buffer. That can include a return and linefeed that was received with the user input. At the end, the program displays a hello message using the user’s name.
Code Listing 5.19.
This application is interactive.
 use std::io;
 fn main() {
 println!("What is your name? ");
 let mut name = String::new();

 io::stdin().read_line(&mut name).unwrap_or_default();
 if name != "" {
 print!("Hello, {}!", name.trim_end());
 } else {
 print!("No name entered.");
 }
 }

Instead of using print macros, you can display directly to the console using the standard output handle. First, get the handle to the standard output stream with the stdout function, which implements various functions that can display information in the console window. The write_all function is one of them and displays bytes, as shown here:
 io::stdout().write_all(b"Hello, world!")

Summary
The console can be an effective tool for communicating with users for a variety of reasons. The simplicity and straightforwardness of the console are sometimes preferred to a traditional graphical user interface.
You have learned how to read and write to the console using various instructions. This includes macros that write to the standard output. The print and println macros are the most common. These macros display formatted strings to the console. The formatted string is derived from the format string, placeholders, and substitution values, which are input parameters.
Console applications are becoming more mainstream. Text web browsers, games that interact from the command-line,, and developer tools are examples of this growing genre of applications. The next great console application could be yours!

Chapter 6. Control Flow
Control flow is the path of execution through your source code. Execution could start at main and execute source statements in order until the end of the function. This approach works for only the simplest of programs, such as a hello, world application. Even the most mundane application requires some level of variability in code execution, such as arcs and various branches. Transfer of control is the most common method for nonconsecutive execution and the focus of this chapter.
Rust has the usual suspects of keywords determining the control path and causing a transfer of control within an application. This includes the following expressions:

 if

 loop

 while

 for

 match
Of course, Rust applies its own viewpoint to these familiar constructs. Most notably, these are expressions, not statements, as in many other languages. Like other Rust features, this can have a significant impact on the look and feel of Rust code. In addition, certain programming artifacts are not included for safeness, such as the ternary operator or “goto” statement.
Although the match expression is included in the preceding list, it is primarily discussed in Chapter 15, “Patterns.”
The if Expression
The most common transfer of control is the if expression. The if evaluates a conditional expression as true or false to determine the control flow.
If the conditional expression evaluates to true, the if block is executed. Otherwise, the block is skipped.
Syntax for the if is as follows:
if condition {
 // true block
}

You can combine the if with an else block. This provides both a true and false block for the if . The if block is executed when the conditional expressions evaluates as true. Otherwise, the else block is executed.
Here is the syntax for the combined if else :
if condition {
 // true block
} else {
 // false block
}

Listing 6.1 provides an example of an if else .
Code Listing 6.1.
An if else example
 let city="Honolulu";
 let is_new_york="New York City"==city;
 if is_new_york{
 println!("Welcome to NYC");
 } else {
 println!("Not NYC");
 }

We declare city as a string literal that is compared to "New York City" . The result is used as the conditional expression for the if. If true, the Welcome to New York greeting is displayed.
Optionally, you can have one or more else if after the if . The else if is essentially a nested if . If more than one else if is present, they are evaluated in order until an condition expression evaluates as true. At that time, the else if block is executed. The else , if present, must follow all else if blocks. In this context, consider the else block the default behavior.
Here is the syntax for the else if :
if boolean condition {
 // true block
} else if condition {
 // nested true block
} else {
 // false block
}

Listing 6.2 shows the sample code.
Code Listing 6.2.
An if else example
 let city="Bangalore";
 if city == "New York City" {
 println!("Welcome to NYC");
 } else if city == "Paris" {
 println!("Welcome to Paris");
 } else if city == "Bangalore" {
 println!("Welcome to Bangalore");
 } else {
 println!("City not known")
 }

Similar to the previous example, we declare a variable, city , as a string literal. The variable is then compared to a series of cities. If there is a match, the related block is executed.
The if let expression is a variation to the if . Instead of using a conditional expression, pattern matching will determine the control path. If the pattern matches, the related block is executed. Otherwise, the block is skipped. In addition, else and else if can be used with the if let . Pattern matching is discussed further in Chapter 15, “Patterns.”
Here is the syntax of the if let expression with optional else if and else blocks:
if let pattern = expression {
 // pattern matches
} else if pattern = expression {
 // pattern matches
} else {
 // pattern does not match
}

Listing 6.3 provides an example of the if let .
Code Listing 6.3.
Creating an assignment with an if let
 enum Font {
 Name(String),
 Default,
 }

 let font=Font::Name("Arial".to_string());
 if let Font::Name(chosen) = font {
 println!("{} font selected", chosen);
 } else {
 println!("Use default font");
 }

This example creates a Font enum. The enum has two variants: the Name, for a specific, and Default. Afterwards, we create a font for Arial. The if let will match the Font::Name pattern. If the pattern is found, the underlying font is assigned to chosen, which is then displayed.
For an if , the if block can return a value. The default return is the empty tuple (). All the blocks within an if, including else and else if , must return a consistent type. The return value can be used to initialize a new variable, an assignment, or be part of a larger expression.
In Listing 6.4, the if returns either 1 or 2, based on the Boolean flag.
Code Listing 6.4.
Assigning a value using an if expression
 let flag=true;

 let value=if flag {
 1
 } else {
 2
 };

 println!("{}", value);

The flag is hardcoded as true. For that reason, 1 is assigned to value , which is then displayed.
The while Expression
The while expression is a predicate loop. The while block is repeated while the condition expression is true. When the condition expression is false, execution continues after the while block. If the conditional expression is initially false, the while block is never executed. For this reason, the while block is iterated zero or more times.
To avoid an infinite loop, the conditional expression for the while should eventually evaluate to false. There are legitimate reasons, however, for an infinite while loop, such as a message pump.
Here is the syntax for a simple while loop:
while condition {
 // while block
}

The while expression in Listing 6.5 calculates a factorial result.
Code Listing 6.5.
A while loop example
 let mut count=5;
 let mut result=1;

 while count > 1{
 result=result*count;
 count=count-1;
 }

 while let is a variation of while . However, it will iterate the while block until a pattern is matched. This is similar to the if let , except with a loop.
Listing 6.6 calculates a factorial using the while let expression.
Code Listing 6.6.
A while let example
 let mut count=Some(5);
 let mut result:i32=1;
 while let Some(value)=count {
 if value == 1 {
 count=None
 } else {
 result=result*value;
 count=Some(value-1);
 }
 }

The while let iterates the while block while the pattern matches Some(value) . The value is decremented within each iteration and multiplied against the previous product, result . When the underlying value becomes 1, the pattern is set to None, which ends the iteration. At that time, result will have the final factorial value.
The break and continue Keywords
The break and continue keywords can alter the execution of a while . The continue statement continues execution at the next conditional expression. This skips the remainder of the current block.
Listing 6.7 only displays odd numbers. If an even number is encountered, the continue statement skips the remainder of the block, and the number is not displayed.
Code Listing 6.7.
Continue at the next conditional
 let mut i=0;
 while i < 10 {
 i=i+1;
 if i % 2 == 0 {
 continue;
 }
 println!("{}", i);
 }

The while expression in Listing 6.8 iterates until a prime number is found, between 100,000 and 200,000This example uses the Primes crate located in the crates.io repository. The while loop breaks when a prime number is found, skipping the remainder of the block and exiting the while .
Code Listing 6.8.
Break when a prime number is found.
 let mut i=100_000;
 while i < 200_000 {
 if is_prime(i) {
 println!("Prime # found {}", i);
 break;
 }
 i=i+1;
 }

The for Expression
The for expression is an iterator loop. Iterators implement the Iterator trait and can be used directly with the for in syntax. However, collections, such as arrays and vectors, are not iterators but implement the IntoIterator trait. The IntoIterator trait describes the conversion from some type to an Iterator. Fortunately, this trait supports for also.
Here is the syntax for the for :
 for value in iterator {
 //
 }

Listing 6.9 is an example that tests a for using a range literal. A range literal defines a sequence of values. It is an instance of the Range type, with a begin and end field, which is exclusive. The result of a range literal is an iterator.
Code Listing 6.9.
A for loop that iterates a Range
use std::ops::Range;

fn main() {
 let r=Range {start: 0, end: 3};
 for value in r {
 println!("{}", value);
 }
}

The for will display the numbers 0, 1, and 2 on separate lines.
The shorthand syntax for a range literal is start..end or start..=end . Note that the .. operator is exclusive of the ending value, while the ..= operator is inclusive.
In Listing 6.10, for in iterates a range literal.
Code Listing 6.10.
A for that iterates a range literal
 for value in 1..=5 {
 println!("{}", value);
 }

This displays 1, 2, 3, 4, and 5 on separate lines.
Iterators have an enumerate function that returns a tuple with two fields for the index and value of the current item. The index is usize and identifies the position of the value within the sequence.
Listing 6.11 provides an example.
Code Listing 6.11.
A for that uses the enumerate function
 for value in (1..=10).enumerate() {
 println!("{:?}", value);
 }

Here is the result of the application, where the first field of the tuple is the index and the second field is the value:
(0, 1)
(1, 2)
(2, 3)
(3, 4)
(4, 5)

Arrays and vectors are popular collections but, as already mentioned, are not iterators. They are converted to iterators with their implementation of the IntoIterator trait.
In Listing 6.12, we enumerate the elements of a vector within a for in expression.
Code Listing 6.12.
Iterating a vector in a for loop
 let values=vec![1,2,3];
 for item in values {
 println!("{}", item);
 }

In the previous code, we could attempt to use the enumerator function with the vector. However, this would not work. The implementation of the IntoIterator trait does not provide an implementation of this function. First, you must convert the collection explicitly to an iterator with one of these functions: iter , iter_mut , or into_iter . After the conversion, the enumerate function can be called.
Here is how the iter , iter_mut , and into_iter functions are distinguished:
 The iter function yields immutable references (&T).
 The iter_mut function yields mutable references (&mut T).
 The into_iter function yields either a T , &T , or &mut T , depending on the use case.
In Listings 6.13, we declare a vector containing integer values. Within the for , the vector is converted to an iterator and then the enumerate method is called. This returns an iterator where each element is a (index, value) tuple. Within the for loop, the tuple is displayed.
Code Listing 6.13.
A for that displays indexes and values of vector elements
 let values=vec![1,2,3];
 for item in values.iter().enumerate() {
 println!("{:?}", item);
 }

In the next example, Listing 6.14, we iterate just the values in the vector. Within the for block, the items are displayed. We also attempt to modify the item. However, that will not compile.
Code Listing 6.14.
A for loop that modifies values in a vector
 let mut values=vec![1,2,3];
 for item in values {
 println!("{}", item);
 item=item*2;
 }

Here is the error message:
3 | for item in values {
 | ----
 | |
 | first assignment to `item`
 | help: consider making this binding mutable: `mut item`
4 | println!("{}", item);
5 | item=item*2;
 | ^^^^^^^^^^^ cannot assign twice to immutable variable

Examining an error message always makes for interesting reading. In this example, the error message does clarify the problem. We require mutable references! This is necessary to update the original vector. By default, for in returns a simple T for value, which is immutable. This invalidates our attempt to update the value. The iter_mut function provides a &mut T, making the value mutable. The version, Listing 6.15, works because of the iter_mut function.
Code Listing 6.15.
A for loop with a mutable iterator
 let mut values=vec![1,2,3];

 for item in values.iter_mut() {
 println!("{}", item);
 *item=*item*2;
 }

The version in Listing 6.16 also does not work. Since the default iterator yields T , the string values are moved with the for in . The reason is that strings have move semantics. This causes the final println! macro, after the for block, to generate a compiler error from the borrow checker.
Code Listing 6.16.
A for loop that moves String values
 let values=["a".to_string(), "b".to_string(),
 "c".to_string()];
 for item in values {
 println!("{}", item);
 }
 println!("{}", values[1]); // borrow checker error

This can also be fixed with the correct iterator for the circumstances, not the default iterator. Call the iter function instead to obtain an iterator that returns &T, a reference. For our latest example, this means the strings are borrowed, not moved, within the for block. This allows the strings to be used later after the for block, as shown in Listing 6.17.
Code Listing 6.17.
A for loop iterates values as &T.
 let values=["a".to_string(), "b".to_string(),
 "c".to_string()];

 for item in values.iter() {
 println!("{}", item);
 }

 println!("{}", values[1]);

The loop Expression
The loop expression is an infinite loop by design. There are various use cases for an infinite loop, including a message pump. However, you can always interrupt a loop with a break .
The loop is more than a “while true” loop. There are additional features that make the loop unique and preferred to the while true loop, in some circumstances.
Listing 6.18 is a template for a basic message pump using a loop . The loop receives a stream of messages. When the APPLICATION_EXIT message is received, the match arm ends the application, which of course exits the loop also.
Code Listing 6.18.
A loop expression example
 loop {

 match msgid {

 APPLICATION_EXIT=>return,

 // handle other messages

 _=>write!(

 &mut std::io::stderr(),

 "Invalid message").unwrap(),

 }
 };

The loop break Expression
Until now, break was used to interrupt any loop, while , for , or loop . However, the break can also return the loop result, but only for loop . This feature is not available for either while or for . The default return type of the break expression is the ! type, the never type. The never type means no value.
Listing 6.19 uses a loop to iterate an array until an even number is found.
Code Listing 6.19.
A loop that returns the first even number
 let values=[1,5,6,4,5];
 let mut iterator=values.iter();
 let mut value;

 let even=loop {
 value=iterator.next().unwrap();
 if value%2 == 0 {
 break value;
 }
 };

In this example, we declare an integer array, iterator, and an integer value at the beginning. In the loop, the next function is called with the iterator to get successive array values. Each value is checked. If the value is even, the break interrupts the loop and returns the value as the result.
The loop Label
The loop label provides flexibility and extends the scope of the break and continue keywords. This feature is not supported in many other languages.
With nested loops, you are typically limited to breaking or continuing within the context of the current loop, whether a for , while , or loop expression. With labels, however, Rust can continue or break in an outer loop. This avoids layers of break or continue keywords to achieve the same result. Nothing is more inelegant than a series of break or continue keyword to unwind a nested loop. Labels are a more direct solution.
As an annotation, you can add a label to a while , for , or loop expression. Here is the syntax of a label:
 'label :loop
 'label :while
 'label :for
Labels adhere to the naming convention of lifetimes. In addition, labels can be nested and even shadow other labels. You can transfer control to a label using a break or continue expression.
Here is the syntax:
 break 'label;
 continue 'label;

In Listing 6.20, a loop label is used to continue to an outer for .
Code Listing 6.20.
A loop label example
 let values=[[1,2,4,3], [5,6,7,8],
 [10,9,11,12]];
 'newrow:for row in values {
 let mut prior=0;
 for element in row {
 if prior > element {
 continue 'newrow;
 }
 prior=element;
 }
 println!("{:?} in order", row);
 }

In this example, we create a multidimensional array consisting of three rows. The goal of the application is to iterate each row and display its values. However, the values must be in ascending order. If the values are out of order, work on the current row should stop and start on the next. The outer for loop iterates the rows, while the inner for loop iterates the row values. In the inner loop, if a row value is out of order, the break returns control to the outer for loop and the next row is iterated.
Listing 6.21 is another example of using label. This example has an outer while and a nested loop . The outer loop is annotated with the thewhile label. There are also outer and inner counters. Both are incremented within their respective loops. When the inner counter is greater than or equal to the outer counter, the continue transfers control back the outer while . The outer counter will then be incremented and the nested loop restarted. This continues while the outer counter is less than 10. The application will display a triangle of values.
Code Listing 6.21.
A loop label used within an inner loop
 let mut outercount: i8 = 0;
 'thewhile: while outercount < 10 {
 outercount += 1;
 let mut innercount: i8 = 1;
 println!();
 loop {
 print!("{} ", innercount);
 if innercount >= outercount {
 continue 'thewhile;
 }
 innercount += 1;
 }
 }

This is the result of running the application:
1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4 5 6
1 2 3 4 5 6 7
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 10

The Iterator Trait
Iterators have an important role in most languages, including Rust. Iterators iterate over a sequence of times, from beginning to end. For a collection, such as a link list, an iterator could iterate the nodes. With a sequence, such as the Fibonacci series, an iterator iterates the values in the sequence. Types that expose iterators are more flexible and convenient. For example, iterators are conveniently used with the for , while , and loop .
There are different types of iterators. Forward and reverse iterators for example. As shown earlier, you can also have iterators that return a normal, mutable, reference, or mut reference items.
Iterators implement the Iterator trait. Types that implement an iterator often maintain a cursor, refer to as the item . The item is the current location in the collection or sequence. For the iterator trait, next is the only function that must be implemented. The next function returns each item, in order, as Some<T> or None when all items have been iterated.
The next function of an iterator is called implicitly with for in syntax. With a while or loop , you call the next function explicitly.
As an example, we will implement an iterator for the triangular sequence. The triangular sequence counts the number of points within an equilateral triangle. The formula is as follows:

Figure 6.1 shows the result of equilateral triangles when the sides consist of 2, 3, or 4 points.

Figure 6.1
Showing equilateral triangles of different sizes.
Listing 6.22 is the implementation of an iterator that iterates the triangular sequence.
Code Listing 6.22.
Implementation of iterator for the triangular sequence
 // state machine

 struct Triangular(u32);

 impl Iterator for Triangular {

 type Item = u32;

 fn next(&mut self) -> Option<Self::Item> {

 self.0+=1;

 // calculate triangular value

 Some((self.0*(self.0+1))/2)

 }

 }

 fn main() {

 let tri=Triangular(0);

 for count in tri.take(6) {

 println!("{}", count);

 }

 }

Triangular is a tuple struct that implements the triangular sequence as an iterator. For that reason, the struct implements the Iterator trait; each item is a u32 type. The self.0 field represents the number of points per side of the triangle. The next function increments the number of sides and then calculates the next value in the triangular sequence. The result is returned as Some(n).
It’s important to note that the triangular sequence is endless. The next function never returns None! For that reason, using the next function in the for could lead to an infinite loop. Instead, we used the take function to return just the next six items of the sequence.
Summary
It’s hard to create a meaningful application that just marches in a straight line. Transfer of control statements is integral to controlling the program path during execution. Rust supports many language components for managing the control path, including the following:

 if expression

 for expression

 while expression

 loop expression
Each is an expression the resolves to their controlling block. The control flow is based on their conditional expression.
The if can be combined with an if else and else . The conditional expression determines whether the if block is executed. The if let expression is similar but relies on pattern matching, not a conditional expression, to determine whether the if block is executed.
The for , while , and loop execute a block repeatedly based on a conditional expression. The block can execute 0..n times. You can use the continue and break keywords to either continue to the next iteration or interrupt the loop entirely.
You can create iterative types with the implementation of the Iterator trait. Iterators are helpful with the collections and sequences. The next function is responsible for returning the next item for the iterator.
The match expression, function calls, and others means of transfer of control are discussed in other chapters.

Chapter 7. Collections
Scalar types are often not convenient or practical for holding multiple values. In this chapter, we expand the conversation to include collection types, which are ideal for holding values. Imagine creating a financial application that tracks sales for 20 regions. You could create and manage 20 separate scalar variables, one for each region. It is more convenient to create a single variable—a collection of 20 elements. The collection would also be better at managing multiple elements, including sorting, creating reports, and displaying values.
The core collection types in Rust are similar to those in other languages: array, vector, and hash map.

Array type: Array is a fixed-sized collection of values. The values of the array must be the same type.

Vector type: Vector is an expandable collection of values that are the same type.

HashMap type: A hash map is a lookup table that consists of entries. Each entry consists of a unique key and value.
These collections are comparable to similar types in other languages, but with the unique protection of the Rust environment. Most importantly, the semantics of ownership and lifetimes apply to collections.
Arrays
An array consists of a fixed number of elements, of the same type. The array type and size must be established at compile time. The array list is immutable however the values within the array may or may be immutable. Arrays would be a bad choice for keeping track of transactions, for example. The number of transactions will increase throughout the year, and arrays are not growable. However, arrays are perfect for keeping track of monthly values. There are 12 months a year, and that is not likely to change.
An array is a primitive type and found in the standard prelude in the Rust environment. You declare an array with a variable name and square brackets. Within the square brackets stipulate the array type and number of elements. The size of the array must be known at compile time, which limits the length to a literal or constant value. Here is the notation:
 array_name[type; length]

Array literals are also described with square brackets. There are two notations. You can simply list the values, of the same type, within the square brackets, as shown here:
[value, value2, ..]

Alternatively, array literals can be described as a repeat expression, which includes a value and a repeat count. The repeat count is the size of the array. Each element will be set to the value. Here’s the notation:
[value; repeat]

Listing 7.1 shows various declarations of arrays.
Code Listing 7.1.
Declaring various arrays
 let array_1:[i32; 4]=[1,2,3,4]; // a
 let array_2=[1,2,3,4]; // b
 let array_3=[10;5]; // c

 println!("{:?}", array_1); // 1, 2, 3, 4 - d
 println!("{:?}", array_2); // 1, 2, 3, 4
 println!("{:?}", array_3); // 10, 10, 10, 10, 10

In the example, we declare and initialize three arrays.
a. array_1 is an array with four i32 values. It’s initialized with [1,2,3,4] .
b. array_2 array is declared using type inference. It’s also initialized with [1,2,3,4] .
c. With the repeat expression, array_3 array is composed of five values, each initialized to 10.
d. Display each array with the println! macro. Arrays implement the Debug trait. For that reason, an array can be displayed with the {:?} placeholder in the format string.
Array values are stored in contiguous memory. If declared as a local variable, the values are placed on the stack. Arrays can also be boxed where the values are copied to the heap, as discussed in the Chapter 20, “Memory.”
In Listing 7.2, various local variables are declared.
Code Listing 7.2.
Explicitly declared local arrays
 let array_1:[i32;1]=[1]; // 0x6f612ff7e8
 let array_2:[i32;2]=[1,2]; // 0x6f612ff7ec
 let array_3:[i32;3]=[1,2,3]; // 0x6f612ff7f4

 println!("a {:p}\nb {:p}\nc {:p}", &array_1, &array_2, &array_3);

The arrays in this example reside on the stack and are progressively larger. Based on their addresses, as shown in Figure 7.1, the arrays are in contiguous memory. The actual memory addresses may vary based on the platform architecture. Figure 7.1 depicts the array in memory, where the diff (difference) column is the distance, in bytes, from the prior array.

Figure 7.1.
Memory layout of arrays on the stack
The len function returns the length of an array, which can be helpful at times. In Listing 7.3, we display the length of two arrays.
Code Listing 7.3.
Displaying the length of two arrays
 let array_1=[1.23, 4.56];
 let array_2=[1.23, 4.56, 7.89];

 println!("len 1: {} | len 2: {}", array_1.len(),
 array_2.len()); // len 1: 2 len 2: 3

Multidimensional Arrays
Most arrays are single dimensional. However, multidimensional arrays can be useful also. Two-dimensional arrays consist of rows and columns, while three-dimensional arrays consist of rows, columns, and depth. And so on. There is no limit to the number of dimensions except your ability to comprehend the resulting code and readability.
Figure 7.2 shows the syntax for declaring a multidimensional array with square brackets.

Figure 7.2.
Notation for multidimensional array
Listing 7.4 shows how to declare a two-dimensional array.
Code Listing 7.4.
Declaring a two-dimensional array
 let array_1=[[1,2,3],[4,5,6]];
 println!("{}", array_1.len()); // 2

We also display the length of array_1 , which is 2 elements. By default, the len function applies to the first dimension of the array.
As an example, we can model a sports league as a three-dimensional array (see Listing 7.5). The dimensions would consist of divisions, teams, and then players. You have multiple divisions. Each division would have multiple teams, while each team has three players.
Code Listing 7.5.
Initializing a three-dimensional array
 let teams:[[[&str;3];4]; 2]=
 [[["Bob","Sam","Julie"],["Rich","Donis","Bob"],
 ["Hope","Al","Fred"],["Olive","Wanda","Herb"]],
 [["Alice","Sarah","Adam"],["Jeff","Jason","Eric"],
 ["Cal","Sal","Edith"],["Alice","Ted","Duane"]]];

The dimensions are described in order: the first dimension has three elements, second dimension has four elements, and the third dimension has two elements. In the array, the teams and divisions are anonymous. It would be nice to map each team to a unique team and division name. A lookup table would be perfect for this. Later in this chapter, we will present lookup tables in Rust, which is the HashMap type.
Accessing Array Values
You can access individual elements of an array using an index. Indexes are an offset from the beginning of the array. For that reason, arrays are zero-based, with the first element at position zero. Indexes are the usize type and appear within square brackets.
Listing 7.6 is an array of users. We access and display the second element.
Code Listing 7.6.
Displaying an array element with index
 let index:usize=1;

 let users=["bob".to_string(), "alice".to_string(),
 "sarah".to_string(), "fred".to_string()];
 println!("{}", users[index]); // alice

What occurs if we attempt to move a String value from the array instead of borrowing it?
let users=users[1];

This would cause unpredictable behavior, where portions of the array are not owned. For this reason, this is not allowed and the following error occurs:
cannot move out of here
move occurs because `users[_]` has type `String`, which does not
implement the `Copy` trait
help: consider borrowing here: `&users[1]`

You can access an element in a multidimensional array with additional brackets. Each dimension requires separate brackets.
In Listing 7.7, we have a two-dimensional array. There are two rows of three users. This requires double brackets, one for each dimension, to access a specific value.
Code Listing 7.7.
Displaying an element in a two-dimensional array with an index
 let users=
 [["bob".to_string(), "alice".to_string(), "adam".to_string()],
 ["sarah".to_string(), "fred".to_string(), "susan".to_string()]];
 let user=&users[1][0]; // sarah
 println!("{}", user);

Slices
A slice is a partial array that references a contiguous sequence of elements. A slice consists of two fields: a starting location and length. Define a slice with starting and ending indexes, with ellipses as a delimiter. Here is the notation:
 arrayname[starting_index..ending_index]

The starting index is inclusive, while the ending index is exclusive (by default). Listing 7.8 provides an example.
Code Listing 7.8.
Displaying a slice
 let array_1=[2, 4, 6, 8];
 println!("{:?}", &array_1[1..3]); // [4, 6]

Figure 7.3 highlights the slice relative to the input array.

Figure 7.3.
Memory layout of arrays on the stack
When defining a slice, precede the ending index with an equal sign to make it inclusive. Listing 7.9 is the same example as before, except the ending index is inclusive.
Code Listing 7.9.
Displaying a slice using an inclusive range
 let array_1=[2,4,6,8];
 println!("{:?}", &array_1[1..=3]); // [4, 6, 8]

Within the slice notation, the starting and ending indexes can be omitted. When they are omitted, the default is the extents of the array. Here are the possibilities:
 The starting index defaults to the beginning of the array.
 The ending index defaults to the end of the array.
 Without either, the default is the entire array.
Listing 7.10 demonstrates using defaults within the slice notation.
Code Listing 7.10.
Showing various slice ranges
 let array_1=[0,1,2,3,4,5];
 println!("{:?}", &array_1[..]); // [0, 1, 2, 3, 4, 5]
 println!("{:?}", &array_1[2..]); // [2, 3, 4, 5]
 println!("{:?}", &array_1[..3]); // [0, 1, 2]
 println!("{:?}", &array_1[..=4]); // [0, 1, 2, 3, 4]
 println!("{:?}", &array_1[4..]); // [4, 5]

Comparing Arrays
Arrays implement the PartialEq trait for comparisons. The equal (!) and not equal (!=) operators are the only logical operators that are available for array comparisons. The type of comparison is based on the array type. Valid comparisons for arrays adhere to these rules:
 Both arrays must be the same type.
 Both arrays have the same number of elements.
 The array type supports logical comparisons.
The example in Listing 7.11 confirms the equality of various arrays.
Code Listing 7.11.
Comparing arrays for equality
 let array_1=[1,2,3,4]; // a
 let array_2=[1,2,3,4];
 let array_3=[1,2,5,4];
 let array_4=[1,2,3];

 let result=if array_1==array_2 {true}else{false}; // b
 println!("array_1 == array_2: {}", result);

 let result=if array_1==array_3 {true}else{false}; // c
 println!("array_1 == array_3: {}", result);

 let result=if array_1==array_4 {true}else{false}; // d
 println!("array_1 == array_4 {}", result);

Here is the explanation of the comparisons:
a. Four integer arrays are declared.
b. The array_1 and array_2 arrays have the same number of elements and values. Therefore, the arrays are equal.
c. The array_1 and array_3 arrays have the same number of elements but different values. They are not equal.
d. The array_1 and array_4 arrays are different lengths. This disqualifies the comparison, and a compile error will occur.
Iteration
Rust provides various methods to iterate an array. The most straightforward method is a simple for loop. Arrays implement the IntoIterator trait to support this behavior. The for loop shown in Listing 7.12 returns each value of the array, in order.
Code Listing 7.12.
Iterating an array in a for loop
 let array_1=[1,2,3,4];
 for value in array_1 {
 println!("{}", value);
 }

The previous example listed the values of the array. You can also iterate both the value and associated index. The iter function returns an iterator for the function. The enumerate function for the iterator then returns the current index and value, as a tuple.
Listing 7.13 shows an example.
Code Listing 7.13.
Iterating an array with the enumerate function
 let array_1=[1,2,3,4];

 let e=array_1.iter();
 for element in e.enumerate() {
 println!("{:?}", element); // (0, 1) (1, 2) (2, 3) (3, 4)
 }

Coercion
It is sometimes necessary to convert an array to a slice or to convert a slice to an array. Fortunately, converting from an array to a slice happens implicitly in Rust. However, converting from a slice to an array is not implicit. You can call the try_into function on a slice to create an array. The array and slice must be the same length. The try_into function returns Result<T, E> . If successful, the function returns the array within the Ok<T> variant. Otherwise, an error is returned, as Err(E) .
Listing 7.14 converts a slice to an array.
Code Listing 7.14.
Converting between slices and arrays
 let slice_1=&[1,2,3,4][1..3];
 let array_1:[i32; 2]=slice_1.try_into().unwrap();

In the example, slice_1 is created from an array and has two elements, 2 and 3. Next, the slice is converted to an array using the try_into function. If successful, the result is assigned to array_1, which also has two elements.
Vectors
Vectors are dynamic arrays. In Rust, Vec is the vector type and found in the standard prelude. Vectors are an excellent counterpoint to arrays. Often, a collection may need to grow and even shrink. This is allowed with vectors, but not arrays.
Since a vector is dynamically sized, it is unsized at compile time. For that reason, the vector itself cannot reside on the stack. Vectors have an underlying array, the backing array, where the element values are stored. This backing array is allocated on the heap.
The binding for a vector has three fields:
 The current size of the vector
 A pointer to the backing array on the heap
 The capacity (size) of the backing array
These fields are not directly available but accessed through functions, such as the capacity and len functions.
The backing array is allocated when the vector is created. It is dropped when the binding is removed from memory. Capacity refers to the size of the backing array. Length refers to the actual number of values in the vector. This is always equal to or less than the capacity. When the length exceeds the capacity, the backing array is reallocated, copied, and capacity increased. Here is an overview of what occurs when this happens:
1. Capacity is increased.
2. A larger backing array is allocated.
3. Values are copied to the new backing array.
4. The original backing array is dropped.
5. The pointer and capacity of the vector are updated.
Figure 7.4 depicts the memory for a typical vector.

Figure 7.4.
For this vector, the underlying array has five elements with a capacity of eight.
Vec is a generic type. Generics are discussed in Chapter 14, “Generics.” You can declare an empty vector with the constructor function, new , as shown in Listing 7.15.
Code Listing 7.15.
Declaring a vector and adding an element
 let mut vec_1:Vec<i32>=Vec::new();
 let mut vec_2=Vec::new();
 vec_2.push('a');
 println!("{:?}", vec_2);

In this example, two vectors are declared. The first vector is an empty but can contain i32 values. It is mutable to add values in the future. The second vector is also mutable and empty, but the type is determined with type inference. The subsequent push adds a character to the vector. This also establishes the vector as a vector of characters. The println! macro displays the second vector.
You can also initialize binding for a vector with the vec! macro, as shown in Listing 7.16. You can use either array notation or a repeat expression.
Code Listing 7.16.
A vec! macro example
 let vec_1=vec![1,2,3,4];
 println!("{:?}", vec_1); // 1,2,3,4

The len and capacity functions return the length and capacity of a vector, respectively, as shown in Listing 7.17.
Code Listing 7.17.
For a vector, the length and capacity are functions.
 let vec_1=vec![1,2,3,4];
 let length=vec_1.len(); // 4
 let capacity=vec_1.capacity(); // 4
 println!("Length {} Capacity {}", length, capacity)

In this example, both the length and capacity are 4. However, the length and capacity of a vector can be, and often are, different. This is further explained later in this chapter.
Multidimensional
Declare a multidimensional vector with the same notation of a multidimensional array. Listing 7.18 is an example using the vec! macro.
Code Listing 7.18.
Declaration of two-dimensional vectors
 let vec_1=vec![[1,2,3,4],[5, 6, 7, 8]];
 let vec_2=vec![[1,2],[5, 6], [7, 8]];

This example declares a vector with two rows and four columns and a second vector with three rows and two columns.
Access
Individual values in a vector are accessible with indexes. Listing 7.19 is an example of returning an element from a vector.
Code Listing 7.19.
Accessing elements of a vector
 let vec_1=vec![1,2,3];
 let vec_2=vec![[1,2,3],[4,5,6]];
 let var_1=&vec_1[2]; // 3
 let var_2=&vec_2[1][1]; // 5

As a slice, you can return multiple values from a vector. Remember, slices are partial arrays, not a vector. The to_vec function is handy for converting a slice to a vector, as shown in Listing 7.20.
Code Listing 7.20.
Creating slices from vectors
 let vec_1=vec![1,2,3]; // a
 let vec_2=vec![[1,2,3],[4,5,6]]; // b

 let slice_1=&vec_1[0..2]; // c
 let slice_2=&vec_2[0][..]; // d
 let vec_3=&vec_1[..=1].to_vec(); // e

Here is an explanation of the example:
a. Declare vec_1 as a vector of three integers.
b. Declare vec_2 as a two-dimensional vector of integer values. The vector has two rows and three columns.
c. Create a slice from the first two values in vec_1 .
d. Create a slice from the first row of values in vec_2 .
e. Create a slice from the first two values in vec_1 . Convert to a vector.
When you access a vector, an invalid index can cause a panic at runtime. For example, mistreating a vector as one-based is a common problem, which can lead to this sort of error (see Listing 7.21).
Code Listing 7.21.
Invalid access to a vector
 let vec_1=vec![1,2,3];
 let var_2=vec_1[3]; // panic occurs

The following panic occurs when this code is executed:
thread 'main' panicked at 'index out of bounds: the len is 3
but the index is 3', src\main.rs:3:15

For accessing elements, the get function of the vec type is a robust solution for getting a specific value. The get function accepts the index as a parameter and returns an Option<T> enum. If successful, Some<T> is returned where T is the vector value. Otherwise, None is returned.
The get function is used in Listing 7.22 to safely access an individual value in a vector.
Code Listing 7.22.
Getting an element with the get function
 let vec_1=vec![1,2,3];
 if let Some(var_1)=vec_1.get(3) {
 println!("{}", var_1);
 } else {
 println!("Not found");
 }

Let’s examine the example. A vector with three integer values is declared. Within an if let expression, the get function is called to request the fourth value of the vector. If this is successful, var_1 is initialized with the underlying value and displayed. Otherwise, an error message is displayed.
Iteration
You can iterate a vector in the same manner as an array. Listing 7.23 provides an example.
Code Listing 7.23.
Iterating a vector with a for loop
 let vec_1=vec![1,2,3,4];

 for value in vec_1 {
 println!("{}", value);
 }

Resizing
You can add or remove values from a mutable vec. The push and pop functions treat the vector as a stack. The push function adds an element to the end of vec, with no return value. The pop function removes the last element and returns Option<T> . If successful, the pop function returns the removed value as Some<T> . Otherwise, None is returned.
Listing 7.24 provides an example of pushing and popping values of a vec.
Code Listing 7.24.
Resizing a vector with the push and pop functions
 let mut vec_1=Vec::new();

 vec_1.push(5);
 vec_1.push(10);
 vec_1.push(15);
 vec_1.pop();

 println!("{:?}", vec_1); // [5, 10]

You can also insert elements anywhere within a vector. The insert function adds a value before the position indicated. It has two parameters: the position and the value to insert. There is no return value. Listing 7.25 is an example of the insert function.
Code Listing 7.25.
Inserting new elements in a vector
 let mut vec_1=vec![1,2,3];
 vec_1.insert(1, 4); // 1, 4, 2, 3

Capacity
For a vector, capacity refers to the size of the backing array. Managing the capacity can improve the performance of vectors.
The reallocation of the backing array occurs whenever the capacity is exceeded. Writing your code to reduce the number of reallocations can improve performance.
Listing 7.26 highlights the potential impact of capacity.
Code Listing 7.26.
Displaying the capacity of a vector
 let mut vec_1=vec![1,2,3];

 // Length 3 Capacity 3
 println!("Length {} Capacity {}",
 vec_1.len(), vec_1.capacity());

 vec_1.push(4);

 // Length 4 Capacity 6
 println!("Length {} Capacity {}",
 vec_1.len(), vec_1.capacity());

In this example, length and capacity for vec_1 is initially 3. The push function adds a value to the vector. The length of the vec_1 will now exceed the capacity and a reallocation of the backing array occurs. Boom—performance hit! The length is updated to 4, while the new capacity is 6. When a reallocation occurs, the capacity is doubled.
We can use our insight of the application to avoid the performance hit. In the version shown in Listing 7.27, the capacity of the vector is set to 4 initially.
Code Listing 7.27.
Preset capacity with the with_capacity function
 let mut vec_1=Vec::with_capacity(4);
 let mut vec_2=vec![1, 2, 3];
 vec_1.append(&mut vec_2);

 // Length 3 Capacity 4

 vec_1.push(4);

 // Length 4 Capacity 4
 println!("Length {} Capacity {}",
 vec_1.len(), vec_1.capacity());

In this version, the with_capacity function sets the initial capacity to 4. We initialize the vec_1 with a second vector that has three elements. A fourth element is then added to vec_1 without a performance hit, unlike the prior example.
In addition to with_capacity , there are two other functions helpful for managing capacity. The reserve function increases the capacity of an existing vector. The shrink_to_fit function reduces capacity, mainly to conserve unused memory, as shown in Listing 7.28.
Code Listing 7.28.
Managing a vector with reserve and shrink_to_fit functions
 let mut vec_1=vec![2,4,6]; // length = 3 capacity = 3
 vec_1.reserve(7); // length = 3 capacity = 10
 vec_1.push(8); // length = 4 capacity = 10
 vec_1.shrink_to_fit(); // length = 4 capacity = 4

HashMap
A hash map is a lookup table where entries consist of both a key and value. It is a growable collection where entries can be inserted and removed at runtime. The hash map in Rust is similar to a dictionary or map in other languages. The key must be unique within the hash map. You cannot have duplicate keys. However, values can be nonunique. You look up a specific value in the hash map using the associated key. The key is equivalent to an index for an array, but it’s more versatile. You are not limited to a usize type. Keys can be virtually any type, including integers, floats, strings, structures, arrays, and even other hash maps.
The HashMap<K, V> type is the implementation of a hash map in Rust. It is a generic type with K and V as the type parameters. K is the key type, while V is the value type. Both the key and value type are homogenous. All keys in the hash map are the same type (K). Separately, all values are the same type (V). The key type is flexible but must implement the Eq and Hash traits, as shown next. You can also add the implementation of these traits to a type with this attribute.
 #[derive(PartialEq, Eq, Hash)]

For the HashMap type, the default hashing function is implemented with quadratic probing and SIMD lookup. In addition, the default hasher provides reasonable security and protection against hash DoS attacks. For additional security, the hashing function has a random key based on available entropy. You can substitute custom hashers that implement the BuildHasher trait. Also, alternative hashers are available in crates.io.
Hash maps are not a fixed size. For that reason, the entries for the hash map are placed on the heap. If desired, you can also set the capacity of the hash map.
Creating a HashMap
The HashMap type is not included in the standard prelude. It is used less frequently than arrays or vectors. HashMap is found in the s td::collections::HashMap module.
Create a HashMap with the new constructor function. This will create an empty HashMap. You can then populate the hash map using the insert function. In Listing 7.29, we create two HashMap.
Code Listing 7.29.
Declaring and initializing two hash maps
 let mut map_1:HashMap<char, f64>=HashMap::new();
 let mut map_2=HashMap::new();
 map_2.insert("English".to_string(),
 "Hello".to_string());
 println!("{:?}", map_2);

We create an empty HashMap, map_1 with the new constructor function. It is mutable to allow for additional entries later. Next a second HashMap, with the type inferred as HashMap<String, String>, is created, also mutable. It is named map_2. The insert function is then called to add an entry. map_2 is then displayed
We can also remove entries from a HashMap with the remove function. Here, we remove an entry from the HashMap in the previous example:
 map_2.remove(&"English".to_string());

We can also create a HashMap from an array of tuples. field.0 of the tuple is the key, while field.1 is the value. The from function creates a HashMap from the array with the tuples as entries. Listing 7.30 shows an example.
Code Listing 7.30.
Initializing a HashMap with an array
 let famous_numbers=HashMap::from([
 ("Archimedes' Constant", 3.1415),
 ("Euler's Number", 2.7182),
 ("The Golden Ratio", 1.6180),
 ("Archimedes' Constant", 6.0221515*((10^23)as f64)),
]);

This example creates a HashMap<&str, f64>. The HashMap is initialized with four entries, each a famous number.
Accessing the HashMap
With the key, the get function looks up a value in the HashMap. The function returns an Option enum. If the key exists, the value is returned as Some(value). Otherwise, None is returned.
A HashMap with two entries is created in Listing 7.31. We then request a value for a specific key, “Spanish”. If successful, the value for the selected key is displayed.
Code Listing 7.31.
Getting the value of a hash map entry
 let mut map_1=HashMap::new();
 map_1.insert("English", "Hello");
 map_1.insert("Spanish", "Hola");

 let result=map_1.get(&"Spanish");

 match result {
 Some(value)=> println!("Found {}", value),
 None=>println!("Not found")
 }

Updating an Entry
You can update an entry in the hash map simply by reinserting a value at an existing key, as shown in Listing 7.32.
Code Listing 7.32.
Updating a hash map
 let mut map_1=HashMap::new();
 map_1.insert("English", "Hello");
 map_1.insert("Spanish", "Hola");
 map_1.insert("English", "Howdy");

In this example, we create a hash map with multiple entries. Each entry maps a language to a flavor of “Hello.” The “English” key is seemingly added twice to the hash map. However, the second insert simply replaces the value. Therefore, the final value for the “English” key is “Howdy.”
At times, it is helpful to know whether the insert function is inserting or updating a hash map entry. The return value provides this information as an Option<T> enum. When a new entry is inserted, None is returned. However, if the entry exists, the value is updated and Some<T> is returned, where T is the previous value.
Listing 7.33 is an updated version of the previous example. It is modified to confirm the result of the insert function.
Code Listing 7.33.
Confirming insertion in a hash map
 let map_1:HashMap<bool, isize>=HashMap::new();

 let mut map_2=HashMap::new();
 map_2.insert("English", "Hello");
 map_2.insert("Spanish", "Hola");
 let result=map_2.insert("English", "Howdy");

 match result {
 Some(previous)=>println!("Previous: {}", previous),
 None=>println!("New entry")
 }

In this example, the result of the final insert function is checked. The match displays whether the entry has been inserted or replaced.
The entry function is another way to access a HashMap value. The only parameter is the HashMap key. It is a convenient way to modify a value. The entry function returns an Entry<K,V> enum, which indicates whether the entry is occupied or vacant. Here is the type.
 pub enum Entry<'a, K: 'a, V: 'a> {
 Occupied(OccupiedEntry<'a, K, V>),
 Vacant(VacantEntry<'a, K, V>),
 }

Occupied means the requested entry is found. Vacant means the entry does not exist. If the entry is occupied, the or_insert function returns a mutable reference to the value. You can dereference to change the value in place. If the entry is vacant, the or_insert function sets a default value.
Let’s create an aquarium as a hash map to demonstrate the Entry<K, V> type (see Listing 7.34). Of course, the aquarium is replete with fish.
Code Listing 7.34.
Updating an entry in the hash map table
 let mut aquarium=HashMap::from([("DottyBack", 10),
 ("Hawkfish", 5), ("Angelfish", 7)]);
 let mut count=aquarium.entry("Hawkfish").or_insert(0);
 *count=*count+1;

 // {"DottyBack": 10, "Hawkfish": 6, "Angelfish": 7}
 println!("{:?}", aquarium);

We created an aquarium using a mutable HashMap. Each entry is a type of fish with the quantity in the tank. The entry function is then called for “Hawkfish,” as the key. The or_insert function is called on the result. This returns a mutable reference to the value. The reference is dereferenced to increment the count of Hawkfish.
Iteration
There are a variety of methods for iterating the contents of a HashMap. The for loop returns each entry, as a tuple, from the hash map. You can accept the tuple or decompose it into separate key and value variables, as shown in Listing 7.35.
Code Listing 7.35.
Iterating a hash map to display the keys and values
 let map_1=HashMap::from([('a',2), ('b',3)]);

 for (key, value) in map_1 {
 println!("{} {}", key, value);
 }

Summary
This chapter reviewed the primary collections in Rust: arrays, vectors, and hash maps. They are invaluable for creating solutions that model real-world problem domains. Literally, collections appear everywhere. The Array, Vector, and HashMap types were introduced in this chapter and work as follows:
 Array is fixed sized and created in contiguous memory.
 Vector is dynamic and unsized. The backing store is allocated on the heap.
 HashMap is also dynamic and unsized. The entries are allocated on the heap.
Arrays should be the preferred collection. They are simpler and better performing.
Each collection has many helpful and fun functions. Only the core functions are discussed in this chapter. Review the Rust documents to uncover other capabilities. In addition, you can customize the standard collections through the implementation of one or more traits. This could include a trailblazing sort routine, implementing a highly performant hasher, updating the meaning of equality, and more.

Chapter 8. Ownership
Ownership is part of the memory model in Rust that encourages safe memory management. For developers, memory management has been a consistent reason of application instability. Memory violations, freeing the same memory twice, race conditions, and various security vulnerabilities are some of the problems that can occur. Worst of all, these problems may be inconsistent and often occur intermittently. Developers sometimes spend long hours, if not days, debugging memory issues. Ownership addresses many of these issues, making the resulting code more robust and reliable, giving developers confidence in their own code.
The term “borrow checker” appears frequently in this chapter. In Rust, ownership sets the rules for memory safeness. The borrow checker is the component that enforces those rules at compile time. You need to make the borrow checker your friend. The role of the borrow checker is the same as yours—quality, safe, and secure code.
Ownership is a unique feature of Rust. For this reason, you may be unfamiliar with the concepts introduced in this chapter. However, you will soon embrace ownership as a “old friend.”
Historically, native and managed languages have different memory models (and neither is similar to ownership in Rust):
 For native languages, developers typically have the primary responsibility for managing memory, especially for dynamic memory: allocating and deallocating memory, managing pointers, and making sure data is in the correct memory location. The essential benefits of this approach are transparency, flexibility, and deterministic memory management. However, making developers responsible for the nuts and bolts of memory management poses risk in the form of human error. Unfortunately, these types of problems are often uncovered at runtime, where they pose the most risk.
 Managed languages frequently have a component that manages memory, usually called garbage collection (GC). GC is a major reason that managed languages are considered managed. Developers largely delegate responsibility for memory management to the GC. This limits human error. However, the GC may adversely impact performance. Other shortcomings include nondeterministic memory management and some level of inflexibility based on the GC algorithm.
Ownership in Rust encompasses some of the best features of both the native and managed memory models, without the drawbacks. Memory management with ownership is deterministic, flexible, and doesn’t have the performance overhead of garbage collection.
Stack and Heap Memory
Distinguishing between the stack and heap is helpful when discussing ownership.
The stack is the private memory given each thread. When a function is run, a stack frame is added to the stack and consists of the function state, such as the local variables and parameters. The size of a stack frame is determined at compile time. When a function exits, the associated stack frame is removed from memory − the stack shrinks. At that time, the function state, including local variables, are automatically removed from memory.
Heap memory provides storage for dynamic memory allocation at runtime. The heap belongs to the application and is accessible from any thread. Various languages have different keywords, such as new and delete, for managing memory allocations on the heap. When allocated, a pointer is returned to the location on the heap where the memory resides.
A stack-based object may contain a reference to heap memory. This is common with the resource acquisition is initialization (RAII) paradigm. When the stack-based object is dropped (removed from memory), the related heap memory must also be freed. This is typically done with a destructor function or something similar.
Shallow versus Deep Copy
Shallow and deep copy are common techniques for transferring data between values.
A shallow copy is an bitwise copy, which is trivial and efficient. Shallow copy is appropriate for most types, except pointers. Figure 8.1 demonstrates the problem with pointers. The Complex type includes an integer and a pointer to an integer that resides on the heap. Both variablea and variableb are Complex types, where variableb is assigned variablea. A shallow copy is performed for this operation. This creates a dependency where both variables points to the same integer on the heap. Let’s assume that variablea is removed from memory first and deallocates its pointer. At that time, the variableb now owns an invalid pointer, which could lead to errors at runtime.

Figure 8.1
Showing the result of a shallow copy when pointers are included
A deep copy implements additional logic to handle pointers safely. When copying variablea to variableb, new memory is allocated for variableb’s pointer. The value at the integer pointer for variablea is then copied to the new memory. This removes the dependency between the variables. Figure 8.2 shows the result.

Figure 8.2
Showing the result of a deep copy when pointers are included
For deep copies, the additional logic for safe pointers makes the deep copy more expensive and less transparent. Regardless, deep copies are sometimes required for appropriate memory management, especially when you’re implementing the “resource acquisition is initialization” (RAII) pattern.
Car Analogy
In this section, we will use the purchase of an automobile to describe ownership in Rust. For this comparison, a car is allowed a single owner and, of course, that person is recorded on the car’s title. Limiting ownership to a single person prevents a variety of abuses, such as two people selling the same vehicle.
Let’s assume you purchase a car. Several months later, someone wants to use that vehicle. Based on the single ownership principle, you have two options: sell or lend the vehicle to the other person. If selling, the title for the vehicle is transferred to the buyer. The new owner has permanent possession of the car. Of course, you have lost any claim to the car and no longer have access to the vehicle. This is called “move semantics” in Rust.
If you lend the vehicle to someone else, the borrower has temporary possession. When they are finished with the vehicle, possession of the vehicle returns to you. However, you never lost ownership. These are the principles of “copy semantics” in Rust.
Move Semantics
Rust supports both move and copy semantics, where the default is move semantics. With move semantics, ownership of an object value is transferred during an assignment. This is the behavior regardless of the type of assignment: declaration, function argument, or function return. After the assignment, the assigning object no longer has access to the moved valued.
In Listing 8.1, the owner variable is initialized with the "automobile" string. Ownership of the string is then transferred to the new_owner variable. Afterwards, new_owner has sole possession of the "automobile" string. For this reason, you can only display the new_owner variable, not the owner variable.
Code Listing 8.1.
Moving ownership of a string
 let owner = String::from("automobile");
 let new_owner = owner;
 println!("{}", new_owner);

In Listing 8.2, a string is assigned as a function argument. This transfers ownership into the buy_car function. The owner variable in main will then lose ownership. For that reason, you cannot display owner in the println! macro afterwards.
Code Listing 8.2.
Moving ownership of a string from main to buy_car
fn buy_car(new_owner: String) {
 println!("{}", new_owner);
}

fn main() {
 let owner = String::from("automobile");
 buy_car(owner);
 println!("{}", owner); // compile error
}

In Listing 8.3, the buy_car function returns a string. This returns ownership to main and reestablishes the original ownership for owner . The println! macro now successfully displays owner .
Code Listing 8.3.
Returning ownership from a function.
fn buy_car(new_owner: String) -> String {
 println!("{}", new_owner);
 new_owner
}

fn main() {
 let mut owner = String::from("automobile");
 owner = buy_car(owner); // reestablish ownership
 println!("{}", owner);
}

Borrow
Ownership can be borrowed instead of moved. For borrowing, you assign a reference (&) instead of the value. In Listing 8.4, the borrow_car function has a reference parameter. The borrower parameter borrows the string. In main , owner retains ownership. The values of both borrower and owner can be displayed.
Code Listing 8.4.
String value borrowed by borrow_car
fn borrow_car(borrower: &String) {
 println!("{}", borrower);
}

fn main() {
 let owner = String::from("automobile");
 borrow_car(&owner);
 println!("{}", owner); // works
}

You can borrow with either a mutable or mutable reference. However, you are limited to a single mutable reference at a time. This prevents potential concurrency issues. In Listing 8.5, multiple mutable references to the same value causes a compile error.
Code Listing 8.5.
Using two mutable references to the same value is not allowed.
 let mut owner = String::from("automobile");
 let borrower = &mut owner;
 let borrower2 = &mut owner; // compile error
 println!("{} {}", borrower, borrower2);

Copy Semantics
Types with the Copy trait have copy semantics. When copied, a bitwise copy is performed. Types that reference external resources or memory, such as Strings, do not support copy semantics.
The Copy trait is a marker trait found in the std::marker module, with other marker traits. Other marker traits include Send, Size, Sync, and Unpin. Types with this trait implicitly support copy semantics. You simply perform an assignment.
In Rust, all scalar types have the copy trait. In Listing 8.6, both width and height are integers, which is a scalar type. During the assignment, the width value is copied to height . The result it that width and height own separate values.
Code Listing 8.6.
An example of copy semantics
 let width = 10;
 let height = width;
 println!("W {} : H {}", width, height);

Clone trait
Implement the Clone trait when a deep copy is required.
The String type, for example, implements the Clone trait. Why? Strings include a pointer to the underlying string, which is on the heap. For this reason, the String type does not support copy semantics. If allowed, this would create problematic dependencies. Instead, the String type implements a deep copy using the Clone trait. Here are the general steps for cloning Strings:
1. For the target String, allocate memory on the heap for the String buffer.
2. Copy the buffer from the originating String into the new buffer.
3. Update the target String to reference this memory.
The result of this are Strings with the same value, stringa and stringb , at different locations in memory (see Figure 8.4).

Figure 8.4
Showing result of cloning stringb from stringa
Cloning must be invoked explicitly with the clone function, which is a member of the Clone trait. In Listing 8.7, the stringa variable is cloned to initialize stringb .
Code Listing 8.7.
Cloning a String
 let a_string = String::from("data");
 let b_string = a_string.clone();
 println!("{} {}", a_string, b_string)

Copy Trait
You can assign the Copy trait to types and that support a shallow copy.
Here is the Copy trait:
pub trait Copy: Clone { }

Notice that the Clone trait is a supertrait of the Copy trait.
Structs support move semantics by default. An assignment, transfers ownership. See Listing 8.8 .
Code Listing 8.8.
When assigned, structs are moved by default.
struct Transaction {
 debit: bool,
 amount: f32,
}

fn main() {
 let t1=Transaction{debit: true, amount: 32.12};
 let t2=t1; // moved
}

The Copy trait can be applied to structs if each field supports copy semantics. This is a trivial implementation and can be done with the #[derive] attribute, as shown in Listing 8.9.
Code Listing 8.9.
Applying the Copy trait using the derive attribute
#[derive(Copy, Clone)]
struct Transaction {
 debit: bool,
 amount: f32,
}

let t2 = t1; // copied

Let’s add a description field, as a String type, to Transaction , as shown next. This would appear to be a reasonable addition to our structure. However, this means the struct no longer support copy semantics. This is because the added String field does not support copy semantics.
struct Transaction {
 description: String,
 debit: bool,
 amount: f32,
}

However, references support copy semantics. In Listing 8.10, we have modified the structure to change the String to &String. The struct now supports copy semantics, which is provided with the #[derive] attribute.
Code Listing 8.10.
This is a struct that supports copy semantics.
#[derive(Copy, Clone)]
struct Transaction<'a> {
 description: &'a String,
 debit: bool,
 amount: f32,
}
 . . .
let t2 = t1; // copied

You can implement the Copy trait manually, not using the #[derive] attribute. As a marker trait, there is no implementation for the Copy trait. The existence of the Copy trait instructs Rust to perform a bitwise copy. However, the Clone trait must be implemented as the supertrait. This means implementing the clone function. The function should return the current object by value, which is consistent with a bitwise copy. See Listing 8.11 for the implementation of the Copy trait for Transaction .
Code Listing 8.11.
Explicit implementation of the Copy trait
impl Copy for Transaction {}

impl Clone for Transaction {
 fn clone(&self) -> Transaction {
 *self // return current object by value
 }
}

struct Transaction {
 debit: bool,
 amount: f32,
}

Clone Trait
The Clone trait implements a deep copy for types that do not support a bitwise copy.
For the Clone trait, you must implement clone function, which returns the cloned value. The implementation must also remove any dependencies caused by pointers.
For struct, assuming all the fields are cloneable, you can simply add the #[derive] attribute for the Clone trait. This attribute calls the clone method on each field.
Every member of the Transaction type is cloneable. This means you can apply the #[derive(Clone)] attribute. See Listing 8.12.
Code Listing 8.12.
Applying the Clone trait to Transaction
#[derive(Clone)]
 struct Transaction {
 description: String,
 debit: bool,
 amount: f32,
 }

...
 let t1 = Transaction {
 description: String::from("ATM"),
 debit: true,
 amount: 32.12,
 };

If desired, you can explicitly implement the Clone trait for Transaction . In our implementation, the description field is reset when cloning a Transaction . The other fields are copied for cloning. See Listing 8.13 for the implementation of the trait.
Code Listing 8.13.
Explicit implementation of the Clone trait
struct Transaction {
 description: String,
 debit: bool,
 amount: f32,
}

impl Clone for Transaction {
 fn clone(&self) -> Transaction {
 let temp = Transaction {
 description: String::new(),
 debit: self.debit,
 amount: self.amount,
 };
 return temp;
 }
}

Summary
Ownership is a seminal feature of Rust programming and enforces safe and secure programming techniques for memory management. This prevents many of the common memory-related problems that occur in other languages.
The borrow checker enforces the rules of ownership at compile time, preventing memory errors from seeping into binaries and occurring at runtime.
Move semantics is the default behavior. When you assign a value, ownership is moved. If a reference is assigned, a borrow occurs and ownership is not transferred.
Alternatively, types that have the Copy trait support copy semantics. Copy semantics is implicit and performs a bitwise copy, which is a shallow copy. This is appropriate for scalar types.
You implement the Clone trait for types that require a deep copy. The actual implementation of the trait depends on the type.
You can apply the Copy trait with the #[derive(Copy, Clone] attribute. However, you can manually implement either trait. It is more common to implement the Clone trait.
Lifetimes also provide memory safeness. Ownership and lifetimes together provide a complete solution for memory management in Rust. The conversation on lifetimes is next.

Chapter 9. Lifetimes
An important promise from Rust to developers is memory safeness, which is enforced within the ownership system. Ownership and borrowing are two of the three pillars in the ownership system. Lifetimes is the final pillar to complete our conversation about the subject. Despite this laudable goal, there is a general misunderstanding of lifetimes within the Rust community. Most Rust developers are satisfied knowing just enough about lifetimes to prevent the borrow checker from complaining. The objective of this chapter is to provide clarity on this important topic. Lifetimes should be a benefit, not something to ignore.
Lifetimes is another unique within the Rust language. Other languages, such as C, C++, and Java, do not have a lifetime feature, or something similar. For most developers, this means a lack of familiar context as a starting point to understanding lifetimes. No worries. You will learn both the context and syntax of lifetimes in this chapter.
The principal objective of lifetimes is to prevent dangling references. That’s it! Keep this in mind especially when you’re deep in the vagaries of lifetimes. What is a dangling reference? A dangling reference occurs when a reference outlives a borrowed value. At that time, the reference points to invalid memory.
Listing 9.1 shows an example of a dangling reference.
Code Listing 9.1.
 ref1 becomes a dandling reference.
 fn main() {
 let ref1;
 { // --------------------- inner block (start)
 let num1=1;
 ref1=&num1;
 } // --------------------- inner block (end)
 println!("{}", ref1); // dangling reference
 }

Here, ref1 is a reference and it borrows num1 , which is then dropped at the end of the inner block. Therefore, the reference to num1 in the println! macro outlives the borrowed value—the very definition of a dangling reference. If allowed to continue, the program is no longer memory safe.
It is hard to discuss lifetimes without including the borrow checker in the conversation. The borrow checker relies on lifetimes to determine when a reference outlives the borrowed value. Developers frequently fight with the borrow checker. A goal of the last chapter was to make the borrow checker your friend. We continue that goal in this chapter.
Lifetimes is another Rust feature included in zero-cost abstraction. The idioms of lifetimes are enforced at compile time. You receive the full benefits of memory safeness without any performance penalty.
We will start with the building blocks of lifetimes. After that, more complex concepts are introduced, including lifetimes subtyping.
Introduction to Lifetimes
A lifetime spans the lifetime of a value. The interrelationship of various lifetimes can expose dangling references. A lifetime starts at the binding and continues until the variable is dropped.
Listing 9.2 is a trivial example of lifetimes.
Code Listing 9.2.
Lifetimes of num1 and num2
 fn main() {
 let num1=1; // <----- lifetime for num1 starts
 let num2=2; // <----- lifetime for num2 starts
 } // lifetime for num1 and num2 ends

In the previous example, the lifetimes are described but not named. It is more concise to show a lifetime name instead of a wordy description. Lifetimes are named with an apostrophe and a variable name. By convention, lifetime names are alphabetic letters, starting with 'a . Subsequent lifetimes would be 'b , 'c , 'd , and so on. If desired, lifetimes can have nonconventional names, such as “moon” and “stars.” For convenience, choosing an enumerable value for a lifetime name is preferred, however.
Here is an example with references, values, and lifetimes. The lifetimes shown here are inferred, similar to type inference:

Here, ref1 is a reference and it borrows num1 . However, the lifetime for ref1 outlives the lifetime for num1 , as shown. Because of this, at the end of lifetime 'b , num1 is dropped. At that time, ref1 becomes a dangling reference. Therefore, ref1 in the subsequent println! macro is invalid. Fortunately, the borrow checker detects this problem at compile time and displays the following message:
5 | ref1=&num1;
 | ^^^^^ borrowed value does not live long enough
6 | }
 | - `num1` dropped here while still borrowed

The “ does not live long enough ” message is probably the most dreaded compiler message in Rust. Developers new to Rust may receive this message frequently. It is an indication of a dangling reference. Nonetheless, the message is informative, correctly identifying that the borrowed value, num1 , has not lived long enough, thus leaving ref1 as a dangling reference.
Function Headers and Lifetimes
Functions can create unsafe memory access. Functions that accept references as arguments and return values require special consideration.
Function headers with references have three classifications of a lifetime: input lifetime, output lifetime, and target lifetime.
Input lifetime is the lifetime of a function argument as a reference. You can have multiple input lifetimes. Listing 9.3 is an example of an input lifetime.
Code Listing 9.3.
A input lifetime for do_something is lifetime 'a

Here, the function is called with &num1 as the argument. This sets the input lifetime for ref1 to lifetime ' a . This is the lifetime received from the num1 function argument. This indicates how long the value you are borrowing lives.
Output lifetime is the lifetime for the return value of the function. The output lifetime is typically selected from one of the input lifetimes. There are a couple of reasons for this. A reference to a local value cannot be returned from a function since the borrowed value is immediately dropped. You can return a reference to a static value, but that less common. Therefore, an input lifetime is more often returned as the output lifetime.
In Listing 9.4, the do_something function accepts and returns a reference. For the output lifetime, there is one input lifetime to select from. Therefore, the input and output lifetimes are lifetime 'a .
Code Listing 9.4.
Output lifetime for do_something is lifetime 'a .

Lastly, the target lifetime is the lifetime of the reference that is bound to the function result.
Listing 9.5 illustrates the three lifetimes: input, output, and target.
Code Listing 9.5.
This example highlights various lifetimes.

Will this example compile? Specifically, whenever the target lifetime outlives the output lifetime, there is the potential of a dangling reference. Let’s break down this explanation. Ultimately, the output lifetime is the lifetime of a borrowed value. The borrowed value cannot be bound to a reference with a longer lifetime. If the reference outlives the borrowed value, it becomes a dangling reference.
In the preceding example, the target lifetime ('b) is fully contained within the output lifetime ('a). Therefore, the result variable is always valid. The compiler will compile the program successfully.
Listing 9.6 is another example to consider with a different outcome.
Code Listing 9.6.
Target lifetime outlives the output lifetime.

This version of the example does not compile. Why? The output lifetime for the function return is lifetime 'b . This is the lifetime for num1 . However, the target lifetime for result is lifetime 'a . Regrettably, the target lifetime outlives the output lifetime (i.e., result outlives num1). When this occurs, there is a potential for a dangling reference. The borrow checker will highlight the problem in an error message.
A lifetime table is often helpful when we’re analyzing the various lifetimes. Table 9.1 is the lifetime table for the previous example.
Table 9.1.
Target lifetime greater than output lifetime

Lifetime Annotation
Until now, lifetimes have been inferred. We have not explicitly named lifetimes. With lifetime annotations, you can formally name lifetimes. A lifetime annotation only labels a lifetime. It does not modify a lifetime in any manner. However, as you will see, just labeling a lifetime can be helpful. It allows you to instruct the borrow checker on your intention.
Lifetime annotation requires declaring lifetime parameters. This is done using the same syntax for declaring generic parameters, which are reviewed in Chapter 14, “Generics.” Instead, you include lifetimes.
Listing 9.7 is an example of declaring a lifetime parameter with lifetime annotation.
Code Listing 9.7.
Formally naming a lifetime as lifetime 'a

In this example, the input lifetime is formally named lifetime 'a . This labels the lifetime for num1 . The lifetime for num1 is unchanged; it’s simply formally named. The target lifetime is inferred as lifetime 'b .
Table 9.2 is the lifetime table for this example.
Table 9.2.
Output lifetime greater than target (Example is memory safe)

Lifetime Elision
Within certain guidelines, the compiler is allowed to infer lifetimes, such as the input and output lifetimes. This is called lifetime elision. Eliding lifetimes can make code easier to read and more concise.
Here is an example of lifetime elision where the lifetimes are elided (notice the absence of lifetime annotations):
 fn do_something(ref1:&i32)->&i32{
 ref1
 }

The following is the desugared version of the function header without elision:
 fn do_something<'a>(ref1:&'a i32)->&'a i32{
 ref1
 }

Certain rules apply to lifetime elision:
 Each input lifetime that is elided is assigned a separate lifetime.
 When there is a single input lifetime, it is elided to the output lifetime.
 For methods, if self is a reference, the lifetime for self is elided to the output lifetimes.
In general, lifetime elision cannot occur when the output lifetime is ambiguous. The compiler will not guess the output lifetime. It is easier not to compile and ask you to resolve the ambiguity with lifetime annotation.
Lifetime elision is always optional. If desired, you can always explicitly name lifetimes.
Complex Lifetimes
Some functions accept multiple parameters as references. Each reference may have the same or a different input lifetime. This also means multiple candidates for the output lifetime. This creates ambiguity for the borrow checker. Which input lifetime should be assigned to the return value, as the output lifetime? As mentioned, the compiler will not guess the proper output lifetime. With lifetime annotation, you can state your intention to the compiler.
The function in Listing 9.8 accepts two references. With lifetime annotation, we indicate that the return value should be lifetime 'a .
Code Listing 9.8.
Named ('a) and inferred lifetimes ('b and 'c)

This example has three lifetimes. Lifetime 'a is formally named, while lifetimes 'b and 'c are inferred. The do_something function returns lifetime 'a . This is a constraint preventing the return of any other lifetime. For this reason, you can only return the first parameter.
Table 9.3 describes the various lifetimes in this example.
Table 9.3.
Output lifetime greater than target (Example is memory safe)

Listing 9.9 shows a different version of the previous example. The do_something function still has two references and returns a reference. However, both input lifetimes are named in this example, as lifetime 'a and 'b . As the output lifetime, the function can only return lifetime 'b . In addition, we have moved the code around in main . Consequentially, some of the lifetimes have also been moved.
Code Listing 9.9.
Example of overlapping lifetimes

Examine Table 9.4, the lifetime table for this example, to identify any problems. Most importantly, is there a potential for a dangling reference?
Table 9.4.
Target lifetime outlives the output lifetime

In this example, the output lifetime does not live long enough. This means num2 will be dropped from memory while result is borrowing the value. This creates a dangling reference. This is another example where the source code will not compile.
Sharing a Lifetime
You can share an input lifetime across multiple parameters. Recall that an input lifetime represents the lifetime of a borrowed value. When you share a lifetime, the scope of the lifetime is the intersection of lifetimes of the actual arguments.
In Listing 9.10, the do_something function has two parameters. Both references are assigned the same lifetime, 'a .
Code Listing 9.10.
Another example of overlapping lifetimes

As function arguments, ref1 borrows num1 and ref2 borrows num2 . Lifetime 'a labels the intersection of the lifetimes of num1 and num2 . This will become the input lifetime for both references. Eventually, this will also become the output lifetime for this function, as this is the only input lifetime to select from.
In this example, the intersection of the lifetimes for num1 and num2 , lifetime 'a , does not live long enough. For this reason, the program does not compile. This is despite the fact the lifetime for num1 does live long enough.
Table 9.5 is the lifetime table for this example.
Table 9.5.
Another example of the output lifetime not living long enough

When a lifetime is shared, the borrow checker adopts a conservative approach. It will assume the intersection of the combined lifetimes, which is the smaller lifetime, versus a union.
Static Lifetimes
A static lifetime, 'static , spans the entire application. For example, globals have a static lifetime. By definition, other lifetimes, shorter than the entire application, cannot outlive the static lifetime.
For Rust, string literals have a static lifetime. The task function returns a string literal as an error message. String literals are &str values, which are always static, as shown in Listing 9.11.
Code Listing 9.11.
The str type must be static.
 fn task1(ref1:&i32)->Result<i32, &'static str>{
 Err("error found")
 }

Structs and Lifetimes
Lifetimes for structs have the same role as lifetimes elsewhere—preventing dangling references. This can occur because structs can have fields that are references. A dangling reference can occur if the field references a value that does not live long enough. Fields of a struct must have a lifetime as long as the struct itself.
For lifetime annotation, declare lifetime parameters after the struct name. You can then assign named lifetimes to fields. There is no lifetime elision for structs. Structs accepting references as fields require lifetimes.
Listing 9.12 is an example of a struct containing a reference.
Code Listing 9.12.
Struct lifetime applied to a field

In this example, a Data struct borrows num1 as field1. In this case, the struct will not outlive the borrowed value. Consequentially, there is no opportunity for a dangling reference.
Methods and Lifetimes
Functions for structs, methods, can also accept and return references. This creates the same potential for dangling references, which can be identified with lifetimes. Methods can share the lifetime parameters of the struct or declare free lifetimes, which are specific to the method.
Lifetime annotations are considered part of the struct type. When we’re implementing methods, the impl block must reference the lifetime parameters. The lifetime parameters of the struct are both included after the impl keyword and the struct name.
Case in point, a structure with lifetimes 'a and 'b would have the impl block shown in Listing 9.13.
Code Listing 9.13.
The impl block for a struct with lifetimes
 struct Data<'a, 'b>{
 field1:&'a mut i32,
 field2:&'b mut i32,
 }

 impl<'a, 'b> Data<'a, 'b> {
 }

When implementing methods, do not redeclare the lifetimes of the struct. You can simply apply the lifetimes to references within the function header. Remember, this is the same lifetime that can be applied to fields. When the same lifetime is applied to multiple items, the compiler takes a conservative approach. The named lifetime will be the intersection of the various items.
Listing 9.14 demonstrates the possible dual role of lifetimes within structs and methods. Lifetime 'a is used for both a field and method parameter.
Code Listing 9.14.
Lifetime 'a applied to the Data struct and do_something method

Will this example compile? Lifetime 'a , intersection of the lifetimes for num1 and num2 , is less than the lifetime of obj , which is the related struct. Therefore, the example will not compile. The reason is that the lifetime does not live as long as the struct.
Methods can also declare free lifetimes. Free lifetimes are declared in the method definition, not the struct. They are called free lifetimes because they are free of the lifetime requirements of the struct.
The struct in the Listing 9.15 has two methods. Both use free lifetimes.
Code Listing 9.15.
Combining lifetimes from struct and free methods
 struct Data<'a>{
 field1:&'a i32,
 }

 impl<'a> Data<'a> {
 fn do_something1<'b>(self: &Self,
 ref1:&'b i32)->&'b i32 {
 ref1
 }

 fn do_something2<'b>(self: &Self, ref1:&'a i32,
 ref2:&'b i32)->&'a i32 {
 ref1
 }
 }

In the preceding example, lifetime 'a is declared with the struct. The Data struct has do_something1 and do_something2 methods. The do_something1 method declares lifetime 'b , which is a free lifetime. It is assigned to the input lifetime of ref1 . For the do_something2 method, 'b is declared again as a free lifetime. However, lifetime 'a from the struct is also used as the input lifetime for the other parameter. You can use both struct lifetimes and free lifetimes within the same method.
Free lifetimes, even the same lifetime, are not shared across methods. Lifetime 'b in the previous example was not shared across both methods. However, lifetimes declared in a struct are shareable across the methods of the struct.
Subtyping Lifetimes
Subtyping lifetimes creates an extensible relationship between two lifetimes. This relates to concepts established in object-oriented programming.
In object-oriented programming, subtyping typically refers to interfaces. A subtype is the interface that extends the behavior of a super interface. The principle of substitutability then applies, where the subtype can be substituted for the super interface, at all times.
For lifetimes, a subtype lifetime extends another lifetime. You can then substitute a base lifetime with a subtype lifetime.
Enough of the theoretical! Let’s look at a practical example, including where subtype lifetimes are helpful. The example in Listing 9.16 does not compile.
Code Listing 9.16.
Normal lifetimes, no subtyping

The output lifetime for the either_one function is lifetime ’b . Therefore, we cannot return lifetime ’a . Nonetheless, we attempt to return ref1 , with a lifetime ’a . Kaboom! However, that is silly! Close examination of main shows that lifetime ’a extends lifetime ’b . Stated otherwise, lifetime ’a is the subtype of lifetime ’b . This means the principle of substitutability should apply and can solve our problem.
Here is the syntax for declaring a lifetime parameter as a subtype:
 ’subtype:’basetype

The version shown in Listing 9.17 will compile correctly. The changes are limited to the function header. In the lifetime declaration, lifetime ’a is defined as the subtype for lifetime ’b . This means lifetime ’a can substitute for lifetime ’b . That is the solution required for this application to work.
Code Listing 9.17.
Lifetime ’a subtypes ’b .
Fn either_one<'a:'b>(ref1:&'a i32,
 ref2:&'b i32, flag:bool)->&'b i32 {
 if flag {
 ref1
 } else {
 ref2
 }
 }

 fn main() {
 let num1=1;
 {
 let num2=2;
 let result=either_one(&num1, &num2, true);
 }
 }

Anonymous Lifetimes
Lifetime elision is based on three specific rules, as established earlier. However, lifetime elision is not perfect. There may be situations where a lifetime is apparent but eliding does not apply. Also, lifetime annotation can be overly ornate, as you have probably noticed! This can result in overly dense code. For these scenarios, you may want to use anonymous lifetime, which is '_ .
Listing 9.18 is an example where an anonymous lifetime could be useful. For structs with lifetimes, the syntax of the impl block is somewhat prescriptive.
Code Listing 9.18.
Lifetime 'a explicitly applied to struct and impl block
 struct Data<'a>{
 field1:&'a i32,
 }

 impl<'a> Data<'a> {
 fn do_something<'b>(&self, ref1:&'b i32)->&'b i32 {
 ref1
 }
 }

Since there is no variability in the syntax, you might want to elide lifetimes in the impl block. This is outside the rules of lifetime elision. The anonymous lifetime, however, allows you to explicitly elide the lifetime, as demonstrated in Listing 9.19.
Code Listing 9.19.
Universal lifetime and lifetime elision
 impl Data<'_> {
 fn do_something<'b>(&self, ref1:&'b i32)->&'b i32 {
 ref1
 }
 }

Generics and Lifetimes
Generic and lifetime parameters are declared within angle brackets after a function or struct. You have seen generic and lifetime parameters implemented separately. Lifetime and generic parameters can also be combined in the same declarations.
When we are declaring both, lifetime parameters should precede the generic type parameters in the declaration. Otherwise, lifetimes and generics will behave as expected.
Listing 9.20 is an example function with both lifetime and generic parameters.
Code Listing 9.20.
Combining lifetime and generic parameters
 fn do_something<'a, T>(ref1:&'a T, ref2:&T)->&'a T{
 ref1
 }

Summary
The lifetimes feature is a difficult subject that cannot be ignored. It is a component of the ownership system that ensures memory safeness. Specifically, lifetimes remove the possibility of dangling references, which are the leading cause of vulnerable memory with non-Rust programming languages.
A dangling reference occurs when a borrowed value does live long enough making the memory unsafe. Luckily, however, the borrow checker is tasked with preventing dangling references. This is done at compile time as part of zero-cost abstraction.
Functions headers with references have lifetimes, either explicit or elided. There are three types of lifetimes:
 The input lifetime is the lifetime of a borrowed value.
 The output lifetime is the lifetime returned from the function.
 The target lifetime is the lifetime of the binding.
You have learned that when the output lifetime is less than the target lifetime, a dangling reference can occur. The lifetime table is a helpful tool in understanding the relationship between lifetimes and uncover poor behavior before the borrow checker.
Lifetime elision elides the lifetimes, which makes the syntax more concise and readable. In some circumstances, when this is not available, anonymous lifetimes can help.
With lifetime annotation, you can formally name lifetimes. Lifetime parameters are declared using the syntax of generics.
Structs with references also have lifetimes. The goal is to ensure that references live as long as the struct. Lifetimes in a structure cannot be elided. Methods can use lifetimes declared in the struct or free lifetimes.
Hopefully, you have become close friends with the borrow checker.

Chapter 10. References
References, &T , are primitives and the preferred pointer type in Rust.
A reference is a pointer to a value in memory. A reference is a safe pointer to a value located somewhere in memory, whether the stack, heap, or static data area. You can access the value through the reference.
References are values themself. For that reason, references can even reference other references, as a value.
Actually, Rust has two types of pointers: safe pointers (references) and raw pointers, which are inherently unsafe. The safeness of a reference is enforced at compile time with the borrow checker, as part of ownership system. However, raw pointers are outside the realm of both. For this reason, references are preferred in Rust. Raw pointers primarily used with interoperability and reviewed in Chapter 22, “Interoperability”
Pointers, including references, are first-class citizens in the Rust language and have the same capabilities as any other primitive type. Pointers can be used as variables, fields in a structure, function parameters, or even function return values.
References, &T and &mut T , are dissimilar to non-pointer types. This is a subtle but important distinction. For example, i32 and &i32 are different types. The i32 type refers to a 32-bit integer value, whereas &i32 is a reference to a i32 value. In addition, a reference is a fixed size, where the size is dependent on the platform architecture.
Assume there are two local variables on the stack. The variable val_a is 10, and ref_a is a reference to val_a . The size of val_a is 4 bytes, while ref_a is 8 bytes, assuming a 64-bit architecture. Figure 10.1 provides a view of the stack in memory.

Figure 10.1.
Depiction of val_a and ref_a
Declaration
As with other types, you create a normal variable binding for a reference with the let statement. However, an ampersand (&) should precede the type to define a reference. Within an expression however, the & operator has a different meaning. It is used to “get the memory address” of a value.
References are also strongly typed and should be initialized with references of the same type. In the following example, ref_a is a &i32 reference and initialized with the &10, also a &i32 reference:
let ref_a:&i32=&10;

You can also infer the reference type, as shown here:
let ref_a=&10;

In Listing 10.1, we show various methods for declaring references.
Code Listing 10.1.
Declaring references
 let val_a=10;
 let ref_a: &i32=&val_a;
 let ref_b=ref_a;

We declare the ref_a variable as &i32 initialized &10, which is a reference to 10 as a literal. The ref_b variable is initialized with ref_a. The result is two references to the same value, 10. This is safe because both references are mutable.
Borrowing
References borrow values. This means ownership remains with the original binding. In Listing 10.2, the reference is the borrower.
Code Listing 10.2.
Using a reference to borrow a value
 let val_a=10; // owner of 10
 ref_a=&val_a; // borrow of 10

The lifetime of the owner must outlive the borrower (i.e., the reference). When the owner no longer exists, the referenced value is no longer available, as discussed in the previous chapter. The borrower cannot continue to use the value.
In Listing 10.3, the owner outlives the borrower.
Code Listing 10.3.
The value outlives its reference.
 let val_a=10; // owner
 {
 let ref_a=&val_a; // borrower
 }
 println!("{}", val_a);

The val_a variable is declared first in the outer block. It is the owner of the 10 value. In the inner block, ref_a references val_a . Now ref_a is the borrower of the 10 value. After the inner block closes, ref_a is dropped but val_a remains available . Therefore, the owner outlives the borrower—and life is good!
Let’s switch this around in Listing 10.4.
Code Listing 10.4.
The reference outlives the value.
 let ref_a: &i32; // borrower
 {
 let val_a=10;
 ref_a=&val_a; // owner
 }

 println!("{}", ref_a); // darn!

In this version, the reference, ref_a, is declared in the outer block. The variable val_a is declared within the inner block and as the owner of the 10 value. Next, ref_a references val_a . It becomes a borrower of the 10 value. After the inner block ends, val_a no longer exists. In the outer block, ref_a continues to borrow the value, however. The borrow checker will complain since the lifetime of the borrower exceeds the that of the owner. The following message is displayed.
ref_a=&val_a;
 ^^^^^^ borrowed value does not live long enough

Dereferencing
For references, the * (asterisk) operator provides access to the referenced value. This is called dereferencing.
We dereference ref_a and ref_b in Listing 10.5.
Code Listing 10.5.
Dereferencing a reference to access the indirect value
 let ref_a=&10;
 let ref_b=&20;
 let result=*ref_a + *ref_b;

Two references are declared, ref_a and ref_b , at the start. Both references are then dereferenced (using the * operator) to access the indirect values of 10 and 20. The values, not the references, are then totaled.
The builtin mathematical operators implement the Deref and DerefMut traits to implicitly dereference a reference. When performing mathematical operations, it is assumed that the values are the target, not the pointers themselves.
In the previous example, wasn’t the intention obvious? Adding the memory locations for ref_a and ref_b would have been nonsensical. The intention is to add the referenced values. The previous example could have been simplified with implicit dereferencing, as in Listing 10.6. This makes the code more succinct and easier to read, which is definitely a win-win.
Code Listing 10.6.
Implicit dereferencing to access the indirect value
 let ref_a=&10;
 let ref_b=&20;
 let result=ref_a + ref_a;

Notice that the asterisks (*) have been removed to allow implicit dereferencing. The previous two examples arrive at the same result.
Even some commands within the Rust environment support implicit dereferencing, of which the print macros are the most notable, as shown in Listing 10.7.
Code Listing 10.7.
The println! macro displays the referenced value, by default.
 let ref_a=&10;
 println!("{}", ref_a); // displays 10

To actually display the reference, use the p format specifier with the print macro. This is possible because print macros implement the Pointer trait. In Listing 10.8, we display the actual reference, not the referenced value. It should be noted that at runtime references are simply raw pointers.
Code Listing 10.8.
Display the reference and not the value.
 let ref_a=&10;
 println!("{:p}", ref_a); // displays {memory location}

Comparing References
You may want to compare reference types with a comparison operator, such as the == or != operator. Reference types, &T and &mut T , implement the PartialOrd trait for that reason. The implementation performs a comparison based on value, not identity.
The example shown in Listing 10.9 compares references.
Code Listing 10.9.
Comparing references
let num_of_eggs=10;
let num_of_pizza=10;

let eggs=&num_of_eggs;
let pizzas=&num_of_pizza;

let result=eggs==pizzas; // true

The comparison of the two references, eggs and pizzas, returns true. Both referenced 10. There is a problem: unless you want an egg pizza, the comparison should fail. 10 eggs are not equivalent to 10 pizzas! For correct results, sometimes comparing identity is more appropriate. Fortunately, there is the eq method. You can use the eq method in the std::ptr module to compare references by identity instead of value.
In Listing 10.10, the previous code is rewritten to perform the comparison with the eq function. The new result is both technically and semantically correct.
Code Listing 10.10.
Comparing references with the eq function
use std::ptr;

fn main() {
 let num_of_eggs=10;
 let num_of_pizza=10;

 let eggs=&num_of_eggs;
 let pizza=&num_of_pizza;

 let result=ptr::eq(eggs, pizza); // false;
}

Reference Notation
Table 10.1 is a review of the notation associated with references, where x is a reference and y is a mutable reference.
Table 10.1
Reference Operators

Reference to Reference
You can declare multiple levels of references, also called nested references. A nested reference is a reference that binds to another reference.
Listing 10.11 is an example of a nested references.
Code Listing 10.11.
Declaring a reference to a reference
 let val_a=10;
 let ref_a=&val_a;
 let ref_ref_a=&ref_a;

In this code, we first declare a reference, ref_a . We then create a reference to ref_a called ref_ref_a . Figure 10.2 diagrams the relationship of the references in the previous example.

Figure 10.2
Relationship of nested references
The result of the print! macros shown in Listing 10.12 might be confusing. The 10 value is displayed for each print! macro. First of all, remember that the print macros implicitly dereferences references to access the referenced value. In Rust, the assumption is also made that you want to dereference the innermost reference to obtain the referenced value, rather than the intervening values that are all references. For this reason, nested references of the same type are coalesced into a single reference. Therefore, the referenced value at the end of the chain of references is shown and not how you arrived there.
Code Listing 10.12.
Dereferencing multiple levels of references
 let ref_a:&&&i32=&&&10;

 print!("&&&i32", ref_a);
 print!(" &&i32", *ref_a);
 print!(" &i32", **ref_a);

In this example, ref_a binds to a reference to a reference to a reference to the value 10. Regardless of how much ref_a is dereferenced, the result is the same: 10. This is an effective demonstration of implicit dereferencing.
Mutability
References in Rust default to being immutable. As shown previously, you add the mut keyword to the binding to declare a mutable value. Mutable references also require the mut keyword, but that is just the beginning of the explanation.
First of all, with references, there are two targets of mutability:
 Reference itself
 Referenced value
Let’s start with a mutable reference. With mutable reference, the reference can be updated. However, the referenced value remains immutable. Basically, you can change the reference but not the referenced value.
Conversely, you can make the value mutable but not the reference. That means the referenced value could change but not the reference.
Let’s start with a basic example and then add more, and more, complexity.
We begin with something familiar, as shown in Listing 10.13.
Code Listing 10.13.
Modifying a mutable value
let mut val_a=10;
val_a=15 // assignment

This code declares a mutable value. The value is then changed to 15. Of course, if val_a was not mutable, the later assignment would not compile.
Next is an example of a mutable reference. For a mutable reference, precede the reference with the mut keyword. In this example, the reference is changed after initialization, but not the referenced value:
 let mut val_a=10;
 let mut val_b=20;

 let mut ref_a:&i32=&val_a;
 ref_a=&val_b; // reference changed
 *ref_a=30; // compile error

Here is the explanation of the example:
 Declare immutable variables: val_a and val_b.
 Declare a mutable reference, ref_a , that references val_a .
 Change ref_a to reference val_b . This is allowed because ref_a is mutable.
 Finally, dereference the reference to change the referenced value. This will not compile because the value is immutable.
Let’s rewrite the previous example for an immutable reference to a mutable value (see Listing 10.14).
Code Listing 10.14.
Reference to a mutable value
 let mut val_a=10;
 let val_b=20;
 let ref_a:&mut i32=&mut val_a;
 ref_a=&val_b; // does not work
 *ref_a=30;

Here is the explanation:
 Declare val_a as a mutable value, 10.
 Declare val_b as an immutable value, 20.
 Declare an immutable reference, ref_a, to a mutable value. Notice the mut keyword is not on the reference, but the type (i.e., i32). Initialize ref_a with the reference to a mutable value, val_a . For consistency, the mut keyword must appear on both sides of the assignment.
 Update ref_a to reference a different value. That does not compile since the reference is immutable.
 Deref ref_a and modify the referenced value. This compiles because the referenced value is mutable.
Finally, both the reference and the referenced variable can be mutable. Basically, this is the mut keyword everywhere! Once again, we will revise the previous example (see Listing 10.15). The reference variable and indirect value are mutable.
Code Listing 10.15.
Both a mutable reference and value
 let mut val_a=10;
 let mut val_b=20;
 let mut ref_a:&mut i32=&mut val_a;
 ref_a=&mut val_b;
 *ref_a=30;

Here is the explanation:
 Declare two mutable values: val_a and val_b .
 Declare a mutable reference (mut ref_a) to a mutable value (&mut i32).
 Change ref_a to reference a different value.
 Dereference ref_a and update the value at val_b .
Limits to Multiple Borrowers
You are limited to a single mutable reference to a referenced value. More than one is disallowed at compile time to prevent race conditions.
The code in Listing 10.16 will not compile because of the two mutable references to the same referenced value, val_a .
Code Listing 10.16.
Two mutable references are not allowed.
 let mut val_a=&mut 10;

 let ref_a:&mut i32=&mut val_a; // reference to mutable value
 let ref_b:&mut i32=&mut val_a; // reference to a mutable value

 *ref_a=20;

The following error is displayed when the code is compiled. The borrow checker is fairly transparent about the problem and the exact location.
error[E0499]: cannot borrow `val_a` as mutable more than once at a time
 --> src\main.rs:5:24
 |
4 | let ref_a:&mut i32=&mut val_a;
 | ---------- first mutable borrow occurs here
5 | let ref_b:&mut i32=&mut val_a;
 | ^^^^^^^^^^ second mutable borrow occurs here
6 |
7 | *ref_a=20;
 | --------- first borrow later used here

Summary
Rust has two types of pointers: safe pointers and raw pointers. References represent safe pointers in Rust and adhere to the rules of ownership and lifetimes for safeness.
References can borrow a value. For this reason, the reference cannot outlive the owner. The rules of ownership as discuss in a previous chapter apply, Chapter 8, “Ownership”.
References have a unique syntax.
• Declare a reference with the & (ampersand).
• Within an expression, & operator and returns the reference to a value.
• The * operator dereferences a reference and get the referenced value.
The comparison operator can compare references but compares the referenced values. To compare the actual references, use the eq function.
References have two areas of mutability: the reference itself and the referenced value. Apply the mut keyword before the binding to make the reference mutable. Applying the mut keyword to the reference type makes the referenced value mutable.

Chapter 11. Functions
A function is a named block of source code that typically performs a specific task. The task provides the source code within the function cohesion. The return value is the result of the task. In addition, functions can cause side effects, such as setting an out parameter, writing to a file, or inserting data into a network stream.
With functions, you can decompose an application into reusable software components, instead of a single interminable block of source code. A modular approach to programming makes an application more readable and maintainable.
The function name should convey the purpose of the function. For example, a function named factorial would execute the factorial algorithm and then return the result directly or indirectly as a side effect. As a best practice, a function should perform a single task, as described with the name. Functions that perform many tasks, especially unrelated ones, are harder to refactor and document.
You execute a function with parentheses “()”. When called, a function executes synchronously. There is a caller and a callee. The caller is the function that invokes another function, while the callee is the function being called. The state of the caller is preserved on the stack, such as the locals and return instruction, while the callee executes. This includes saving the next instruction to be executed in the caller when the callee exits.
Functions are first-class citizens. You can treat functions as data. This includes using a function as a function parameter, return value, or even as a variable. As with any data, functions are strongly typed. This provides support for more complex relationships between functions, such as function currying.
Rust does not support variadic functions. Variadic methods are supported for C-based functions within the Foreign Function Interface (FFI), but not supported for with Rust functions. Finally, most functions that appear variadic in the Rust are actually macros, such as the println! macro.
Function Definition
The function definition describes the function interface, including parameters and return type. It is not required before the function is used. However, a function is valid only within the scope of the function definition.
Here is the syntax for a function definition:
 fn function name(param1, param2, ..., parametern) ->return_type{
 // function block
 }

A function definition starts with the fn keyword and then the function name. The naming convention for functions is snake_case, the same as with variables. The say_hello function is an example of a function definition (see Listing 11.1).
Code Listing 11.1.
A function that displays “Hello, world!”
 fn say_hello() {
 println!("Hello, world!");
 }

The say_hello function has no parameters or return value. When invoked, it simply displays the hello message (see Listing 11.2).
Code Listing 11.2.
Calling a function
fn main() {
 say_hello();
}

The say_hello function is called within main function, which is probably the most well-known function of all time! The main function is the entry point of a Rust application. In this example, main is the caller and say_hello is the callee.
Parameters
Function parameters are the input, and sometimes output, for a function. If present, parameters are declared as name:type pairs within the function parentheses. You cannot infer the type of function parameters. In addition, function parameters are immutable by default. As shown previously, if there are no parameters, the function has empty parentheses within the function definition.
When a function is called, the parameters are initialized with the function arguments. As local variables, the parameters drop when the function exits. Base type, arguments can be passed by value or by reference, as follows:
 When passed by value, arguments are transferred with either copy semantics or move semantics. For example, String arguments would use move semantics, while integers would be copy semantics.
 When passed by reference, arguments the reference, not the value, is transferred. For certain types, such as a struct, the value is borrowed.
In the get_cubed function, the number parameter is passed by value. From the function call, the number parameter receives a copy of the function argument value. Integers have copy semantics. Both number , the function parameter, and value , the function argument, reside in different memory locations. The get_cubed function cubes the number parameter and displays the result (see Listing 11.3). Nothing is returned.
Code Listing 11.3.
Function with passed-by-value parameters
 fn get_cubed(number:i32) {
 println!("{}", number*number*number);
 }

 fn main() {
 let value=5;
 get_cubed(value);
 }

In the swap method, the parameter values are swapped. Despite being mutable, the parameters remain local variables and are modified only within the context of the function. The num1 and num2 variables, which are the function arguments, are not changed (see Listing 11.4).
Code Listing 11.4.
A function that manipulates local values
 fn swap_values(mut value1:i32, mut value2:i32){
 let temp=value1;
 value1=value2;
 value2=temp;
 println!("{} {}", value1, value2);
 }

 fn main() {
 let (num1, num2)=(5,10);
 swap_values(num1, num2);
 }

When passed by reference, you can dereference (*) the function parameter to access the referenced value. If it is a mutable reference, you can also change the referenced value. As a reference to the argument, the original argument changes also.
In the version of the swap_values method shown in Listing 11.5, both function parameters are passed as mutable references. The value1 and value2 parameter are references to the argument, num1 and num2, from the main function. The * operator is used to dereference the function parameters and modify the referenced values, num1 and num2 . For this reason, this version of swap_values reverses the values in num1 and num2 .
Code Listing 11.5.
Function that uses mutable references as parameters
 fn swap_values(value1:&mut i32, value2:&mut i32){
 let temp=*value1;
 *value1=*value2;
 *value2=temp;
 }

In main , the function arguments are passed as mutable references. This provides the memory addresses of num1 and num2, as references, to the swap_values function. Afterwards, the println! macro displays the num1 and num2 values, which were swapped in the swap_values function (see Listing 11.6).
Code Listing 11.6.
Calling a passed-by-reference function
 fn main() {
 let (mut num1, mut num2)=(5,10);
 swap_values(&mut num1, &mut num2);
 println!("{} {}", num1, num2);
 }

Function Return
After the function parameters, specify the return type of a function. When there is a return values, you can treat the function as an expression that resolve to the return value. Without an explicit return value, a function expression resolves to the unit () type.
Here is the syntax of the return expression:
 return expression;

You can return anywhere within a function using return . The expression portion of return is optional. Without an expression, the unit type is the default return value.
The get_cubed function shown in Listing 11.7 returns the result of an operation. In the main function, we call the get_cubed function. The return value is assigned to the result variable.
Code Listing 11.7.
Function with a return value
 fn get_cubed(value:i32)->i32 {
 value*value*value
 }

 fn main() {
 let num=5;
 let result=get_cubed(num);
 println!("{}", result);
 }

Functions are not limited to a single return. A function can contain multiple return values, but the returns must be the same type.
In Listing 11.8, the is_odd function has multiple returns. Each return is a bool type. The is_odd function returns true if the input parameter, num , is an odd number. Otherwise, false is returned. In the main function, is_odd is called, as an expression, within the println macro.
Code Listing 11.8.
A function with multiple, consistent returns
fn is_odd(num:i32)->bool {
 if (num%2) == 0 {
 return false;
 } else {
 return true;
 }
}

fn main() {
 println!("{}", is_odd(5));
}

At the end of a function, you can implicitly return an expression without the return keyword. You must also remove the semicolon terminator. It appears slightly odd but is often convenient.
In Listing 11.9, the previous example is rewritten without return statements. The result is identical. Based on the function parameters, there are two possible logical arcs through the function. For that reason, there are two return value.
Code Listing 11.9.
Function with implicit returns
fn is_odd(num:i32)->bool {
 if (num%2) == 0 {
 true // return value
 } else {
 false // return value
 }
}

In Rust, functions are limited to a single value. As a workaround, you can return a sequence or struct. This includes returning arrays, vectors, tuples, hash maps, and more. From this list, tuples are probably the most common solution for returning multiple values from a function. Tuples are convenient because they anonymous, ad hoc, heterogenous fields, and easily decomposed into individual variables with pattern matching. More about pattern matching appears in Chapter 15, “Patterns.”
In Listing 11.10, the get_min_max function isolates the minimum and maximum values of a vector (Vec<i32>) and return the result as a tuple.
Code Listing 11.10.
A function that returns multiple values
fn get_min_max(data:Vec<i32>)->(i32, i32){
 let mut min=data[0];
 let mut max=data[0];
 for item in data {
 if item < min {
 min=item;
 }
 if item > max {
 max=item;
 }
 }
 return (min, max);
}

In main , we declare a vector named values . It is provided as a function argument to get_min_max . The return value of the function is then bound to variables (min, max) using pattern matching, which are then displayed (see Listing 11.11).
Code Listing 11.11.
Calling al function with a vector as the parameter
fn main() {
 let values=vec![5,6,-6,10,6];
 let (min, max)=get_min_max(values);
 println!("{} {}", min, max);
}

Do not attempt to return local variables from a function. This behavior is supported in some languages, where the local variable is lifted onto the heap for persistence. However, this behavior is not supported in Rust. Why? It is safer to fail at compile time than silently raising a value onto the heap. Moreover, Rust applications do not incur the additional cost for lifting. For this reason, this behavior is not supported in Rust.
The lift_value function shown in Listing 11.12 will not compile. The variable value is a local variable. At the end, we return a reference to value . However, memory for this variable is dropped at that time. This invalidates the reference and causes a compiler error.
Code Listing 11.12.
Returning a reference to a local value
 fn lift_value()->&i32 {
 let value=5;
 &value
 }

When you compile this code, the following is the relevant portion of the error message:
 = help: this function's return type contains a borrowed value,
but there is no value for it to be borrowed from

Const Functions
Const functions are evaluated at compile time. For that reason, a const function cannot modify non-const state at runtime. The most common use case for const functions is as initializers for constant or static values, such as a const variable or an array index. Const functions are typically short. It is more difficult to maintain constness in longer functions. Prefix a const function with the const keyword.
The get_eulers_number function is a const and returns Euler’s number. Euler’s number is useful in calculations involving exponential growth or decay (see Listing 11.13).
Code Listing 11.13.
The get_eulers_number function is a const.
 const fn get_eulers_number()->f64{
 2.7182
 }

 fn main() {
 const EULER:f64=get_eulers_number();
 }

Nested Functions
Rust supports nested functions. The definition of a nested function is a function that is located within another function. The nested function is visible within the outer function, but not elsewhere. In essence, it is a private function of the outer function. Otherwise, the functions do not have a special relationship. The outer and nested function can only share information through the function parameters and the return value of the nested function.
The advantage of nested functions is the support for advanced modeling and complex interrelationships between functions. For example, nested functions could be ideal for modeling sophisticated motors.
Listing 11.14 is a rudimentary model of a vehicle engine.
Code Listing 11.14.
The start and driving functions are nested functions.
enum Command{
 Start,
 Drive(i8)
}

fn operate_vehicle(command:Command) {
 match command {
 Command::Start=>start(),
 Command::Drive(speed)=>driving(speed)
 }

 fn start(){ /* starting vehicle */ }
 fn driving(speed:i8){ /* moving forward */ }
}

fn main() {
 operate_vehicle(Command::Start);
 operate_vehicle(Command::Drive(10));
}

The Command enum encompasses two commands: Start and Drive . The Start command starts the vehicle, while Drive adjusts the speed of the vehicle. The start and driving functions are nested within the operate_vehicle function. These functions represent the Start and Drive commands handled in a match. The operate_vehicle function receives a command as an input parameter. Based on the command, the appropriate nested function is selected to execute.
Function Pointers
Function pointer types point to a function. In many ways, function pointers are indistinguishable from data. For example, you can create an array of function pointers the same as creating an array of floats. Function pointers also provide support for functions as first-class citizens. Function pointers can be used as variables, function arguments, and function return values. You can call functions through its function pointer with parentheses.
The ability to manipulate functions, as data, at runtime is a major benefit of function pointers. As a result, the behavior of an application can change at runtime based on various factors, including user input.
The fn type, which is a primitive, declares a function pointer. The fn pointer type includes the function header. Here is the syntax of a function pointer type:
 fn(param1, param2, ..., parametern) ->return_type

You can initialize a function pointer with the name of a function. But the function must be the same type as described by the fn type. The function pointer will then point to that function. Appearances aside, however, a function name is not a function pointer itself. A function name evaluates to an instance of an unattributed type that uniquely identifies the function. This type implements the fn trait. For that reason, it is coercible to the fn type.
The following traits are implemented for each function pointer:
Clone Copy Send
Sync Unpin UnwindSafe
RefUnwindSafe
For function types with 12 or fewer parameters, the function pointer implements these traits:
PartialEq Eq PartialEq
Ord Hash Pointer
Debug
Listing 11.15 has various function definitions and function pointers.
Code Listing 11.15.
Function pointers to various functions
 fn func_one(p1:i32){}
 fn func_two(p1:String, p2:f64)->f64{0.00}
 fn func_three(){}
 fn func_four(p1:String, p2:f64)->f64{0.00}
 fn func_five(p1:(i8, i8, i8)){}

 fn main(){
 let fptr1:fn(i32)=func_one;
 let fptr2:fn(String, f64)->f64=func_two;
 let fptr3:fn()=func_three;
 let fptr4=func_four;

 let fptr5:fn(bool)=func_five; // does not work
}

Each function in this example is a different function type. In main , function pointers are created for each function:
 The fptr1 variable is initialized with a function pointer to the func_one function. The function is consistent with the function pointer type: fn(i32) .
 The ftpr2 variable is initialized with a function pointer to the func_two function. The function is consistent with the function pointer: fn(String, f64)->f64 .
 The ftpr3 variable is initialized with a function pointer to the func_three function. The function is consistent with the function pointer: fn() .
 The fptr4 variable is assigned a function pointer to the func_four function. Type inference is used to set the variable type, which is fn(String, f64)->f64 .
 The function pointer type for fptr5 , fn(bool) is inconsistent with func_five , which is type fn((i8, i8, i8) . This assignment causes a compiler error.
For further illustration, Listing 11.16 is a practical example of function pointers. Nested functions are also included. This example mimics a person walking or running a specified distance.
Code Listing 11.16.
Calling different functions based on program logic
enum Pace {
 Walking,
 Running,
}

fn set_pace(pace:Pace)->fn(i32) {
 fn walking(distance:i32) {
 println!("Walking {} step(s)", distance)
 }
 fn running(distance:i32) {
 println!("Running {} step(s)", distance)
 }

 match pace {
 Pace::Walking=>walking,
 Pace::Running=>running
 }
}

fn main() {
 let move_forward=set_pace(Pace::Running);
 move_forward(40); // calling function through fptr
}

The Pace enum has a walk and run variant. The set_pace function includes two nested functions: walking and running . Based on the Pace enum, the set_pace function returns a function pointer to either the walking or running nested function. In main , the move_forward variable is initialized with the function pointer returned from the set_pace function. Lastly, whatever function that is now associated with move_forward is called.
Function Aliases
Heavy utilization of function pointer types tends to make code dense and unreadable. For improved readability, function pointer types are often assigned an alias. The something_complex function is a perfect example. Function pointer types are used for both parameters and the return value. This makes the function header for the function unwieldy and difficult to understand (see Listing 11.17).
Code Listing 11.17.
Function pointers with extended syntax
fn something_complex(which: bool, p1:fn(i32,i32)->i64,
 p2:fn(i32,i32)->i64)->fn(i32,i32)->i64 { // headache inducing
 if which {
 p1
 } else {
 p2
 }
}

The version of the something_complex function in Listing 11.18 has type aliases. The fptr type alias is defined beforehand. This makes the function header for something_complex more readable.
Code Listing 11.18.
A function that uses aliases for simpler syntax
type fptr = fn(i32,i32)->i64;
fn something_complex(which: bool, p1:fptr,
 p2:fptr)->fptr { // tranquility
 if which {
 p1
 } else {
 p2
 }
}

Summary
Functions help modularize application source code. Instead of having a monolithic application, you can use functions to decompose your application into manageable units. The Don’t Repeat Yourself (DRY) principle is another benefit of functions. Placing reusable code in functions reduces redundancy. It also makes the inevitable refactoring that is undertaken for most applications less error prone.
A function typically performs a single task, as implemented in the source code, That task or behavior should be reflected in the function name. The function definition can be anywhere in the source file. The only requirement is that the function call and function definition are within the same scope.
The return value of a function is the result of the function. A function with no return value returns the unit type. You can return multiple values from a function using sequences or structs.
You can have multiple returns, at different locations, within a function. However, each return within a function must have a consistent type.
A function pointer points to a function and is an instance of a function pointer type. Function pointers add flexibility at runtime, making your application more extensible. In addition, function pointers allow functions to be treated as a first-class citizen. You can use functions as variables, function parameters, and function return values.
Widespread use of function pointers can make code dense. Assigning aliases for function pointers can make your code easier to read.

Chapter 12. Error Handling
Error handling is an application’s ability to respond to exceptional events. Your program can take either a proactive or reactive posture to error handing. Proactive error handling is where error conditions are anticipated in program logic and then handled in some manner. Reactive error handling is responding to, and handling, if possible, problems after they occur.
For proactive error handling, Rust standardizes around the Result and Option types. These types help functions respond in a predictable and extensible manner to potential error results. This model is especially important for libraries. Libraries have a contract with callers to behave in a predictable manner.
For reactive error handling, Rust has panics. Panics happen when an exceptional event occurs during execution and there is no path forward. Exceptional events are typically related to runtime errors. For example, a panic can occur when accessing unsafe memory, dividing an integer by zero, calling the unwrap function when there is an error, or an unpredictable adverse event. On these occasions, there may be no path forward and a panic will occur. It is your decision how to handle a panic, including even ignoring it.
Proactive error handling is preferred to reactive error handling (i.e., panics) for several reasons, including the following:
 Supporting panics increases the size of the binary.
 Panics can add complexity to your source code.
 Panics are unpredictable.
 Philosophical differences.
About those philosophical differences—the difference can best be described by the following example: A proactive person purchases a map before a long trip. The person arrives at the destination on time after taking a clearly defined route. A reactive person does not get a map and simply wings it. The reactive person will eventually arrive at the destination, hopefully at least, but the trip will undoubtedly be longer, unpredictable, and more expensive.
Rust does not have exceptions! This is part of the overall shift away from reactive error handling. Panics are a replacement for exceptions. There are similarities, such as both being stack based, but there are also significant differences. With panics, you can attempt to emulate exception handling, but that is not idiomatic Rust. Instead, embrace the new paradigm that Rust presents to you.
Handling Error Handling
With error handing, you anticipate problems and resolve them in some manner. Handling the problem directly, deferring to the caller function, or even asking the user for help are all possible actions.
The winning_ratio function, shown in Listing 12.1, has a potential problem. It calculates how often a sports team wins: (wins + losses) / wins. For instance, a team with 8 wins and 2 losses expects to win about every 1.25 games. A team with 5 wins and 15 losses wins about every fourth game. As bad as that sounds, there are teams that are likely to never win. These are the perennial underdogs, such as the 2008 Detroit Lions. However, that causes problems in the calculation: division by zero. To avoid that problem, error handling is added to the function. If a team has zero wins, the hardcoded result is also 0.
Code Listing 12.1.
Example variable declarations
 fn winning_ratio(wins:i32, losses:i32)->f32 {
 if wins == 0 {
 wins
 } else {
 (wins + losses) as f32 / wins as f32
 }
 }

In this example, you can both predict and recover from this problem—a divide-by-zero panic. What if the problem was not recoverable? The best practice is to avoid a panic and report the problem to the caller within a function result. This is the role of either the Result or Option type.
The Result Enum
 Result is returned from functions that may need to report an error. The Result type is an enum consisting of the Ok(T) and Err(E) variants. If the function is successful, Ok(value) is returned, where value is the result from a successful completion of the function. If an error happens, the function returns Err (error). Here is the Result enum:
enum Result<T, E> {
 Ok(T),
 Err(E),
}

As shown in Listing 12.2, the winning_ratio function is updated to return a Result. In addition, team information, team name, wins, and losses now reside in a global HashMap named TEAMS. We want the winning ratio for the team identified in the function argument.
Code Listing 12.2.
The Result type used for error handling
 fn winning_ratio(team: &String)->Result<f32, &str> {
 if let Some(&(wins,losses))=TEAMS.get(team) {
 if wins== 0 {
 Ok(wins as f32)
 } else {
 Ok(((wins+losses) as f32)/ wins as f32)
 }
 } else {
 return Err(&"Invalid team");
 }
 }

Within the function, the team name is used to gather information about the team in TEAMS, including the won/loss record. The function cannot recover from an incorrect team name. If that occurs, an Err object containing an error message is returned from the function. Otherwise, the function returns the ratio as the Ok(value) . This means a Result variant is returned whether the function is successful or not.
The caller should unwrap the return value of the function. If Ok(value) is returned, no error occurred and the function can proceed. However, if an Err(error)is returned, the caller should either handle or propagate the error.
The Option Enum
 Option is an alternative to Result . This is ideal for functions that return a specific value, such as an element of an array or a certain date. The Option type has Some(T) and None variants. If the selected value is found, Some(value) is returned as the Option type. Otherwise, None is returned. This is an improvement on returning a magic result or panicking if a value is not found. Let’s assume that a function returns a specific employee record from hundreds of employees. If the chosen record exists, the function returns Some(record) , and None is returned when the employee record cannot be found.
Here is the Option type:
 enum Option<T> {
 None,
 Some(T),
 }

In addition to the winning_ratio function, let’s add the get_score function to the previous example. The function returns the score of a specific game. The game scores are also stored in a HashMap, with team names as the keys and games scores as the value. If the team and game are found, the score is returned as Ok((current_team, other_team)) , where the underlying value is a tuple. Otherwise, None is returned.
Listing 12.3 shows the get_score function.
Code Listing 12.3.
Option type used for error handling
 fn get_score(team: &String, mut which_game:usize)->Option<(i8, i8)> {
 if let Some(&(wins,losses, scores))=TEAMS.get(team) {
 if (which_game == 0) || (which_game > scores.len()) {
 return None;
 }
 Some(scores[which_game-1 as usize])
 } else {
 None
 }
 }

Panics
Panics are a response to an exceptional event when execution cannot continue in the normal manner. An application can treat a panic as a notification of a problem. It can decide how to handle the panic, even doing nothing if desired.
Panics are thread specific. When a panic occurs, the stack for the current thread is unwound. This continues until the panic is handled or the stack is exhausted. If the stack is exhausted (unwound), the current thread is terminated. However, if this is the primary thread, the application is terminated. The process of unwinding the stack provides an opportunity for an orderly cleanup of memory and resources before the thread exits.
The example shown in Listing 12.4 has source code that causes a divide-by-zero panic in the division function. Remember, Rust does not have exceptions—only panics!
Code Listing 12.4.
If the divisor is zero, the division function will panic.
 fn division(dividend:isize, divisor:isize)->isize{
 dividend/divisor // panic
 }

 fn logic() {
 division(1,0);
 }

 fn main() {
 logic();
 }

When the panic occurs, the stack unwinds in sequence: division, logic, and finally the main function. The main function is the end of the line for the primary thread. For that reason, the divide-by-zero panic terminates the application. The following error message is displayed at runtime for the panic. The message is helpful with diagnosing the error, even listing the location of the panic.
thread 'main' panicked at 'attempt to divide by zero',
 src\main.rs:2:5
note: run with `RUST_BACKTRACE=1` environment variable to
 display a backtrace
error: process didn't exit successfully:
 `target\debug\divide_by_zero.exe` (exit code: 101)

By default, a panic does not display a backtrace, which displays the current call stack. The backtrace can be helpful in identifying the origin of a panic. It discloses the functions that were called that lead to the panic. As highlighted in the previous error message, you should set the RUST_BACKTRACE environment variable to 1 to enable a backtrace. With the RUST_BACKTRACE environment variable set, here is the error message that includes the backtrace:
 2: core::panicking::panic
 at /rustc/897e37553bba8b42751c67658967889d11ecd120/library\
 core\src\panicking.rs:48
 3: divide_by_zero::division
 at .\src\main.rs:2
 4: divide_by_zero::main
 at .\src\main.rs:6
 5: core::ops::function::
 FnOnce::call_once<void (*)(),tuple$<> >
 at /rustc/897e37553bba8b42751c67658967889d11ecd120\
 library\core\src\ops\function.rs:248
note: Some details are omitted, run with `RUST_BACKTRACE=full
 ` for a verbose backtrace.
error: process didn't exit successfully:
 `target\debug\divide_by_zero.exe` (exit code: 101)

When there is a panic, the stack unwind is an opportunity for an application to perform an orderly exit, most notably releasing resources and memory. Some cleanup is automatic, such as removing local variables. However, references to the heap or external resources may require special handling. During the unwind, the drop function is automatically called on droppable objects, which implement the Drop trait. For many, the drop function is equivalent to a destructor.
In Listing 12.5, Tester is a struct with a string field, which is initialized with the name of the current function. The Drop trait is implemented for the struct. In the drop function, the name of the current is displayed. This allows us to watch the stack unwind, a function at a time, and the cleanup being performed. Exciting!
Code Listing 12.5.
The drop function is instrumented to watch the stack unwind.
 struct Tester {
 fname:String,
 }

 impl Drop for Tester {
 fn drop(&mut self){
 println!("{} unwound", self.fname);
 }
 }

 fn division(numerator:isize, divisor:isize)->isize{
 let temp=Tester{fname:"division".to_string()};
 numerator/divisor
 }

 fn logic() {
 let temp=Tester{fname:"logic".to_string()};
 division(1,0);
 }

 fn main() {
 let temp=Tester{fname:"main".to_string()};
 logic();
 }

In this example, we force a divide-by-zero panic in the division function. In addition, every function has a Tester object initialized with the function name. When the panic occurs, as the Tester objects are dropped, the function name for each function is displayed as the stack unwinds. This demonstrates that implementing the Drop trait has provided each function an opportunity to perform cleanup. Here is the result:
division unwound
logic unwound
main unwound

Sometimes, you may not have a cleanup strategy for a panic. When that occurs, the stack unwind may be ineffectual. More importantly, without a cleanup strategy, your application may be left in an unknown or unstable state. For that reason, the best solution maybe to immediately abort the application on a panic. This can be done with an entry (panic='abort') in the cargo.toml file.
Listing 12.6 shows the complete entry in a cargo.toml file.
Code Listing 12.6.
Cargo.toml entry that aborts stack walks on panics
 [profile.dev]
 panic = 'abort'

Importantly, this is an external configuration that anyone can set. This potentially could be done outside of your control. In addition to backtraces, this another reason why panics are unpredictable and should be avoided, if possible.
Panic! Macro
As already shown, panics are often the result of an exceptional event. You can also force a panic with the panic! macro. Panics are to be avoided, if possible! However, there are valid reasons to force a panic:
 To propagate an existing panic
 No constructive path forward
 Irrefutable notification to a caller
Listing 12.7 is an example of the panic! macro. The basic version of the panic! macro accepts any type as the parameter. This means you can describe the panic in any manner: a string error message, an error code, or whatever you feel is helpful.
Code Listing 12.7.
Panicking a string
 fn main() {
 panic!("kaboom")
 }

Here is the panic message from this short program. Notice your description within the message:
thread 'main' panicked at 'kaboom', src\main.rs:2:5
note: run with `RUST_BACKTRACE=1` environment variable
 to display a backtrace

For more flexibility, there is an expanded version of the panic! macro that is similar to the print! macro. It has a format string, with placeholders. and parameters. The value of infinity, if unexpected, can be a wrecking ball during execution. If known, it might be better to force a panic, as shown in Listing 12.8.
Code Listing 12.8.
Panic with additional error information.
 fn main() {
 let num1=f64::INFINITY;
 panic!("Can't proceed with this value {}", num1);
 }

Handling Panics
You can handle a panic. The response to a panic depends on the type of panic and the intricacies of your application. You could request assistance from a user, apply a default behavior, or do nothing. The responses can be varied.
Another reason to handle a panic is to avoid unwinding into foreign code, which can create undefined behavior. For example, unwinding into a system call could cause problems. For that reason, handling a panic before an unwind crosses into foreign code might be prudent.
Remember, the preference is error handling. However, when this is impossible, limited handling of a panic may be helpful, such as logging a panic and then repanicking the panic.
The catch_unwind function handles panics. It is found in the std::panic module. Here is the syntax of the function:
 fn catch_unwind<F:FnOnce() -> R+UnwindSafe, R>
 (f: F) ->Result<R>

The catch_unwind function accepts a closure as an argument, which returns a Result. If the closure does not incur a panic, catch_unwind returns Ok(value), where value is the result of the closure. When a panic happens, the function returns Err(error) with the error object for the panic.
The application shown in Listing 12.9 asks the user, emulated in the ask_user function, to select a value from a vector. If that value is invalid, such as out of range, a panic occurs. There are robust methods for this operation, such as the get function. However, for the purposes of this example, we are ignoring this. As written, the unhandled panic will crash the application after unwinding the call stack for the primary thread.
Code Listing 12.9.
Example of an unhandled panic
 fn get_data(request:usize)->i8{
 let vec:Vec<i8>=(0..100).collect();
 vec[request]
 }

 fn ask_user(){
 // get from user
 let data:usize=105;
 get_data(data);
 }

 fn main() {
 ask_user();
 }

The version of the application shown in Listing 12.10 handles the panic using the catch_unwind function.
Code Listing 12.10.
Instrumented drop function to watch the stack unwind
 use std::panic;
 use std::any::Any;

 fn get_data(request:usize)->Result<i8, Box<dyn Any + Send>>{
 let vec:Vec<i8>=(0..100).collect();
 let result = panic::catch_unwind(|| {
 vec[request]
 });
 result
 }

 fn ask_user(){
 // get from user
 let data:usize=105;
 let result=get_data(data);
 match result {
 Ok(value)=>println!("{}", value),
 Err(_)=>println!("handle panic...")
 }
 println!("still running");
 }

 fn main() {
 ask_user();
 }

In the get_data function, catch_unwind executes a closure that accesses a vector. The catch_unwind then returns a Result. This is instead of panicking when there is an invalid index. The result of the catch_unwind is returned to the caller, get_data , where it is interpreted in a match.
Interestingly, when the program is run, the panic message is still displayed. Yes, we handled the panic, but the error message remains. Here is the result of the application:
thread 'main' panicked at 'index out of bounds:
 the len is 100 but the index is 105', src\main.rs:13:9
note: run with `RUST_BACKTRACE=1` environment variable to
 display a backtrace
handle panic...
still running

Handling a panic does not prevent the panic message, even if handled. Every thread has a panic hook. The panic hook is a function that runs whenever a panic occurs and displays the panic message. This is the function that displays the backtrace when that feature is enabled. You can replace the hook with the set_hook function, found in the std::panic module. The panic hook is invoked between when the panic occurs and before the panic is handled. Here is the description of the set_hook function:
 fn set_hook(hook: Box<dyn Fn(&PanicInfo<'_>) + Sync + Send + 'static>)

In Listing 12.11, we replace the default hook with a closure that does nothing. That will remove the panic message.
Code Listing 12.11.
Removing a panic message with an empty set_hook function
 fn get_data(request:usize)->Result<i8, Box<dyn Any + Send>>{
 let vec:Vec<i8>=(0..100).collect();

 panic::set_hook(Box::new(|_info| {
 // do nothing
 }));

 let result = panic::catch_unwind(|| {
 vec[request]
 });
 result
 }

Handling a panic may require learning about the panic. Why did the panic occur? When there is panic data, how does the data inform us? Information associated with a panic is the any type. You need to downcast to something specific before accessing the information for the panic.
In the previous example, we ignored the information from the panic. The example shown in Listing 12.12 downcasts the data to a string. We can then display the panic data.
Code Listing 12.12.
Downcasting an error message
 match result {
 Ok(value)=>println!("{}", value),
 Err(msg)=>println!("{:?}", msg.downcast::<String>())
 }

Unwrapping
Many employ the unwrap function for error handling when an application is being developed or tested. Using unwrap, an error result, for Result or Option , can be converted into a panic. This is typically done for two reasons:
• You are not prepared to handle a particular error in development, at least not yet.
• You want to make sure the error is not ignored.
However, there are variations to the unwrap function that are helpful in all circumstances, not just during development. These are more resilient versions of the wrap function that can be used for error handling. We will explore the many faces of the unwrap function here, beginning with the basic unwrap.
The unwrap function is called on either an Option or Result type. A panic occurs if Option is None or Result is Err(E) , as demonstrated in Listing 12.13. We attempt to access an element of a vector using the get function. The get function returns an Option type. The result of the get is None , since 5 is outside the bounds of the vector. Consequently, the unwrap will cause a panic.
Code Listing 12.13.
Unwrapping panics on an invalid index
 fn main() {
 let items=vec![1,2,3,4];
 let value=items.get(5);
 let value=value.unwrap();
 }

The following example is similar, except the expect function replaces unwrap . The difference is you can set the error message when unwrapping the panic. Previously, you received the default message.
 fn main() {
 let items=vec![1,2,3,4];
 let value=items.get(5);
 let value=value.expect("out of range");
 }

From this example, the panic will result in the following error message. The expect function sets the message from the panic to “out of range.”
thread 'main' panicked at 'out of range', src\main.rs:4:21
note: run with `RUST_BACKTRACE=1` environment variable to
 display a backtrace
error: process didn't exit successfully: `target\debug\expected.exe`
 (exit code: 101)

There are variations of the unwrap function that do not panic when there is an error. These methods are useful for error handling, even beyond development. We will start with the unwrap_or function. When there is an error, this version of unwrap can provide an alternate success value instead of panicking. The alternate value is your recommendation if the unwrap is not successful.
The example shown in Listing 12.14 is identical to the previous example. However, unwrap_or is used instead of the unwrap function. When the error is unwrapped, instead of panicking, unwrap_or returns a reference to 1 . The alternate value and success value must be the same type.
For our purposes, Err and None are both considered an error result.
Code Listing 12.14.
For an error result, the unwrap_or function provides an alternate value.
 fn main() {
 let items=vec![1,2,3,4];
 let value=items.get(5);
 let value=value.unwrap_or(&1);
 println!("{}", value);
 }

Another variation is the unwrap_or_else function. In this variation, the alternate value is set using a closure. This is helpful when the alternative value must be calculated or is complex, requiring some programming logic. The unwrap_or_else function accepts the closure as a function argument. If an error is unwrapped, Err or None , the closure is called.
In Listing 12.15, the unwrap_or_else function is presented. When the error is uncovered, unwrap_or_else invokes the closure and returns &1 .
Code Listing 12.15.
For an error result, the unwrap_or_else function executes a closure.
 fn main() {
 let items=vec![1,2,3,4,];
 let value=items.get(5);
 let value=value.unwrap_or_else(||&1);
 println!("{}", value);
 }

The unwrap_default function returns a default value when an error is found. The actual value returned depends on the type. For example, the default value for an integer type is 0 . In addition, not every type has a default value. Types with a default value implement the Default trait. Most notably, references do not implement this trait and cannot be used with this function.
In Listing 12.16, Result is an Option<i8> type and set to None . Here the underlying value is an integer. When the unwrap_or_default function is called the default value, which is 0 , is returned.
Code Listing 12.16.
For an error result, the unwrap_or_default function sets a default value.
 fn main() {
 let result:Option<i8>=None;
 let value=result.unwrap_or_default(); // 0
 println!("{}", value);
 }

Match Pattern for Result and Option
Functions that implement proactive error handling return either a Result or Option. The caller then interprets the return value to respond correctly. Typically, this is accomplished within a match where both a successful and error result can be handled. As just described, this represents the standard pattern for handling errors. You have already seen this pattern repeatedly in this chapter.
Listing 12.17 is an example of the standard. This is a trivial example that focuses on the pattern.
Code Listing 12.17.
Standard error handling
 // faker that emulates error handling
 fn faker()->Result<i8,String>{
 Ok(0)
 }

 fn transform()->Result<bool, String>{
 let result=funcb();
 match result {
 Ok(value)=>Ok(value>10),
 Err(err)=>Err(err)
 }
 }

 fn main(){
 funca();
 }

The transform function calls the faker function. The faker function is a fake that emulates error handling, with a hard-coded result. The transform function also has error handing. It is not uncommon for a chain of functions to implement error handling. In this example, the functions return different Result types. For that reason, the match in the transform function interpret Result<i8, String> as Result<bool, String>. To convert i8 to a bool, we perform an arbitrary conversion in the example.
Listing 12.18 is a more detailed demonstration of the standard pattern for error handling. The application has a HashMap that contains cities with their average temperatures. The temperatures are recorded in Fahrenheit. When requesting a particular city, the goal of the application is to convert the temperature from Fahrenheit to Celsius.
Code Listing 12.18.
Standard error handling for the Option type
 use std::collections::HashMap;

 fn into_celsius(cities:&HashMap<&str, f64>,
 city:&str)->Option<f64>{
 let result=cities.get(&city);
 match result {
 Some(temp)=>Some((*temp-32.0)*0.5666),
 None=>None
 }
 }

 fn main() {
 let cities = HashMap::from([
 ("Seattle", 72.0),
 ("San Francisco", 69.0),
 ("New York", 76.0),
]);

 let city="San Francisco";
 let result=into_celsius(&cities, city);
 match result {
 Some(temp)=>println!("{} {:.0}", city, temp),
 None=>println!("City not found.")
 }
 }

The into_celsius function accepts the name of a city. The get function is then called with the name. If found in the HashMap, the temperature for that city is retrieved. The function will return Option <i32> , where the underlying value is the temperature. If the city is missing in the HashMap, None is returned. The into_celsius function returns Option<f64> . Therefore, the transformation is from Fahrenheit to Celsius and from an integer to a float: Option<i32> to Option<f64> . The transformation is performed in the match within the into_celsius function.
Map
Both Option and Result have a map function that implements the standard pattern for error handling. This removes the need for the match , as shown in previous examples. The caller instead relies on map to interpret the Result or Option value. Replacing match with the map function can make your code more concise, readable, and easier to refactor.
The map function is a higher-order function (HOF) and a common artifact in functional programming languages. HOFs accept a function as an argument or a return value. For the map function, it accepts a closure as the function argument.
For the Option type, here is the definition of the map function:
 fn Option<T>::map<U, F>(self, f: F) -> Option<U>
 where F: FnOnce(T) -> U

The map function converts Option<T > to Option<U >. This is essentially transforming T to U for the Some variant. If the result is None , the map function will simply propagate None . The map function accepts a closure, as a parameter, to perform the transformation.
For the Result type, the map function behaves similarly, except the transformation is from Result<T, E> to Result<U, E> . Once again, we are transforming T to U except for Ok variant. If an Err result is found, the map function will propagate the error.
 pub fn map<U, F>(self, op: F) -> Result<U, E>
 where F: FnOnce(T) -> U,

In Listing 12.19, the previous version of the into_celsius function is rewritten with the Option::map function.
Code Listing 12.19.
An Option.map example
 fn into_celsius(cities:&HashMap<&str, f64>,
 city:&str)->Option<f64>{
 cities.get(&city).map(|temp|(((*temp as f64)-32.0)*0.5666))
 }

As described before, the HashMap::get function will return the temperature for a designated city, as an Option <i8> . The map function will convert Option<i8> to Option<f64> will, at the same time, converting the temperature from Fahrenheit to Celsius.
This new version of the into_celsius function is more concise, readable, and DRY. Win, win, win!
Let’s refactor the into_celsius function yet again. The goal is to make the source code more modular, which will make it more maintainable. For this reason, the conversion calculation from Fahrenheit to Celsius is placed in the f_to_c function, which returns an Option <f64> type. In Listing 12.20, the closure within the map function calls the f_to_c function to perform the temperature conversion.
Code Listing 12.20.
Attempting to propagate an Option type
 fn f_to_c(f:i8)->Option<f64> {
 let f=f as f64;
 Some(((f-31.5)*0.56660))
 }

 fn into_celsius(cities:&HashMap<&str, i8>, city:&str)->Option<i8>{
 cities.get(&city).map(|temp|f_to_c(*temp)) // does not compile
 }

This does not compile! What is the problem? Both map and the f_to_c function return Option<i8> . This means the map function is returning Option<Option<f64>> . However, into_celsius is expecting Option<f64> . This is the reason for the compiler error.
The and_then function fixes the problem. Unlike map , the and_then function flattens the result from Option<Option<f64>> to Option<f64> . It will return the inner result.
Here is the definition of the and_then function:
 fn and_then<U, F>(self, f: F) -> Option<U>
 where F: FnOnce(T) -> Option<U>

Listing 12.21 is the into_celsius function rewritten for and_then . It compiles and executes correctly.
Code Listing 12.21.
Successfully propagating the inner Option
 fn into_celsius(cities:&HashMap<&str, i8>, city:&str)->Option<f4>{
 cities.get(&city).and_then(|temp|f_to_c(*temp))
 }

So far, the into_celsius function has returned an Option. However, there is a valid argument that the function should return a Result instead. If the conversion cannot be completed, that could be interpreted as an Err object. The function has returned the Option type more for convenience than anything else. It aligns better with the Hashmap::get function, which also returns an Option . What if into_celsius returned a Result type? The map function would not be the solution. Instead, you could use the Option:: ok_or function. It converts an Option type to a Result. Of course, the other way around could also be helpful at times. The Result::ok function converts a Result type to an Option.
Here is the definition of the ok_or function. This function will automatically convert an Some(value) to an Ok(value). None would become an Err, which you provide as the only parameter for the function:
 fn ok_or<E>(self, err: E) -> Result<T, E>

Listing 12.22 is the final version of i nto_celsius , that uses the ok_or function.
Code Listing 12.22.
Complete listing of the Celsius-to-Fahrenheit program
 use std::collections::HashMap;

 fn f_to_c(f:i8)->Option<f64> {
 let f=f as f64;
 Some(((f-31.5)*0.56660))
 }

 fn into_celsius(cities:&HashMap<&str, i8>, city:&str)
 ->Result<f64, String>{
 cities.get(&city).and_then(|temp|f_to_c(*temp)).
 ok_or("Conversion error".to_string())
 }

 fn main() {
 let cities = HashMap::from([
 ("Seattle", 81),
 ("San Francisco", 62),
 ("New York", 84),
]);

 let city="San Francisco";
 let result=into_celsius(&cities, &city);
 match result {
 Ok(temp)=>println!("{} {}", city, temp),
 Err(err)=>println!("{}", err)
 }
 }

The into_celsius function is updated to return a Result. After the and_then function, the ok_or function converts Option, with the Celsius temperature, to a Result. The Result is then returned. The final change is in main , where the match is updated to handle a Result returned from the into_celsius function.
Rich Errors
Not all error objects are the same. Some possess rich information that can provide important additional detail. At a minimum, error objects implement the Error and Display traits.
The io::Error type is an example of an error that contains rich information. File-related operations return io::Error when there is a problem. In Listing 12.23, we attempt to create a file. Because of the file location, the operation is likely to fail.
Code Listing 12.23.
The io::Error type provides rich error information.
 use std::fs::File;
 use std::io;
 use std::io::prelude::*;

 fn create_file()->Result<String, io::Error>{
 let file=File::create(r#"z1:\doesnotexists.txt"#)?;
 // read data
 Ok("Data".to_string())
 }

 fn main() {
 let result=create_file();
 let error=result.unwrap_err();
 match error.kind() {
 NotFound=>println!("not found"),
 _=>println!("something else")
 }
 }

The create function will probably fail and return an io::Error . The ? operator propagates the error to the caller. In main , the unwrap_err function is used to unwrap the Result object. The unwrap_err function is the functional reverse of unwrap . The function unwraps an error object successfully but panics if the operation is successful. In our example, the match interprets the error object and, with the additional information, displays the kind of input/output error that has occurred.
Custom Errors
You can also create custom errors that include rich information. Adding rich information helps an application respond correctly to an error.
In the next example, the is_divisible function determines if x is divisible by y. For our purposes, ignore the remainder operator (%). Instead, the operation is performed explicitly. If x is divisible by y, Some(x) should be returned. When y is zero, a panic could occur during the operation. For this reason, the function has proactive error handling. The function returns Result<bool, DivisibleError> , where DivisibleError is a custom error.
Listing 12.24 is the implementation of the DivisibleError type. As required for an Error type, we implement the Error and Display traits. For the Error trait, this means implementing the source function. The purpose of the function is to identify the source of the error. For the Display trait, we need to implement the fmt function to provide a string representation of the error. For DivisibleError, the function will display the dividend and divisor.
Code Listing 12.24.
Implementing Display for DivisibleError
 use std::error::Error;
 use std::fmt;

 #[derive(Debug, Copy, Clone)]
 struct DivisibleError {
 dividend: i8,
 divisor: i8
 }

 impl fmt::Display for DivisibleError {
 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
 write!(f, "Error => Dividend:{} Divisor:{}", self.dividend,
 self.divisor)
 }
 }

 impl Error for DivisibleError {
 fn source(&self) -> Option<&(dyn Error + 'static)> {
 Some(self)
 }
 }

 fn is_divisible(dividend:i8, divisor:i8)->Result<bool, DivisibleError>
{
 if divisor==0 {
 let error=DivisibleError{dividend:dividend, divisor:divisor};
 return Err(error);
 }

 if (dividend%divisor)==0 {
 Ok(true)
 } else {
 Ok(false)
 }
 }

 fn main() {
 let err=is_divisible(5,0).unwrap_err();
 println!("{}", err);
 }

Listing 12.25 shows the remainder of the application, starting with the is_divisible function. This function determines if the numerator is divisible by the divisor and returns either Ok(true) or Ok(false) . The function also has error handling. The function returns a DivisibleError, the custom error, when a error occurs.
Code Listing 12.25.
Use of the DivisibleError custom error
 fn is_divisible(numerator:i8, divisor:i8)->Result<bool,
 DivisibleError> {
 if divisor==0 {
 let error=DivisibleError{numerator:numerator, \
 divisor:divisor};
 return Err(error);
 }

 if (numerator%divisor)==0 {
 Ok(true)
 } else {
 Ok(false)
 }
 }

 fn main() {
 let err=is_divisible(5,0).unwrap_err();
 println!("{}", err);
 }

In main , we call is_divisible with parameters to cause the function to fail. Because of this, the function returns an DivisibleError. The unwrap_err function is then called on Result to return the underlying error object, which is then displayed, as shown here:
 Error => Dividend:5 Divisor:0

Summary
Error handling is an often-overlooked topic when exploring a programming language. It’s better to write perfect code. For most, however, that is impossible, so error handling is an important tool for hardening an application.
Error handling is the process of uncovering exceptional events and proactively mitigating the problem. The goal is to avoid future problems or, even worse, panics. Proactive error handling and avoiding panics is idiomatic Rust. The Result and Option types encapsulate error handling in Rust.
For either the Result or Option type, the unwrap function is commonly used during development but avoided in release versions of an application. If there is an error, unwrap will panic. There are other versions of unwrap that are helpful for error handling, such as unwrap_or . These function are often with released applications.
Panics occur when an application cannot continue because of an exceptional event. When a panic occurs, there is a stack unwind and an opportunity for an orderly cleanup and exit. You can handle a panic with the catch_unwind statement. However, panics are unpredictable and should be avoided, if possible.
We touched upon many Result and Option functions in this chapter, such as the map function. The map function abstracts the standard pattern for error handling. However, there are many more methods worth exploring. Consult the Rust documentation to learn more about them.
Rich error objects have additional detail that may be helpful for interpreting a problem. At a minimum, errors objects implement the Error and Display traits. You can also implement these traits to create custom error objects for your applications.

Chapter 13. Structs
Structs are custom types that consist of fields and functions. As a developer defined type, structs are often referred to as a user-defined type (UDT). With structs, you can create made-to-order types that are tailored to the specific requirements of your application.
A struct can provide context to data. It can be the difference between random data and useful information. Applications that consist exclusively of primitives are harder to maintain and refactor, when necessary. A struct can aggregate data into a cohesive unit that is easier to manage than the individual components. As an example, RGB is a standard for representing colors that are comprise of three core colors: red, green, and blue. Instead of defining three separate integers, we can group them within an RGB struct to ascribe context.
You can use structs to help model complex problem domains. Imagine modeling an internal combustion engine simply with individual integers, floats, and some strings. That would be an arduous endeavor, at best. Structs, however, can closely match the design, attributes, and behavior of complex objects, including a combustion engine. Solutions that closely resemble their problem domain are also easier to maintain and adapt.
Structs are named, and each struct is a different type. Like with other types, you can create a struct value using the let , const , or static keyword. Similar to the primitives, the rules of scope, shadowing, ownership, and lifetimes apply to struct.
Structs and tuples are close relatives. Both are customer types with heterogeneous fields. Structs, however, are named types, while tuples are unnamed. In addition, structs also have named fields, while fields within tuples are numbered. These differences mean structs are generally are easier to use, more reusable, and more flexible than tuples.
Here is the syntax for defining a new struct:
 struct Structname {
 field1:type,
 field2:type,
 fieldn:type,
 }

A struct begins with the struct keyword followed by the struct name. The name should frame the content of the overall struct. Within curly braces, you can add fields to the struct. Each field consists of a name:type pair. By default, the order of fields in the struct is inconsequential. If desired, you can control the order of fields and the memory layout of a struct using the repr() attribute.
As mentioned, RGB is a color scheme that describes colors with three inputs: red, green, and blue. Each color of RGB is within the range of 0 to 255, which indicates the level of saturation. 255 is the highest saturation, while 0 is none. For example, RGB(255, 0, 0) is pure red. The struct shown in Listing 13.1 describes an RGB color.
Code Listing 13.1.
Definition of the RGB struct
 struct RGB {
 red:u8,
 green:u8,
 blue:u8,
 }

The RGB struct is a composite of three u8 fields. The named fields are red, green, and blue.
You create an instance of a struct with the struct name. The fields must be initialized within curly braces as name:value pairs. The fields can be initialized in any order. However, all the fields must be initialized; none can be omitted.
Here, we create an instance of the RGB struct:
 RGB{red:50, green:50, blue:50};

Listing 13.2 is a complete example for the RGB struct.
Code Listing 13.2.
Defining, initializing, and displaying a struct
 #[derive(Debug)]
 struct RGB {
 red:u8,
 green:u8,
 blue:u8,
 }

 let dark_gray=RGB{red:50, green:50, blue:50};
 let orange=RGB{red:255, green:165, blue:0};

 // println!("{:?} {:?}", dark_gray, orange);
 dbg!(&dark_gray);
 dbg!(&orange);

By default, structs do not implement either the Display or Debug trait. This is necessary to display an RGB struct with the println! and dbg! macros. For that reason, the Debug trait is added to the RGB struct with the Debug attribute. It provides an implementation of the Debug trait. Two instances of RGB are then created: dark_gray and orange . Because of implementation of the Debug trait, we are now able to display both RGB’s with the dbg! macro.
When compared to the println! macro, the dbg! macro outputs to the stderr stream, not stdout. The dbg! macro also displays the following information, which is helpful when debugging:
 Source file
 Source line
 Variable name
 Value
Because of the dbg! macro, here is the output from the example:
[src\main.rs:15] &dark_gray = RGB {
 red: 50,
 green: 50,
 blue: 50,
}
[src\main.rs:16] &orange = RGB {
 red: 255,
 green: 165,
 blue: 0,
}

For struct instances, access fields using dot notation: instance.fieldname . This is for all variations of instances, including T , &T , and &mut T .
There are gradations of gray from light gray to dark gray. When the three elements of RBG are the same, the resulting color is some degree of gray. Black is the darkest gray, where red, green, and blue are zero. The is_gray function returns true if the colors provided represent gray; that is, the values of the three RBG fields are equal. In Listing 13.3, the is_gray function is called. Using dot notation, the fields of an RGB instance are provided as function parameters.
Code Listing 13.3.
Accessing fields of a struct using dot notation
 let color=RGB{red:200, green:150, blue:100};
 let result=is_gray{color.red, color.green, color.blue};
 println!("Color is gray: {}", result);

Alternate Initialization
There are alternate methods for initializing structs, which can be more concise and readable.
The field init shorthand syntax is one such alternative. This approach allows fields of a struct to be initialized using a similarly named variable. This avoids having to use the name:value syntax when the intent can be implied.
Listing 13.4 is an example of the field init shorthand syntax using the RGB struct.
Code Listing 13.4.
Long- and shorthand syntax to initialize struct
 fn new struct(red:u8, green:u8, blue:u8)->RGB {
 // RGB(red:red, green:green, blue:blue) // longhand
 RGB(red, green, blue) // shorthand
 }

The new_struct function has the red, green, and blue parameters. These parameters match the fields of the RGB struct, which allows the use of the field init shorthand syntax. The result is indeed more concise and readable. In this example, the longhand syntax is presented only for comparison.
You can even combine both longhand and shorthand syntax for separate fields, as shown here:
 RGB{red: 120, green, blue}

Next, we present another example of the longhand syntax. CMYK is another color scheme. In Listing 13.5, we initialize a CMYK struct with an instance of another CMYK. This requires individually assigning each field.
Code Listing 13.5.
Initializing a new struct with another struct
 struct CMYK {
 cyan:u8,
 magenta:u8,
 yellow:u8,
 key:u8
 }

 let school_bus_yellow=CMYK{
 key:0,
 cyan:0,
 magenta:15,
 yellow:100 };

 let other_color=CMYK{yellow:school_bus_yellow.yellow,
 cyan:school_bus_yellow.cyan,
 magneta:school_bus_yellow.magenta,
 key:100 };

 school_bus_yellow is an instance of the CMYK struct and set to the color of a typical school bus. Except for the key field, the fields of other_color are initialized with the fields of school_bus_yellow .
Let’s demonstrate the shorthand syntax again. This time with the ..instance syntax. The syntax will implicitly copy fields between structs of the same type. Listing 13.6 shows the updated example for CMYK. We still explicitly assign 100 to the key field. However, the remaining fields between the two structs do not change. Therefore, we can initialize the remaining fields using the ..instance syntax.
Code Listing 13.6.
Initializing a new struct using the ..instance syntax
 let other_color=CMYK{key:100, ..school_bus_yellow};
 println!("{:?}", other_color);

Move Semantics
Structs support move semantics. This is true even if the individual fields fully support copy semantics. In Listing 13.7, ownership of the dark_gray instance is moved. Consequently, the attempt to display dark_gray later is invalid.
Code Listing 13.7.
Structs default to move semantics.
 let dark_gray=RGB{red:50, green:50, blue:50};
 let mut light_gray=dark_gray;

 light_gray.red+=125;
 light_gray.green+=125;
 light_gray.blue+=125;

 println!("{:?}", dark_gray);

Here is the error message from the previous example:
 | --------- move occurs because `dark_gray`
 has type `RGB`, …
12 | let mut light_gray=dark_gray;
 | --------- value moved here...
17 | println!("{:?}", dark_gray);
 | ^^^^^^^^^ value borrowed
 here after move
 |

You can apply the Copy trait to a struct only if every field already supports the trait. If this criterion is met, you can add the Copy attribute to the struct for copy semantics.
The RBG fields are u8, which has the Copy trait. Therefore, copy semantics can be added to the struct, as shown in Listing 13.8.
Code Listing 13.8.
Adding copy semantics with the derive attribute.
 #[derive(Debug)]
 #[derive(Copy, Clone)]
 struct RGB {
 red:u8,
 green:u8,
 blue:u8,
 }

With the Copy trait added, the preceding code listing would compile successfully. The dark_gray variable will not lose ownership. This allows the subsequent println! macro to execute correctly.
Mutability
Structs are immutable by default. In addition, fields inherit the mutability of the struct. Therefore, every field also defaults to being immutable. The mut keyword can be applied to an instance but not an individual field.
Attempting to apply the mut keyword to a field causes a compiler error.
Listing 13.9 declares a mutable instance of the RGB struct. The fields are consequently mutable and can be updated.
Code Listing 13.9.
Modifying fields of a mutable struct
 let mut dark_gray=RGB{red:50, green:50, blue:50};
 dark_gray.red-=10;
 dark_gray.green-=10;
 dark_gray.blue-=10;

Methods
A method is a function implemented for a struct. With the addition of methods, a struct can describe not only what it looks like but also what it does. Most entities in the real world are three-dimensional and have both appearance and behavior. Consequently, struct possessing this combination is essential to accurate modeling of real world problem domains. An application for a retail store could have structs for entities, such as customers, transactions, and even the store itself. These structs would have both descriptions and behaviors. For example, the customer struct could have customer number, name, and address fields. Methods would include purchase and return methods for purchasing and returning products at the store.
Methods are implemented within one or more impl block, which binds a method to a particular struct. The syntax for a method is the same as a function. However, the first parameter of the method is the &Self parameter, which is a reference to the current instance.
The is_gray function was implemented in previous examples as a free function. A free function is independent and not associated with a struct. In Listing 13.10, it is implemented as a method bound to the RGB struct.
Code Listing 13.10.
Implementing a method for a struct
#[derive(Debug)]
struct RGB {
 red:u8,
 green:u8,
 blue:u8,
}

impl RGB {
 fn is_gray(self: &Self)->bool{
 (self.red==self.blue)&&(self.blue==self.green)
 }
}

You call the method using the dot notation, the same as other struct members. When calling a method, the Self parameter is provided implicitly. It refers to some flavor of the current instance (the left side of the dot syntax). In Listing 13.11, the is_gray method is called on an RGB instance. Notice that the self parameter is not provided.
Code Listing 13.11.
Calling the is_gray method
let dark_gray=RGB{red:50, green:50, blue:50};
let result=dark_gray.is_gray();

In the impl block, you can reduce the first parameter to &self , which is the short syntax for self:&Self . The example shown in Listing 13.12 is identical to the earlier implementation of the is_gray method.
Code Listing 13.12.
The is_gray function uses short syntax for self:&Self .
#[derive(Debug)]
struct RGB {
 red:u8,
 green:u8,
 blue:u8,
}

impl RGB {
 fn is_gray(&self)->bool{
 (self.red==self.blue)&&(self.blue==self.green)
 }
}

Let’s implement another method for the RBG struct, as shown in Listing 13.13. The is_pure_color method confirms whether the color is an absolute red, green, or blue. The method has two parameters: &Self and the Color enum.
Code Listing 13.13.
Implementing another method for the RGB struct
enum Color {
 Red,
 Blue,
 Green,
}

impl RGB {
 fn is_pure_color(&self, color:Color)->bool {
 match color {
 Color::Red=>(self.red==255)&&
 ((self.blue+self.green)==0),
 Color::Blue=>(self.blue==255)&&
 ((self.red+self.green)==0),
 Color::Green=>(self.green==255)&&
 ((self.blue+self.red)==0)
 }
 }
}

Here, the is_pure_color method is called with a single parameter, which is Color::Blue , as shown here:
 let result=pure_blue.is_pure_color(Color::Blue);

Figure 13.1 shows the relationship of the is_pure_color implementation to the method invocation.

Figure 13.1.
Diagram method implementation versus invocation
Self
For methods, &Self is the most common first parameter, and it borrows an immutable instance. Importantly, this means the instance is not moved and the method does not take ownership. For a mutable reference, you specify &mut Self . Transferring ownership into the method by using Self is less common. Here are all the permutations of Self :

 &Self − &T

 &mut Self − &mut T

 Self − T
Remember, the &self parameter is equivalent to self:&Self , which is included within the prior list.
Let’s add another method to the RGB struct. The invert method inverts the color represented by the RGB struct. Each field of the RGB struct is inverted. As such, the method modifies the instance of an RGB struct and requires a &mut Self (see Listing 13.14).
Code Listing 13.14.
Modifying fields within a mutable struct
#[derive(Debug)]
struct RGB {
 red:u8,
 green:u8,
 blue:u8,
}

impl RGB {
 fn invert(&mut self) {
 self.red=255-self.red;
 self.green=255-self.green;
 self.blue=255-self.blue;
 }
}

fn main() {
 let mut color=RGB{red:150, green:50, blue:75};
 color.invert();
 println!("{:?}", color);
}

Associated Functions
Associated functions bind to a struct, not a particular instance. Accordingly, there is no &Self parameter with an associated function. You call the associated function against the structure using the :: syntax: structname::function . Associated functions are similar to static or classwise methods in other languages. Unlike some other languages, Rust does not support associated fields. This limits the capabilities of associated functions.
The new function for the Factory pattern is a common use case for associated functions. A factory function abstracts the creation of an instance. Listing 13.15 is an example of a factory function, also known as a constructor function.
Code Listing 13.15.
Implementation of the Large type with a new function
struct Large {
 // data
}

impl Large {
 fn new()->Box<Larssssge> {
 Box::new(Large{})
 }

 fn task1(&self) {
 // do something
 }

 fn task2(&self) {
 // do something
 }
}

fn main() {
 let instance=Large::new();
 instance.task1();
}

The Large struct is a mockup of a type that might hold a substantial amount of data. The factory function boxes a new instance of the Large type. The struct is placed on the heap and the box instance is returned from the function. Boxing is discussed further in Chapter 20, “Memory.” Two methods are also implemented for Large: task1 and task2 . In the main function, an instance of the Large struct is created with the factory function. The task1 method is then called on the instance.
Impl Blocks
Methods of a struct are commonly implemented in a single impl block. Nevertheless, you can implement the methods across multiple impl blocks, for example, by grouping methods together based on an additional context, more than just the struct.
In Listing 13.16, there are multiple impl blocks for the RGB struct. The getters and setter methods are grouped in separate impl blocks. Separating them in this manner makes the code more readable and provides additional context beyond just the struct.
Code Listing 13.16.
Multiple impl blocks used to group RGB methods
#[derive(Debug)]
struct RGB {
 red:u8,
 green:u8,
 blue:u8,
}

// Getters
impl RGB {
 const fn get_red(&self)->u8{self.red}
 const fn get_green(&self)->u8{self.green}
 const fn get_blue(&self)->u8{self.blue}
}

// Setters
impl RGB {
 fn set_red(&mut self, value:u8){self.red=value;}
 fn set_green(&mut self, value:u8){self.green=value;}
 fn set_blue(&mut self, value:u8){self.blue=value;}
}

Operator Overloading
Many developers want their custom types to have the same inert capabilities of predefined types, particular numeric types. This includes support for mathematical and other operators, such as the addition operator (+) and the unary negation operator (-). Adding this support to structs is called operator overloading.
First, operator overloading is never required. You could easily create a named function that provides the same behavior. Instead of overloading the addition operator (+), for example, you could implement an add function for the same purpose. For that reason, some feel that operator overloading is syntactical sugar that adds an unwarranted level of abstraction.
Be disciplined! You can overload operators with almost any implementation, even something inconsistent with the expectation. For example, you could have the addition operator (+) perform subtraction. You could even overload the bitwise AND operator (&) to save results of the bitwise operation to a file in the cloud, but only on Thursday. Does that make sense?! The possibility of nonsensical overloading is endless. The implementation of operator overloading should adhere to the well-known interpretation of the operator. Alternatively, the behavior should at least be consistent with some visual clue associated with the operator, similar to the insertion operator (<<) in C++. The direction of the << implies insertion.
Unary operators, such as the unary negation operator (-), have a single operand, which is the instance. This is equivalent to the following:
Unary operator: instance.operator ()
Binary operators have two operands: a left-hand side (lhs) and right-hand side (rhs). For operator overloading, the left-hand side is the instance. This is equivalent to the following:
Binary operator: instance.operator (rhs)
Unary Operator Overloading
Traits for operator overloading are found in the std::ops module. Here is the trait for the unary negation operator (-):
pub trait Neg {
 type Output;

 fn neg(self) -> Self::Output;
}

The Neg trait is typical of unary operators. There is a single method to implement to describe the behavior of the operator for that struct. For the Neg trait, this is the neg method. The Output type within the impl block sets the return type of the trait operation.
In Listing 13.17, the unary negation operator (-) is implemented for the RGB struct.
Code Listing 13.17.
Implementation of the - operator for the RGB struct
use std::ops;

#[derive(Debug)]
struct RGB {
 red:u8,
 green:u8,
 blue:u8,
}

impl ops::Neg for RGB {
 type Output = RGB;

 fn neg(self) ->Self {
 RGB{red: 255-self.red, blue:255-self.blue,
 green:255-self.green}
 }
}

fn main() {
 let color1=RGB{red:200, green: 75, blue:125, };
 let color2=-color1; // use the overloaded operator
 println!("{:?}", color2); // RGB { red: 55,
 // green: 180, blue: 130 }
 }

In the impl block, Output sets the return type of the operation to RGB. Next, the neg function is implemented to invert the RGB color. This behavior is consistent with the meaning of the unary negation operator (-). In main , the overloaded unary negation operator (-) negates the value of color1 . The result is placed in color2 and displayed.
Binary Operator Overloading
Binary operators are the most overloaded operators. Of the binary operators, the addition operator (+) and the subtraction operator (-) are the most common. Here is the trait for the addition operator (+). It is the prototypical trait for a binary operator. Traits for binary operators are generic.
pub trait Add<Rhs = Self> {
 type Output;

 fn add(self, rhs: Rhs) -> Self::Output;
}

For this trait, the add function is implemented to overload the addition operator +. The Rhs type parameter assigns a type to the right-hand side operand (rhs). The default for Rhs is Self. Self refers to the instance (lhs), which means the lhs and rhs default to the same type. Output sets the return type of the operator +.
In Listing 13.18, the addition operator (+) is implemented for the RGB structure.
Code Listing 13.18.
Implementing the + operator for the RGB struct
use std::ops;

#[derive(Debug)]
#[derive(Copy, Clone)]
struct RGB {
 red:u8,
 green:u8,
 blue:u8,
}

impl ops::Add for RGB {
 type Output = RGB;

 fn add(self, rhs:RGB) -> Self::Output {
 RGB{red: self.red+rhs.red, blue:self.blue+rhs.blue,
 green:self.green+rhs.green}
 }
}

The type parameter of the Add trait defaults to Self (i.e., RGB). In addition, Output sets the return type to RBG. The implementation of the add method performs addition of self and rhs (i.e., adding their fields together). The result is returned as a new RGB instance.
In main , we create two instances of the RGB struct. We add both instances together using the addition operator (+). This implicitly calls the Add function on the left-hand side operand. The result is saved to a different RGB instance (see Listing 13.19).
Code Listing 13.19.
Adding two RGBs with overloaded operator +
fn main() {
 let color1=RGB{red:200, green: 75, blue:125, };
 let color2=RGB{red:50, green: 75, blue:25, };

 let color3=color1+color2;
 println!("{:?}", color3);
}

For binary operators, the left-hand side operand, right-hand side operands, and return value are frequently the same type, such as (RGB=RGB+RGB). However, this symmetry is not required. All three can be different types.
In Listing 13.20, the left-hand side and right-hand side operands for the addition operator (+) are different. We want to add a tuple to an RGB instance:
RGB + (u8, u8, u8)

Code Listing 13.20.
Implementing the RGB + (u8, u8, u8) operator
use std::ops;

#[derive(Debug)]
#[derive(Copy, Clone)]
struct RGB {
 red:u8,
 green:u8,
 blue:u8,
}

impl ops::Add<(u8, u8, u8)> for RGB {
 type Output = RGB;

 fn add(self, rvalue: (u8, u8, u8)) -> Self::Output {
 RGB{red: self.red+rvalue.0, blue:self.blue+rvalue.1,
 green:self.green+rvalue.2}
 }
}

fn main() {
 let color1=RGB{red:200, green: 75, blue:125, };
 let color2=color1+(10, 25, 15);
 println!("{:?}", color2);
 }

The type parameter for the Add trait sets the right-hand side operator to (u8, u8, u8) , which is a tuple. Within the impl block, Output establishes the return type as RGB. The implementation of the add method adds the fields of the tuple to the current RGB instance, self . The result is returned as a new RBG.
Note

In this section, examples of the addition operator (+) may overflow the u8 values. This is expected. We want the value to wrap around. The debug build, however, has the overflow-checks compiler option enabled. For this reason, debug versions of the examples may panic. Release versions will run perfectly. Add this section to the cargo.toml file for the proper behavior in both release and debug versions:

[profile.dev]
overflow-checks = false

Tuple Struct
Tuple structs are a combination of a struct and a tuple.
You declare a tuple struct with the struct keyword, struct name, and then a tuple, like so:
 struct Name(fieldtype1, fieldtype2, fieldtypen)

Although the tuple struct is named, the fields remain anonymous. Like tuple, the fields are positional and accessed via an index.
Listing 13.21 is an example of a tuple struct.
Code Listing 13.21.
Example of a tuple struct
#[derive(Debug)]
struct Grade(String, char, u8);

fn main(){

 let bob=Grade("Bob".to_string(), 'B', 87);
 let sally=Grade("Sally".to_string(), 'A', 93);

 println!("Name: {} Grade: {} Score: {}",
 sally.0, sally.1, sally.2);
}

 Grade is a tuple struct with three fields. These are anonymous fields for name, alphabetic grade, and grade score. The variables bob and sally are instances of the tuple struct. The fields for sally are then displayed using indexes.
When compared to a tuple, tuple structs have some advantages:
 Tuple structures are named and therefore easier to reuse.
 Tuple structures have a stricter definition of equivalence.
 Tuple structures are useful as a wrapper for another type.
Unit-Like Struct
A struct with no fields is considered “unit-like.” Unit-like structs occupy no memory space and are considered a zero-sized type (ZST). This is one of the exotic types in Rust. An empty tuple, () , is called the unit type. Because of similarities with the empty tuple, both are ZST, structs with no fields are considered unit-like.
Unit-like structs have limited use-case scenarios. Most notably, unit-like structures can be used as a marker struct or to implement traits, without fields. When defining a unit-like struct, you omit the curly braces for defining fields. Listing 13.22 is an example of implementing a trait for a unit-like struct.
Code Listing 13.22.
Example of a unit-like struct
struct Something;

impl ATrait for Something {
 // methods
}

Summary
You can use structs to create custom types. Structs combine both state and behavior in a single entity. They are convenient for modeling entities in the real world problem domain.
You define a struct with the struct keyword, name, and then fields, within curly braces. For instances, access the fields of a struct using dot notation.
By default, structs are immutable. You apply the mut keyword to make the struct mutable. The entire struct is either mutable or immutable. You cannot apply the mut keyword to individual fields.
Methods are functions for a struct. You implement methods for a struct in the impl block. The first parameter of a method is &Self , &mut Self , or Self and refers to the current instance. When the method is called, the self parameter is implied and binds the method to the struct. As with a field, you execute methods using dot notation: instance.method .
An associated function is bound to a struct and not an instance. Associated functions do not have a self parameter. You execute associated functions using the :: operator: struct::method . Factory functions, such as a new function, are commonly implemented as associated functions.
As a convenience, you can overload the operators for a structure using traits. Traits for operating overloading are found in the std::ops module. Typically, you implement the operator in a manner consistent with its understood behavior.

Chapter 14. Generics
Generics are templates for building unique functions and type definitions. Not surprisingly, generics are called templates in some other languages. A generics is a template with placeholders to be resolved later. You can then build unique instances of functions and type definitions by replacing the placeholders with concrete types. In this manner, generics represent reusable code, even in ways the author may not have anticipated. That is the fun part of generics − being able to use them in the future in unplanned ways. Combined with traits, we have the two pillars of polymorphism in Rust.
Many of the types in the standard library, such as Result<T, E> , Option<T> , Vec<T> , and HashMap<K,V> , are generic. For this reason, generics have an elevated presence in the language.
Generics are mostly about specialization. We will use home design as an analogy. Home builders often possess an assortment of home designs for potential homeowners. The homeowner can choose and then customize the home design based on their preferences, often in ways the builder did not envision. There are placeholders for carpeting, light fixtures, and other design decisions. With this information, a specialization is created—a home designed with specific choices for a particular homeowner. Another homeowner, with their design decisions, would receive a different specialization. It is convenient for the builder that the home designs are mostly reusable. But it is also beneficial to homeowners that can create specializations from the home design based on their unique preferences. In Rust, the home design is a generic type.
Special terminology is associated with generics. Placeholders are type parameters and represent some type, to be defined later. When a type parameter is applied, the description is “something over type T,” where T is the type parameter. Type parameters are declared within angle brackets,
 <> . The term generics encompasses all generic targets: functions, structs, traits, enums, and values. And finally, turbofish is ::<> , which will be explained later.
Rust is a statically typed language. For that reason, type parameters for generics are resolved to concrete types at compile time. This is considered parametric polymorphism. Generics also employ monomorphization. With monomorphization, type arguments are used to resolve generics to unique types. For example, with generic functions, you can create unique functions for unique combinations of type arguments. This occurs at compile time to avoid any performance cost at runtime.
There are many other benefits to generics:

Code reuse: Write code once and reuse it in unlimited ways with different types. Avoid functions like add_int , add_float , add_string , and so on.

Refactoring: Refactoring is simpler because the generic represents the single source, not multiple sources for essentially the same code.

Extensibility: Generics can be used in the future with different types for placeholders, even types that do not exist now.

Less error prone: Generics remove redundant source code. Less-redundant code inevitably results in fewer errors.crete

Unique capabilities: Unique capabilities such as function overloading are associated with generics in Rust.
There are generic functions and types. We will start our exploration with generic functions.
Generic Functions
Generic functions are templates for creating concrete function, using type parameters. You declare type parameters within angle brackets, after the function name. By convention, the first type parameter is T . Subsequent generic type parameters, if any, are named U , V , and so on. However, you are not restricted to this naming convention. Generic type parameters have the same naming convention as variables, which is UpperCamelCasing. You can utilize type parameters within the function definition and body.
This syntax demonstrates the various places that a type parameter can be used—function parameter, function return value, and within the function itself:
 fn functionname<T>(param:T)->T {
 let variable :T ;
 }

The swap function, presented in Listing 14.1, swaps integer values within a tuple. It is not generic.
Code Listing 14.1.
The swap function reverses fields within a tuple.
 fn swap(tuple:(i8, i8))->(i8,i8){
 (tuple.1, tuple.0)
 }

 swap is specialized and available only for i8 types. Applying swap to other types requires creating multiple versions of the swap method, swap_string , swap_float , and so on, as shown in Listing 14.2.
Code Listing 14.2.
Additional swap functions for a String and f64
 fn swap_string(tuple:(String, String))->(String,String){
 (tuple.1, tuple.0)
 }

 fn swap_float(tuple:(f64, f64))->(f64, f64){
 (tuple.1, tuple.0)
 }

This is the opposite of DRY. Maintaining multiple versions of the same function is tedious and prone to errors. Neither is it extensible. Every type used with the function requires a new function. None of this sounds productive.
In main , shown in Listing 14.3, the concerns continue. We have to remember each unique function name for swapping fields within a tuple. And again, this is not extensible.
Code Listing 14.3.
Calls to different flavors of the swap function
 fn main() {
 let tuple1=(10, 20);
 let tuple2=("ten".to_string(), "twenty".to_string());
 let tuple3=(10.0, 20.0);

 let result=swap(tuple1);
 let result=swap_string(tuple2);
 let result=swap_float(tuple3);
 }

Generics to the rescue! In Listing 14.4, the swap function is rewritten as a generic function. It is now extensible and usable with various types. The concrete types in previous examples of the swap, such as i8 and String, are replaced with type parameter T , which is generic. Several functions are now reduced to a single version.
Code Listing 14.4.
A swap function that is generic over type T
 fn swap<T>(tuple:(T, T))->(T,T){
 (tuple.1, tuple.0)
 }

The main function is simpler also. Instead of multiple functions to remember, you can just call swap with a variety of types. The compiler infers the correct concrete type from the function arguments (see Listing 14.5).
Code Listing 14.5.
The same swap function called with various types
 fn main() {
 let tuple1=(10, 20);
 let tuple2=("ten".to_string(), "twenty".to_string());
 let tuple3=(10.0, 20.0);

 let result=swap(tuple1); // for integer
 let result=swap(tuple2); // for String
 let result=swap(tuple3); // for float
 }

In main , the swap function is called with different concrete types. Per monomorphization, the compiler creates a separate concrete function for each type. When swap is called with a String parameter, the compiler creates a concrete function, where the type parameter is replaced with String, as follows:
 fn swap(tuple:(String, String))->(String, String){
 (tuple.1, tuple.0)
 }

Generics provide limited support for function overloading. Function overloading is when functions share the same name but with a unique function definition and implementation. Based on the function definition, the compiler selects the correct function to call. In the previous example, swap is overloaded for different types: integer, float, and String. Nonetheless, the compiler calls the correct implementation of the function. That is the nature of parametric polymorphism.
You can have multiple type parameters. The next version of the swap method has two type parameters: T and U . In this version, the fields of the tuple can be different types, which is demonstrated in Listing 14.6.
Code Listing 14.6.
The swap function with type parameter T and U
 fn swap<T, U>(tuple:(T, U))->(U,T){
 (tuple.1, tuple.0)
 }

 fn main() {
 let tuple1=(10, "ten");
 let result=swap(tuple1);
 println!("{:?}", result);
 }

In the previous examples, the compiler inferred the type. When a generic function is called, most often, type parameters are inferred from the function arguments, if any. When the concrete type cannot be inferred, you must define the type explicitly.
In Listing 14.7, do_something is a generic function that is called in main .
Code Listing 14.7.
A type parameter used as a return type
 fn do_something<T:Default>()->T {
 let value:T=T::default();
 value
 }

 fn main() {let result=do_something();
 println!("{}", result);
 }

Unfortunately, this program does not compile. Here is the error message:
 |
8 | let result: _=do_something();
 | +++

For more information about this error, try
 `rustc --explain E0282`.
error: could not compile `default` due to
 previous error

The error message complains about an unknown return type, as a type parameter. The reason is the type parameter cannot be inferred. The do_something function has no function parameters. This prevents inferring a concrete type from the function arguments. Therefore, the concrete type for the return type is unknown. For these reasons, the caller needs to explicitly state the concrete type.
When calling a free function, you explicitly set the concrete type for type parameters using turbofish as the syntax:
 function_name::<type,…>(arg1, …)

Listing 14.8 is an updated version of main . This version sets the type parameter explicitly to i8.
Code Listing 14.8.
Explicitly setting type parameter T
 fn main() {
 let result=do_something::<i8>();
 println!("{}", result);
 }

Listing 14.9 is a real-world example of generic functions. The vec_push_within is a generic function that adds an element to a vector. If at capacity, the vector is not extended. Instead, a new vector is created with the new element. The function returns a Result type. If it’s successful, the available capacity is returned as Ok(capacity). Otherwise, the new vector is returned as the error value, Err(newvector).
The vec_push_within function can be used with any type of vector, including vec<i8>, vec<f64>, vec<String>, vec<(i32, i32>, and so on. That makes the function more valuable and available in different scenarios. The vec_push_within function is generic over type T , where T is the type of vector.
Code Listing 14.9.
The implementation of the vec_push_within function.
 fn vec_push_within<T>(vec1:&mut Vec<T>, value:T)->
 Result<usize, Vec<T>>{
 let capacity=vec1.capacity();
 let len=vec1.len();
 let diff=capacity-len;
 if diff != 0 {
 vec1.push(value);
 Ok(diff-1)
 } else {
 Err(vec![value])
 }
 }

The function arguments are a vector and an element to add to it. Within the function, the capacity is checked before the element is added. If it’s at capacity, a new vector is created with the element, which is returned as the error value.
Within main , we exercise the vec_push_within function. Elements are added to a vector of integers. The result is then displayed, as shown in Listing 14.10.
Code Listing 14.10.
Testing the vec_push_within function
 fn main() {
 let mut vec1=Vec::with_capacity(2);
 vec1.push(1);
 vec1.push(2);
 let result=vec_push_within(&mut vec1, 3);

 match result {
 Ok(_)=>println!("Original {:?}", vec1),
 Err(value)=>println!("New {:?}", value),
 }
 }

Bounds
For generics, type parameters can refer to any type. That’s the value of generics! However, that can also be a limitation. The type parameter represents a type that is non-specific. This means a compile time, the compiler knows very little about the type parameter. For that reason, the compiler rightfully limits what can be done with it.
A type parameter is similar to a black box that contains a tool. However, as a black box, the specific tool in the box is unknown to you. If the box contains a fine screwdriver versus a chainsaw, that makes a difference. You can only do certain things safely with a chainsaw. This makes it hard to accept the black box for a specific project without knowing the contents. What if the project is building model cars? A fine screwdriver would be helpful, but not a chainsaw. A hint as to the contents of the box would be helpful. For example, does the box contain a power tool?
Trait bounds limit the behavior of a type parameter to trait or traits. Each trait informs the compiler of the expected capabilities of the type arguments. The type argument must implement any trait listed as a trait bound. This gives the compiler confidence about how the type parameter can be used.
Assign trait bonds when the type parameter is declared. After the type parameter is named, you add trait bounds after the : operator (e.g., <T:Trait >).
The next function frames a value within asterisks and demonstrates the need for trait bounds. For example, 2 would become the following:

 2

We want to extend this functionality to any type. Therefore, the function is implemented as a generic function (see Listing 14.11).
Code Listing 14.11.
The border_value function frames a value with asterisks.
 fn border_value<T>(value:T)->String {
 let formatted=format!("* {} *", value);
 let len=formatted.len();
 let line="*".repeat(len).to_string();
 format!("{}\n{}\n{}", line, formatted, line)
 }

This function will not compile because of the format! macro. The { } placeholder within the format string requires the Display trait. However, the compiler cannot assume that type parameter T supports this trait. For that reason, the border_value function will not compile. We need to add trait bounds.
In Listing 14.12, type parameter T is bound with the Display trait. This guarantees that any concrete type assigned to type parameter T will implement the Display trait. With this promise, the compiler accepts type parameter T , as value, within the format! macro.
Code Listing 14.12.
The border_value function constrains type T with the Display trait.
 fn border_value<T:Display>(value:T)->String {
 let formatted=format!("* {} *", value);
 let len=formatted.len();
 let line="*".repeat(len).to_string();
 format!("{}\n{}\n{}", line, formatted, line)
 }

In the previous example, a trait bound was applied to type parameter T . If desired, you can apply multiple trait bounds to a type parameter. Each is a constraint and further refines the capabilities of the type parameter while providing the compiler additional information. Each trait bound expands the capability of the type parameter. You can combine multiple trait bounds with the + operator, as shown:
<T:Trait1+Trait2+…>

The largest function is a generic function, as shown in Listing 14.13. It compares two values and displays the largest value. This requires multiple trait bounds. Types that support this type of comparison must implement the Ord trait. In addition, the Display trait is required for the { } placeholder in the println! macro. For that reason, both traits are applied to type parameter T as bounds. Importantly, without both constraints, the compiler would not have enough information to compile this program.
Code Listing 14.13.
For the largest function, trait bounds Ord and Display are applied to type parameter T.
 use std::fmt::Display;
 use std::cmp::Ordering;

 fn largest<T:Display+Ord>(arg1: T, arg2: T){
 match arg1.cmp(&arg2) {
 Ordering::Less => println!("{} > {}", arg1, arg2),
 Ordering::Greater => println!("{} > {}", arg2, arg1),
 Ordering::Equal => println!("{} = {}", arg2, arg1),
 }
 }

 fn main() {
 largest(10, 20);
 largest("ten".to_string(), "twenty".to_string());

 }

The where Clause
The where clause is an alternate method for applying trait bounds. The where clause is more expressive and can be clearer than conventional trait bounds.
Let's compare conventional trait bounds to the where clause. Listing 14.14 is a generic function with trait bounds, as previously shown. The Debug trait constrains type parameter T .
Code Listing 14.14.
Type parameter T is constrained with the Debug trait.
 fn do_something<T:Debug>(arg1:T){
 println!("{:?}", arg1);
 }

The next function, shown in Listing 14.15, is equivalent to the previous example, except with a where clause. Some would consider this version more readable.
Code Listing 14.15.
With a where clause, a constraint is applied to type parameter T.
 fn do_something<T>(arg1:T)
 where T:Debug
 {
 println!("{:?}", arg1);
 }

The where clause can simplify the syntax for generics. In the next example, the do_something function is generic over type T. The func parameter is the FnOnce type, which is a trait. As a parameter, the trait requires either static or dynamic dispatch. In Listing 14.16, dynamic dispatch is used.
Code Listing 14.16.
As a parameter, the FnOnce trait is applied with dynamic dispatch.
 fn do_something<T>(func:&mut dyn FnOnce(&T)) {
 }

The version in Listing 14.17, the do_something is generic over both type T and U. With the where clause, we can simplify the syntax. Now the func parameter is type parameter U . The where clause then constrains type parameter U with FnOnce(T).
Code Listing 14.17.
This syntax is simpler with the where clause.
 fn do_something<T, U>(func: U)
 where
 U: FnOnce(&T),
 {

 }

Static and dynamic dispatch are explained in Chapter 17, Traits.
The where clause also has a unique capability. With the where clause, you can assign trait bounds directly to arbitrary types. This feature assigns trait bounds to concrete types, not type parameters.
In Listing 14.18, for the do_something function, the where clause bounds the XStruct with the Copy trait. For this reason, XStruct must implement the Copy trait. XStruct is a concrete type, not a type parameter. Because of this, you cannot use conventional trait bounds.
Code Listing 14.18.
 XStruct is constrained by the Copy trait.
#[derive(Copy, Clone)]
struct XStruct {}

fn do_something(arg:XStruct)
 where
 XStruct:Copy
{

}

fn main() {
 do_something(XStruct{})
}

Structs
Functions should not have all the fun. Structs can also be generic! You declare the type parameters, within angle brackets, after the struct name. You can then use the type parameter within the struct, including methods.
In Listing 14.19, IntWrapper is a thin wrapper for i8. It is specialized not generic.
Code Listing 14.19.
Thin wrapper for an integer
 struct IntWrapper {
 internal:i8
 }

In Listing 14.20, Wrapper is generalized for any type. The struct is renamed in recognition of its generic intention. The Wrapper struct is generic over type T . The type parameter annotates the internal field.
Code Listing 14.20.
Generic wrapper for any type
 struct Wrapper<T> {
 internal:T
}

In main , an instance of Wrapper is created (see Listing 14.21). The compiler can infer the concrete type for the type parameter using the internal field, which is initialized with an i32 value. Per monomorphization, the compiler will create a concrete instance of the Wrapper struct, with the i32 type, as shown in the comments.
Code Listing 14.21.
Documents monomorphization
 fn main() {
 let obj=Wrapper{internal:1};

 /* Monomorphization

 struct Wrapper {
 internal:i8
 }

 */
 }

For generic structs, type parameters can also be used with methods. First, the type parameters must be described within the impl definition. You can then use the type parameters with the methods. The syntax is not trivial, as shown in Figure 14.1.
Note

The official name of a struct includes any type parameters.

Figure 14.1.
Showing type parameters in the impl definition.
Concrete types are assigned to type parameters included in the impl definition when an instance of the struct is created.
Let’s improve upon the Wrapper struct, which previously only had fields. We will add get and set methods to the struct. The functions allow a user to get and set the internal field. Both methods are generic over type T. For T, the set method requires the Copy trait. Consequentially, type parameter T is bound to the Copy trait. Listing 14.22 shows the impl block for Wrapper<T>.
Code Listing 14.22.
Showing type parameter T in use with a method.
 impl<T:Copy> Wrapper<T> {
 fn get(&self)->T{
 self.internal
 }

 fn set(&mut self, data:T){
 self.internal=data;
 }
 }

In main , the get method is called on separate instances of Wrapper (see Listing 14.23). The instances wrap an integer and float type, respectively.
Code Listing 14.23.
Calling methods on a generic struct .
 fn main() {
 let obj1=Wrapper{internal:1};
 println!("{}", obj1.get());

 let obj2=Wrapper{internal:1.1};
 println!("{}", obj2.get());
 }

In addition, methods can declare their own type parameters, separate from those received from the struct. These type parameters are private to the method. You use the same syntax as a generic function to declare them. Different from the struct’s type parameters, these type parameters are assigned concrete types when the method is called. The method can use type parameters both from the struct, defined in the impl header, and those defined specifically for the method.
The next version of Wrapper has a display method, which is generic over type U. Remember, type parameter T is already declared for the Wrapper struct. Type parameter U is available within the display method, but not available elsewhere within the struct. Type parameter T, however, is available everywhere. The display function displays the internal field of the struct. As function parameters, you can add a prefix or suffix to the output. Both are type U. For this reason, U must implement the Display trait to support the {} placeholder in the println! macro. Therefore, the Display trait is added as a constraint to type parameter U.
In Listing 14.24, the display method is shown. The get and set methods are omitted (. . .) for brevity.
Code Listing 14.24.
Type parameters T and U require the Display trait.
 use std::fmt::Display;

 struct Wrapper<T> {
 internal:T
 }

 impl<T:Copy+Display> Wrapper<T> {

 ...

 fn display<U:Display>(&self, prefix:U, suffix:U) {
 println!("{}{}{}", prefix, self.internal, suffix);
 }

 }

 fn main() {
 let obj=Wrapper{internal:1.1};
 obj.display("< ", " >");
 }

The where clause can be applied to generic structs. The benefits are the same as described before. The version of the Wrapper struct shown in Listing 14.25 has a perform method that executes some action on the internal field.
Code Listing 14.25.
Multiple constraints applied in the where clause.
 use std::fmt::Display;

 #[derive(Copy, Clone, Debug)]
 struct Wrapper<T> {
 internal:T
 }

 impl<T:Copy+Display> Wrapper<T> {
 ...

 fn perform<F>(mut self, operation:F)->Self
 where
 Self:Copy+Clone,
 F: Fn(T) -> T
 {
 self.internal=operation(self.internal);
 self
 }
 }

The perform method is generic over type F . It is a high-order function that accepts a function as a parameter (F). That function is called within the method to modify the internal field in some manner. The function returns an instance of the struct. The where clause for the perform method adds some bounds. Self , which is the current instance, must implement the Copy and Clone traits. In addition, type parameter F is bound to a specific function signature.
In main , an instance of the Wrapper struct is created (see Listing 14.26). The perform method accepts a closure that performs a calculation. We then display the original object and the resulting object.
Code Listing 14.26.
Calling the perform method on Wrapper
 fn main(){
 let obj=Wrapper{internal:6};
 let obj2=obj.perform(|arg1| {
 arg1*arg1
 });
 println!("{:?} {:?}", obj, obj2);
 }

Associated Functions
You can use generics with associated functions, which are methods without a Self parameter. Listing 14.27 shows an example.
Code Listing 14.27.
The do_something associate function is generic over type T.
 struct XStruct<T> {field1:T}

 impl<T> XStruct<T> {
 fn do_something(a:T) {
 let a:T;
 }
 }

 fn main() {
 XStruct::do_something(5);
 }

 XStruct and the do_something associated function are both generic over type T. Other than having associated functions, this example is no different than shown before. However, there is a difference when the type parameters cannot be inferred. For associated functions, you can assign a concrete type to a type parameter with this syntax:
 structname::<type, …>::function_call

In Listing 14.28, the type cannot be inferred from the function parameters. The do_something function here has no parameters! Therefore, we must use the alternate syntax.
Code Listing 14.28.
Calling an associated function with an explicit type
 struct XStruct<T> {field1:T}

 impl<T> XStruct<T> {
 fn do_something() {
 let a:T;
 }
 }

 fn main() {
 XStruct::<i8>::do_something();
 }

Enums
Because of the Option<T> and Result<T E> enums, most Rust developers are quickly introduced to generics. Option is generic over type T , and Result<T,E> is generic over types T and E . Here are the definitions for both types:
enum Option<T> {
 None,
 Some(T),
}

enum Result<T, E> {
 Ok(T),
 Err(E),
}

After the enum name, the type parameters are defined, within angle brackets. Type parameters are then applied to individual variants, within parentheses after the variant’s name.
Listing 14.29 shows a trivial function that has a Result return value. For return values, the compiler cannot infer the type. Therefore, the concrete types is expressed explicitly.
Code Listing 14.29.
Return with explicit types
 fn do_something()->Result<bool, &'static str> {
 Ok(true)
 }

The Result and Option types do not encompass all use cases for return values. You can create other uses cases similar to either the Result or Option types. For example, the Repeat enum, shown next, is for a different use case. It is generic over types T and U . This enum controls whether a function should be called repeatedly. There are multiple variants:
 A continue variant requests calling the function again, with the T value.
 A result variant requests that the repetition stops and returns a result, as type U .
 A done variant requests that the repetition stop without providing a result.
Listing 14.30 shows the Repeat enum.
Code Listing 14.30.
The Repeat enum indicates whether a function should be repeated.
enum Repeat<T, U>{
 Continue(T),
 Result(U),
 Done
}

The find_div_5 function is a simple example of using the Repeat enum. The function finds numbers divisible by 5. If one is found, the function displays the number and returns Done. Otherwise, the function returns Continue and recommends the next test value (see Listing 14.31). The type parameter for the Repeat enum is i8.
Code Listing 14.31.
The div_5 function finds a number divisible by 5.
 fn find_div_5(number:i8)->Repeat<i8> {
 if number % 5 == 0 {
 println!("Found {}", number);
 Repeat::Done
 } else {
 Repeat::Continue(number+1)
 }
 }

In main , the find_div_5 function is called within a loop block. If Continue is returned, we call the function again with the recommended value. The loop continues until Done is returned from the function (see Listing 14.32).
Code Listing 14.32.
Control logic determined by the Repeat result
fn main() {
 let mut value=1;
 loop {
 if let Repeat::Continue(recommend) = find_div_5(value) {
 value=recommend;
 } else { // Done found
 break;
 }
 }
}

As with other types, you can apply trait bounds to type parameters used with a generic enum.
In Listing 14.33, we introduce the Employee enum, which is generic over type T . There are two variants. You can identify an employee with an EmplId of some type T or a String name. Type parameter T is bound with the Clone trait. This indicates that the Emplid variant only accepts data that implements that trait.
Code Listing 14.33.
Adding bounds to type parameter T for the enum
 enum Employee<T:Clone>{
 EmplId(T),
 Name(String)
 }

 fn get_employee()->Employee<String> {
 Employee::Name("Carol".to_string())
 }

Alternatively, you can also apply trait bounds to generic enums with the where clause.
Generic Traits
Both generics and traits provide generalization. Generics generalizes types, while traits generalizes code. Combining both techniques unleashes the full potential of generalization. This allows you to achieve a higher level of abstraction and flexibility than otherwise possible. The downside is added complexity, at times.
In Listing 14.34, we declare both an ATrait trait and XStruct struct. Both are also generic over type T .
Code Listing 14.34.
ATrait and XStruct are generic over type T .
 trait ATrait<T> {
 fn do_something(&self, arg:T);
 }

 struct XStruct<T> {
 field1:T,
 }

Next, impl block implements ATrait<T> for XStruct<T>. This requires implementing the do something function, which uses type parameter T. A minimal implementation is shown in Listing 14.35.
Code Listing 14.35.
Implementing a generic method
 impl<T> ATrait<T> for XStruct<T> {
 fn do_something(&self, arg:T){}
 }

The syntax for the impl block header appears fairly complex, with all the angle brackets, but it is not. Remember that type parameters are part of the type name. With that understanding, the syntax is actually straightforward, as shown in Figure 14.2.

Figure 14.2.
Syntax for implementing a generic trait for a generic struct
When implementing a trait, the struct can have more type parameters than the trait requires. The additional type parameters are used at the discretion of the struct.
To demonstrate this, we have updated the previous example. XStruct now has two fields and is generic over types T and U . The type parameters are used to describe each field. Listing 14.36 shows the updated XStruct .
Code Listing 14.36.
 XStruct is generic over types T and U .
 struct XStruct<T, U> {
 field1:T,
 field2:U,
 }

Yet again, XStruct implements ATrait. The impl block identifies type parameters T and U . Type parameter T is used with the do_something function parameter, as ATrait requires. Type parameter U has a Display trait bound, which constrains field2 . This is required for the { } placeholders in the println! macro; otherwise, this example would not compile (see Listing 14.37).
Code Listing 14.37.
Implementing the do_something method for XStruct
 impl<T, U:Display> ATrait<T> for XStruct<T, U> {
 fn do_something(&self, arg:T)
 {
 println!("{}", self.field2);
 }
 }

You can add trait bounds directly to type parameters of a trait. This requires the same trait bounds be added during the implementation, as shown in Listing 14.38. Before the trait bounds was not required.
Code Listing 14.38.
Applying the Display trait to type parameter T
 trait ATrait<T:Display> {
 fn do_something1(&self, arg:T);
 }

 struct XStruct<T> {
 field1:T,
 }

 impl<T:Display> ATrait<T> for XStruct<T> {
 fn do_something1(&self, arg:T) {
 println!("{}", arg);
 }
 }

We conclude this section with universal extension traits. It is a unique feature only available when combining generics and traits. Universal extension traits implicitly apply an implementation of a trait to all types. This extends the concept of extension traits, which are introduced in Chapter 17, Traits.
In Listing 14.39, TimeStamp is a trait that has a set_value method. The method updates a current value and display a timestamp indicating when the change occurred. TimeStamp is generic over type parameter T , with the Display and Copy trait bounds. These bounds are required to update the current value and display the results.
As shown, the TimeStamp trait is implemented for type parameter T . Essentially this means for any type, now and in the future. Within the impl block, the set_value function is implemented. It updates the current value, as self, with the function parameter and displays a timestamp.
The chrono crate, found in Crates.io, is used to create the timestamp, which is displayed.
Code Listing 14.39.
TimeStamp is a universal extension trait.
 use chrono::Local;
 use std::fmt::Display;

 trait TimeStamp<T:Display+Copy> {
 fn set_value(& mut self, value: T);
 }

 impl <T:Display+Copy> TimeStamp<T> for T {
 fn set_value(& mut self, value: T){
 let old=*self;
 *self=value;
 let date = Local::now();
 println!("{} {} -> {}", date.format("%H:%M:%S"),
 old, self);
 }
 }

In main , the TimeStamp trait extension is tested with different types (see Listing 14.40). Because it is a universal extension trait, any type is acceptable. However, based on the constraint bounds, the type must implement both the Display and Copy trait.
Code Listing 14.40.
Using the set_value function of the TimeStamp trait extension
 fn main() {
 let mut value1=10;
 value1.set_value(20);

 let mut value2=10.1;
 value2.set_value(20.1);
 }

This is the result of running the application.
 23:24:04 10 -> 20
 23:24:04 10.1 -> 20.1

Explicit Specialization
Until now, type parameters have been resolved at compile time, either implicitly or explicitly. For example, inferring the type from type arguments. You can also assign types directly to type parameters, which is explicit specialization. This has already been shown with the Result and Option enum. With explicit specialization, type parameters are constrained by a type, not a trait bound. This capability allows for unique solutions for specific use cases, such as state machines.
Listing 14.41 provides an example of explicit specialization.
Code Listing 14.41.
Example of non-explicit and explicit specialization
 struct XStruct<T>{
 field1: T,
 }

 impl<T> XStruct<T> { // Non-Explicit specialization
 fn do_something(&self arg:T){
 }
 }

 impl XStruct<i8> { // Explicit specialization
 fn do_something(&self, arg:i8){
 }
 }

Let’s review the code. XStruct is a generic over type T , with separate impl blocks. The first impl block for XStruct is generic, not specialized. However, the second impl block demonstrates explicit specialization. It is specialized for i8. The impl block does not refer to the type parameter T but the type specialization, which is i8 in this example.
When the code is compiled, the following error is received:
 |
6 | fn do_something(arg:T){
 | ^^^^^^^^^^^^^^^^^^^^^^ duplicate definitions for
`do_something`
...
11 | fn do_something(arg:i8){
 | -----------------------
 other definition for `do_something`

The error is caused from an ambuiguity. The scope of the generic implementation of do_something overlaps with the explicit specialization. The first impl block is generic over type T . That would include the possibility of i8. However, we also implement an explicit specialization for the same type, i8. This makes the do_something function potentially ambiguous and causes a compiler error.
Let’s simplify our example and remove the generic impl for XStruct . That leaves the explicit specialization for i8. In main , this means we can only call the do_something function with a i8 type argument. Calling the function with any other types, such as a float, is invalid (see Listing 14.42).
Code Listing 14.42.
Call do_something with explicit specialization
fn main() {
 let obj1=XStruct{field1:1}; // integer
 let obj2=XStruct{field1:1.1}; // float

 obj1.do_something(2);
 obj2.do_something(2.0); // invalid
}

State machines are practical applications of explicit specialization. A state machine is a behavioral model defined by various states and the transition between those states. Each state can have specific actions relevant to that state. Implementing a state machine will help clarify the syntax, use cases, and benefits of explicit specialization.
In Listing 14.43, we model a state machine for a motor. The motor has on, neutral, and off states, represented by empty structs. Each of these states may have unique actions associated with them. For example, the On state has the off action. For the motor, there is the Motor struct, which is generic over type T. T represents the state of the Motor.
Code Listing 14.43.
Defining the types necessary for a motor’s state machine
 struct On;
 struct Neutral;
 struct Off;

 struct Motor<T> {
 status:T,
 rpm:i8
 }

Let’s implement the off state first. This is an explicit specialization for the Off struct, representing that state. Listing 14.44 shows the impl block.
Code Listing 14.44.
Implementation of the Off state
 impl Motor<Off> {
 fn on(mut self)->Motor<On> {
 self.rpm=20;
 println!("Motor running | RPM: {}", self.rpm);
 *Box::new(Motor{status:On, rpm:self.rpm})
 }
 }

Within the impl block, the on function is the only action for this state. It transforms the motor from off to on and returns a motor in the new state, which is created on the heap. You’ll learn more about Box in Chapter 20, “Memory.” The motor starts running at 20 rpm. Importantly, the current motor (self) is no longer available after the function call because the state of that motor is no longer valid after the transformation. With mut self as the method parameter, ownership is removed from the caller.
Listing 14.45 is the implementation of the on and neutral states, within separate impl blocks. Both employ an explicit specialization. This is similar to the implementation for the off state, except for different actions. The specialization for the on state implements the off and neutral methods (actions). These are the expected transformations from the On state. The specialization for the neutral state implements the in_gear method, which transforms the motor to the on state.
Code Listing 14.45.
Implementing the state machine with explicit specialization
 impl Motor<On> {
 fn off(mut self)->Motor<Off>{
 self.rpm=0;
 println!("Motor off | RPM: {}", self.rpm);
 *Box::new(Motor{status:Off, rpm:self.rpm})
 }

 fn neutral(self)->Motor<Neutral>{
 println!("Motor neutral | RPM: {}", self.rpm);
 *Box::new(Motor{status:Neutral, rpm:self.rpm})
 }
 }

 impl Motor<Neutral> {
 fn in_gear(&mut self)->Motor<On>{
 println!("Motor in gear | RPM: {}", self.rpm);
 *Box::new(Motor{status:On, rpm:self.rpm})
 }
 }

The initial state for a motor should be off. This is done using a simple factory pattern. For this, we have a standard impl block for Motor , which is a generic over type T . Within the block, the new constructor function, returns a new motor in the off state (see Listing 14.46), using type specialization.
Code Listing 14.46.
Implementing a new constructor for a Factory pattern
 impl<T> Motor<T>{
 fn new()->Motor<Off> {
 println!("Motor off | RPM: 0");
 *Box::new(Motor{status:Off, rpm:0})
 }
 }

In main , we call the new function to create a new instance of a motor. It starts in the off state. We then exercise the motor, including various transformations. When done, the motor is turned off (see Listing 14.47).
Code Listing 14.47.
Exercising the motor and various states
 fn main() {
 let mut motor=Motor::<Off>::new(); // off state
 let mut motor=motor.on(); // on state
 let mut motor=motor.neutral(); // neutral state
 let mut motor=motor.in_gear(); // on state
 let mut motor=motor.off(); // off state
 }

Here is the result from “running” the motor in main :
Motor off | RPM: 0
Motor running | RPM: 20
Motor neutral | RPM: 20
Motor in gear | RPM: 20
Motor off | RPM: 0

The explicit specialization, for each state, implements specific functions within its impl block. Only those functions can be called for that specialization. This explains the reason the second statement in Listing 14.48 causes a compiler error. The impl block for the neutral state, does not implement the off method.
Code Listing 14.48.
The neutral state does not support transformation to the off state.
 let mut motor=motor.neutral(); // transform to the neutral state
 let mut motor=motor.off(); // does not work
 let mut motor=motor.in_gear(); // on state

For added flexibility, you can combine explicit and nonspecific specialization within an impl block. Listing 14.49 is an example. The ZStruct struct is generic over types T and V .
Code Listing 14.49.
Definition of the ZStruct type
 struct ZStruct<T, V>{
 field1:T,
 field2:V,
 }

The impl blocks for ZStruct are shown in Listing 14.50. Both impl blocks in this example have explicit specialization for some of the type parameters. For the first impl block, type T is assigned i8 for explicit specialization. Type parameter V remains generic. The result is that the implementation of the do_something method is available when type parameter T is i8 and for some V type. The second impl block is the same except the specialization is f32.
Code Listing 14.50.
 ZStruct with explicit and nonexplicit specializations
impl<V> ZStruct<i8, V> {
 fn do_something(&self, arg:i8, arg2:V)->i8{
 println!("first implementation")
 5
 }
}

impl<V> ZStruct<f32, V> {
 fn do_something(&self, arg:f32, arg2:V)->f32{
 5.0
 }
}

In main , we create multiple instances of ZStruct . Later the do_something method is called on the instances (see Listing 14.51).
Code Listing 14.51.
Calling the do_something method with different specialization
 fn main() {
 let obj1=ZStruct{field1:1, field2:true};
 let obj2=ZStruct{field1:1.0, field2:12};
 let obj3=ZStruct{field1:1.0, field2:true};
 let obj4=ZStruct{field1:'a', field2:12_i8};

 obj1.do_something(2, false); // i8 specialization
 obj2.do_something(11.1, 14); // f32 specialization
 obj3.do_something(22.2, true); // f32 specialization
 obj4.do_something('b', 15); // Error!
 // No char specialization
 }

Table 14.1 maps the details of the various ZStruct instances, from the previous example, to explicit specialization.
Table 14.1.
Details of the Various Instances of ZStruct Created in the Preceding Example

According to the table, obj4 sets type parameter T to char. However, there is no specialization for that use case. For that reason, only the obj4.do_something function call will not work.
Summary
Generics touch many areas of the Rust language. We discussed generics as functions, structs, traits, and enums. Regardless of the target, the purpose of generics remains the same—removing redundant code. The other benefits include making your source code more extensible, less error-prone, and easier to refactor.
In addition, generics are woven into the fabric of the language. Result, Option, Vec, HashMap, IntoIterator, Box, and so many more types are generic. This is another reason that understanding generics is essential.
A generic function or type has type parameters that are placeholders for concrete types. Per monomorphization, generics become unique types at compile time. This avoids performance costs at runtime.
Generic type parameters are declared within angle brackets after the function or type name. You then annotate the various aspects of the item with type parameters. When possible, the compiler will infer the concrete type. When that is not possible, you have to provide the type information explicitly.
Trait bounds indicate the capabilities of a type parameter. The compiler relies on this information to use type parameters safely. After declaring type parameters within angle brackets, you can assign trait bounds. You can add multiple bounds using the + operator.
You can also assign trait bounds to type parameters with the where clause, which is more expressive, often more readable than conventional trait bounds.
Universal trait extensions and explicit specialization are additional capabilities available with generics. Universal trait extensions apply a trait implementation to any type. Explicit specialization allows you implement specific use cases for type parameters.

Chapter 15. Patterns
Pattern matching matches a pattern to a value. If matched, you can destructure the value or perform a transfer of control, and maybe both. Pattern matching in Rust evolved from Haskell. But the origins of pattern matching date back to 1967, where SNOBOL4 (String Oriented and Symbolic Language) was the first language to have pattern matching as a core feature. In SNOBOL4, patterns were actually first-class types.
There are two types of pattern matching: sequence and tree patterns.
 Sequence pattern matching applies a pattern to a flat sequence of values, such as a list of characters or set of numbers. The pattern versus value comparison continues until a match is not found. Sequence pattern matching is typically reserved for regular expressions.
 Tree pattern matching applies a pattern to a hierarchical data type, such as a struct or even a tuple type. Starting at the root hierarchy, the pattern is applied to the value. If a match is found, the value is destructed and the pattern applied again. This process continues until the pattern is fully resolved. Haskell, and now Rust, embrace tree pattern matching.
Pattern matching must be exact. This is different from pattern recognition, which can be non-exact. In addition, pattern matching in Rust is ordered. With multiple patterns, the matching process continues until a pattern is found. Any remaining patterns are not evaluated. Also, the compiler will issue a warning when duplicate matches are found.
Core Syntax
The let statement is the most common example of pattern matching. The statement uses pattern matching to bind the value to a new variable. If the pattern is simply a variable name, it matches any value.
Here, the patterns create variables binding, a and b, that accept any value. As a result, a is bound to an integer, while b is bound to a tuple.
 let a=1;
 let b=(1,2);

Here is a more complex example of pattern matching and variable binding.
 let (a, b)=(1,2);

The pattern matches a tuple with two fields, which matches the value. In addition, the pattern destructures the tuple. Variable binding is created for each field of the tuple value. Field.0 is bound to variable a, while field.1 is bound to variable b.
This is similar to the previous example, except for an array.
 let list=[1, 2, 3, 4];
 let [a, b, c, d]=list;
 println!("{} {} {} {}",a , b, c, d);

The pattern here matches that of a four-element array. In the pattern, the square brackets indicate an array, versus parentheses for tuples. The array is destructured. The result is variable binding for a, b, c, and d, based on the sequence of values in the array.
With a pattern, you can also destructure and bind to existing variables. Of course, the type must match the value.
In the following example, the let statement is not used. Instead, the pattern is applied with the assignment operator using existing variables. Destructuring the tuple assigns the field values to variables a and b.
 let mut a=0;
 let mut b=0;
 (a,b)=(1,2);
 println!("a: {} b: {}", a, b); // a:1 b:2

Wildcards
Wildcards can be used within patterns to ignore some portion of the value. This can cause side effects, as explained later.
You can ignore portions of a value using underscores (_) wildcards. In the next example, the pattern has an underscore for the second element of the value. Every other element in the array is bound to a variable.
 let list=[1, 2, 3, 4];
 let [a, _, c, d]=list;
 println!("{} {} {}", a , c, d); // 1, 3, 4

Multiple underscores can be placed within a pattern. In this way, multiple portions of a value can be ignored, as shown next.
 let list=[1, 2, 3, 4];
 let [a, _, _, d]=list;
 println!("{} {}", a, d); // 1, 4

 let list=[1, 2, 3, 4];
 let [a, _, _, _]=list;
 println!("{}", a); // 1

The double dot (..) can ignore more than one portion of a value, such as from the beginning, until the end, or the middle portion of a value. The following two patterns achieve the same result. However, the .. syntax is more concise.
 let list=[1, 2, 3, 4];
 let [a, _, _, _]=list; // ignore individual elements
 println!("{}", a); // 1

 let list=[1, 2, 3, 4];
 let [a,..]=list; // ignore to the end of the pattern
 println!("{}", a); // 1

Here are further examples of the .. syntax.
 let list=[1, 2, 3, 4];
 let [..,d]=list; // ignore beginning
 let [a,..,d]=list; // bind a and d variable, ignore the middle

Hierarchical Patterns
Patterns can be hierarchical to match and destructure similar types.
In this example, we have a tuple that consists of two tuples. The pattern decomposes the outer and inner tuples. Each inner tuple is then bound to variables a and b .
 let data=((1,2), (3,4));

 let (a,b)=data;
 println!("{:?}, {:?}", a, b); // (1,2) (3,4)

However, the tuple in the previous example can be destructured even further. In the next example, the individual fields of each inner tuple are also destructured. We create variable binding for a , b , c , and d .
 let ((a,b),(c,d))=data;
 println!("{}, {}, {}, {}", a, b, c, d); // 1, 2, 3, 4

Sometimes it is beneficial to transform a reference into the direct value. This is sometimes done for practical reasons but often for convenience. It may be counterintuitive but including the ampersand (&) in the pattern will remove a reference for the target value. What is remaining is the value that was previously referenced.
Here is an example.
 let ref1=&5;
 let (&value)=ref1;
 println!("{}", *value);

The ref1 variable is a reference to 5, a literal value. Within the pattern, for the let statement, the reference portion of the value is removed. We simply create a binding to the value 5. The transformation is confirmed in the println macro. You cannot dereference a value (*value). As expected, a compiler error occurs. The value variable is a value, not a reference.
error[E0614]: type `{integer}` cannot be dereferenced
 --> src\main.rs:4:20
 |
4 | println!("{}", *value);
 | ^^^^^^

Ownership
When destructuring, ownership can be moved. Destructuring with binding is an assignment. For values that support copy semantics, the value is simply copied. For others however, such as structs, ownership is moved by default. For this reason, there may be unintended side effects from destructuring values, as demonstrated here.
 fn main() {
 let tuple=("Bob".to_string(), 42);
 let (a, b)=tuple; // destructures
 println!("{}", tuple.0); // fail
 println!("{}", tuple.1); // works
 }

Here, the tuple consists of a String and an integer value. It is then destructured to create variable a and b . As a String, the ownership for tuple.0 is moved to variable a. However, tuple.1 is an integer, with copy semantics, and therefore the value is copied to variable b. Since tuple.0 no longer retains ownership, the first println macro will fail. Tuple.1 however still retains ownership of the original integer value. For this reason, the second println macro displays tuple.1 without a problem.
With function parameters, you can borrow instead of move with the ampersand (&) syntax. However, that does not work with patterns. As already mentioned, the ampersand has a different connation when included within a pattern. Instead, the ref keyword creates a reference to borrow the value.
The simple change below allows the previous example to run correctly. We have added the ref keyword within the pattern. Now, the String value will be borrowed, not moved.
 let (ref a, b)=tuple;

You can also declare a mutable reference with the addition of the mut keyword (i.e., ref mut). When this is done, all the rules of mutability apply. This includes allowing only a single outstanding mutable reference at a time.
Let’s update the preceding example with a mutable reference. When destructuring the pattern, we now create variable binding to field.0, within a mutable tuple. The new variable a is a mutable reference to the String value at field.0. Using variable a , the value is modified with the push_str function. As a reference, this will change the underlying value of both variable a and the original tuple. Both values, which are the same, are then displayed.
 fn main() {
 let mut tuple=("Bob".to_string(), 42);
 let (ref mut a, b)=tuple;
 a.push_str(" Wilson");
 println!("{}", a); // Bob Wilson
 println!("{}", tuple.0); // Bob Wilson
 }

With destructuring, a new binding can simply be mutable. Ownership is moved to the new variable and the value can be modified. See yet another version of the latest example below.
 fn main() {
 let tuple=("Bob".to_string(), 42);
 let (mut a, b)=tuple;
 a.push_str(" Wilson");
 println!("{}", a); // Bob Wilson
 println!("{}", tuple.0); // Does work - again. Moved.
 }

Within a pattern, ownership is not moved for ignored values. However, the behavior is different when ignoring the binding. This probably appears to be confusing! The next example will clarify. For the destructuring pattern, the first field of the tuple is ignored (_), no binding is established, and the value is not moved. For the second field, the value is bound to variable b − a binding is therefore created. However, the binding is ignored (_b). In this situation, ownership is still moved. The subsequent println macros confirm what is moved and not moved.
 let tuple=("abc".to_string(), "def".to_string());
 let (_, _b)=tuple;
 println!("{}", tuple.0); // not moved
 println!("{}", tuple.1); // moved − invalid

Irrefutable
There are refutable and irrefutable patterns. Irrefutable patterns are comprehensive and are a match for anything. As such, irrefutable patterns always match. Refutable patterns, in contrast, may match some expressions, even none at all. When using irrefutable patterns, you provide an alternative control flow if a match is not found.
Irrefutable versus refutable patterns may be required in certain circumstances. For example, the let statement only accepts irrefutable patterns, such as shown here. This is required because the basic let statement does not provide an alternative path if the pattern does not match.
 let a=1;

The let statement, above, has a default pattern that is name with a variable binding. Default patterns are comprehensive, and therefore irrefutable.
However, the next example does not compile. The Some(value) pattern for an Option expression is refutable. The expression could evaluate to None, which refutes Some(value). Unfortunately, with a let statement, there is no Plan B. You must have a Plan B to inform the compiler of the correct behavior if the match fails. Without this, the source code will not compile.
 let Some(result)=option; // Option type

Here is the error message. Notice the mention of an irrefutable pattern, which the let statement requires. As usual, the Rust compiler provides a helpful message.
 = note: `let` bindings require an "irrefutable pattern", like a
 `struct` or an `enum` with only one variant

Ranges
Patterns can include ranges, which are limited to numerical and char values. This type of pattern is refutable, because the value may be outside the specified range. For this reason, you can only use pattern ranges where an alternative exists. Various syntaxes for describing inclusive ranges:

 begin ..= end from beginning to ending value

 begin .. from beginning to maximum value
 .. =end from minimal to ending value
In the next example, the pattern includes ranges. Because it is a refutable pattern, the if let expression is used, instead of a let statement. We are matching on a tuple. If both fields are within the ranges provided, there is a match. How will we know? The “It matches!” message is displayed.
 fn get_value()->(i8, i8){
 // Implementation not shown
 }

 fn main() {
 let tuple=get_value();
 if let (1..=15, 1..=25)=tuple {
 println!("It matches!");
 }
 }

The previous example will display a message that a match occurred. That is of limited of value. It would helpful to know the specific value that matched. You can accomplish this by binding a variable to the pattern range using the @ syntax. This syntax will bind the underlying value to a variable.
 binding@range

Next, we modify the if let expression to provide variable binding for both pattern ranges, variables a and b . We then display the new variables to show the specific values that matched within the ranges.
 if let (a@1..=15, b@1..=25)=tuple {
 println!("Match found ({}, {})", a, b); // Match found (10, 20)
 }

Multiple Patterns
You can combine multiple patterns with the pipe (|) operator. The patterns are then evaluated left to right. If the current pattern matches, the evaluation does not continue to the next pattern.
Here, we combine three patterns. If the value is either 5, 10, 20, there is a match.
 fn get_value()->i8{
 // Not shown
 }

 fn main(){
 let value=get_value();
 if let 5|10|20= value {
 println!("Match found"); // Match found
 }
 }

If a match is found, what is the value? In the preceding, we will know that a match is found, with a value of 10, 20 or 30, but not the specific value. As shown before, we can bind a variable to the result of a pattern using the @ syntax.
Let us update the example to add variable binding to the pattern. The value is then displayed.
 if let a@(5|10|20)= value {
 println!("Match found {}", value); // Match found 10
 }

Control Flow
You can use patterns to control the flow of execution within your application. This means branching based on whether a pattern matches, or not. Patterns that control flow must be refutable.
Below, the if let expression controls flow based on a pattern. If the pattern matches, the if block is executed. Deconstructed variables are scoped to the if block. Otherwise, the else block is executed, which is optional. Here is the syntax.
 if let pattern=expression {
 // match
 } else {
 // no match (optional)
 }

Here is an example of the if let expression. The Some(result) pattern evaluates the option value. If there is a match, a variable binding is created to the inner value. In addition, execution is transferred to the if block, where the value is displayed. If a match is not found, we branch to the else block.
 if let Some(result)=option {
 println!("Found: {}", result);
 } else {
 println!("Nothing found")
 }

You can use a pattern with a while let expression. The while loop continues while the pattern matches the value. And stops when the pattern no longer matches.
In this example, the while loop continues to iterate the vector until the pop method returns None. At each iteration, the pattern is destructured to bind the item variable. That value is displayed within the while loop.
 let mut data = vec![1, 2, 3, 4, 5];

 while let Some(item) = data.pop() {
 println!("{}", item)
 }

For patterns, the for loop expression is similar to the while let loop. When iterating a sequence, the next method is called for each element and returns an Option enum. The iteration continues until None returned. The for loop abstracst this detail.
In the next example, the for loop iterates the elements of a vector. The pattern decomposes the tuple returned from the enumerate method. It binds the tuple fields to the index and item variable and displays the values inside the loop.
 let data = vec![1, 2, 3, 4, 5];
 for (index, item) in data.into_iter().enumerate() {
 println!("{} {}", index, item)
 }

The match expression is another example of control flow, the most common for patterns. However, it is discussed later and deserving of its own section.
Structs
Patterns can also destructure structs. When structures have several fields, and you are referring to many of them, destructuring the struct can be convenient when compared to the dot syntax. The result is source code that is more concise and readable.
At a minimum, patterns for a struct must include the struct name and the proper field names, in any order. The fields create variable binding to variables of the same name.
Next, is an example of destructuring a struct.
 struct Rectangle {
 p1: (u32, u32),
 p2: (u32, u32),
 }

 fn main() {
 let r = Rectangle { p1: (10, 20), p2: (30, 40) };
 let Rectangle { p1, p2 } = r; // destructuring
 println!("P1:{:?} P2:{:?}", p1, p2) // P1:(10, 10) P2:(20, 20)
 }

The Rectangle in this example has two fields, both tuples, providing the dimensions of the shape. We then create an instance of a Rectangle . The object is then destructured where the pattern creates new variable bindings for p1 and p2 . The variables align with the fields in the struct and are tuples.
Structures are hierarchical. Patterns in Rust are also hierarchical, as demonstrated before. This allows the destructuring of the various levels of a struct. From the previous example, Rectangle has two fields − both are tuples. Not only can we destructure the struct but also the individual fields, as shown next.
 let r = Rectangle { p1: (10, 20), p2: (30, 40) };
 let Rectangle { p1:(a, b), p2:(c, d) } = r; // destructuring the
fields
 println!("[{}, {}] [{}, {}]", a, b, c, d) // [10, 20] [30, 40]

Here, the pattern destructures the Rectangle to create variable bindings for p1 and p2 . However, it goes further. The fields are destructured as tuples to create bindings for the a , b , c , and d variables.
When destructuring a struct, you don’t have to adopt the current field names for the variable binding. Fields can be renamed, as variable bindings, with the field_name:binding_name specification in the pattern. This is useful when more descriptive names are helpful or providing additional context.
The pattern in this example renames the variable bindings to top_left and bottom_right , which is definitely more descriptive.
 let r = Rectangle { p1: (10, 20), p2: (30, 40) };
 let Rectangle { p1:top_left, p2:bottom_right } = r; // destructure
 println!("P1:{:?} P2:{:?}", top_left,
 bottom_right) // P1:(10, 10) P2:(20, 20)

Patterns can include literals as part of the criteria. If the literal is not present in the value, the pattern does not match, regardless of any other basis. In this manner, literals refine a pattern where specific use cases can be matched or tested.
In this example, since p1 is irrefutable, the pattern matches when p2 is (30,50).
 let r = Rectangle { p1: (10, 20), p2: (30, 40) };
 let Rectangle { p1, p2: (30, 50) } = r;

This example does not compile. You will receive this error message from the compiler.
error[E0005]: refutable pattern in local binding
 --> src\main.rs:8:9
 |
8 | let Rectangle { p1, p2: (30, 50) } = r;
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ patterns `Rectangle { p2:
(0_u32..=29_u32, _), .. }` and `Rectangle { p2: (31_u32..=u32::MAX, _), ..
}` not covered

The problem is that the pattern is refutable. As mentioned, p1 within the pattern is irrefutable. However, literals in patterns, and therefore p2 , are refutable. When a pattern is composed of refutable and irrefutable elements, overall it is considered to be refutable. However, let statements only accept irrefutable patterns. For this reason, the source code will not compile.
The if let expression is the solution for the previous source code. It provides an alternative if the match fails, which is required for refutable patterns, as shown in the next example.
 let r = Rectangle { p1: (10, 20), p2: (30, 40) };
 if let Rectangle { p1, p2: (30, 50) } = r {
 println!("P1: {:?}", p1);
 } else {
 println!("no match");
 }

Wildcards can be used within patterns when destructuring structs. For fields, the underscore (_) wildcard, to ignore, can be applied after the name. The double dot (..) wildcards also can be associated with struct fields but must be the final token. Otherwise, the wildcards work as previously described.
This extended example demonstrates the syntax for using wildcard in patterns with structures. Each pattern, shown below, destructures a Triangle object. Explanations are provided in the comments.
struct Triangle {
 p1: (u32, u32),
 p2: (u32, u32),
 p3: (u32, u32),
}

fn main() {
 let tri = Triangle { p1: (10, 20), p2: (30, 40), p3: (0, 40) };

 /* Create variable binding for p1, p2,
 and p3 for each struct fields. */

 let Triangle{p1, p2, p3}=tri;

 /* Create binding for p1 and p3.
 Ignore struct field p2. */

 let Triangle{p1, p2:_, p3}=tri;

 /* Create variable binding for p1 and p3.
 Ignore struct field p2 */

 let Triangle{p1, p3, ..}=tri;

 /* Create variable binding for p1.
 Ignore struct fields p1 and p2 */

 let Triangle{p2, ..}=tri;

 /* Destructure the tuple for p1. Create
 binding tuple.0; but ignore tuple.1.
 In addition, ignore struct fields
 p1 and p2. */

 let Triangle{p1:(a, _), ..}=tri;

 /* Create a binding for p1. For p3,
 destructure the tuple; create variable
 binding a, b. However,b will not be
 used. Finally, ignore p2. */

 let Triangle{p1, p3:(a, _b), ..}=tri;

 /* This is invalid. Having the ..
 wildcard on either side of the
 variable binding is ambiguous. More
 importantly, the .. wildcard cannot
 appear more than once within a
 pattern. */

 let Triangle(.., p2, ..);
}

For structures, you cannot begin the pattern with the .. wildcard. Instead, rearrange the fieldnames and place the .. syntax at the end.
Functions
Patterns can be applied to function parameters. The normal rules and syntax of patterns apply, just combined with the syntax of a function parameter. However, you can only use irrefutable patterns with function parameters.
The do_something function, shown next, has a tuple parameter. It is destructured into variable bindings x and y . The ampersand (&) is part of the pattern and removes the refness. Therefore, X and Y are direct values, not references.
 fn do_something(&(x, y): &(i8, i8)) {
 println!("{} {}", x, y);
 }

 fn main() {
 let values=(5, 6);
 do_something(&values);
 }

Here is another example of using patterns with functions. The combine function combines the dimensions of rectangles. The function parameters are rectangles. Each is destructured into variables for the coordinates that define the size of the rectangle. The function then combines the coordinates from both to create a new rectangle. In main, two rectangles are created and combined with the combined function. The result is then displayed.
 #[derive(Debug)]
 struct Rectangle { p1: (u32, u32), p2: (u32, u32),}

 fn combine(Rectangle{p1:(x1_1, y1_1), p2:(x2_1, y2_1)}:&Rectangle,
 Rectangle{p1:(x1_2, y1_2), p2:(x2_2, y2_2)}:&Rectangle)-
>Rectangle
 {
 Rectangle{p1:(x1_1+x1_2, y1_1+y1_2), p2:(x2_1+x2_2, y2_1+y2_2)}
 }

 fn main() {
 let r1 = Rectangle {p1: (10, 10), p2: (20, 20)};
 let r2 = Rectangle {p1: (30, 30), p2: (40, 40)};
 let r3=combine(&r1, &r2);
 println!("Combined {:?}", r3);
 }

Match Expressions
The most common place to find patterns are match expressions. Each arm has a pattern. When a match is found, you branch to that particular arm and execute the local expression. In aggregate, the patterns must exhaust the full range of the match expression. If not, add a default pattern (_) as the final match arm, which is irrefutable. The other arms are typically refutable.
Pattern matching in match expressions is ordered. When there are duplicate or overlapping patterns, the first match controls the flow. For duplicate patterns, you will also receive a compiler warning.
Here is the syntax of a match expression.
 match expression {
 pattern1=>expression,
 pattern2=>expression,
 patternn=>expression,
 _=>expression,
 }

In this section, starting with the next example, we will provide examples of using patterns, as shown before, but with match expressions. In this example, the match expression is similar to a switch statement in other languages.
 let value=get_value();
 match value {
 1=>println!("One"),
 2=>println!("Two"),
 _=>println!("Unknown, but not 1 or 2")
 }

The patterns here consist of literals, which will match identical values. The patterns in this example do not exhaust the scope of the match type, which is an integer. Therefore, the default arm, with the underscore pattern (_), was necessary to encompass the remaining integer values.
We don’t like mysteries. With the underscore pattern, the exact matching value is unknown. You know that some value matched the default pattern but nothing more. On occasion, it is beneficial to uncover that value. This is accomplished by creating a variable binding as the default pattern. Replace the underscore pattern with variable binding, as shown here. This captures the specific value that is the default.
Shown below, the other variable is bound to the default value. You can then modify, inspect, or even display the value.
 match value {
 1=>println!("One"),
 2=>println!("Two"),
 other=>println!("Default: {}", other)
 }

Range patterns can be used within match expressions. In the next example, the literal value matches the second pattern, which displays a message:
 let value = 7;
 match value {
 1..=5 => println!("1..=5"),
 6..=10=> println!("6..=10"), // match found
 _ => println!("other value"),
 }

For a range pattern, it is helpful to know the matching value sometimes. With a range pattern, the @ syntax creates a variable binding to the underlying matching value. In the next example, variable bindings are created for both range patterns. They are then used to display the matching value within the range.
 fn main() {
 let value = 7;
 match value {
 a@1..=5 => println!("Value is {}", a), // Value is 7
 b@6..=10=> println!("Value is {}", b),
 _ => println!("other value"),
 }
 }

A match arm can also include multiple patterns combined with the pipe (|) operator. The patterns are evaluated in order, left to right. If any of the patterns match, control is transferred to that arm’s expression.
In this example, we combine the patterns 25 , 30 , or 35 . You are transferred to that arm if the match expression is one of those values.
fn main() {
 let value = 25;
 match value {
 25 | 30 | 35 => println!("25 |30 | 35"),
 _ => println!("other"),
 }
 println!("{}", value);
}

Within the match, you will often destructure the match expression with variable bindings. Destructuring enums is a familiar pattern, as shown in the next example. Here, we destructure the Ok and Err variants to access their inner values.
Note

Variants that do not carry data cannot be destructured.

 let result=do_something();

 match result {
 Ok(result)=>println!("{}", result),
 Err(msg)=>println!("{}", msg)
 }

This is an example of destructuring an enum variant. It highlights again that destructuring can impact ownership. Within the Person enum, the Name variant carries a String. When destructuring that variant, to prevent moving ownership, the ref keyword is applied. For that reason, the name value is borrowed within the match arm, not moved. Otherwise, the current Name variant would not be available after the match expression.
 enum Person {
 Name(String),
 GovId(i32),
 }

 fn main() {
 let bob: Person=Person::Name("Bob".to_string());

 match bob {
 Person::Name(ref name)=>println!("Name: {}", name), //
borrow
 Person::GovId(id)=>println!("Government Id: {}", id) //
copy
 }
 }

Next, we demonstrate patterns with literals. This allows you to match on specific use cases, or a combination of values. Here, the Rectangle type is revisited. The goal is to match on rectangles that have specific corners. For example, the first arm matches on rectangles with a top corner at (10, 10). The other matches are top corner at (10, 20) or bottom corner at (20,20). If none of these corners align with the match expression, the default displays the appropriate message.
 #[derive(Debug)]
 struct Rectangle { p1: (u32, u32), p2: (u32, u32),}

 fn main() {
 let r = Rectangle {p1: (10, 10), p2: (20, 20),};

 match r {
 Rectangle { p1: (10, 10), p2 } => println!(
 "Found: (10, 10), {:?}", p2),
 Rectangle { p1: (10, 20), p2 } => println!(
 "Found: (10, 20), {:?}", p2),
 Rectangle { p1, p2: (20, 20) } => println!(
 "Found {:?}, (20, 20)", p1),
 _ => println!("No match”),
 }
 }

If a match was found in the previous example, the corners of the rectangle were displayed. This included hard coding the found corner, which is a literal in the pattern. This would appear to be not very flexible. Plus, hard-coding is always error-prone. A better solution would be binding the literal to a variable, using the @ syntax again. We can then use the variable in the arm expression and remove any hard coding. Here is an example.
 Rectangle { p1: p1@(10, 10), p2 } => println!("Found: {:?}, {:?}", p1,
p2),

We bind the p1 variable, the second
 p1 , to the literal tuple with the @ . We can now use p1 in the println macro, avoiding the hard coding. The first p1 (p1:) in the pattern identifies the field in the struct, but it is not a variable binding.
Another helpful improvement to the current example is to change the default pattern from anonymous to variable binding. This is a pattern consisting of just a variable binding. It will bind to the specific value that can be used within the arm expression.
 r => println!("No match {:?}", r), // named default

This is the complete and updated version of the match expression from the previous example.
 match r {
 Rectangle { p1: p1@(10, 10), p2 } => println!(
 "Found: {:?}, {:?}", p1, p2),
 Rectangle { p1: p1@(10, 20), p2 } => println!(
 "Found: {:?}, {:?}", p1, p2),
 Rectangle { p1, p2: p2@(20, 20) } => println!(
 "Found: {:?}, {:?}", p1, p2),
 r => println!("No match {:?}", r),
 }

Match Guards
Within a match expression, a match guard provides an additional criterion to pattern matching. It is a Boolean filter applied after the pattern is evaluated. A match guard is added to a pattern with the if keyword and then a Boolean condition. If the pattern matches and the match guard is true, the match arm is executed. Table 15.1 displays the possible outcomes of a match guard.
Table 15.1.
Result of a match guard.

The next example employs match guards. The application confirms whether a rectangle is properly shaped. For example, the match guard ensures that the left-side of a rectangle is actually left of the right-side.
 #[derive(Debug)]
 struct Rectangle { p1: (u32, u32), p2: (u32, u32),}

 fn main() {
 let r = Rectangle {p1: (10, 10), p2: (20, 20),};

 match r {
 Rectangle { p1:(x1, _), p2:(x2,_)}if x2 < x1
 => println!("Left invalid {} {}", x1, x2),
 Rectangle { p1:(_, y1), p2:(_, y2)}if y2 < y1
 => println!("Bottom invalid {} {}", y1, y2),
 r => println!("Proper {:?}", r),
 }
 }

The first pattern destructures the left side and right side of a rectangle, as variables x1 and x2 . The top-side and bottom-side are ignored. The match guard confirms if the right-side is less than the left-side. If true, the rectangle is not proper and a message is displayed. The second pattern performs the same analysis for y1 and y2 , which define the top-side and bottom-side of the rectangle. The default pattern is reached when the rectangle is properly formed.
Here is a second example of match guards. You call functions to determine the result of a match guard. This is helpful for complex or multi-step match guards. The only requirement is that the function returns true.
This example displays only gray colors. RGB and CMYK are the color schemes. The match guards will confirm gray colors, and filter everything else. There are degrees of gray from light gray to black. For RGB, gray is when the primary colors, red, green, and blue, have the same intensity. CMYK color is gray when cyan, magenta, and yellow all have zero values.
The example starts with the Colors enum with the RGB and CMYK variants. Both are associated with structs that hold their values. For example, the RgbColor struct has fields for the red, green, and blue values.
 use Colors::RGB;
 use Colors::CMYK;

 #[derive(Debug, Copy, Clone)]
 struct RgbColor {red: i32, blue: i32, green: i32,}

 #[derive(Debug, Copy, Clone)]
 struct CmykColor {cyan: i32, magenta: i32, yellow: i32, black: i32,}

 enum Colors {
 RGB(RgbColor),
 CMYK(CmykColor),
 }

For the Colors enum, we implement the match guard. The is_gray method returns true if either a RGB or CMYK color is gray.
 impl Colors{
 fn is_gray(&self) -> bool {
 match self {
 RGB(color)=>(color.red==color.green)==
 (color.green==color.blue),
 CMYK(color)=>(color.cyan+color.magenta+color.yellow)==0,
 }
 }

The display_gray method displays gray colors. Other colors are filtered using a match guard. For the RGB and CYMK arms, the is_gray function is called as the match guard after the pattern. Notice the RGB and CMYK arms without a match guard. Both of them are irrefutable patterns for their respective color schemes. They match the non-gray colors.
 fn display_gray(&self) {
 match *self {
 RGB(value)
 if self.is_gray()=>println!("RGB {:?} is gray",
value),
 CMYK(value)
 if self.is_gray()=> println!("CMYK {:?} is gray",
value),
 RGB(value)=>println!("RGB {:?} is not gray", value),
 CMYK(value)=> println!("CMYK {:?} is not gray", value),
 }
 }
 }

In main, we create a RGB and CYMK color and display if gray.
 fn main() {
 let rgb=RGB(RgbColor{red:100, green:155, blue:155});
 rgb.display_gray();

 let cmyk=CMYK(CmykColor{cyan: 0, magenta: 0, yellow: 0, black:
100});
 cmyk.display_gray();
 }

This result is displayed.
 RGB RgbColor { red: 100, blue: 155, green: 155 } is not gray
 CMYK CmykColor { cyan: 0, magenta: 0, yellow: 0, black: 100 } is gray

You can apply match guards to the multiple patterns syntax (|). The match guard will then apply to every listed pattern. Within this syntax, the match guard is not assignable to individual patterns. In this example, we match on literals, as multiple patterns. The match guard supports matches only on a Monday, which is a fun example. Mondays are special!
 fn is_monday()->bool {
 // determines whether Monday, or not
 }

 fn main() {
 let monday=is_monday();

 match 1 {
 1 | 11 | 21 if monday=>println!("Value 1, 11, or 21"),
 _=>println!("Not Monday!")
 }
 }

In Conclusion
With patterns, the only limit is your creativity. Rust supports both simple and complicated patterns, used for complex solutioning. This is accomplished with the rich syntax available with patterns. Starting with the variable assignment, patterns are available to create code that is more concise and functional.
Patterns are used in three primary areas:
 Destructuring expressions into their inherent components, such as decomposing the fields of a tuple or struct.
 Controlling the flow of your applications, including if let, while, and match expressions.
 Filtering values using refutable patterns and match guards.
Wildcards can be used within patterns to skip or ignore one or more values. The underscore (_) pattern ignores a single value, while the double dot (..) pattern can ignore multiple values.
When destructuring a value, move semantics apply. Quite often this is not the intention, where you prefer to borrow the value instead. You can use the ref keyword within a pattern to borrow not move. Speaking of references, you can remove the refness of a value by including the & in the pattern for a value.
Match guards filter patterns. Add a match guard with the if keyword after the pattern. For complicated match guards, you can call a function that returns a Boolean value. You can even apply match guards to multiple patterns.
For specific use cases, include literals in the patterns. This can be combined with other details in the pattern.
In the previous chapters, traits, generics, and now patterns have been discussed. They are the major influencers in the look and feel of the Rust language.

Chapter 16. Closures
A closure is an anonymous function that can “close over” variables from an outer function. This is the origin of the term closure. The closed-over variables are called free variables because they are free from the scope of the closure. Like any function, closures execute code, have parameters, and return values.
Closures are a popular feature in many languages, such as Java and C++. In other languages, such as Java, closures are called lambdas.
You may have to choose between using a closure or a standard function. Here are the advantages to closures.
 Closures are convenient when there is a single reference to the function.
 Closures are ideal as first-class citizens. You can treat closures as function parameters, return values, or even assign to a variable.
 Closures are often defined close to where the function is used, which makes the code more maintanable.
There are also many similarities between closures and standard functions. Indeed, there can be circumstances where a function and a closure are interchangeable.
Closures implement the Fn, FnMut, or FnOnce traits, each with a different behavior. The Fn trait is different from the fn keyword used when defining a function pointer type. Most of the time, the correct closure trait is inferred at compile time. If the desired trait is not available, you will receive a compiler error.
Unlike functions, closures have a flexible syntax. Most of the time a shorter syntax is preferred, when possible. For example, closures rarely state the return value type. It is simply implied.
Finally, closures are not nested functions. Nested functions do not have the capability to close over variables in the outer function. In addition, nested functions are named, while closures are anonymous.
“Hello, World”
We have shown a “Hello, World” program previously. Listing 16.1 shows a version using closures.
Code Listing 16.1.
“Hello, World” program that uses a closure
 fn main() {
 let hello=|| println!("Hello, world!");
 hello();
 }

Closures start with the || syntax. Next is the implementation of the closure. As a value, the closure is assigned to the hello variable. You then execute the closure using the call operator, which is (). The closure will then display the greeting.
You can also call the closure directly. In Listing 16.2, the closure is immediately called with the call operator. It is not assigned to a variable first.
Code Listing 16.2.
Calling the closure directly.
 fn main() {
 (|| println!("Hello, world!"))();
 }

Closure Syntax
Some of the details of the previous closure were implied. That allowed the syntax to be shortened. Here is the complete syntax of a closure:
 |parameter1, parameter2, ..., parametern|->return_type{
 // code block
 }

Closures start with the distinctive || syntax. The function parameters are then placed between the pipes. If present, parameters are described in name:type pairs. The return_type sets the type of the return value. The closure block contains the expression to be executed when the closure is called.
In Listing 16.3, the cubed closure is described with the complete closure syntax.
Code Listing 16.3.
Implementing a closure that cubes values
 fn main() {
 let cubed=|number:usize|->usize{
 number*number*number
 };

 let value=5;
 let result=cubed(value);
 println!("{}", result);
 }

When called, the closure here returns a cubed value. Both the parameter and return value of the closure are usize types. The parameter value is cubed and the result returned. The closure is assigned to the cubed variable. It is then called with the call operator, while accepting a local variable as the function parameter. The result is saved in a variable and displayed.
For the minimalist, the definition of the cubed closure can be shortened. Both the parameter and return types are optional and can be inferred. The closure block can also be removed. It is not required for a single expression. Here is the result.
 let cubed=|number|number*number*number;

Closed Over
Closures can close over a free variable. The captured variable is then available within the closure. Most often, captures variables are borrowed from the outer function.
The closure in Listing 16.4 captures the value variable, which is a free variable. Within the closure, the captured variable is used to calculate the result.
Code Listing 16.4.
A closure that closes over a variable
 fn main() {
 let value=5;
 let cubed=||value*value*value;
 let result=cubed();
 println!("{}", result);
 }

As mentioned previously, the closed-over variables are borrowed within the closure.
The example shown in Listing 16.5 will not work! The values1 variable is a mutable tuple. When used within the closure, It performs a mutable borrow of values1. It will retain that mutable borrow until immediately after the closure is called. However, the values2 variable requests a second mutable borrow within that scope. Rust does not allow multiple mutable borrows on the same variable. Therefore, this will cause a compiler error.
Code Listing 16.5.
In closures, closed-over variables are borrowed.
 fn main() {
 let mut values1=(5,10);

 // mutable borrow - starts
 let swap_values=||(values1.1, values1.0);
 let values2=&mut values1; // second mutable borrow
 let result=swap_values();
 // mutable borrow - ends

 println!("{:?}", result); 1
 }

The error message shown next accurately describes the problem. It highlights the first and second mutable borrower.
3 | let swap_values=||(values1.1, values1.0);
 | -- --------- first borrow occurs
 due to use of `values1.0` in closure
 | |
 | immutable borrow occurs here
4 | let values2=&mut values1; // does not work
 | ^^^^^^^^^^^^ mutable borrow occurs here
5 | let result=swap_values();
 | ----------- immutable borrow later used here

In Listing 16.6, swap_values is now called twice. This extends the scope of the initial mutable borrow to after the second swap_values call. Attempting a second mutable borrow within this scope will not compile, which is the same problem as before.
Code Listing 16.6.
Simultaneous mutable borrows are not allowed.
fn main() {
 let values1=(5,10);

 // mutable borrow - starts
 let swap_values=||(values1.1, values1.0);
 let mut result=swap_values();
 let values2=&mut values1; // does not work
 result=swap_values();
 // mutable borrow - stops

 println!("{:?}", result);
 }

Joy! The next version of the application works! There are no compiler errors. We initiate the second mutable borrow after the final swap_values call. For that reason, there is no overlap (see Listing 16.7).
Code Listing 16.7.
Mutable borrows, but not at the same time
fn main() {
 let mut values1=(5,10);

 // mutable borrow − starts
 let swap_values=||(values1.1, values1.0);
 let mut result=swap_values();
 result=swap_values();
 // mutable borrow − stops
 println!("{:?}", result);
 let values2=&mut values1; // mutable borrow - works
}

Closures as Function Arguments
As first-class citizens, closures can be used as function arguments.
As previously mentioned, closures implement either the Fn, FnMut, or FnOnce trait. For now, we will focus on the Fn trait (more about the other functions traits later). As a function parameter, select the Fn trait with the impl keyword. You must also provide the function definition.
In Listing 16.8, the do_closure function accepts a closure as the run parameter. The impl keyword identifies the closure type as Fn . The “()” after the trait name describes a function that has neither parameters nor a return value. Next, in the do_closure function, the closure assigned to run is executed.
Code Listing 16.8.
Accepting a closure as a function parameter
 fn do_closure(run:impl Fn()){
 run();
 }

 fn main() {
 let display=||println!("message");
 do_closure(display);
 }

Listing 16.9 is a more comprehensive example of closures as function parameters. It demonstrates the flexibility that closures provide.
Code Listing 16.9.
Closures bound to variables and as parameters
 enum Calculation {
 Cubed,
 Quad
 }

 fn get_result(run: impl Fn(i32)->i32, value:i32)->i32{
 run(value)
 }

 fn main() {
 let cubed=|value:i32|value*value*value;
 let quad=|value:i32|value*value*value*value;

 let calculation_type=Calculation::Cubed;
 let result=match calculation_type {
 Calculation::Cubed => get_result(cubed, 5),
 Calculation::Quad => get_result(quad, 5),
 };
 println!("{}", result);
 }

This example can either cubed or quad a value. Both operations are implemented as closures and are Fn(i32)->i32 types. The get_result function has a parameter, run, that accepts closures of the same type. The run parameter is a Fn(i32)->i32 type, which is consistent with the cubed and quad closures. Within the function, the run closure is executed and the result returned.
In main , the Calculation enum indicates the chosen operation, Calculation::Cubed or Calculation::Quad. Based on the selected variant, the match then calls the get_result function with the proper closure for the operation.
Closures as Function Return Values
This section continues our conversation on closures as first-class citizens. Next, we’ll explore closures as function return values. Returning a closure from a function can be done with the impl keyword. As with parameters, the impl keyword is used to indicate the selected closure trait.
Listing 16.10 is an example of a function that returns a closure.
Code Listing 16.10.
Returning a closure from a function
 fn get_closure()->impl Fn(i32)->i32 {
 |number|number*number*number
 }

 fn main() {
 let cubed=get_closure();
 let result=cubed(5);
 println!("{}", result);
 }

Based on the impl keyword, the get_closure function returns a closure of the Fn(i32)->i32 type, where Fn is the closure trait. The Fn(i32)->i32 type is compatible with the actual closure that is returned. In main , the get_closure function is called and the closure returned, which is then assigned to the cubed variable. Afterwards, the cubed closure is called and the result displayed.
Implementation of Closures
Knowing the internal implementation of Rust closures can be helpful. This will provide clarity and remove some of the mystery about closure. In particular, the explanation will distinguish the differences between the Fn, FnMut, and FnOnce traits. The description omits some details to keep the explanation straightforward.
Rustc, the Rust compiler, implements closures at compile time. Closures are transformed into structs. The captured variables become the fields of the new struct.
There is no reference to the closure function within the closure struct. There is no need! The closure function is a method of the closure structure. The first parameter of any method, including a closure, is self . The attributes of the closure method, including self , are based on the closure trait selected at compile time.
In Listing 16.11, a typical closure is shown. For the adder closure, the Fn trait is implemented.
Code Listing 16.11.
This is a typical closure.
 let a=1;
 let b=2;
 let adder=|prefix:String|println!("{} {}", prefix, a+b);
 adder("Add Operation:".to_string());

Listing 16.12 depicts the internal struct created for the adder closure. The adder closure is converted to a struct with two fields, for the a and b captured variables. The closure function is implemented as a method, with &Self as the first parameter. The second parameter of the method is the initial parameter of the closure, which is the prefix. Remember, this is only an approximation of the implementation. Furthermore, the internal representation of a closure is subject to change at any time.
Code Listing 16.12.
A representative struct created for a typical closure
 struct adder {
 a: i32,
 b: i32
 }

 impl Fn<(String)> for adder {
 type Output = ()
 fn call(&self, args: Args)->Self::Output {
 // details not provided
 }
 }

The Fn Trait
For implementing closures, the Fn trait is preferred. The closure traits form a hierarchy of traits and supertraits, as shown in Figure 16.1.

Figure 16.1.
Hierarchy of closure traits
For example, the FnMut trait is a supertrait of Fn. This means the FnMut trait can used wherever the Fn trait is requested. However, the reverse does not work for subtraits. You cannot substitute the FnMut with the Fn trait.
Closures that are immutable implement the Fn trait. This means the captured variables must be immutable also. For the Fn trait, self for the closure method is &Self . The captured variables are borrowed.
In Listing 16.13, the hello closure does not capture any variable. The closure is therefore self-contained and has no context. This means the closure is immutable and implements the Fn trait. The do_closure function is called with the hello closure as the parameter, which is a Fn type. This confirms the hello function implements the Fn trait. Otherwise, this would not compile.
Code Listing 16.13.
The hello closure implements the Fn trait.
 fn do_closure(closure:impl Fn()){
 closure();
 }

 fn main() {
 let hello=||println!("Hello");
 do_closure(&hello);
 }

Listing 16.14 is a slight modification of the previous example. The hello closure now captures the hello_string variable. The captured variable is immutable. For this reason, the compiler automatically implements the Fn trait for an immutable context. Once again, the do_closure function confirms the closure as Fn.
Code Listing 16.14.
The hello closure implements the Fn trait.
 fn do_closure(closure:impl Fn()){
 closure();
 }

 fn main() {
 let hello_string="Hello".to_string();
 let hello=||println!("{}", hello_string);
 do_closure(&hello);
 }

In this version, as shown in Listing 16.15, the hello_string is now mutable. The variable is still captured as a free variable in the hello closure. The closure now has a mutable state and will automatically implement the FnMut trait. The function parameter type for do_closure has been changed to FnMut type to confirm that the trait has been implemented for the closure.
Code Listing 16.15.
The hello closure implements the FnMut trait.
 fn do_closure(closure:&mut impl FnMut()){
 closure();
 }

 fn main() {
 let mut hello_string="Hello".to_string();
 let mut hello=||println!("{}", hello_string);
 do_closure(&mut hello);
 }

A rose by any other name…. A closure without context, no captured variables, is essentially a standard function. For this reason, standard functions and closures, without context, are interchangeable. Therefore, the Fn trait is compatible with standard functions.
In Listing 16.16, hello is a nested function, not a closure. Nonetheless, nested functions are standard functions. The do_something function is changed again − the parameter is a Fn type. The hello function is provided as a function argument to the do_closure function. This confirms whether the function is compatible with the Fn trait.
Code Listing 16.16.
The nested function implements the Fn trait.
 fn do_closure(closure:impl Fn()){
 closure();
 }

 fn main() {
 fn hello(){
 println!(“Hello”);
 }

 do_closure(hello);
 }

The FnMut Trait
As already mentioned, FnMut trait is implemented for closures that have a mutable context. For the FnMut trait, the “self” for the closure method is &mut Self . Variables are captured with a mutable borrow.
In Listing 16.17, the increment closure implements the FnMut trait. Notice that the captured variables are mutable, giving the increment closure a mutable context. The do_closure function confirms the FnMut trait is implemented for the closure.
Code Listing 16.17.
The increment closure implements the FnMut trait.
 fn do_closure(mut closure:impl FnMut()){
 closure();
 }

 fn main() {
 let mut value=5;
 let increment=||value=value+1;
 do_closure(increment);
 println!(“{}”, value); // 6
 }

The FnOnce Trait
The FnOnce trait is implemented for closures that are allowed to execute once.
Enforcing safe coding patterns is a major advantage of Rust. Sometimes this means limiting a function to a single execution. Closures that implement the FnOnce trait can execute only once. Additional attempts to execute the closure will not compile. For the FnOnce trait, the “self” for the closure method is the Self type. For this reason, you are able to call the closure once.
Listing 16.18 is an example of the FnOnce trait.
Code Listing 16.18.
The hello closure implements the FnOnce trait.
 fn do_closure(closure:impl FnOnce()->String){
 closure();
 closure(); // does not compile
 }

 fn main() {
 let value="hello".to_string();
 let hello=||value; // value moved
 do_closure(hello);
 }

Within the closure, the captured variable is returned. This is only possible if the closure owns the captured variable. For this reason, the Rustc compiler moves the value variable from the outer function into the closure, not borrows. This makes the value variable unavailable in the future. Therefore, the closure cannot be called again and the FnOnce trait implemented. For this reason, you cannot call the closure twice in the do_closure function.
Reasons for the FnOnce are not always readily apparent. Fortunately, you have a helpful compiler in Rust.
Listing 16.19 is another example where the FnOnce trait is required. In the dropper closure, the captured string is dropped. How often can the same String be dropped? Once! The Rustc compiler recognizes this and implements the FnOnce trait for the closure. The dropper closure is passed into the do_closure function, as a FnOnce type. It can only be called once in the function.
Code Listing 16.19.
The dropper closure implements the FnOnce trait.
 fn do_closure_fn(closure:impl FnOnce()){
 closure();
 closure(); // not compile
 }

 fn main() {
 let value="data".to_string();
 let dropper=||drop(value);
 do_closure_fn(dropper);
 }

The Fn and FnMut traits are subtraits of the FnOnce trait. Therefore, closures that implement either trait can be used as a FnOnce instance.
In Listing 16.20, the hello closure implements the Fn trait. This closure can be called multiple times. There is nothing about the implementation that prevents the closure from being called more than once. In the example, the do_closure function has a FnOnce parameter. In main, do_closure is called with the hello closure as the function argument, despite implementing the Fn trait. Within do_closure, the hello closure, as the closure variable, can be called just once.
Code Listing 16.20.
The hello closure implements the FnOnce trait.
 fn do_closure(c1osure:impl FnOnce()){
 c1osure();
 c1osure(); // not compile
 }

 fn main() {
 let hello=||println!("hello");
 do_closure(hello);
 }

The move Keyword
Every function has a stack frame for private memory storage. The stack frame contains function-specific information, such as local variables and register values. A closure can capture values from the outer function’s stack frame, as free variables. Because of this, closures may not own their entire environment. This can create dependencies that cause problems, as shown in Listing 16.21.
Code Listing 16.21.
Closure with a dependency
 fn get_closure()->impl Fn()->i32 {
 let number=1;
 ||number+2
 }

The get_closure function returns a closure that relies upon a captured value (number), creating a dependency with the outer function. When the closure is returned, the stack frame for the outer function will no longer exist. As such, the dependency with the outer function cannot be maintained. For that reason, the following error is presented:
3 | ||number+2
 | ^^^^^^^^^^
help: to force the closure to take ownership of `number` (and any
other referenced variables), use the `move` keyword
 |
3 | move ||number+2
 | ++++

The error message indicates that the move keyword is the solution. Closures annotated with the move keyword take complete ownership of their environment and do not depend on the stack frame of the outer function. With the move keyword, captured values are transferred to the closure’s environment. Based on the type of values, move or copy semantics is employed. This will remove any dependency with the outer function.
Except for the move annotation on the closure, the source code in Listing 16.22 is identical to the previous example. However, this version compiles without errors. Excellent!
Code Listing 16.22.
Closure with its own environment
 fn get_closure()->impl Fn()->i32 {
 let number=1;
 move||number+2 // move closure
 }

 fn main() {
 let add_one=get_closure();
 let result=add_one();
 println!("{}", result);
 }

In get_closure , the closure is adorned with the move keyword. For this reason, the number variable is transferred to the environment of the closure. We can now safely return the closure from the function. Back in main, the closure is assigned to the add_one variable. When add_one is called, the number value in the closure’s environment will be updated and the result is returned.
The Impl Keyword
Traits are unsized. For that reason, you cannot create instances of a trait. Static and dynamic dispatch are solutions for managing concrete instances of a trait. The subject of traits, including static and dynamic dispatch, is reviewed in detail in Chapter 17, “Traits.”
The closure traits have made several appearances already in this chapter. We created instances of the closure traits with the impl keyword. However, the impl keyword is not available in some use cases. It is available for function parameters and return values, as shown before. Most notably, however, the impl keyword is not supported for variable binding.
Here are two examples where the impl keyword is not accepted. First, we define a type alias for a tuple that contains two closures, using the Fn trait. This will not compile.
 type closure_tuple=(impl Fn(),
 impl Fn()) // Does not compile

Next, we create a HashMap with Fn closures as the value for each entry. With the impl keyword, this will not compile.
 let mut operation: HashMap<char, impl Fn()>=
 HashMap::new(); // Does not compile

When necessary, alternatives for the impl keyword include static dispatch or dynamic dispatch.
In Listing 16.23, AStruct is generic over type T. With the where clause, we constrain type T with the Fn trait bounds. This means the hello field, which is T, must be a Fn closure. All of this done without the impl keyword. In main, we then assign a closure to the hello field. Next, the closure is called.
Code Listing 16.23.
Assigning a closure without the impl keyword.
 struct AStruct<T>
 where T: Fn() {
 hello: T,
 }

 fn main() {
 let value=AStruct{hello:||println!("Hello")};
 (value.hello)();
 }

In Listing 16.24, we bind the hello variable to a closure. This cannot be done with the impl keyword. The dyn keyword provides dynamic dispatch. We can then assign a closure to the variable as a reference. The hello closure is then called.
Code Listing 16.24.
With dynamic dispatch, hello assigns a reference to a closure.
 let hello:&dyn Fn()=&|| println!("hello");
 hello();

Matrix Example
Let’s look at an additional example that uses closures. The goal of this example is applying mathematical operations to each row of a matrix. Operations such as addition, subtraction, multiplication, and division are supported.
Here is the matrix:

The first column of the matrix indicates the operation for that row, such as A for addition. The LHS and RHS columns are the left-hand side and right-hand side operands, respectively, for the binary operation. The result of the operation is placed in the Result column, the final column.
There are various possible solutions to applying a mathematical operation to each row of the matrix. You could use an enum to identify each operation. The enum variants would correlate to match arms, where the operations are performed. With this solution, the enum variant would carry the row data. Another solution is a vector of structures. Each struct would contain the relevant data to perform the operation for a particular row, including a reference to a closure.
We plan to use a third potential solution, with a HashMap . The benefit is a solution that is both dynamic and extensible. Listing 16.25 shows the complete application.
Code Listing 16.25.
The complete matrix program
use std::collections::HashMap;

type Row=(char, i32, i32, i32);
type OperationType<'a>=&'a dyn Fn(Row)->i32;

fn main() {
 let mut matrix=vec![('a', 4, 5, 0),
 ('m', 2, 6, 0),
 ('d', 9, 3, 0),
 ('s', 5, 6, 0),
];

 let mut operation: HashMap<char, OperationType>;
 operation=HashMap::new();
 operation.insert('a', &|row|row.1+row.2);
 operation.insert('m', &|row|row.1*row.2);
 operation.insert('d', &|row|row.1/row.2);
 operation.insert('s', &|row|row.1-row.2);

 for each_row in matrix.iter_mut() {
 each_row.3=(operation.get(&each_row.0)).
 unwrap()(*each_row);
 }

 println!("{:?}", matrix);
}

Let’s examine each portion of the solution.
The program starts with two aliases. There is an alias for a tuple describing each row, including the operation, LHS, RHS, and result. OperationType is an alias defining the type of closures for the various binary operations. Dynamic dispatch is used to reference the Fn trait (see Listing 16.26).
Code Listing 16.26.
Alias for the row type and mathematical operations
 type Row=(char, i32, i32, i32);
 type OperationType<'a>=&'a dyn Fn(row)->i32;

In main , we declare the matrix as a vector of tuples (see Listing 16.27).
Code Listing 16.27.
Declaring the matrix
 let mut matrix=vec![('a', 4, 5, 0),
 ('m', 2, 6, 0),
 ('d', 9, 3, 0),
 ('s', 5, 6, 0),
];

Next, the HashMap is declared (see Listing 16.28), and maps the mathematical operations, as closures, to characters. The HashMap key indicates the operation as a character, such ‘a’ for addition. The values are the mathematical operations, as the OperationType type, which is a previously defined alias. Each operation is added to the HashMap with the insert method.
Code Listing 16.28.
Adding operations, as closures, to a hash map
 let mut operation: HashMap<char, OperationType>;
 operation=HashMap::new();
 operation.insert('a', &|row|row.1+row.2);
 operation.insert('m', &|row|row.1*row.2);
 operation.insert('d', &|row|row.1/row.2);
 operation.insert('s', &|row|row.1-row.2);

The soup is now made. We can apply the various operations to the matrix, as shown in Listing 16.29. The for loop iterates the rows of the matrix. Each row is a Row type, which is a tuple. Within the loop, the key is the first field of the row. The HashMap.get method uses the key to return the operation (closure) for the current row. The closure is then called with the tuple values as parameters. We then assign the result to the last column of the row.
Code Listing 16.29.
Iterating the matrix while executing the appropriate operation
 for each_row in matrix.iter_mut() {
 each_row.3=(operation.get(&each_row.0)).unwrap()(*each_row);
 }

Finally, the result is displayed:
 println!("{:?}", matrix);

We can now celebrate a job well done.
Summary
Closures are anonymous functions that can be used as first-class functions. A closure can be used anywhere, including for a variable binding, function argument, function return, and so much. There are a variety of benefits to closures, including convenience and flexibility.
Captured variables, also called free variables, are values in the outer function that are used within the closure. This is the primary difference between a closure and a standard function. For that reason, a closure without captures variables is similar to a standard function.
Closures are implemented with one of three traits:
 The Fn trait is implemented for closures that require an immutable context. The self for the closure is &Self.
 The FnMut trait is implemented for closures that require a mutable context. The self for the closure is &mut Self
 The FnOnce trait is implemented for closures allowed to execute once. The self for the closure is Self.
The impl keyword is used to accept function traits, such as Fn, as function parameters and return values. This approach is not always supported. Static and dynamic dispatch are alternatives when the impl keyword is not available.
The move keyword creates an dedicated environment for the closure. The closure has ownership of this environment. Captured variables are transferred into the environment using either move or copy semantics. Move closures can extend the lifetime of the captured variables beyond the outer function, which is sometimes necessary.

Chapter 17. Traits
It is raining traits! Traits are everywhere in Rust. Hard to explore Rust without a conversation on traits. Traits are similar to interfaces in other languages, with additional capabilities but also limitations. Traits are integrated into most aspects of the languages. For this reason, you cannot unlock the full capabilities of the language without a deep understanding of traits.
Traits are abstract types that consist of function definitions. A trait represents a common interface that is shareable across concrete types, where the trait is implemented. Types that implement the same trait have similar behavior but with different implementations.
Traits define a kind of relationship. A GasCar, ElectricCar, and HybridCar type could implement the Car trait. Each is a kind of vehicle. The Vehicle trait would define the common behavior of all vehicles, such as start, accelerate, and turn functions. These are the functions that any vehicle would implement. Types can even have more than one relationship. An Amphibious type could implement both the Car and Boat traits.
Fundamentally, traits are contracts. They are contracts between types and traits. A type commits to implementing a trait completely. The compiler enforces the contract. If not completely implemented, the program will not compile. The Vehicle trait, for example, assures that a type is a fully implemented vehicle. It would not be missing important behavior, such as brakes.
Interchangeable types are another benefit of traits. A trait can be treated as a placeholder for related types, which implement the same trait. This is a feature that can make your application extensible and resilient, and less brittle.
The genesis of traits in Rust is found in Haskell. Haskell is a functional programming language released in 1990. Many of the capabilities and design features of traits are influenced by Haskell typeclasses. It can be helpful, at times, to review Haskell documentation for a better understanding of traits.
Trait Definition
Traits define a set of functions that must be implemented within a type. Declare a trait with the trait keyword and name, trait block, and a list of function definitions, separated with semicolons. Traits cannot have fields. You can have both instance and associated functions within the trait. For instance methods, the function definitions will have either self , &self , or &mut self to specify ownership status.
Here is the Car trait. Types that are a kind of car would implement this trait. It is an abstraction and includes the common functionality any car requires.
 trait Car {
 fn ignition(&mut self, drive:bool);
 fn turn(&mut self, angle:u8)->u8;
 fn brake(&mut self, amount:i8)->i8;
 fn accelerate(&mut self, new_speed:i8)->i8;
 fn stop(&mut self);
 }

Types add specialization for traits. This is accomplished within an impl block annotated for that trait. The syntax is slightly different from the standard impl block. Here is the syntax.
 impl trait for type {
 // implementation
 }

In the impl block for a trait, you need to implement every method defined in the trait. If not, the source code will not compile. Fortunately, if that happens, the compiler will display an error message identifying the missing functions of the trait that are not implemented.
Here is an ElectricCar struct that implements the Car trait.

 struct Battery {
 charge:i8
 }

 struct ElectricCar {
 battery:Battery,
 started:bool,
 speed:i8,
 direction:u8,
 }

The Electric type has a direct function, as shown here. A direct function
is implemented in the impl block for a specific type.

 impl ElectricCar {
 fn get_charge_level(&self)->i8 {
 self.battery.charge
 }
 }

In addition, the ElectricCar type implements the Car trait in a separate
impl block. You cannot implement the direct methods and traits in the
same block. They must be in separate dedicated blocks.

 impl Car for ElectricCar {
 fn ignition(&mut self, drive:bool){
 self.started=true;
 }

 fn turn(&mut self, angle:u8)->u8{
 self.direction+=angle;
 self.direction
 }

 fn brake(&mut self, amount:i8)->i8{
 self.speed-=amount;
 self.speed
 }

 fn accelerate(&mut self, new_speed:i8)->i8{
 self.speed+=new_speed;
 self.speed
 }

 fn stop(&mut self){
 self.speed=0;
 }
 }

Traits do not change the semantics of creating instances of a type or accessing methods. Methods of the trait are accessed using the method syntax, as normal. In main , which follows, an instance of an Electric car is created. You are ready to drive! Various methods are then called to drive the car around.
 fn main() {
 let mut mycar=ElectricCar {
 battery:Battery{charge:0},
 started:false,
 speed:0,
 direction:0,
 };

 mycar.ignition(true);
 mycar.accelerate(25);
 mycar.brake(5);
 mycar.stop();
 mycar.ignition(false);
 mycar.get_charge_level();
 }

Default Functions
As shown, traits contain function definitions that types are required to implement. However, there can also be default functions that are implemented within the trait. Types that implement a trait then have a choice − accept or override each default function. Default functions within a trait are an example of code reuse. The code is shared with every type that implements the trait. In addition, you can implicitly add code to existing types using default functions. This is another feature that contributes to your source code being extensible.
Here, the Shape trait is defined for geometric shapes, such as rectangles, ellipses, triangles, octagons, and others. The trait implements draw as a default method. The other function, erase , is not.
 trait Shape {
 fn draw(&self){println!("drawing...");}
 fn erase(&self);
 }

The Rectangle and Ellipse types are a kind of geometric shape and therefore implement the Shape trait. Rectangle accepts the default draw method and only implements the erase method. Conversely, Ellipse implements both methods, overriding the default method. Regardless, both Rectangle and Ellipse have two methods implemented for the trait.
 struct Rectangle{}
 struct Ellipse{}

 impl Shape for Rectangle {
 // accepts Shape::draw
 fn erase(){}
 }

 impl Shape for Ellipse {
 fn draw(){} // override Shape::draw
 fn erase(){}
 }

Default functions can invoke other functions within the trait, whether implemented or not. This does not prevent you from overriding the default function, if desired. However, a default function cannot call the direct function of the type or be implemented for a different trait.
Next is the Light trait. The trait has the light_on and light_off methods that confirm whether a light is on. The light_off method is implemented as a default method. It simply negates the result of the light_on method.
 trait Light {
 fn light_on(&self)->bool;
 fn light_off(&self)->bool{
 !self.light_on()
 }
 }

Marker Trait
A marker trait is an empty trait, without function definitions. A marker trait indicates some sort of status. For example, Copy is a marker trait indicating that bitwise copying is supported within a type.
Marker traits are adopted but not implemented. There is nothing to implement!
There are several predefined marker traits in Rust, with many found in the std::marker module. The Copy trait is representative of the traits found in this module. Other marker traits found in this module include:
 Send
 Sized
 Sync
 Unpin
The details of specific marker traits are explained, when relevant, in this book.
Associated Functions
Traits can have associated functions. These are functions without the self parameter. Without self , associate functions are called on the type, not a specific instance, using the :: operator. Associated functions were first discussed in Chapter NNN, "XXX."
Next, is a basic implementation of the Singleton pattern for Rust. As a trait, the pattern can be applied to a variety of types. The trait has two associated functions. The new function abstracts the creation of the single instance. The get_instance function returns the instance.
 trait Singleton {
 fn new()->Self
 where Self:Sized;
 fn get_instance()->Self
 where Self:Sized;
 }

The Self for a trait is not sized; the reason being is that traits do not have a constant size. Traits can be implemented by various types, each potentially a different size. This is important because Rust does not allow instances of unsized types. However, the functions of the Singleton trait must return an instance. Fortunately, the functions are implemented for a specific concrete type in an impl block. In that context, Self is sized. For that reason, we can update Self accordingly, with the Sized marker trait. Without this change, we would be prevented from creating instances of the singleton.
For chess, the chessboard is a singleton. Here is a trivial implementation of the Singleton trait for the Chessboard type. Notice there are two impl blocks. There is an impl block that implements a start method for Chessboard to start the game. There is a separate impl block that implements the associated functions for the Singleton trait.
 struct Chessboard{
 }

 impl Chessboard {
 const INSTANCE:Chessboard=Chessboard{};
 fn start(&self) {
 println!("chess game started");
 }
 }

 impl Singleton for Chessboard {

 fn new()->Self {
 Chessboard::INSTANCE
 }

 fn get_instance()->Self {
 Chessboard::INSTANCE
 }
 }

In main, the new function is called to create the Chessboard . Actually, the instance is an associated constant. However, the singleton pattern does not prescribe how the instance is created. You can then call the start method directly on the singleton to start the game.
 fn main() {
 let board=Chessboard::new();
 board.start();
 }

Associated Types
Within a trait definition, associated types are type placeholders. Associated types are resolved to specific types when the trait is implemented. This allows you to integrate implementation specific details into the trait. Associated types, as placeholders, can be used throughout the trait definition, such as a function parameter and return type. Type substitution occurs at implementation, when a specific type is assigned.
Define associated types with the type keyword. In Rust, the type keyword denotes aliases. Associated types are considered aliases for whatever type is assigned to them at implementation. Within the trait definition, the implementation type is unknown. For that reason, the associated type is bound to Self instead.
 Self::associated_type

Here is an example. The Inventory trait defines the common methods for managing inventory. StockItem is an associated type and a placeholder for the type of inventory items. This allows the inventory to consist of different types of items, decided at implementation. The trait has methods for finding and adding items to an inventory.
 trait Inventory {
 type StockItem;

 fn find(&self, stock_id:&String)->Self::StockItem;
 fn add(&mut self, item:Self::StockItem)->String;
 }

Let’s assume that the application is for a retailer that sells chairs. The organization relies upon a point of sale (POS) application to keep an accurate inventory of chairs. Within the application, the Chairs type has responsibility for maintaining the inventory and implements the Inventory trait. In the impl block for the trait, the StockItem is assigned the Chair type. This is the type of information in our inventory.
 struct Chair{}

 #[derive(Copy, Clone)]
 struct Chairs{}

 impl Inventory for Chairs {
 type StockItem=Chair;

 fn find(&self, stock_id:&String)->Self::StockItem{
 Chair{}
 }

 fn add(&mut self, item:Self::StockItem)->String {
 "ABC12345".to_string()
 }
 }

 fn main() {
 let mut catalog=Chairs{};
 let stock_id=catalog.add(Chair{});
 let item=catalog.find(&stock_id);
 println!("Stock id: {:?}", stock_id);
 }

Traits can have multiple associated types. Consequently, you then have more than one type placeholder available to the trait.
In this example, the ATrait has two associated types. They are used to set the Result value for the do_something function. Each implementation of the trait can decide what do_something should return.
 trait ATrait {
 type ValueType;
 type ErrorType;

 fn do_something(&self)->Result<Self::ValueType,
 Self::ErrorType>;
 }

MyStruct implements the trait and sets the return value for do_something to be Result<i8, String> .
 struct MyStruct {

 }

 impl ATrait for MyStruct {
 type ValueType=i8;
 type ErrorType=String;

 fn do_something(&self)->Result<Self::ValueType,
 Self::ErrorType> {
 Ok(42)
 }
 }

Extension Methods
Until now, traits have been implemented with types created in our applications. Within certain limitations, traits can also be implemented for any type, including types from outside our scope. You can even apply traits to predefined types, such as primitives and others found in the standard library. This is accomplished simply by creating an implementation block for the target type. The result is broad extensibility. For that reason, this capability is called extension methods.
With extension methods, you can apply methods implemented within the trait to virtually any type. Even types that are unaware of the trait can be adapted. This level of adaptability can lead to unique solutioning in your application design.
The Dump trait, shown next, dumps helpful debugging information to a log file. This is done in the write_dump method and often useful during application development. The write_dump method is intended to be an extension method applicable to any type.
 trait Dump {
 fn write_dump(&self) {
 println!("{}", self); // mock
 }
 }

 impl Dump for i8 {
 }

 fn main(){
 let num:i8=1;
 num.write_dump();
 }

The Dump trait is applied to the i8 type, which is a primitive. As an extension method, the write_dump method is then called on the primitive type.
Unfortunately, the application does not compile! In the write_dump method, the println macro requires the Display trait because of the {} placeholder. However, the compiler is unsure whether self supports that trait. Why? Within the trait, the concrete type is unknown. This includes knowing whether or not the Display trait is supported. Without this knowledge, the application cannot compile.
The solution is applying a constraint to Self, using the where clause. The constraint requires that certain traits are implemented. In our example, that is the Display trait. The compiler will now have the necessary assurance to allow the println macro to continue.
 trait Dump {
 fn write_dump(&self) where Self: Display { // default
 println!("{}", self);
 }
 }

You are not limited to a single constraint. Multiple bounds can be added to the where clause with the + operator. This enforces additional conditions on the type.
For this version of the Dump trait, the where clause requires that Self implement both the Display and Debug traits. This assures support for both the {} and {:?} placeholders in the println macro.
 trait Dump {
 fn write_dump(&self) where Self: Display + Debug { // default
 println!("{:?}", self);
 }
 }

There are limitations on when extension methods can be applied to avoid chaos. What would happen if an external library changed the behavior of all the primitives, unbeknownst to your application? That would not be fun! To prevent this, there are two restrictions.
 The trait must be within scope. If not within scope, reference the trait with the using statement, when possible.
 Either the trait or the type for the extension method must be implemented within the application.
For example, this would not compile. Neither the trait nor the type, the Iterator trait and i8 type, are defined within our application.
 impl Iterator for i8 {

 }

Fully Qualified Syntax
When implementing traits, it is possible to have ambiguous function calls. For example, a type implements separate traits that have identical function definitions. When the function is called on the type, which implementation is invoked? When there is ambiguity, the compiler will not guess. It is simpler not to compile the application. Therefore, it is your responsibility to resolve the ambiguity.
To avoid ambiguous function calls, it is helpful to know the various syntax for calling a function.
 Implied. This is the object . method() syntax where Self is implied. This is the most common syntax. The preference with this syntax is to call the direct methods of the type.
 Explicit. This is the type::function(Self) syntax where self is explicit. This will call the function specifically implemented for the target type.
 Fully qualified type: This is the <type as trait>::function(Self) syntax. This is the syntax when both the type and trait are required for context.
Here are examples of the syntaxes:
 obj.do_something(); // implied
 XStruct::do_something(&obj); // explicit
 <Xstruct as Atrait>::do_something(&obj); // fully qualified syntax

Let’s review a practical example where the proper syntax is required. Here, the Atrait and Btrait traits both implement the get_name method. MyStruct implements both traits and accepts the default implementation of get_name . Finally, get_name is not implemented directly for MyStruct . Therefore, the only versions of get_name come from the traits.
 Trait Atrait {
 fn get_name(&self){
 println!(“Atrait”);
 }
 }

 trait Btrait {
 fn get_name(&self){
 println!(“Btrait”);
 }
 }

 struct MyStruct{}

 impl Atrait for MyStruct{}
 impl Btrait for MyStruct{}

 fn main() {
 let obj=MyStruct{};
 obj.get_name(); // implicit syntax
 }

In main , shown above, the method is called with the implicit syntax. The compiler first looks for a direct implementation of the get_name , which is not found. Next, the search continues to the traits. However, get_name is implemented for two traits. Therefore, the call is ambiguous and the program does not compile. The problem is fixable with the explicit syntax.
This version of main works. The explicit syntax specifically calls the get_name method implemented for the ATrait .
 fn main() {
 let obj=MyStruct{};
 ATrait::get_name(&obj); // explicit syntax
 }

Here is another example where the proper syntax for calling a function is required. The display_name function is an associated function. MyStruct has a direct implementation. In addition, MyStruct implements ATrait including the display_name function again.
 trait ATrait {
 fn display_name();
 }

 struct MyStruct{}

 impl ATrait for MyStruct{
 fn display_name() {
 println!("ITrait::MyStruct");
 }
 }

 impl MyStruct{
 fn display_name() {
 println!("MyStruct");
 }
 }

 fn main() {
 let obj=MyStruct{};
 MyStruct::display_name(); // explicit
 ATrait::display_name(); // explicit
 }

In main , display_name is called twice with the explicit syntax. This is normal for associated functions. However, the second function call does not work, ATrait::display_name() . Functions cannot be called on a trait. Function calls must be made on a concrete type or instance. What is needed is more context! The fully qualified syntax provides the additional information that is required. In addition to the trait, the fully qualified syntax also provides the concrete type.
This version of main , using the fully qualified syntax, will compile successfully.
 fn main() {
 let obj=MyStruct{};
 MyStruct::display_name(); // implicit
 <MyStruct as ATrait>::display_name(); // fully qualified syntax
 }

Supertraits
Traits are sometimes dependent on other traits. In this context, two traits where one trait depends on another, we have a subtrait and supertrait. The subtrait and supertrait are often related, where the subtrait refines the supertrait in some manner. This creates cohesion between the two traits. Lack of cohesion can make your code harder to read. A type that implements a subtrait must also fully implement the supertrait.
The relationship between the subtrait and supertrait may appear to be inheritance, as defined in object-oriented programming terms; but it is not. Rust does not support inheritance. The interfaces of the two traits are not combined and must be implemented separately. This is different from traditional inheritance.
Here is the syntax for defining a supertrait.
trait dependent:supertrait {
 // dependent functions
}

These are several examples of subtraits and supertraits in the standard library. Here are some:

 Copy: Clone

 Eq: PartialE

 FnMut<Args>:FnOnce<Args>

 Ord:Eq+PartialOrd
In the example shown below, there is a subtrait and supertrait. Text is an implementation of a font with different styles, such as bold and italics.
 struct Text {}
 trait Font {
 fn set_font(&mut self, font_name:String);
 }

 trait FontWithStyle: Font {
 fn set_style(&mut self, bold:bool, italics:bool);
 }

 impl Font for Text {
 fn set_font(&mut self, font_name:String) {}
 }

 impl FontWithStyle for Text {
 fn set_style(&mut self, bold:bool, italics:bool){}
 }

 fn main() {
 let mut text=Text{};
 text.set_font("arial".to_string());
 text.set_style(true, false);
 }

This example has two traits. Font is the supertrait and a wrapper for a font. FontWithStyle is the subtrait and refines the Font trait, adding support for various styles. The Font struct implements the FontWithStyle trait. Consequently, it must also implement the Font trait. In main, a Text value is created that uses methods from both traits.
Subtraits can have multiple supertraits. You can add additional supertraits using the plus operator, as shown below. Here we have added the Unicode trait as a second supertrait. It is a marker trait that confirms the status of the underlying text as Unicode.
 struct Text {}

 trait Font {
 fn set_font(&mut self, font_name:String);
 }

 trait Unicode {
 }

 trait FontWithStyle: Font+Unicode {
 fn set_style(&mut self, bold:bool, italics:bool);
 }

Let’s discuss the diamond problem. This is an infamous problem and mostly associated with C++. Assume a struct implements two subtraits. Each of the subtraits have the same supertrait. That means the functions in the supertrait are found along two separate path hierarchies. For this reason, calling functions in the supertrait might be ambiguous. In C++, the virtual keyword is the solution. It converges the multiple paths into a single path. Fortunately, Rust is properly designed to prevent the diamond problem. The super trait is implemented separately and just once for the type. There is no ambiguity for this reason.
The next example has a shared supertrait. An amphibious vehicle is a kind of car and boat. Therefore, the Amphibious struct is based on both the Car and Boat traits. These traits share the same supertrait, which is the Vehicle trait. For brevity, this example is minimally implemented.
 struct Amphibious{
 }

 trait Vehicle {
 fn drive(&self){}
 }

 trait Car: Vehicle {
 }

 trait Boat: Vehicle {
 }

 impl Car for Amphibious {
 }

 impl Boat for Amphibious {
 }

 impl Vehicle for Amphibious {
 }

 fn main() {
 let boat=Amphibious{};
 boat.drive();
 }

Notice that the Vehicle trait, including the drive function, is implemented just once. When the function is called, there is no ambiguity.
Static Dispatch
Using traits instead of specific types can make your source code more extensible and concise, especially when used for function arguments and return values. Types that implement the same trait are interchangeable, within the context of that trait. You are not limited to a specific type. Treat traits as placeholders for any concrete type that implements the trait.
In this example, the function parameter is a trait.
 fn do_something(obj: ATrait) {
 }

The example will not compile. The reason is because traits are unsized, as mentioned earlier. Rust does not support instances of unsized types − even traits. This problem can be resolved with either static or dynamic dispatch. We will start with static dispatch.
Static dispatch resolves traits to concrete types at compile time. The compiler then creates a specialization of the function for that specific type. This is called monomorphization and improves performance. However, it can lead to code bloat. The prerequisite to monomorphization is the ability to identify the concrete type at compile time.
For static dispatch, Rust uses the impl keyword. This version of the previous example compiles successfully.
 fn do_something(obj: impl ATrait) {
 }

Note

The impl keyword can be used with function arguments and parameters. However, it cannot be used with variable binding.

In the next example, there is a Human and Alien trait. The human trait is an abstraction of a resident of Earth, while the alien trait is for extraterrestrials. The Adult and Child types implement the Human trait. Martian implements the Alien trait. For conciseness, most of the implementation in this example is replaced with ellipses.
 trait Human {
 fn get_name(&self)->String;
 }

 struct Adult(String);

 impl Human for Adult {
 ...
 }

 struct Child(String);

 impl Human for Child {
 ...
 }

 impl Child {
 ...
 }

 trait Alien {
 fn get_name(&self)->String;
 }

 struct Martian (String);

 impl Alien for Martian {
 ...
 }

In our application, we have decided to throw a party for invited guests. This is a party reserved for human persons, however. The invite_to_party function requires the Human trait for invitees. Martians are not a member of this group and therefore unable to accept an invite. The type of the function argument is deterministic at compile-time, when the function is called. Therefore, static dispatch is supported with the impl keyword.
 fn invite_to_party(attendee: impl Human) {
 }

In main, an Adult , Child , and Martian are created. All of them receive an invitation to the party. Both Bob and Janice implement the Human trait and can accept the invite. However, Fred the Martian does not implement the Human trait, only the Alien . For that reason, the invitation for Fred the Martian will not work.
 fn main() {
 let bob=Adult("Bob".to_string());
 let janice=Child("Janice".to_string());
 let fred=Martian("Fred".to_string());
 invite_to_party(bob);
 invite_to_party(janice);
 invite_to_party(fred); // not allowed
 }

Dynamic Dispatch
Dynamic dispatch is available when the compiler cannot infer the concrete type, which is required for static dispatch. Instead, the concrete type must be identified at runtime. The same problem exists however − we cannot create instances of unsized traits. For dynamic dispatch, the problem is resolved with references, which have a fixed size. For dynamic dispatch however, more information is required than provided in a normal reference. Instead, you combine the reference with the dyn keyword to create a trait object. The trait object is set at runtime to contain pointers to the concrete type and the implementation of the trait, which is a vtable.
There are a couple of ways to declare a trait object. The first is simply using the dyn keyword.
 &dyn trait

Alternatively, you can box to create the trait object.
 Box<dyn trait>

Let’s add another function to our ongoing example. The create_person function can return either a new Adult or Child type. Since both implement the Human trait, it is the return type. The return type is determined at runtime based on the function arguments. Dynamic dispatch is used for this reason and the function returns a trait object for the Human trait. This is for either for the Adult or Child type:
 fn create_person(adult:bool, name:String)->Box<dyn Human> {
 if adult {
 Box::new(Adult(name))
 } else {
 Box::new(Child(name))
 }
 }

Dynamic dispatch can be used for variable binding. This builds upon the Shapes example from earlier in the chapter. Both Ellipse and Rectangle implement the Shape trait. In main, a vector of Shape values is declared using dynamic dispatch. The vector consists of trait objects that reference concrete types that implement the Shape trait. In the subsequent for loop, the trait objects in the vector are iterated. The draw function is called on each. Based on the vtable reference within the trait object, the correct draw method is called for either the Rectangle or Ellipse implementation. This solution is more concise and extensible than other possible approaches, such as an exhaustive match expression.
 fn main() {
 let shapes: Vec<&dyn Shape>=vec![&Rectangle{},
 &Ellipse{}, &Rectangle{}];
 for shape in shapes {
 shape.draw();
 }
 }

Enum and Traits
Enums can also implement traits. You are free to implement the trait in any manner. There is, however, a standard approach for implementing a trait method for an enum. You match on the enum and provide a unique implementation for each variant.
In the next example, the Schemes trait is implemented for the Color enum. The trait has methods for returning colors based on either the rgb or cmyk scheme.
 trait Schemes {
 fn get_rgb(&self)->(u8, u8, u8);
 fn get_cmyk(&self)->(u8, u8, u8, u8);
 }

You can implement the trait for the enum in an impl block for the trait. The enum encompasses the core colors: red, green, and blue. The implementation of the get_rgb function returns the RGB color scheme for each of the core colors. Alternatively, the get_cmyk function returns the CMYK color scheme for the same colors.
 enum CoreColor {
 Red,
 Green,
 Blue
 }

 impl Schemes for CoreColor {
 fn get_rgb(&self)->(u8, u8, u8) {
 match self {
 CoreColor::Red=>(255, 0, 0),
 CoreColor::Green=>(0, 255, 0),
 CoreColor::Blue=>(0, 0, 255)
 }
 }

 fn get_cmyk(&self)->(u8, u8, u8, u8) {
 match self {
 CoreColor::Red=>(0, 99, 100, 0),
 CoreColor::Green=>(100, 0, 100, 0),
 CoreColor::Blue=>(98, 59, 0, 1)
 }
 }
 }

In main, we display the RGB and CYMK values for Color::Green .
 fn main() {
 let green=CoreColor::Green;
 let rgb=green.get_rgb();
 let cmyk=green.get_cmyk();
 println!("{:?} {:?}", rgb, cmyk);
 }

In Conclusion
Yes, traits are everywhere in Rust. Whether defining the characteristics of a type, setting bounds for generics, dynamic typing, implementing default methods, and so much more, traits have an important role.
In Rust, traits are used in a variety of ways.
 To assure that a certain interface, consisting of function definitions, is implemented
 Establish related types that are also interchangeable
 Provide status with Marker traits
 Extend the capabilities of any existing type with Extension methods
 Traits are also essential for operator overloading, as shown in Chapter NN, "XX."
Traits are ultimately, contracts. Types that engage a trait must fully implement the trait’s interface. You can even set up relationships between traits, such as subtraits and supertraits. When implementing a subtrait, the contract is to implement both the subtrait and supertrait.
With all the traits floating around, ambiguous function calls are not unheard of. The combination of the implicit, explicit, and fully qualified syntax should resolve any ambiguous function calls that may exist.
Traits are especially useful as function parameters and return types. Types that implement the same trait are interchangeable. As a function parameter or return type, this makes your application more extensible and concise. You can resolve traits into concrete types using either static or dynamic dispatch. If the concrete type is known at compile, the preference should be static dispatch for better performance.
Enum can also implement traits. Like a struct, you implement the trait in an impl block. The most salient difference is that each variant of the enum may require a unique implementation.

Chapter 18. Threads
Long ago in a far away land, there were mainly single processor computers and devices. Despite this, a process could have multiple paths of execution. Each path of execution in a process is known as a thread. In this environment, the threads share the processor. This is called concurrency. With this architecture, operating systems schedule threads onto the processor in mostly a round-robin fashion.
Multicore devices are now prevalent. We now have true parallelization where processes are decomposed into threads that run in parallel across multiple processors. Gaining the full benefit of the computing power of a multicore architecture is a worthy goal, especially for scalable applications. Unfortunately, it does not just happen. There is no wizard behind a curtain. You must write your applications to support parallelization. This is especially important when modeling complex problems. For example, parallel programming has helped usher in a new generation of Artificial Intelligence (AI) and Machine Learning (ML) applications.
A process must have a single path of execution; known as the primary thread. With parallelization, additional threads can be added for parallel tasks or operations. In Rust, threads are implemented as physical or operating system threads. The main function is the primary thread. There is a 1:1 relationship between a Rust thread and an operating system thread. We do not have green threads, where multiple logical threads (M) can be scheduled onto a physical thread (N), M:N relationship. However, various implementations of green threads are available in crates.io.
Parallel programming and concurrency are the most important reasons for hosting multiple threads. Parallel programming decomposes a process into parallel operations for better performance. A server application with multiple threads for each client connection is a perfect example of parallel programming. The goal of concurrency is responsiveness; for example, maintaining a responsive user interface during an intensive operation, such as sorting.
You would think that if two threads improve performance, then ten threads are even better. Sadly, this is not necessarily true. Many factors, some operating system specific, determine whether adding additional threads is beneficial. At some threshold, adding additional threads can actually reduce performance. The primary reason is that most programs are not embarrassingly parallel because of either the overhead or dependencies associated with each thread. Embarrassingly parallel is a specific term that refers to an operational state where there are few or no dependencies preventing maximum parallelization. Amdahl’s Law provides an algorithm for correlating performance with the number of threads. For this reason, performance profiling is essential for multi-threaded applications.
If a process were a house, threads are the people within the house performing specific tasks and often competing for shared resources. Process memory is the principal shared resource. Conflicts can occur when threads attempt to access this shared resource at the same time. “Fearless concurrency” in Rust eliminates many of these concerns. Aspects of fearless concurrency are covered in this chapter, such as the ownership model.
Within the process “house”, threads also own private assets. The most notable is the stack. Each thread owns a stack that contains the locals and maintenance information. In many environments, the default stack size is 2 mebibytes (MiB). For processes with dozens, even hundreds of threads, this can amount to a significant amount of memory. Fortunately, Rust allows you to manage stack sizes. The result is applications that are considerably more scalable.
Multithreading is a form of multitasking and, when present, adds complexity to any application. Naturally, managing multiple threads, each a separate path of execution, is more complicated than managing a single-threaded application. The most frequent challenges include:
 Race conditions where multiple threads compete for shared resources
 Deadlocks when a thread waits indefinitely for another thread or a resource to become available
 Unpredictable behavior when multi-thread applications behave inconsistently
Despite the additional complexity, multi-threading is an important tool for creating scalable, responsive, and highly performant applications.
Synchronous Function Calls
Execution defaults to being synchronous. This is demonstrated in the next example.
With main as the entry point for the primary thread, main and the hello function are along the same path of execution. In main, there is a synchronous function call to hello. Since the functions share a single thread, main is suspended while hello is executing. After hello is done, main is resumed and continues until completion. When main exits, the primary thread and process are also ended.
 fn hello() {
 println!("Hello, world!");
 }

 fn main() {
 println!("In main")
 hello();
 println!("Back in Main")
 }

This is the result.
In main
Hello, world!
Back in Main

The next example also demonstrates a synchronous function call, where main calls the display function. Both functions have local variables that are displayed using println macros.
 fn display() {
 let b=2;
 let c=3.4;
 println!("{} {}", b, c);
 }

 fn main() {
 let a=1;
 println!("{}", a);
 display();
 }

Functions receive a carve out, called a stack frame, on the stack for the current thread. The stack frame is private storage for a function where their locals are placed, such as variables and function arguments. The stack continues to grow with each synchronous function call as additional stack frames are added.
In the preceding example, main and display each own a stack frame that contain their local variables. See Table 18.1.
Table 18.1.
Stack frame and local variables

Threads
Most types and functions related to threads are found in the thread module. This includes the thread::spawn function that creates and then executes a thread. The only parameter is the entry point for the thread, either a function name or a closure, which is executed asynchronously. Here is the syntax for the spawn function:
 pub fn spawn<F, T>(f: F) -> JoinHandle<T> where
 F: FnOnce() -> T + Send + 'static,
 T: Send + 'static,

The JoinHandle return value is used for thread synchronization and accessing the underlying return value from the thread function. Type parameter F describes the entry point function, while type parameter T describes its return type. The Send constraint means the type can safely be sent to another thread. The lifetime 'static is required. You do not know when a thread will start or end. This means the new thread can outlive the parent thread. For that reason, both the function and return value must be static.
The term parent thread is used figuratively, describing the relationship between two threads. Technically, threads that spawn a new thread do not have a special relationship with that thread.
In the example shown below, the spawn function is called to create a thread, using a closure. The closure displays a hello message.
 use std::thread;

 fn main() { // primary thread
 thread::spawn(|| println!("Hello, world!")); // another thread
 println!("In Main")
 }

This preceding example will have unpredictable behavior. The main function and the closure run in parallel on different threads. If main finishes first, the process may exit before the closure displays the hello message. The reason is that both functions, as threads, are racing to their end. This is considered a race condition. Worst of all, running the program several times may result in different outcomes. The hello message may or may not be displayed, depending on whether main or the closure finishes first.
When the primary thread exits, the program is terminated. This includes terminating other threads still running. However, the behavior is different for non-primary threads. When they exit, other threads are not affected and merrily continue running.
The fork/join model prevents race conditions that can occur when parallel threads are racing for the exit. In this model, new threads are parallel branches created adjacent to the current path of execution. The branches can be rejoined with the current thread for synchronous execution at some time in the future. This requires synchronizing the execution of current thread and their branches at that time.
The spawn function implements the fork / join model. Spawn function returns a JoinHandle, which is a specialized thread handle. JoinHandle is used for thread synchronization to coordinate two threads. The JoinHandle::join method blocks the caller until the associated thread exits.
Threads that are not joined or the related JoinHandle is no longer valid are considered detached, such as when dropped. The lifetime of a detached thread is unknown to the remainder of the application.
Using the join method, we can prevent the race condition in the previous example. Here, the JoinHandle returned from the spawn function is bound to a variable. We then call the join method to block the caller until the new thread exits. This means main will wait for the thread to exit, before continuing.
 use std::thread;

 fn main() {
 let handle=thread::spawn(|| println!("Hello, world!"));
 let result = handle.join(); // wait for other thread
 println!("In Main");
 }

Here, the new thread is a closure that returns 1. We call the join method with the thread handle and wait for the new thread to complete. The return value is bound to the result variable. The unwrap method unpacks the inner return value from the Result, which is then displayed.
 use std::thread;

 fn main() {
 let handle=thread::spawn(|| 1);
 let result = handle.join().unwrap(); // wait and get return
value
 println!("Return value {}", result);
 }

What if a running thread does not complete successfully, such as an unhandled panic? If this is the primary thread, usually main, the program terminates. For other threads, the thread will simply terminate after unwinding the stack, but the remainder of the program continues executing. If joined, the errant thread returns an Err result as notification of the panic.
In this example, we forced an unhandled panic in the new thread. In the parent thread, we join the child thread. The result of the join method is interpreted in the subsequent match expression. Because of the panic, the Err arm is chosen and error message displayed.
 use std::thread;

 fn main() {
 let handle=thread::spawn(|| panic!("kaboom"));
 let result = handle.join(); // wait for other thread
 match result {
 Ok(value)=>println!("Thread return value: {:?}", value),
 Err(msg)=>println!("{:?}", msg)
 }
 }

The process will display the following information indicating the kaboom panic!
thread '<unnamed>' panicked at 'kaboom', src\main.rs:4:37
note: run with `RUST_BACKTRACE=1` environment variable to display a
backtrace
Any { .. }

As a closure, you can pass data into a thread as captured variables. But threads run asynchronously and are not bound by the scope of the parent thread. The new thread could even outlive the parent thread. For that reason, ownership of captured data must be moved into the thread, using the move keyword.
In this example, the variables a and b are moved into the thread, where the total is calculated.
 use std::thread;

 fn main() {
 let a=1;
 let b=2;
 let handle=thread::spawn(move || {
 let c=a+b;
 println!("Sum {} + {}: {}", a, b, c);
 });
 let result = handle.join();
 }

Scoped threads resolve some of the limitations found within normal threads. Most notably, scoped threads have a deterministic lifetime. Because of this, you can capture variables with the normal syntax. This provides additional flexibility not available with regular threads.
To create scoped threads, call the thread::scope function. The scope function accepts a function as an argument that has Scope as a parameter. This function accepts a scope object. Threads created with the scope::spawn function are automatically scoped to the parent thread. At return, the outer function is joined with the scoped threads. This sets the lifetime of the scoped threads. Within these steps, you can now capture variables within this scope.
Here is the function definition for thread::scope function.
 fn scope<'env, F, T>(f: F) -> T
 where
 F: for<'scope> FnOnce(&'scope Scope<'scope, 'env>) -> T,

Type parameter F describes the entry point function, while type parameter T describes its return type. The ‘scope lifetime refers to the lifetime of the function argument. The ' env lifetime is for any borrowed values. The lifetime of ' scope cannot outlive the borrowed values. For this reason, ‘env must exceed the ' scope lifetime.
This example has scoped threads. The scope thread borrows the count value as a mutable reference. This can be done directly with a scoped thread.
 use std::thread;

 fn main() {
 let mut count = 0; // 'env
 thread::scope(|s| { // 'scope
 s.spawn(|| {
 count+=1;
 });
 println!("{}", count);
 }

Thread
The Thread type is a handle to a thread. In addition, it is also an obfuscated type and is managed via functions. As such, thread objects are not created directly but with either the thread::spawn or builder::spawn functions. More about the Builder type shortly.
Quite often a thread does not have a handle to itself. A handle is provided directly to the parent thread, but not to the child. However, child threads can sometimes benefit from access to their handles. Fortunately, the Thread::current function returns a handle to the current thread. This is the Thread instance for that thread. You can then use the handle to access information pertaining to the thread.
In this example, we get a handle to the current thread. The handle is then used to display information about the thread.
 use std::thread;

 fn main() {
 let current_thread=thread::current();
 println!("{:?}", current_thread.id()); // ThreadId(1)
 println!("{:?}", current_thread.name()); // Some("main")
 }

The thread::id function returns a ThreadId, which is an opaque type. It is the unique identifier for a thread for the entirety of the process. And the ThreadId is not reused when the thread expires. The name function returns the thread name as a string, within a Result type. For named functions, the default name is the function name. For closures, the thread is unnamed initially.
Processor Time
Running threads share processor time. Different operating environments have various scheduling algorithms. Most modern operating systems use preemptive scheduling where running threads are preempted after a time slice. Threads can also voluntarily yield their remaining time slice, with the thread::yield_now function, in order to be more cooperative. That may allow a different ready thread an opportunity to receive processor time.
In addition, a thread can sleep for a designated duration. While sleeping, a thread will not receive processor time. This is often done to synchronize or otherwise coordinate the execution of a thread. Alternatively, maybe the thread simply has nothing to do. The thread::sleep function forces a thread to sleep for the designated duration, at a minimum. The Duration type has the functions to specify time with different granularity.

 duration::as_micros: microseconds

 duration::as_millis : milliseconds

 duration::as_nanos: nanoseconds

 duration::as_secs: second
For the next example, we use the sleep function. In the for loop, two threads are created that consume elements from a tuple array. Each item in the tuple has an informal thread name and a sleep duration. The threads run different instances of the same closure in parallel. Within the while loop, the threads display an increasing count and then sleep for the indicated duration. Back in main, there is a 3 second sleep, which mitigates a race condition with the other threads. They now have time to finish.
 use std::thread;
 use std::time::Duration;

 fn main() {

 for (name, duration) in [("T2", 50), ("T3", 20)]{
 thread::spawn(move ||{
 let mut n=1;
 while n < 5 {
 println!("{} {}", name, n);
 n=n+1;
 thread::sleep(Duration::from_millis(duration));
 }
 });
 }

 thread::sleep(Duration::from_secs(3));
 }

Various operating systems provide lower-level support for blocking − a spinlock. For a spinlock, a thread continuously (spins) while waiting to acquire a synchronization resource, instead of an expensive context switch. This is typically more efficient when there is low contention. Synchronization with other components, such as mutexes and semaphores, can be more expensive than a spinlock.
The Thread::park function initiates a spinlock and effectively blocks the current thread. There is a token associated with each thread. The park function blocks until the token is available or otherwise released, such as a time out. The unpark method unparks the parked thread. The park_timeout parks a thread within a timeout duration. If the thread is not unparked before the timeout, it is awakened.
Here we model a retail store. The store_open function emulates an open store. It spawns a thread that represents attending to customers. At the beginning of the thread, we park the function to allow setup activities, such as disabling the alarm and opening the register. In main, after the setup is completed the store_open thread is unparked to begin handling customers.
 use std::thread;
 use std::time::Duration;
 use std::thread::Thread;

 fn store_open()-> Thread {
 thread::spawn(|| {
 thread::park();
 loop {
 println!("open and handling customers");
 // hopefully, lots of sales
 }
 }).thread().clone()
 }

 fn main() {
 let open=store_open();

 // Do setup
 disable_alarm();
 open_registers();

 open.unpark();

 thread::sleep(Duration::from_secs(2)); // arbitrary wait
 }

Builder
At the moment, threads have two configurable attributes: the thread name and stack size. The thread name is a String type. For the stack size, specify the number of bytes as usize. You may configure these attributes using the Builder type. Afterwards, you can spawn the thread with the Builder::spawn method. Builder::spawn returns a Result<JoinHandle<T>> . For that reason, you have to unwrap the Result to obtain the JoinHandle for the new thread.
The Builder::name method explicitly names a new thread. This can be especially helpful when debugging an application. Thread ids are not consistent across processes, which makes them less ideal for debugging. However, providing threads with a permanent name can be useful. By default, a thread adopts the name of the named function used for the thread. If a closure is provided instead, the thread is unnamed. Consequentially, naming a thread explicitly is more helpful when the thread is a closure.
The initial stack size for a thread can differ within various operating system environments. Managing the stack size can improve performance and reduce the memory footprint of a process. In addition, this can improve scalability. For Rust, you can set the stack size for any thread, except the primary thread, which is operating system dependent. The RUST_MIN_STACK environment variable, if present, sets the minimum stack size. Programmatically, the stack size for a particular thread is configurable with the Builder::stack_size function.
Both the Builder::name and Builder::stack_size functions return a Builder. This allows the daisy chaining of these function calls.
In this example, a Builder is used to set the thread name and stack size.
 use std::thread;
 use std::thread::Builder;

 fn main() {
 let builder = Builder::new()
 .name("Thread1".to_string())
 .stack_size(4096);
 let result = builder.spawn(|| {
 let thread = thread::current();
 println!("{}", thread.name().unwrap());
 });

 let handle=result.unwrap();
 let result=handle.join();
 }

Communicating Sequential Process
The Communicating Sequential Process (CSP) defines a threading model where threads communicate through a synchronous message passing object, which implements a FIFO queue. In 1978, Charles Antony Richard Hoare wrote a seminal article on Communicating Sequential Processes for Communications of the ACM (Association for Computing Machinery). CSP defines a threading model where threads exchange messages through a message passing object. Several modern languages implement the CSP model as channels.
In Rust, a channel is a conduit between threads, with two halves. There is a sender half and receiver half. The sender sends information through a channel. Conversely, a receiver receives information from the channel. The sender and receiver are opposite halves of the same channel. If either becomes invalid, communication through the channel will fail. Finally, channels adhere to a multiple producers and single consumer paradigm. Every channel has a receiver but can have multiple senders.
Support for thread synchronization is found in the standard library at the std::sync module, including mutexes and various locks. Artifacts related to channels are found in the std::sync::mpsc (multi-producer module/single consumer) module. The primary types in that module are:

 Sender . Inserts data into an asynchronous channel

 SyncSender . Inserts data into a synchronous channel

 Receiver . Receives data from either an asynchronous or synchronous channel
Asynchronous channel
Asynchronous channels are unbounded, with theoretically an infinite queue. Senders never block when sending data to the channel. For this reason, you never know when a Receiver actually receives data from a channel. It could be immediately, or even never. A channel will only block if the receiver attempts to receive data from an empty channel.
The mpsc::channel function creates an asynchronous channel:
 fn channel<T>() -> (Sender<T>, Receiver<T>)

The function returns both halves of the channel as a tuple: (Sender<T>, Receiver<T>) . Type parameter T indicates the kind of data placed into the channel. The Sender type represents the sender for the channel. The Sender::send method sends data into the channel. For multiple senders, you clone the Sender . The Receiver type represents the receiver. The Receiver::recv method receives data from the channel.
 fn recv(&self) -> Result<T, RecvError>
 fn send(&self, t: T) -> Result<(), SendError<T>>

Here is an example which creates an asynchronous channel with the channel function. We decompose the return value into a separate Sender and Receiver . With the Sender , the new thread sends data into the channel. Main receives data from the channel using the Receiver . It also blocks, waiting for the Sender to insert data into the channel. This prevents a possible race condition.
 use std::sync::mpsc;
 use std::thread;

 fn main() {
 let (sender, receiver) = mpsc::channel();
 thread::spawn(move || {
 sender.send(1);
 });

 let data=receiver.recv().unwrap();
 println!("{}", data);
 }

Following is an example with multiple producers. The original Sender is cloned to create a second sender. Each Sender is used in a new thread to insert data into the channel. In the Receiver thread, the channel is read within a while loop. The recv method is the loop expression. The loop ends when both Sender s become invalid. This will occur when their respective threads end.
 use std::sync::mpsc::channel;
 use std::thread;

 fn main() {
 let (sender1, receiver) = channel();
 let sender2=sender1.clone();

 thread::spawn(move || {
 for i in 0..=5 {
 sender1.send(i);
 }
 });

 thread::spawn(move || {
 for i in 10..=15 {
 sender2.send(i);
 }
 });

 let handle = thread::spawn(move || {
 while let Ok(n) = receiver.recv() {
 println!("{}", n);
 }
 });

 handle.join();
 }

If either half of a channel becomes disconnected, the channel will return an error. This can occur when the Sender or Receiver is dropped. However, you are allowed to receive data already in the channel.
This example illustrates how an error can occur when a Sender or Receiver is dropped.
 use std::sync::mpsc;
 use std::thread;
 use std::time::Duration;

 fn main() {
 let (sender, receiver) = mpsc::channel();
 thread::spawn(move || {
 sender.send(1);
 }); // sender dropped

 let data = receiver.recv().unwrap();
 println!("Received {}", data);

 thread::sleep(Duration::from_secs(1));
 let data = receiver.recv().unwrap(); // panic on error
 }

The new thread is short, and afterwards the Sender is dropped. In main , the first recv method receives the existing data in the channel. Because of the sleep , the second recv clearly occurs after the Sender is disconnected. That will cause an error result. Here is the error message:
thread 'main' panicked at 'called `Result::unwrap()` on an `Err` value:
RecvError', src\main.rs:15:30
note: run with `RUST_BACKTRACE=1` environment variable to display a
backtrace
error: process didn't exit successfully: `target\debug\sync_channel3.exe`
(exit code: 101)

Synchronous Channel
A synchronous channel is bounded with a maximum capacity. This is unlike asynchronous channels that are unbounded and infinite in size. Synchronous channels are preferred in scenarios where a specific capacity is beneficial. For example, if implementing a message pump, you may want to throttle the number of messages in the message queue. This can be done as an efficiency and to conserve resources.
The mpsc::sync_channel function creates a synchronous channel.
 fn sync_channel<T>(bound: usize) -> (SyncSender<T>, Receiver<T>)

The bound parameter is the maximum number of elements held in the channel. The return value is a tuple that reveals both halves of the synchronous channel. The sender is SyncSender, not Send. The SyncSender::send method sends data to the channel; but blocks when at capacity. The receiver half of the channel is Receiver. This is the same Receiver used with asynchronous channels. Receiver::recv receives data from the channel and blocks if the channel is empty.
Here is the syntax for the SyncSender::send .
 fn send(&self, t: T) -> Result<(), SendError<T>>

In the example that follows, the sync_channel function creates a synchronous channel. The channel has a capacity of 1. The new thread receives SyncSender as the sender. The send method is called once more to add data to the channel. However, the last send method blocks indefinitely. Why? Back in main, the Receiver::recv receives the first value sent to the channel. This allows the second value to be sent. However, there is not a second recv method. For that reason, the channel remains at capacity and the next send blocks.
 use std::sync::mpsc;
 use std::thread;
 use std::time::Duration;

 fn main() {
 let (sender, receiver) = mpsc::sync_channel(1);
 let handle=thread::spawn(move || {
 sender.send(1);
 println!("Sent 1");
 sender.send(2);
 println!("Sent 2");
 sender.send(3); // block
 println!("Sent 3");
 });

 let data=receiver.recv().unwrap();
 println!("Received {}", data);
 handle.join();
 }

Rendezvous Channel
A rendezvous channel is a synchronous channel where the bound size is zero. Rendezvous channels support guaranteed delivery. With a normal channel, where the bound size is greater than zero, the send method only blocks if the channel is at capacity. Otherwise, the SyncSender does not wait for the Receiver to read the channel. For this reason, SyncSender does not know when the Receiver receives, if ever, the data placed in the channel. With a rendezvous channel, the send blocks until the data is received. When SyncSender awakens, that is receipt of the guaranteed delivery.
This example uses a rendezvous channel. We first create a synchronous channel. In the new thread, the send method is called to send data to the synchronous channel. The send waits for the data to be read. The now function returns an Instant type, which is used to determine how long the send method waits. In main, after a 10 second wait, the Receiver reads from the channel. At that time, SyncSender awakens, as a confirmation of guaranteed delivery.
 use std::sync::mpsc;
 use std::thread;
 use std::time::{Duration, Instant};

 fn main() {
 let (sender, receiver) = mpsc::sync_channel(0);
 let handle = thread::spawn(move || {
 println!("SyncSender - before send");
 let start = Instant::now();
 sender.send(1);
 let elapsed = start.elapsed();
 println!("After send - waited {} seconds", elapsed.as_secs());
 });

 thread::sleep(Duration::from_secs(10));
 receiver.recv();
 handle.join();
 }

Here is the result of the application.
 SyncSender - before send
 After send - waited 10 seconds

Try Methods
Senders can block! This occurs when sending data to a channel which is at capacity. As an alternative, you might prefer a notification. This is the behavior of the try_send method. The method returns a TrySendError , as a form of notification, if the channel is full. This allows the thread to do something else while a channel is at capacity, instead of blocking. Here is the definition of the try_send method.
 fn try_send(&self, t: T) -> Result<(), TrySendError<T>>

Following, a synchronous channel is created with the capacity of two items. The initial sends fill the channel to capacity. The try_send attempts to add a third item to the channel. Instead of blocking the method, the process continues to run. The error result indicates the channel is full.
 use std::sync::mpsc;
 use std::thread;

 fn main() {
 let (sender, receiver) = mpsc::sync_channel(2);
 sender.send(1);
 sender.send(2);
 let result=sender.try_send(3).unwrap_err();
 println!("{:?}", result); // Full(..)
 println!("Continuing ...")
 }

The Receiver can block also! This occurs when the channel is empty. It remains blocked until a sender inserts data into the channel. At that time, the blocked thread awakens to receive the data. The t ry_recv method is a non-blocking alternative. For an empty channel, the try_recv method receives a notification as a TryRecvError error. This allows the receiver thread to continue executing when it would otherwise be blocked.
 fn try_recv(&self) -> Result<T, TryRecvError>

Performing idle work is a valid use case for the try_recv method. The thread has an opportunity to perform work when it would normally be idle.
There are two common scenarios for idle work:
 Idle work can perform work in stages. Resource cleanup is an excellent example. You might perform resource cleanup at the end of an application, which is time consuming. However, you can begin resource cleanup during idle time. That reduces the effort required at the end of the program.
 Conversely, idle work is useful for low priority or optional tasks. This work can be done when there is nothing better to do, such as running user-interface handlers.
Next, is an example of the try_recv method. The receiver in this example, inserts message into a channel. The sender handles the messages found in the channel. If the channel is empty, the idle_work function is called to perform idle work.
This portion of the application inserts messages into the channel. We create a synchronous channel that limits the buffer to 10 messages. You could use the asynchronous channel for an unbounded queue; but that is not required for this example. The Builder is used to name the new thread “Message Pump.” In the thread, there is a for loop where messages are sent to the channel. There is a sleep function in the loop to emulate a real message pump.
 let (sender, receiver) = mpsc::sync_channel(10);
 let builder = Builder::new()
 .name("Message Pump".to_string())
 .stack_size(4096);
 let result = builder.spawn(move || {
 let messages=["message 1".to_string(),
 "message 2".to_string(),
 "message 3".to_string(),
 "".to_string()];
 for message in messages {
 sender.send(message);
 thread::sleep(Duration::from_millis(2));
 }
 });

This portion of the code is the message handler. The “Handler” thread handles messages inserted into the channel. As a match expression, the try_recv method receives messages from the channel. The Ok variant handles a message, if present. An empty message tells the message handler to exit. When the channel is empty, an Err result is returned and the idle_work function is called. You can put tasks in the idle_work function to be performed when otherwise idle.
 let builder = Builder::new()
 .name("Handler".to_string())
 .stack_size(4096);
 let result = builder.spawn(move || ->i8 {
 loop {
 match receiver.try_recv() {
 Ok(msg)=>{
 if msg.len()==0 {
 break 0;
 }
 println!("Handling {}", msg);
 }
 Err(_)=>idle_work(),

 }
 }
 });

Here is the full application.
 use std::sync::mpsc;
 use std::thread;
 use std::time::Duration;
 use std::thread::Builder;

 fn idle_work() {
 println!("Doing something else...")
 }

 fn main(){
 let (sender, receiver) = mpsc::sync_channel(10);
 let builder = Builder::new()
 .name("Message Pump".to_string())
 .stack_size(4096);
 let result = builder.spawn(move || {
 let messages=["message 1".to_string(),
 "message 2".to_string(),
 "message 3".to_string(),
 "".to_string()];
 for message in messages {
 sender.send(message);
 thread::sleep(Duration::from_millis(2));
 }
 });

 let builder = Builder::new()
 .name("Handler".to_string())
 .stack_size(4096);
 let result = builder.spawn(move || ->i8 {
 loop {
 match receiver.try_recv() {
 Ok(msg)=>{
 if msg.len()==0 {
 break 0;
 }
 println!("Handling {}", msg);
 }
 Err(_)=>idle_work(),

 }
 }
 });

 let handle=result.unwrap();
 handle.join();
 }

The recv_timeout method is another alternative to receiving data from a channel. This method blocks if a channel is empty. However, the method will awaken if the timeout is exceeded. When this occurs, recv_timeout returns RecvTimeoutError as the Err result. Here is the function definition.
 fn recv_timeout(&self, timeout: Duration) -> Result<T,
RecvTimeoutError>

In the example that follows, a timeout error is forced. The new thread sleeps for 200 milliseconds before sending data to the channel. In main, the receiver reads from the channel using the recv_timeout method, which sets the timeout to 100 milliseconds. This is less than the artificial wait in the new thread. Because of this, the r ecv_timeout method will eventually time out. The subsequent match expression handles the Err result, displaying the timeout message.
 use std::sync::mpsc;
 use std::time::Duration;
 use std::thread;

 fn main() {
 let (sender, receiver) = mpsc::sync_channel(1);
 thread::spawn(move || {
 thread::sleep(Duration::from_millis(200));
 sender.send(1);
 });

 let data = receiver.recv_timeout(Duration::from_millis(100)); //
wait
 match data {
 Ok(value)=>println!("Data received: {}", value),
 Err(_)=>println!("Timed out: no data received")
 }
 }

You can also receive data from a channel as an iterator. This gives you the convenience of a well-known interface. In addition, as an iterator, channels are more extensible; expanding the use cases where channels can be employed. With the iter method, Receiver can request an iterator for a channel. The Iterator object can then be used to access data in the channel, such as the next method.
This is a simple example of accessing a channel using an iterator object.
 use std::sync::mpsc;
 use std::thread;

 fn main() {
 let (sender, receiver) = mpsc::sync_channel(4);

 sender.send(1);
 sender.send(2);
 sender.send(3);

 let mut iter=receiver.iter();
 println!("{}", iter.next().unwrap());
 println!("{}", iter.next().unwrap());
 println!("{}", iter.next().unwrap());
 }

As mentioned, channels are more extensible as an iterator. Iterating a channel using a for loop illustrates this additional versatility, as shown next. For loops are compatible with any object that implements the Iterator trait.
In this example, the new thread inserts values into the channel. In main, the for loop iterates the Receiver . This is possible because Receiver implements the Iterator interface. The for loop stops iterating when the Sender is dropped, and no remaining items are in the channel.
 use std::sync::mpsc;
 use std::thread;

 fn main() {
 let (sender, receiver) = mpsc::channel();

 thread::spawn(||{
 sender.send(1);
 sender.send(2);
 }); // sender dropped

 for item in receiver {
 println!("{}", item);
 }
 }

Store Example
Earlier in the chapter, we presented an example that emulated a store opening. The updated version, presented here, both opens and closes the store. This example demonstrates many of the threading features introduced in this chapter.
Let’s start with a review of each portion of the revised program, beginning with main. In main, we create a channel with the channel function. The channel is used as a notification that the store is closing. When data is sent to the channel, the store should close. For that reason, the receiver is named closing.
 fn main() {
 let (sender, closing) = channel::<bool>();

 store_open(closing);

 thread::sleep(Duration::from_secs(2));

 store_closing(sender);
 }

The store_open function manages the open store. The closing channel is provided as the function argument. Prepping for opening the store, turning off the alarm system and opening the registers, can be done in parallel. For that reason, these tasks are done in separate threads. With the join method, we wait for the prepping to complete. After prepping, the store is finally opened! Afterwards, the loop represents the continuous handling of customers. Inside the loop, there is a match expression that receives data from the closing channel. The try_recv method prevents blocking if the channel is empty. If data is received from the closing channel, that is an indication to begin closing the store, which is done at the Ok arm. Otherwise, the default arm is chosen and the store remains open.
 fn store_open(closing:Receiver<bool>) {
 thread::spawn(move || {
 // Opening setup
 let alarms=thread::spawn(|| println!("turning off alarm"));
 let registers=thread::spawn(|| println!("open registers"));
 alarms.join();
 registers.join();

 // Store fully open - handling customers
 loop {
 match closing.try_recv() {
 Ok(_)=> {
 println!("cleaning up and exiting...");
 break;
 },
 _=>{
 println!("open and handling customers");
 thread::sleep(Duration::from_secs(1));
 }
 }
 }
 });
 }

The store_closing function closes the store. The function accepts a Sender as the function argument. This is the sender half of the closing channel. The first step is sending a value to the closing channel. This notifies the open thread, implemented in the store_open function, to exit (i.e., stop handling customers). The sleep function gives the open thread an opportunity to complete final tasks and then exit. Next, the alarms are reenabled and the registers are closed as separate threads. We wait for them to complete. Now the store is closed!
 fn store_closing(sender:Sender<bool>){
 sender.send(true); // notification of the store closing
 thread::sleep(Duration::from_millis(300));
 let alarms=thread::spawn(|| {
 println!("turning on alarms");
 });
 let registers=thread::spawn(|| {
 println!("closing registers");
 });

 alarms.join();
 registers.join();
 println!("Store closed!");
 }

Here is the entire application.
 use std::thread;
 use std::time::Duration;
 use std::sync::mpsc::{channel, Receiver, Sender, TryRecvError};

 fn store_open(closing:Receiver<bool>) {
 thread::spawn(move || {
 // Opening setup
 let alarms=thread::spawn(|| println!("turning off alarm"));
 let registers=thread::spawn(|| println!("open registers"));
 alarms.join();
 registers.join();

 // Store fully open - handling customers
 loop {
 match closing.try_recv() {
 Ok(_)=> {
 println!("cleaning up and exiting...");
 break;
 },
 _=>{
 println!("open and handling customers");
 thread::sleep(Duration::from_secs(1));
 }
 }
 }
 });
 }

 fn store_closing(sender:Sender<bool>){
 sender.send(true);
 thread::sleep(Duration::from_millis(300));
 let alarms=thread::spawn(|| {
 println!("turning on alarms");
 });
 let registers=thread::spawn(|| {
 println!("closing registers");
 });

 alarms.join();
 registers.join();
 println!("Store closed!");
 }

 fn main() {
 let (sender, closing) = channel::<bool>();

 store_open(closing);

 thread::sleep(Duration::from_secs(2));

 store_closing(sender);
 }

In Conclusion
Threads are unique paths of execution within a process. With threads, you can decompose a process into parallel operations. Threads have become an essential feature because of the prevalence of multicore architecture processors and the demand for scalable and responsive applications.
Fearless concurrency helps mitigate the added complexity that parallel threading undoubtedly will introduce. Despite this, as a best practice, only add threads when needed.
In Rust, most of the infrastructure for threads is found in the thread module. In that module, you will find the Thread type which is a handle to a thread. In addition, the thread::spawn function creates new threads. Alternatively, you can use the Builder type and the Builder::spawn method. With Builder, the thread can be configured, such as setting the stack size, before starting the thread.
The JoinHandle::join function helps coordinate the actions of two threads, where a thread can wait for another to complete. Both the thread::spawn and builder::spawn functions return a JoinHandle. For builder::spawn, the JoinHandle is returned within the Result value.
Lamdas are the most common type of function for a thread. You pass data into the thread as a captured variable. Since the lifetime of threads are unknown, the ownership of captured variables is transferred into the lambda with move keyword.
Channels are one-way conduits between threads for exchanging data, such as the result of a task. There are different kinds of channels.
 Asynchronous channels are unbound. It has an unlimited queue. They are created with the channel function.
 Synchronous channels are bounded with a specifically sized queue. They are created with the sync_channel function.
 Rendezvous channels are asynchronous channels with guaranteed delivery. For this type of channel, the bound size is zero.
Channels have a sender and receiver half. The sender sends data to the channel. Receivers receive data from the channel. Here are the related types.

 Sender sends data to the asynchronous channel

 SyncSender sends data to a synchronous channel

 Receiver receives data from either type of channel
Receiver has various recv methods that support different use cases. For example, try_recv does not block if a channel is empty.
We concluded the chapter with the store application. In that application, the channel is used as a notification event. Some may consider that an inelegant solution. Other synchronization objects, such as a CondVar , may offer a more elegant solution, and will be discussed in a later chapter.

Chapter 19. Threads 2
Parallel programming using threads was introduced in the previous chapter. In many ways, threads within a process are similar to multiple family members living in a house. They must share and often inadvertently compete for resources within the home. This can lead to conflicts and unpredictable behavior if not properly coordinated. Analogously, there is sometimes a need for thread synchronization. The conversation of thread synchronization began in the previous chapter with the discussion of the join function and also channels. Both of these provide coordination between threads.
Adding essential synchronization contributes to a safe environment that promotes increased parallelization. You can confidently add layers of parallelization without the worry of threads literally crashing into each other. However, over synchronization can increase the complexity of an application and hinder performance.
Parallel programming is inherently more complex than sequential programming. When problems occur, there is the tendency to add synchronization for more predictable results. When repeated, resolving problems by synchronization creates significant technical debt. Eventually, you will have essentially a sequential program running under the guise of a parallel application. Synchronization is often justified and sometimes required. However, remember to keep parallel programs parallel; embarrassingly parallel if possible.
Starting with your first application, typically a “Hello, World” style application, you may have already experienced thread synchronization. The println macro is often used to display the greeting. The macro is made safe with an internal mutex. Without this synchronization, multiple threads could not use the macro safely.
Mutex
A mutex is the most well-known synchronization primitive. It provides mutually exclusive access to data that has shared ownership. As such, “mutex” is an abbreviation of mutual exclusion. By using mutexes, you can prevent concurrent threads from accessing shared data at the same time. If concurrent threads are allowed without implementing synchronization, this may cause unpredictable results and corrupted data. With the mutex, access to the data is serialized to eliminate these sorts of problems. In this manner, a mutex can guard shared data.
Mutexes can be locked or unlocked. When locked, the mutex enforces the mutual exclusion concurrency policy. The current thread can exclusively access the data, providing thread safeness. At the same time, another thread or threads will block when attempting to acquire a lock for the locked mutex. When the mutex is unlocked, a waiting thread may acquire the lock. If successful, the blocked thread is awakened and continues execution.
The mutex lock has thread affinity. When locked, it must be unlocked from the same thread. This prevents another thread from stealing access to the thread mutex. Imagine the chaos! Any thread, wanting the mutex, could simply unlock it and access the inner value. Fortunately, this is prevented in Rust because there is no unlock function! More about this later.
In many languages, mutexes are about the proper placement of functions in source code. You must bracket where the guarded data is accessed with a mutex lock and unlock. The correctness of the mutex is therefore based solely on programmer discipline. Placing the mutex in the wrong location renders it worthless. This can be a greater problem during refactoring when the protected data or the mutex itself is inadvertently moved or even removed. For these reasons, Rust takes a different approach and directly associates the guarded data with the mutex. This direct correlation prevents the sort of problems that occur in these other languages.
The Mutex<T> type is an implementation of a mutex. It is found in the std::sync module, as with other synchronization components. Mutex is generic over type T , where T represents the guarded data.
You create a new Mutex with the Mutex::new constructor, which is also generic over type T. The sole parameter is the data being guarded. Here is the function definition.
fn new(t: T) -> Mutex<T>

The Mutex::lock function locks the mutex for exclusive access to the guarded data. If unlocked, you acquire the lock and execution continues. When already locked, the current thread will block until the lock can be acquired.
 fn lock(&self) -> LockResult<MutexGuard<'_, T>>

The lock function MutexGuard is returned. It implements the Deref trait that provides access to the inner value, the guarded data. The MutexGuard is the guaranty that the current thread can access the data safely. Importantly, when the MutexGuard is dropped, the Mutex is automatically unlocked. For this reason, an unlock function is not necessary.
Here is a single-threaded example of locking, accessing the guarded data, and unlocking a mutex. The mutex here guards an integer value, initialized to zero. After locking the Mutex, we dereference the MutexGuard to access the data. The data is incremented and then displayed. The MutexGuard drops at the end of the code block and the Mutex is unlocked.
Code Listing 19.1.
Locking and unlocking a Mutex.
 use std::sync::{Mutex};

 fn main() {
 {
 let mutex=Mutex::new(0);
 let mut guard=mutex.lock().unwrap();
 *guard+=1;
 println!("{}", *guard);
 } // mutex unlocked
 }

Here is an example of using a Mutex with multiple threads. To easily share the mutex, scoped threads are used, which were introduced in the previous chapter. We create two threads. The Mutex protects access to an integer value across them. We want to safely increment and display the guarded value.
Code Listing 19.2.
Using a Mutex with scoped threads.
use std::thread;
use std::sync::Mutex;

fn main() {
 let m=Mutex::new(0);
 thread::scope(|scope|{
 for count in 1..=2 {
 scope.spawn(||{
 let mut guard=mutex1.lock().unwrap();
 *guard+=1;
 println!("{:?} Data {}",
 thread::current().id(), *guard)[]
 });
 }
 });
}

You can inadvertently leak a Mutex. A Mutex remains locked for the lifetime of the MutexGuard. If the MutexGuard is never dropped, or simply delayed, the Mutex remains unavailable to other threads, which can cause deadlocks. This may occur for a variety of reasons, including poor management of the MutexGuard. Here the mutex is locked potentially for an extended period of time.
Code Listing 19.3.
Lifetime of a MutexGuard controls the Mutex.
 let mut hello=String::from("Hello");
 let mutex=Mutex::new(&mut hello);
 {
 let mut guard=mutex.lock().unwrap();
 guard.push_str(", world!");
 // something time-consuming
 } // mutex unlocked

The next example is practically the same code. However, the MutexGuard is not bound to a variable. This means the MutexGuard is temporary and dropped immediately at the next source line. At that time, the Mutex is unlocked. We are no longer waiting until the end of the block.
Code Listing 19.4.
Dropping a MutexGuard almost immediately.
 let mut hello=String::from("Hello");
 let mutex=Mutex::new(&mut hello);
 {
 (*mutex.lock().unwrap()).push_str(", world!");
 // mutex unlocked
 // something time-consuming
 }

Finally, you can explicitly drop the MutexGuard to unlock the Mutex. Alternatively, create a nested block to curtail the lifetime of the MutexGuard. In this manner, you can finetune the performance of a Mutex. This would also be the neighborly approach to other threads waiting for the same mutex.
Here the MutexGuard is dropped explicitly and the Mutex unlocked prior to starting an extended task. This means other waiting threads, if any, resume execution sooner. This could result in a major performance gain.
Code Listing 19.5.
Explicitly dropping a MutexGuard and unlocking a Mutex,
 {
 let mutex=Mutex::new(0);
 let mut guard=mutex.lock().unwrap();
 *guard+=1;
 drop(guard);
 do_something_extended();
 }

Non-scoped Mutex
You can share a Mutex with non-scoped threads also. The Arc type is the best solution for sharing Mutexes.
Ownership is a frequent and important topic in this book. Multithreaded applications often require shared ownership. With shared ownership, multiple threads share the ownership of data. The Arc type supports shared ownership where the number of owners is tracked with reference counting. When the final shared owner (i.e., thread) exits, the count drops to zero. At that time, the shared data is dropped. The reference counting is performed atomically to protect against race conditions or corrupting the reference count.
The Arc type is found in the std::sync module. Create a new Arc with the Arc::new constructor. The only parameter is the shared data. Here is the function definition.
 fn new(data: T) -> Arc<T>

Clone the arc to share with other threads. The reference count increases with every clone. In addition, Arc implements the Deref trait to provide access to the inner value.
Here is an example of the Arc type.
Code Listing 19.6.
Shared ownership using an Arc.
 use std::sync::Arc;
 use std::thread;

 fn main() {
 let arc_orig=Arc::new(1);
 let arc_clone=arc_orig.clone();
 let handle=thread::spawn(move || {
 println!("{}", arc_clone); // Deref
 });

 println!("{}", arc_orig); // Deref

 handle.join();
 }

In the preceding example, the primary thread creates a new Arc for an integer value. The Arc is then cloned and the reference count incremented. The cloned Arc is then moved to another thread. Now both threads share the data. The println macro for both threads automatically dereferences the Arc to display the underlying value. As a shared value, the threads display the same result.
In the last example, there were two Arc s, arc_orig and arc_clone . Naming can become a problem as the number of threads sharing the Arc increases. This can lead to arcs named: arc1, arc2, arc3, arc4, and so on. A better solution is sharing the same name for the arc across threads. This can be done by shadowing the name, as shown here.
Code Listing 19.7.
Shadowing an Arc name.
 let arc=Arc::new(1);
 { // new block
 let arc=arc.clone();
 let handle=thread::spawn(move || {
 println!("{}", arc); // Deref
 });
 handle.join();
 } // end block

 println!("{}", arc);

It’s important to realize that the Arc type provides share ownership; but it is not a Mutex. Arc does not protected access to data. However, Arcs are great for sharing mutexes with non-scoped threads. The Arc shares the Mutex; the Mutex shares the protected data.
This example demonstrates sharing a Mutex via an Arc .
Code Listing 19.8.
Sharing a Mutex using Arcs.
 use std::thread;
 use std::sync::{Mutex, Arc};

 fn main() {
 let arc_mutex = Arc::new(Mutex::new(0));
 let mut handles=vec![];

 for i in 0..=2 {
 let arc_mutex=Arc::clone(&arc_mutex);
 let handle =thread::spawn(move || {
 let mut guard=arc_mutex.lock().unwrap();
 *guard+=1;
 println!("{}", *guard); });
 handles.push(handle);
 }

 for i in handles {
 i.join();
 }
 }

In this example, an Arc is created with a Mutex and then cloned for every thread. The Mutex itself protects an integer value. We create a shadow of the arc_mutex variable for each new thread. Within the threads, the mutex is locked via the a rc_mutex . This returns the MutexGuard that is used to increment the inner value and the result is displayed.
Mutex Poisoning
A Mutex becomes poisoned when a panic is raised and the MutexGuard is dropped. At that time, the state of the underlying data is undetermined. For this reason, attempts to lock the Mutex will return an error. Poisoning the mutex forces the application to recognize the potential problem. You can even continue to use the data but the status is “buyer beware”.
As mentioned, locking a poisoned Mutex returns an Err for the Result. Specifically, it returns PoisonError. You can still obtain the underlying value if desired. The PoisonError::into_inner function returns the MutexGuard for the poisoned Mutex. You can then access the underlying data as usual.
In this example, the first spawned thread will panic and drop the MutexGuard. Consequently, the second thread receives an error when locking the Mutex. The into_inner function is then used to display the underlying data.
Code Listing 19.9.
Handling a poisoned Mutex.
use std::thread;
use std::sync::{Mutex, Arc};
use std::time::Duration;

fn main() {

 let arc_mutex = Arc::new(Mutex::new(0));

 let arc_mutex1=Arc::clone(&arc_mutex);
 let handle1=thread::spawn(move || {
 let mut guard=arc_mutex1.lock().unwrap();
 *guard+=1;
 panic!("panic on mutex");
 });

 let arc_mutex2=Arc::clone(&arc_mutex);
 let handle2=thread::spawn(move || {
 thread::sleep(Duration::from_millis(20000));
 let mut guard=arc_mutex2.lock();
 match guard {
 Ok(value)=>println!("Guarded {}", value),
 Err(error)=>println!("Error: Guarded {}", *error.into_inner())
 }
 });

 handle1.join();
 handle2.join();
}

Mutex also has a try_lock function. Unlike the lock function, try_lock does not block when the Mutex is already locked. Instead, execution continues and the function returns an Err as the Result. This allows your application to do something else while the Mutex is locked.
Reader Writer Lock
The reader writer lock, similar to a mutex, guards data. It allows multiple readers to access the data at the same time. Alternatively, a writer has exclusive access to the data. Naturally, readers have read-only access, while writers can modify the data.
RwLock implements the reader writer lock. It contains the implementation for both the readers and writers.
 Readers call the read function to acquire the reader lock. If successful, the function returns a RwLockReadGuard within the Result type. It also implements the Deref trait. The lock remains valid until the RwLockReadGuard is dropped. The read function will block if there is an active writer lock.
 fn read(&self) -> LockResult<RwLockReadGuard<'_, T>>

 Writers acquire a writer lock with the RwLock::write function. If successful, the function returns a RwLockWriteGuard within the Result type and implements the Deref trait. If acquired, the lock is released when the RwLockWriteGuard is dropped. The write function blocks if there are outstanding readers or another active writer lock.
Here is the function definition.
 fn write(&self) -> LockResult<RwLockWriteGuard<'_, T>>

RwLock can become poisoned, but only for writers. When the RwLockWriteGuard is dropped during a panic, the RwLock becomes poisoned. If poisoned, both the read and write functions will return an error.
If there are multiple pending writer locks, the ordering for acquiring the lock for them is non-deterministic.
Here is an example of RwLock. There are three reader threads and writer threads. The reader threads display the inner integer data. The writer threads increment the data.
Code Listing 19.10.
Example of the RwLock.
use std::thread;
use std::sync::{Arc, RwLock};
use std::time::Duration;

fn main() {
 let mut handles=Vec::new();
 let rwlock = RwLock::new(0);
 let arc=Arc::new(rwlock);

 for reader in 1..=3 {
 let arc2 =arc.clone();
 let handle=thread::spawn(move || {
 let mut guard=arc2.read().unwrap();
 println!("Reader Lock {} Data {:?}", reader, guard);
 thread::sleep(Duration::from_millis(400));
 println!("Reader UnLock");
 });
 handles.push(handle);
 }

 for writer in 1..=3 {
 let mut guard=arc.write().unwrap();
 thread::sleep(Duration::from_millis(550));
 println!("Writer lock");
 *guard+=1;
 }

 for item in handles {
 item.join();
 }
}

After the preamble for the application, several reader threads are created in a for loop. The reader threads attempt to read and display the underlying value of the RwLock. In addition, there is a writer loop, where several writer threads are created. The writer threads increment the integer value. Here are typical results. As indicative of a multithreaded program, you may get different results each time the application is run.
Writer lock
Reader Lock 1 Data 1
Reader Lock 3 Data 1
Reader UnLock
Reader UnLock
Writer lock
Writer lock
Reader Lock 2 Data 3
Reader UnLock

As shown, the reader and writer threads are interleaved. The output also demonstrates simultaneous reader locks and non-deterministic ordering.
The RwLock type also has try_read and try_write functions. These functions are non-blocking. If the lock is not available, an Err result is returned with both functions.
Condition Variables
Condition variables express thread synchronization as conditional events. Accordingly, some other languages refer to synchronization objects of this kind as events. The nature of the event is determined by the program. For this reason, each conditional variable can be different.
Typically, there is a Boolean expression that controls the event. If true, the event has occurred or is active. Otherwise, the event has occurred or is non-active.
Mutexes are combined with conditional variables as a locking mechanism. The conditional variables and associated Mutex are commonly combined in a tuple. This prevents inadvertently coupling a conditional variable with the wrong mutex, which may cause a panic.
 Condvar is the condition variable type. You create a Condvar with the Condvar::new constructor function. It takes no parameters.
 fn new() -> Condvar

A thread calls the Condvar::wait function to verify the status of the event. The only parameter is the MutexGuard from the associated mutex. Therefore, the mutex must be locked before calling the wait function.
 pub fn wait<'a, T>(
 &self,
 guard: MutexGuard<'a, T>
) -> LockResult<MutexGuard<'a, T>>

The Condvar::notify_one and Condvar::notify_all functions will notify waiting threads that the event has occurred or is current. The notify_one function wakens a single waiting thread, even if several are pending. To notify all waiting threads, call the notify_all function. Here are the function definitions for notify_one and notify_all .
 fn notify_one(&self)
 fn notify_all(&self)

The following example models a typical scenario where a CondVar is useful. It can be useful as the precursor to some action or operation. When the related condition is true, the action is undertaken. Otherwise, threads wait for notification of the event before continuing. In this example, the event is the completion of the setup routine. After the setup is complete, the remainder of the program can continue executing.
Code Listing 19.11.
Manage application setup using a Condvar.
 use std::sync::{Arc, Mutex, Condvar};
 use std::thread;
 use std::time::Duration;

 fn main() {
 let setup_event=Arc::new((Mutex::new(false),Condvar::new()));
 let setup_event2=setup_event.clone();

 thread::spawn(move || {
 let mutex=&setup_event2;
 let cond=&setup_event2;

 let mut setup=mutex.lock().unwrap();
 println!("Doing setup...");
 thread::sleep(Duration::from_secs(2));
 *setup=true;
 cond.notify_one();
 });

 let mutex=&setup_event.0;
 let cond=&setup_event.1;

 let mut setup=mutex.lock().unwrap();
 while !(*setup) {
 println!("Wait for setup to complete.");
 setup=cond.wait(setup).unwrap();
 }
 println!("Main program started");
 }

Here are the steps:
 The application declares a tuple, setup_event, that binds a CondVar with an associated Mutex . Initial state of the event is false. The Boolean condition is set as the Mutex value.
 Next, a new thread performs the setup. It receives a clone of the event, which is used to lock the Mutex. When the setup is finished, the condition, as a MutexGuard, is updated to true. The notify_one function is called to notify the program that the setup is completed.
 The main thread locks the Mutex and waits for the setup to complete. When notified of the event, main will continue to execute.
Notice that the wait function is called in a while loop. When awakened from a wait, the thread rechecks the condition to make sure a spurious awake has not happened. If that occurs, the condition is unchanged and the thread should resume waiting for the proper event.
Atomic
Rust includes a full complement of atomic types for the primitives. These types are closely related to C++ 20 atomics. The exact list of atomic types depends on the operating system.
An atomic operation performs an operation in a single uninterruptable step. This prevents data corruption or other problems that can occur when sharing an operation across threads. With atomic types you can perform certain operations, such as read and write, as a unit. Importantly, the implementation of atomic types does not include locks, which improves performance.
We have already used atomics in this chapter, at least indirectly. For example, the Arc type atomically increments the reference count. This is done to safely modify the reference count.
Atomic types were placed in the std::sync::atomic module. Some of them include:
 AtomicBool
 AtomicI8, AtomicI16, etc.
 AtomicU8, AtomicU16, etc.
 AtomicPtr
 AtomicIsize and AtomicUsize
Atomic Store and Load
Atomic types have a consistent interface for storing and loading data. Atomic types can be modified through a shared reference.
Atomic operations have an ordering parameter, which provides guarantees on the ordering of operations. The least restrictive ordering is Relaxed. Relaxed guarantees the atomicity of a single variable. However, no assurances are made about the relative ordering of multiple variables, such as provided with memory barriers.
The load and store functions are the basic functions of atomic types. Store updates the value, while load gets the value.
The next example calculates the percentage completion of a lengthy operation. Users typically appreciate updates when lengthy operations are running, even if concurrently. For example, if reading a large file, most users expect feedback as the file is being loaded, such as the percentage of load completion. For the percent complete, we use an AtomicU8 type, with the store and load functions. This is done to prevent receiving a percentage that is in transition.
Here is the signature for AtomicU8::load and AtomicU8::store functions. This is also representative of the load and store methods of other atomic types.
 fn load(&self, order: Ordering) -> u8
 fn store(&self, val: u8, order: Ordering)

Here is the example:
Code Listing 19.12.
Using an AtomicU8 value.
 use std::sync::atomic::AtomicU8;
 use std::sync::atomic::Ordering::Relaxed;
 use std::thread;

 fn do_something(value:u8) {
 // performing operation
 }

 fn main() {

 static STATUS:AtomicU8=AtomicU8::new(0);
 let handle=thread::spawn(||{
 for n in 0..100 {
 do_something(n);
 STATUS.store(n, Relaxed);
 }
 });

 thread::spawn(||{
 loop {
 thread::sleep(Duration::from_millis(2000));
 let value=STATUS.load(Relaxed);
 println!("Pct done {}", value);
 }
 });

 handle.join();
 }

The AtomicU8 type, for the percentage of completion, is created with a static lifetime. That makes it easier to share across multiple threads. The first new thread performs a lengthy operation within a for loop. At each iteration, the store function is called to update the percent complete. With the store function, the percent complete is updated at the end of each iteration. In a companion thread, the percentage complete is periodically checked with the load function. The result is then displayed to the user.
Fetch and Modify Operations
The fetch and modify operations are more complicated than the load and store operations. With fetch and modify, you have a series of calculations that fetch (load) and modify (store) a value in a single atomic operation. The functions include fetch_add , fetch_sub , fetch_or , fetch_and , and more.
The following program calculates a running total using two threads. The AtomicU32::fetch_add function adds to the running total.
Here is the definition of the AtomicU32::fetch_add function. Atomically, the function adds to the current value and returns the previous value. This function definition is representative of fetch_add for other atomic types.
 fn fetch_add(&self, val: u32, order: Ordering) -> u32

Here is the example of calculating a running total. An AtomicU32 variable is created to track the running total. New threads are then spawned. With the fetch_add function, each thread contributes to the running total. At the end, the final total is obtained using the load function.
Code Listing 19.13.
Maintaining a running total using the fetch_add function.
 use std::sync::atomic::AtomicU32;
 use std::sync::atomic::Ordering::Relaxed;
 use std::thread;

 fn main() {

 static TOTAL:AtomicU32=AtomicU32::new(0);

 let handle1=thread::spawn(||{
 for n in 1..=100 {
 let a=TOTAL.fetch_add(n, Relaxed);
 }
 });

 let handle2=thread::spawn(||{
 for n in 101..=200 {
 TOTAL.fetch_add(n, Relaxed);
 }
 });

 handle1.join();
 handle2.join();

 println!("Total is {}", TOTAL.load(Relaxed));
 }

Compare and Exchange
Envision multiple threads racing towards the same value, where the first to arrive changes the value atomically. The later thread should notice the change and not modify the value, again. This scenario is relatively common with parallel programming and is the basis of the compare and exchange operation.
With the compare and exchange operation, you indicate an expected value. If the expected value is found, the current value is updated with a new value. This is the exchange. However, if the expected value is not found, it is assumed a different thread modified the value. When this occurs, the exchange does not happen.
In the next example, two threads attempt to update an AtomicU32 type. The compare_exchange function is called to update the value. Here is the function definition.
 pub fn compare_exchange(&self, current: u32, new: u32,
 success: Ordering, failure: Ordering) -> Result<u32, u32>

The current parameter is the expected value. If the current parameter matches the present value, the AtomicU32 value is updated with the new parameter. There are separate Ordering parameters. The first Ordering is for the exchange operation. The second is used when the operation does not exchange the value. If the exchange does not occur, an Err is returned.
Here is the example. We create a static AtomicU32 value. The first thread that calls the compare_exchange function updates the value.
Code Listing 19.14.
Using the compare_exchange function.
 use std::sync::atomic::AtomicU32;
 use std::sync::atomic::Ordering::Relaxed;
 use std::thread;

 fn main() {

 static A:AtomicU32=AtomicU32::new(0);

 let handle1=thread::spawn(||{
 A.compare_exchange(0, 1, Relaxed, Relaxed);
 });

 let handle2=thread::spawn(||{
 A.compare_exchange(0, 2, Relaxed, Relaxed);
 });

 handle1.join();
 handle2.join();

 println!("Value is {}", A.load(Relaxed));
 }

In this example, the result of compare_exchange is not checked. To handle an error, you should bind to the result.
In Conclusion
Thread synchronization, or the coordination of threads, is sometimes required for the correctness of an application. There are several reasons this may be necessary, including preventing race conditions, performing setup before core activities, or performing operations atomically. This often results in a thread being blocked at least temporarily.
Rust includes a complement of synchronization types. This includes common types, such as Mutex , RWLock , Condvar , and atomic types.
 Mutexes are for mutual exclusion.
 RWLocks are for reader writer locks. With the RWLock, you can have multiple concurrent readers but only a single writer.
 Condvar is used for conditional variables and implementing events. This typically combines a Condvar with a Mutex and a Boolean condition. The meaning of the event is determined by the program.
 Atomic types exist for the primitive types to perform essential operations atomically. Various atomic operations include store and load, fetch and add, and compare and exchange.
Shared ownership of synchronization components is sometimes necessary. The Arc type encapsulates shared ownership through reference counting. You can use the Arc type to share the synchronization components across threads. Other solutions to sharing synchronization components are scoped threads or static variable bindings.

Chapter 20. Memory
Without memory, there is no data. Most applications whether they are a server, blockchain, artificial intelligence, games, or something else, require data. Consequently, understanding the intricacies of memory is essential.
With memory, you have a variety of options. There are various categories of memory, each with unique characteristics and benefits. The correct choice is often dependent on several factors, including data size, ownership, lifetime, mutability, and persistence. These factors, taken together, will help you make an informed decision. Helping you make this decision is the goal of this chapter.
The three main areas of memory are static, stacks, and the heap. You can place data in any of these locations. At times, Rust provides some direction, such as placing the data of a vector on the heap. However, it is primarily your decision where data is located.
It should be noted that Rust does not have a formal memory model. There is no wizard behind a curtain who magically handles memory issues, such as organizing memory most efficiently, reducing memory pressure as needed, or moving memory around as needed. Rust does provide some help though. Aspects of Rust, such as default immutability, smart pointers, ownership, and lifetimes form an informal memory model.
Stack
Every thread owns a stack for dedicated memory. The stack grows when a thread calls a function. Conversely, the stack shrinks as a thread returns from a function. Each function has a stack frame, which reserves memory for it. The memory in the stack frame is used for the local variables, parameters, return values, and maintenance data. This data is allocated and freed by the system.
The stack is implemented as a FIFO (first-in/first-out) queue. It is similar to a stack of plates, where additional plates are added at the top and removed in order starting at the top. This approach means data is stored efficiently in consecutive memory. Because of the limited operations (push and pop), the system can manage the stack effectively.
For Rust, the default stack size is 2k. You can explicitly set the minimum stack size. Spawn the thread with the Builder type and call the stack_size function. Alternatively, you can change the default stack size with the RUST_MIN_STACK environment variable. However, neither approach places a ceiling on the stack size. Stacks are growable and will expand as needed, within the available memory.
The let statement creates a local variable using memory within the current stack frame. Here, we create several local variables on the stack.
Code Listing 20.1.
Declaring variables on the stack.
 let a:i32=1;
 let b:i32=2;
 let c:i32=do_something();

 println!("{:p} + {} (i32) = {:p} + {} (i32) = {:p}",
 &a, &b-&a, &b, &b-&a, &c)

The locals, a , b , and c , are in consecutive memory locations on the stack. Each requires 32-bits of memory, or 4 bytes. The println macro displays the memory addresses of each variable, confirming they are in contiguous memory on the stack.
 0x5e552ff7bc + 1 (i32) = 0x5e552ff7c0 + 1 (i32) = 0x5e552ff7c4

The next example will not compile. In the nested block, variable c is pushed onto the stack. It now resides at the top of the stack. But it is then removed from the stack at the end of the nested block; demonstrating that even within a function, data can be added and removed from the stack. Therefore, c is not available on the stack to be displayed with the println macro.
Code Listing 20.2.
Declaring variables in nested block.
 let a:i32=1;
 let b:i32=2;

 {
 let c:i32=3;
 }

 println!("{a} {b} {c}");

Unsized types cannot be placed on the stack. You are limited to fixed sized types. For example, traits are not fixed sized. Therefore, the following example will not compile. We are using the Copy trait, which is unsized, as a parameter. This prevents the parameter from being placed on the stack.
Code Listing 20.3.
Copy trait as a parameter
 fn do_something(a:Copy){

 }

You could combine the dyn or impl keywords with the parameter to successfully compile the function. These keywords create a function pointer for the trait, which is indeed fixed sized.
Stacks can consume an enormous amount of memory. For that reason, be careful about placing large objects on the stack. Another problem can be recursive functions. Inadvertently creating runaway recursive functions can quickly erode available memory.
Some data types, such as vectors and strings are smart pointers. When declared with the let statement, the value for these types is allocated on the heap, discussed in the next section of this chapter. A pointer to the value is placed on the stack. In this example, the value [1, 2, 3, 4] is placed on the heap. The vp variable, which is a pointer, is placed on the stack.
 let vp=vec![1,2,3,4];

Static Values
Static values are persistent for the lifetime of the application. This is accomplished by storing the static values in the binary itself. This makes the values always available. This also means that an abundance of static values can cause binary bloat, which can impact performance. In addition, static values are rarely mutable to maintain thread safeness.
Static binding is created with the static keyword. By convention, variable names for static values are entirely uppercase. In addition, the type for static variables cannot be inferred. It must be explicitly indicated.
In this example, we use the golden ratio number, which is 1.618. Many ratios in the world surprisingly adhere to the golden ratio, especially in nature, including honeybees. In a hive, the ratio of female to male honeybees is typically the golden ratio.
Code Listing 20.4.
Define a static variable for the golden ratio.
 static GOLDEN_RATIO:f64=1.618;
 let male_bees=100.0;
 let female_bees:f64=male_bees*GOLDEN_RATIO;
 println!("{}", female_bees as i32);

The address of static variables when compared to stack variables should clearly identify different areas of memory. This example displays the memory addresses of both static and stack-based variables.
Code Listing 20.5.
Show memory addresses for stack and static regions.
 static A:i8=1;
 static B:i8=2;
 let c:i8=3;
 let d:i8=4;

 println!("[Global A: {:p} B: {:p}]\n[Stack c: {:p} d: {:p}]",
 &A, &B, &c, &d);

Based on their addresses, the result shows the global and stack variables grouped in different regions of memory.
 [Global A: 0x7ff6339ee3e8 B: 0x7ff6339ee3e9]
 [Stack c: 0x5e9c6ff5ae d: 0x5e9c6ff5af]

Heap
The heap is process memory available to an application at runtime. This is often the biggest pool of available memory for an application, and where large objects are placed. Applications allocate memory on the heap as needed. This is frequently referred to as dynamic memory allocation. When no longer required, the heap memory can be deallocated and released back to the available pool.
Heap memory is often taken from the virtual memory of an application. A process shares the physical memory of a device with other running processes. For that reason, an application does not own all the memory on a computer, for example. Instead, applications are assigned a virtual address space, virtual memory, that the operating system then maps to physical addresses of the hardware, such as a computer or device.
When there is a request for memory on the heap, the operating system must first locate enough contiguous memory to accommodate the request. The memory is then allocated at that location and a pointer to the address is returned. The process of locating and allocating memory can be time-consuming. In addition, the heap can become fragmented from a series of allocations of different sized data. This can prevent future allocations from being successful when there is enough available memory, but not in a single location. Some operating systems, provide a system API to defragment the heap.
Unlike the stack, the heap is shared memory and available to the threads within a process. For that reason, data on the heap may not be thread safe. Types, such as Arc and RwLock, exist to manage shared memory, such as the heap.
In Rust, Box is used to allocate memory on the heap. When the Box is dropped, the related memory is freed, such as at the end of the current block. However, you can leak memory in situations where the Boxed value is never dropped. Alternatively, boxed values can be dropped explicitly, and the related memory freed, with the drop statement.
When you box a value, the value is placed on the heap. A pointer to the value is returned and resides on the stack. Here is the header for the Box type.
pub struct Box<T, A = Global>(_, _)
 where A: Allocator, T: ?Sized;

The Box struct is generic over type T , where T is being allocated. Global is the default allocator used to allocate memory on the heap. You can replace it with a custom allocator if desired. For example, a custom allocator could take memory from preallocated memory pools. You create a Box with the new constructor. Here is the function definition.
 fn new(x: T) -> Box<T, Global>

In the example shown in Listing 20.6, integer values are created on the heap. Variables pa and pb bind to pointers to those values. And c and d are normal integer values placed on the stack.
Code Listing 20.6.
Box integer values to place on the heap.
 fn main() {
 let pa=Box::new(1);
 let pb=Box::new(2);

 let c=1;
 let d=2;

 println!("{:p} {:p} {:p} {:p}", &pa, &pb, &c, &d);

 let rawa=Box::into_raw(pa);
 let rawb=Box::into_raw(pb);

 println!("Address of values pa:{:?} pb:{:?}", rawa, rawb);

 unsafe {
 Box::from_raw(rawa);
 Box::from_raw(rawb);
 }
 }

The variables pa , pb , c , and d , are located on the stack, as evidenced with the first println macro. Notice that all of the variables, including the pointers, are in the same general location—the stack.
 pa:0xb5e58ff8e8 pb:0xb5e58ff8f0 c:0xb5e58ff8f8 d:0xb5e58ff8fc

The into_raw function returns a raw pointer to a boxed value on the heap. As such, this is an unsafe pointer. When the raw pointer is dropped, the related memory on the heap will not be removed. Instead, you accept the responsibility to free the heap memory as needed. Alternatively, you can place the raw pointer back into Box with the from_raw function. The second print macro displays the addresses where the values were placed on the heap. Comparing the stack addresses, from the first println , and the heap addresses, they are in different regions of memory. For this example, that would be the heap.
 Address of values pa:0x2685140a640 pb:0x2685140a660

You can also move values from the stack to the heap. In this example, since integers support copy semantics, a copy of the integer is placed on the heap. Therefore, dereferencing the pointer and incrementing the integer, changes the value on the heap, but not the original value.
Code Listing 20.7.
Move value from stack to heap.
 let a=1.234;
 let mut pa=Box::new(a);
 *pa+=1.0;
 println!("{} {}", a, *pa); // a:1.234 pa:2.234

Interior Mutability
Interior mutability is best described with a scenario.
You manage an individual grocery store, within a large chain. At checkout, the customer items in the cart are totaled and recorded on a receipt. The store id and transaction id on the receipt are constant. Here is the Transaction type, with the total field mutable, as required. The other two fields are immutable, consistent with the description.
Code Listing 20.8.
The Transaction type for a grocery store.
 struct Transaction {
 storeid: i8,
 txid: i32,
 mut total:f64,
 }

Unfortunately, the Transaction struct will not compile. Why? Individual fields within a struct cannot be mutable. Mutability is defined at the struct level. Because of this, the struct will not compile.
Here is a workable solution with the struct defined as mutable when declared as a variable. However, this solution is semantically incorrect and allows improper changes, as shown. We should not be able to change the storeid . But the application can and does modify the field.
Code Listing 20.9.
Updated Transaction and sample code.
 struct Transaction {
 storeid: i8,
 txid: i32,
 total:f64,
 }

 fn main() {
 let mut tx=Transaction{storeid: 100, txid: 213,
 total:0.0};

 tx.storeid=101 // oops
 }

Interior mutability exists to provide a solution to challenges as presented with the Transaction type. Types that support interior mutability are wrappers of an interior value. The wrapper can remain immutable while the interior is mutable. That’s correct! The wrapper presents an immutable façade while indirectly allowing changes to the interior value.
 Cell is a type that supports interior mutability. It is generic over type T , where T describes the interior value. Cell is found in the std::cell module.
 Cell can remain immutable while the interior value is modified using functions, such as the Cell::get and Cell::set functions. The set function modifies the interior value. And the get function returns a copy of the interior value. As a copy, there is no dependency between the copy and the interior value. Here are the definitions of the get and set functions.
 fn get(&self) -> T
 fn set(&self, val: T)

You can create a Cell with the Cell::new constructor.
 fn new(value: T) -> Cell<T>

Next, a Cell is created for an interior integer value, initialized to 1. Notice that the Cell is immutable but the interior value is modified with the set function. Prior to modifying, we get a copy of the interior value. Both the updated interior value and the copy of the original value are displayed to demonstrate their independence.
Code Listing 20.10.
Get and set a Cell’s interior value.
 use std::cell::Cell;

 fn main() {
 let a=Cell::new(1);
 let b=a.get();
 a.set(2);
 println!("a={} b={}", a.get(), b); // a=2 b=1
 }

 Cell resolves the mutability dilemma with Transaction . Let’s modify Transaction changing the total field to a Cell from a float. The float is now the interior value of the Cell . In main , tx is an immutable
 Transaction . However, we can still calculate the total transaction using the Cell functions, while protecting the integrity of the other fields.
Code Listing 20.11.
Update Transaction for Cell type.
 use std::cell::Cell;

 struct Transaction {
 storeid: i8,
 txid: i32,
 total:Cell<f64>,
 }

 fn main() {
 let item_prices=[11.21, 25.45, 8.24, 9.87];
 let tx=Transaction{storeid: 100, txid: 213,
 total:Cell::new(0.0)};

 for price in item_prices {
 let total=tx.total.get()+price;
 tx.total.set(total);
 }

 println!("Store {}\nReceipt {}\nTotal ${:.2}",
 tx.storeid, tx.txid, tx.total.get());
 }

In Rust, you are allowed immutable and mutable references to the same value. But there are limitations. There can be simultaneous immutable references. However, that is not allowed for mutable references. More than one mutable reference to a value is not allowed. Here is a brief example with mutable and immutable references to the same value.
Code Listing 20.12.
Invalid multiple mutable references.
 let mut a=1;

 let ref1=&a; // immutable reference
 let ref2=&a; // immutable reference

 let mut ref3=&mut a; // mutable reference
 let mut ref4=&mut a; // mutable reference
 *ref3=2;

 println!("{ref3}");

In the preceding example, there are two immutable and mutable references to the same value. The immutable references are allowed, but mutable references are not. The compiler generates the following error, which correctly identifies the problem.
7 | let mut ref3=&mut a;
 | ------ first mutable borrow occurs here
8 | let mut ref4=&mut a;
 | ^^^^^^ second mutable borrow occurs here
9 | *ref3=2;
 | ------- first borrow later used here

There could be circumstances where limiting the number of mutable references is overly restrictive. This is another scenario where interior mutability could be helpful, as shown here.
Code Listing 20.13.
Modifying an interior value from separate RefCells.
 let a=1;

 let cell=Cell::new(a);
 let ref1=&cell;
 let ref2=&cell;

 ref1.set(2);
 ref2.set(3);
 println!("{}", ref1.get()); // 3

At the start, Cell is initialized with an integer value. Two references are created to the immutable Cell . We then use functions to modify the interior value from different references, similar to multiple mutable references.
Other useful Cell functions include:

 replace . Replaces the interior value with a new value, returns the replaced interior (old) value.

 swap . Swaps the interior values of two Cell s.

 take . Taking the interior value means getting the interior value and replacing with the default value.
 RefCell
 RefCell is similar to Cell . It is also located in the std::cell module. However, RefCell provides references to the interior value, not copies. You obtain a reference to the interior value with either the RefCell::borrow function or the RefCell::borrow_mut function. The borrow and borrow_mut functions provide an immutable and mutable borrow respectively. Here are the function definitions.
 fn borrow(&self) -> Ref<'_, T>
 fn borrow_mut(&self) -> RefMut<'_, T>

Create a RefCell with the new constructor.
 fn new(value: T) -> RefCell<T>

This example uses RefCell with both borrow and borrow_mut . With dereferencing, we use borrow_mut to change the interior value. borrow is used to get the interior value, where mutability is not required.
Code Listing 20.14.
Example of borrow and borrow_mut.
 let refcell=RefCell::new(1);
 *refcell.borrow_mut()+=10;
 println!("refcell {}", refcell.borrow());

For RefCell , the rules of mutability fully apply. However, the rules are enforced at runtime instead of compile time. For this reason, be extra careful not to break these rules. For example, more than one mutable reference is not allowed, as previously discussed. This is one of the most important rules of mutability.
In this example, two mutable references are created: a and b . Consequently, the program will panic when one of the references is used.
Code Listing 20.15.
Multiple mutable borrows are not supported.
 let refcell=RefCell::new(1);
 let mut a=refcell.borrow_mut(); // mutable borrow
 let mut b=refcell.borrow_mut(); // mutable borrow
 *a+=10; // panic

With the borrow function, you can have multiple immutable borrows at the same time. However, you cannot call borrow if there is currently a mutable borrow. Requesting a borrow at that time will cause a panic, which is demonstrated here.
Code Listing 20.16.
The borrow panics because of the preceding borrow_mut.
 let refcell=RefCell::new(1);
 let mut a=refcell.borrow_mut(); // mutable borrow
 let mut b=refcell.borrow(); // immutable borrow - panic
 *a+=10;

The try_borrow is an alternative to the borrow function. The function returns a Result . Instead of panicking, when there is an outstanding mutable borrow, try_borrow returns an error for the Result. If successful, Ok(reference) is returned. Here is an example.
Code Listing 20.17.
The try_borrow avoids a panic when there is a current borrow_mut.
 let refcell=RefCell::new(1);
 let mut a=refcell.borrow_mut();
 let result=refcell.try_borrow();

 match result {
 Ok(b)=>println!("Interior value: {}", b),
 Err(_)=>println!("Do something else")
 }

Here is an updated version of the latest Transaction application. RefCell has been substituted for Cell. Adding to the interior value, the borrow_mut function is called to calculate the running total of the transaction. The borrow function is called to get the final total.
Code Listing 20.18.
Update Transaction for the RefCell type.
 use std::cell::RefCell;

 struct Transaction {
 storeid: i8,
 txid: i32,
 total:RefCell<f64>,
 }

 fn main() {
 let item_prices=[11.21, 25.45, 8.24, 9.87];
 let tx=Transaction{storeid: 100, txid: 213,
 total:RefCell::new(0.0)};

 for price in item_prices {
 *tx.total.borrow_mut()+=price;
 }

 println!("Store {}\nReceipt {}\nTotal ${:.2}",
 tx.storeid, tx.txid, tx.total.borrow());
 }

Other useful functions include:

 replace : Replaces the interior value with another value, returning the current value.

 Into_inner : Consumes the wrapper while returning the interior value.

 swap : Swaps the interior value of two RefCells.
 OnceCell
 OnceCell also supports interior mutability. However, you are limited to modifying the interior value one time. Additional attempts to modify the interior value will result in an error. Create a OnceCell type with the new constructor. The set function initializes the interior value. If already set, the Result is an Err . The get function returns the interior value. Here are the function definitions for the new , set , and get functions.
 fn new() -> OnceCell<T>
 fn set(&self, value: T) -> Result<(), T>
 fn get(&self) -> Option<&T>

In this example, we attempt to update OnceCell more than once. The first update, with the set function, changes the interior value, while other attempts simply return an Err .
Code Listing 20.19.
Use OnceCell to update the interior value once.
 let once=OnceCell::new();
 let mut result;
 for i in 1..=3 {
 result=once.set(i);
 match result {
 Ok(_)=>println!("Updated"),
 Err(_)=>println!("Not updated")
 }
 }
 println!("Final value: {:?}", once.get().unwrap());

Here is the result:
 Updated
 Not updated
 Not updated
 Final value: 1

Other helpful functions include:

 get_mut : Gets a mutable reference to the interior value.

 get_or_init : Gets the interior value and if not initialized, sets with a closure.

 take : Gets the interior value and resets the OnceCell with a default value.
In Conclusion
Mastering the memory profile of your application is important for developing successful applications. This includes understanding the different regions of memory and respective benefits. The three primary areas of memory are the stack, static, and heap memory.
 The stack is the memory assigned to each thread for local variables. It resides in contiguous memory. The let statement, parameters, and return values are your locals.
 Static memory is for global memory and exists for the lifetime of the application. The static keyword places a binding in static memory.
 At runtime, memory can be allocated from the heap. When no longer required, the memory is dropped. You can request values to be placed on the heap with the Box type.
Certain types, such as Strings and vectors, have a presence on both the stack and heap. With these types, the value is allocated on the heap while the pointer resides on the stack. When the pointer loses scope, the value on the heap is dropped and deallocated.
We introduced Cell , RefCell , and OnceCell for interior mutability. These types are wrappers for an interior value. The wrapper can be immutable while the interior value is changed through functions. Interior mutability is helpful when needing multiple mutable references and a struct with a blend of immutable and “mutable” fields.

Chapter 21. Macros
“Never limit yourself because of others’ limited imagination”
— Mae Jemison
The use of macros allows you to reimagine Rust within the context of your own aspirations. Rust’s support of macros is a powerful feature providing almost unlimited capabilities. You can provide new features, implement default behavior, or simply avoid redundancy.
The println! macro is probably the most well-known macro in the Rust universe. It provides the capability of a variadic function. This is because Rust does not support variadic functions. Therefore, the println! macro adds a new capability to the language. A close second in popularity is the derive attribute. The derive attribute for the Clone and Copy traits, for example, are actually macros implementing the default behavior of those traits.
Fundamentally, a macro is code that generates code, otherwise known as metaprogramming. Macros are evaluated (expanded) at compile-time. For that reason, errors in a macro, especially if because of malformed code, are often found at compile-time.
Macros are literally found everywhere in Rust. For many languages, macros are an add-on for developers, but not with Rust. Macros play an important role even in the core language. Some elements of the language such as, println!, format!, vec!, assert!, hash_map!, and many more, are macros.
Rust does not support robust reflection, but there are minor capabilities here and there, such as any::type_name. Macros provide limited reflection capabilities especially when combined with flow control. This increases the importance of macros within the language.
You may presume that macros are simply fancy functions. However, macros have distinct features from functions:
 Macros support variadic parameters
 Macros are expanded at compile time
 Macro variables, metavariables, are untyped
 Macros have a different error handling model
 Macro logistics can be different, such as where a macro can reside
There are two flavors of macros: declarative and procedural macros. The println! macro is the most common declarative macro, while the derive attribute is the most common example of a procedural macro.
Macros in Rust are quite versatile; but unfortunately, that versatility may come with additional complexity, particularly when compared with functions. In addition, macros can be less than transparent or readable. For these reasons, if a task can be accomplished adequately with a function, choose a function!
Because macros can be complex, this chapter showcases many examples that can be used as templates for your adventures with macros.
Tokens
When compiled, Rust programs are first converted into a sequence of tokens. This stage of compilation is called tokenization. You are probably familiar with some of the tokens, such as literals and keywords, that are created at this stage.
After tokenization, the next stage of compilation is the transformation of the token stream into an Abstract Syntax Tree (AST). An AST is a hierarchical structure, consisting of tokens trees and leaves, that describe the behavior of your application.
Macros are evaluated after the AST creation stage. For this reason, macros must contain valid syntax or the program will not compile. In addition, the ability to invoke a macro is provided as a syntax extension. At this stage, a macro can read the tokens in the AST to understand an application or code fragment and plan a response. The response could be replacing existing tokens or inserting additional tokens into the token stream.
In the token stream, there are different types of tokens:
 Keywords
 Identifiers
 Literals
 Lifetimes
 Punctuation
 Delimiters
Figure 21.1 shows a mapping of tokens, and their types, to specific elements in the example code.

Figure 21.1.
Example annotated with token types.
Declarative Macros
As mentioned, there are two types of macros: declarative and procedural. Since declarative macros are straightforward, we will start there.
A declarative macro is similar to a match expression but for code, not values. For a declarative macro, a pattern is called a macro matcher. You will match on a type of code fragment, such as an expression. The equivalent of a match arm used in a match expression is the macro transcriber used in a declarative macro. If matched, the macro transcriber is the replacement code inserted into the token stream. The declarative macro is evaluated top-down. At the first matching pattern, the transcription is expanded into the token stream.
Declare a declarative macro with the macro_rules! macro, an example of dogfooding. Here is the syntax for declaring a declarative macro.
macro_rules!identifier {
 (macro_matcher1)=>{ macro_transcriber } ;
 (macro_matcher2)=>{ macro_transcriber } ;
 (macro_matchern)=>{ macro_transcriber }
}

The identifier names the macro. You can then call the macro with the macro operator (!).
We created the hello macro next. The macro displays the celebrated “Hello, world!” greeting. The macro_rules macro is used to declare the macro. This macro has an empty macro matcher, which is all-inclusive. The macro is replaced with the println! invocation at compile time. In main, the hello macro is called. The resulting println! displays the greeting.
Code Listing 21.1.
Hello as a declarative macro.
 macro_rules!hello{
 ()=>{ // empty macro matchr
 println!("Hello, world!")
 };
 }

 fn main() {
 hello!() // replaced with println!...
 }

In nonmacro code, you have types for values, such as i8, f64, or even String. Macros also have a set of types. However, macros manipulate code instead of values. These types relate to code, instead of values, for that reason. The code types for a macro are called fragment specifiers. Here is the list of fragment specifiers.

 block : a block

 expr : expression

 ident : name of item or keyword

 item : code item

 lifetime : lifetime annotation

 literal : literal or label identifier

 meta : content of an attribute

 pat : a pattern

 pat_param : pat that allows the or (|) token

 path : TypePath

 stmt : a statement

 tt : TokenTree

 ty : a type

 vis : the visibility
You can declare variables that bind to code. This is similar to declaring a variable that binds to a value, except for code. Variables that bind to code fragments are called metavariables and preceded with a dollar ($) as a prefix.
Next is a more flexible version of the hello macro. You can change the greeting with this version. Consequently, the macro accepts a parameter for changing the greeting. It uses both a fragment specifier (expr) and metavariable (name).
Code Listing 21.2.
Hello macro with variable input.
 macro_rules!hello{
 ($name:expr)=>{
 println!("Hello, {}!", $name);
 };
 }

 fn main() {
 hello!("Douglas");
 }

Within the macro, expr is the fragment specifier, for expressions, and the only acceptable pattern. The name metavariable is bound to the input expression. If the pattern matches, the greeting is displayed using the metavariable.
In main, when the hello macro is invoked, “Douglas” is provided as the expression. For that reason, the displayed greeting is for that name.
Let’s explore another fragment specifier. In this example, the talk macro accepts only literals. Therefore, the macro matcher is the literal fragment specifier. The transcriber is simple and inserts code that displays the literal into the token stream. In main, the macro is called successfully for separate literal values. However, the macro does not compile when called with the input expression. Expressions are not literals.
Code Listing 21.3.
Macro using the literal fragment specifier.
 #[derive(Debug)]
 struct Test;

 macro_rules!talk{
 ($lit:literal)=>{
 println!("Literal: {:?}!", $lit);
 };
 }

 fn main() {
 let input=42;

 talk!("Douglas");
 talk!("Adams");
 talk!(input); // Does not work
 }

Repetition
Repetition is a construct that can repeat a transformation on multiple code fragments. It can be done within either a macro matcher or transcriber. This capability is important because it provides support for variadic macros. This is doubly important because Rust does not support variadic functions.
This is the syntax for a repetition.
 ($(code fragment), * |+|?)

Figure 21.2 shows the annotated version of the syntax.

Figure 21.2.
Example annotated with token types.
Here are the possible repetition operators:
 Asterisk (*): zero or more
 Plus (+): one or more
 Question (?): zero or one
Let’s create a macro that uses a repetition. The vec_evens! macro will be similar to the vec! macro. Instead, the evens_macro will only append to a vector even-number integer values. Odd numbered integers will be ignored. The macro will be variadic accepting a variable number of integers. Here is the macro being used to create a vector of even-numbered values.
Code Listing 21.4.
Invoking the vec_evens variadic macro.
 use evens_macro;

 fn main() {
 let answer=evens_macro::vec_evens![2,4,5,9,12];
 println!("{:?}", answer); // 2, 4, 12
 }

Following is the vec_evens! macro. The macro matcher has a repetition to match on multiple expr patterns for expressions. Within the transcriber, a new vector is created. Afterwards there is another repetition. This repetition generates code to add each expression to the vector. It also checks whether the expression is even before adding to the vector.
In this circumstance, the macro is placed in a separate crate. The macro_export! attribute makes the macro visible outside the crate.
Code Listing 21.5.
Implementing the vec_evens macro.
 #[macro_export]
 macro_rules! vec_evens {
 ($($item:expr),*) => { // repetition
 {
 let mut result = Vec::new();
 $(// repetition
 if ($item % 2) == 0 {
 result.push($item);
 }
)*
 result
 }
 };
 }

You can even refer to declarative macro from within a macro. This example is a more elaborate version of the macro that displays the hello, world greeting. The hello_world macro, shown in the following, relies on the hello macro and world macro to display the greeting. All three macros are declarative and reside within the same crate.
Code Listing 21.6.
A macro that invokes macros from the same crate.
 #[macro_export]
 macro_rules! hello_world {

 () => {
 println!("{} {}", hello!(), name!());
 }

 #[macro_export]
 macro_rules! hello {
 () => {"Hello"}
 }

 #[macro_export]
 macro_rules! name {
 () => {"Bob"}
 }

However, this macro_world macro will not compile. The reason is that declarative macros are expanded at their invocation site. This does not include nested macros that are not presently in scope. For that reason, the hello_world macro contains references to invalid macros. When used as the path, the $crate metavariable forces the expansion of nested macros within the same crate. This version of the hello_world macro compiles successfully when using the $crate metavariable.
Code Listing 21.7.
Version of the hello_word macro that uses the crate metavariable.
 #[macro_export]
 macro_rules! hello_world {
 () => {
 println!("{} {}", $crate::hello!(),
 $crate::name!());
 }
 }

Here is the application that calls the hello_world macro.
Code Listing 21.8.
Application that uses the hello_world declarative macro.
 use say::hello_world;

 fn main() {
 hello_world!();
 }

Multiple Macro Matchers
The previous declarative macros match one pattern of code. This means that the macros contain a single macro matcher, such as expr or literal. Of course, you can have multiple macro matchers as shown in the next example. With two macro matchers, the product macro accepts code fragments with either two or three expressions. The transcriber for each inserts the proper code in the token stream for that pattern.
Code Listing 21.9.
A declarative macro that has multiple macro matchers.
 macro_rules! product{
 ($a:expr,$b:expr)=>{
 {
 $a*$b
 }
 };

 ($a:expr, $b:expr, $c:expr)=>{
 {
 $a*$b*$c
 }
 };
 }

 fn main() {
 let result=product!(1, 2);
 let result2=product!(3, 4, 5);

 println!("{} {}", result, result2);
 }

We have completed our deep dive into declarative macro. It’s time to discuss procedural macros which have additional capabilities. Fortunately, many of the concepts, such as tokens, remain the same. Therefore, you already have a start on learning procedural macros.
Procedural Macros
Procedural macros receive a stream of tokens as input, which describes some portion of the application. Normally, the macro evaluates the input and returns a different token stream as a response. The response is then inserted into the token stream of the application at the site of the macro. Procedural macros do not have pattern matching. The macro instead interprets an input stream and returns an output stream.
There are three flavors of procedural macros:
 Derive macros
 Attribute macros
 Function-like macros
 TokenStream s are the essential ingredient of all procedural macros. A TokenStream is an abstraction of a sequence of tokens, or a code fragment. The input and output of a procedural macro is a TokenStream . The TokenStream type is found in the proc_macro crate.
You need a convenient way to convert source code to a TokenStream . This is necessary to build a response to the input Token. The TokenStream::FromStr function is the solution. It converts a source code fragment, as a str, to a TokenStream . For this reason, the str::parse function can also convert a str to a TokenStream . For malformed source code, however, the conversion to a TokenStream will result in an error. Here is the definition of the from_str function.
 fn from_str(src: &str) -> Result<TokenStream, LexError>

Unlike declarative macros, procedural macros must reside in a separate crate marked as a procedural macro crate. For this reason, add the proc-macro key to the lib section of the cargo.toml file.
 [lib]
 proc-macro=true

The syn and quote crates are optional helper crates for procedural macros.
 The syn crate has functions to convert between TokenStream and DeriveInput types. DeriveInput represents an AST (abstract syntax tree). It is a hierarchal token structure that is more convenient to iterate than the TokenStream . The parse_macro_input! macro converts a TokenStream directly to a DeriveInput . As another option, the parse_derive_input function converts a TokenStream , as a string, into a DeriveInput . If successful, the function returns DeriveInput within a Result . This is the definition of the parse_derive_function .
pub fn parse_derive_input(input: &str) -> Result<DeriveInput, String>

 The quote crate contains the quote macro! that can convert source code, as a string, into a sequence of tokens. You can call the into function to convert the tokens to a TokenStream . Alternatively, the TokenStream::from function converts tokens to a TokenStream . The quote! macro is an alternative to TokenStream::FromStr .
Derive Macros
Within the context of a derive attribute, derive macros are the most identifiable of the procedural macros. Derive macros frequently provide an implementation of a trait, such as the Debug or Clone trait. This is the syntax for applying a derive macro.
 [derive(macro_name)]
 type

The derive attribute is assignable to these types:
 structs
 unions
 enums
When defining a derive macro, it must be adorned with the proc_macro_derive attribute. The only parameter is the name of the macro.
In the next example, Hello is a derive macro and displays the “Hello, world!” greeting. The macro function, hello , is adorned with the proc_macro_derive attribute. Within the function, the input TokenStream is ignored. The code fragment for the hello_world function is written in a string. It is then parsed and returned from the macro as a TokenStream .
Code Listing 21.10.
Hello macro as a procedural and derive macro.
 use proc_macro::TokenStream;

 #[proc_macro_derive(Hello)]
 pub fn hello(input: TokenStream) -> TokenStream {
 r##"fn hello_world(){ println!("Hello, world!")
}"##.parse().unwrap()
 }

A raw string is employed for the hello_world function to enable the nested string “Hello, world!”.
In addition, the proc-macro entry is added to the cargo.toml file for the macro crate.
Here, the Hello macro is used. We apply the derive macro to the Bob struct. This creates the free hello_world function that is called in main.
Code Listing 21.11.
Using the Hello macro, which is a derive macro.
 use hello::Hello;

 #[derive(Hello)]
 struct Bob;

 fn main() {
 hello_world();
 }

Let’s create a new version of the Hello derive macro. In the previous version, the macro did not integrate the target type, limiting its benefit. The next example is a more typical implementation that integrates the type. The macro in the next example implements a trait. It is then applied to a type, using the derive attribute. The greeting will now be “Hello type”. Here is the macro.
Code Listing 21.12.
Version of the Hello macro that accepts variable input.
 #[proc_macro_derive(Hello)]
 pub fn hello(input: TokenStream) -> TokenStream {
 let token_string = input.to_string();

 let derive_input =
syn::parse_derive_input(&token_string).unwrap();
 let name=&derive_input.ident;
 let code=format!(r##"impl Hello for {name} {{
 fn hello_world() {{
 println!("Hello {name}");
 }}
 }}"##);

 code.parse().unwrap()
 }

In this version of the macro, the parse_derive_input function transforms the input TokenString to DeriveInput . The DeriveInput::indent field is accessed to obtain the type name, which is then bound to the name variable. The name is then integrated into the code fragment that implements the Hello trait − see the println! macro. At the end, the parse function converts the code fragment to a TokenStream , which is returned from the macro.
In the main application, we define the Hello trait with a hello_world function. The macro is applied to the Bob struct to implement the Hello trait for that type. The hello_function is then called on Bob to display the greeting.
Code Listing 21.13.
Using the revised Hello macro.
 use hello_world::Hello;

 trait Hello {
 fn hello_world();
 }

 #[derive(Hello)]
 struct Bob;

 fn main() {
 Bob::hello_world(); // Hello Bob
 }

This is the final version of the Hello macro. The result is the same as the previous version, which integrated the type identifier in the greeting. In this version, we convert the input TokenStream to a DeriveInput using the parse_macro_input! macro. In addition, this implementation replaces the string with the quote! macro. The quote ! macro is easier to use when compared to a string, especially for extended or complex macros. You may want to access a variable from the macro function within quoted source code. This is possible by preceding the variable with a pound (#).
Code Listing 21.14.
Final version of the Hello macro.
 use proc_macro::TokenStream;
 use quote::quote;
 use syn;

 #[proc_macro_derive(Hello)]
 pub fn hello(input: TokenStream) -> TokenStream {
 let syn::DeriveInput { ident, .. } =
syn::parse_macro_input!{input};

 let tokens = quote! {
 impl Hello for #ident {
 fn hello() {
 println!("Hello from {}", stringify!(#ident));
 }
 }
 };
 TokenStream::from(tokens)
 }

A more practical example would be helpful. At present, Rust does not support robust reflection. However, you can achieve similar functionality, in some circumstances, with macros. In this example, the Type trait defines an interface for runtime type information (RTTI). The get function of the trait returns the type of a value. The Type macro implements the trait. In the get function, the any::type_name function is called to obtain the current type.
Code Listing 21.15.
Type macro returns the type of a related value.
 use proc_macro::TokenStream;
 use quote::quote;
 use syn;

 #[proc_macro_derive(Type)]
 pub fn get_type(input: TokenStream) -> TokenStream {
 let syn::DeriveInput { ident, .. } =
syn::parse_macro_input!{input};
 let tokens = quote! {
 impl Type for #ident {
 fn get(&self)->String {
 std::any::type_name::<#ident>().to_string()
 }
 }
 };
 TokenStream::from(tokens)
 }

In this application, we create the Type trait.
Code Listing 21.16.
Using the Type macro to display the type of a related value.
 use get_type_macro::Type;

 trait Type {
 fn get(&self)->String;
 }

 #[derive(Type)]
 struct MyStruct;

 fn main() {
 let result=MyStruct;
 println!("{}", result.get()); //MyStruct
 }

Attribute Macros
Attribute macros are invoked as custom attributes. This is different from a derive macro which is presented in a derive attribute. There several differences between an attribute macro and a derive macro.
 Attribute macros are adorned with the proc_macro_attribute
 Attribute macros define new attributes
 Attribute macros can also be applied to structs, enums, unions, and also functions
 Attribute macros replace the target
 Parameters include two TokenStreams
Here is the definition of an attribute macro.
 #[proc_macro_attribute]
 pub fn macro_name(parameter1: TokenStream,
 parameter1: TokenStream) -> TokenStream

Attribute macros have two TokenStreams. The first describes the parameters of the macro. When there are no parameters, the TokenStream is empty. The second TokenStream describes the target of the attribute macro, such as a struct or function. And of course, the final TokenStream is the result of the attribute macro. Unlike a derive macro, the result completely replaces the target type.
Here is an example of an attribute macro. The info macro demonstrates the role of each TokenStream provided as a parameter. Both are displayed within the function created in the macro.
Code Listing 21.17.
Prototype for an attribute macro.
 use proc_macro::TokenStream;
 use quote::quote;

 #[proc_macro_attribute]
 pub fn info(parameters: TokenStream, target: TokenStream)
 -> TokenStream {
 let args=parameters.to_string();
 let current=target.to_string();
 let syn::DeriveInput { ident, .. } =
syn::parse_macro_input!{target};
 quote!{
 struct #ident{}

 impl #ident {
 fn describe(){
 println!("Token 1: {}", #args);
 println!("Token 2: {}", #current);
 }
 }
 }.into()
 }

In the info macro, both TokenStreams are converted to Strings. With assistance of the parse_macro_input! macro, we get the identifier of the type. This is the type the custom attribute is applied to. Next, the quoted source code minimally recreates the type and implements the describe function. Inside the function, the contents of both TokenStream parameters are displayed.
Here is an application where the info macro is used. As the info attribute, the macro is associated with the sample struct. In main, the describe function is called to display both TokenStreams.
Code Listing 21.18.
Using the info attribute macro.
 use example_macro::info;

 #[info(a,b)]
 struct sample{}

 fn main(){
 sample::describe();
 }

The result is:
 Token 1: a, b
 Token 2: struct sample {}

Function-like macro
The final procedural macro to discuss is the function-like macro. Function-like macros are declared with the #[proc_macro] attribute and invoked directly using the macro operator (!). It can be called wherever a function is appropriate. Here is the definition of a function-like macro.
 #[proc_macro]
 pub fn macro_name(parameter1: TokenStream,
 parameter1: TokenStream) -> TokenStream

Here is an example of a function-like macro. The create_hello macro creates the hello, world function. This is similar to the code explained earlier in the chapter with the derive macro.
Code Listing 21.19.
The create_hello macro is a function-like macro.
 use proc_macro::TokenStream;

 #[proc_macro]
 pub fn create_hello(_item: TokenStream) -> TokenStream {
 r##"fn hello_world(){ println!("Hello,
world!");}"##.parse().unwrap()
 }

Next, the create_hello macro is used within an application. It establishes the hello_world function that is subsequently called in main.
Code Listing 21.20.
Using the create_hello function-like macro.
 use hello_macro::create_hello;

 create_hello!();

 fn main() {
 hello_world();
 }

In Conclusion
Macros such as the println! and vec! macros, provide extra capabilities to the Rust language. You can extend those capabilities by creating your own macros.
A macro is a code generator. It is metaprogramming where the macro is code creating other code. At compile-time, the result of the macro replaces the macro itself.
More specifically, macros accept a sequence of tokens that describe your application. There are different types of tokens, for keywords, literals, statements, and other language artifacts. The TokenStream type is an abstraction of a stream of these tokens.
There are two types of macros: declarative and procedural. Declarative macros are similar to a match expression, but for code, not values. The patterns of code are defined with fragment specifiers, such as expr and indent. Within the macro, you can create metavariables with the dollar ($) prefix. These metavariables can be used in the output code. In addition, within a declarative macro, you can create a variadic macro using a repetition. You call a procedural macro with the macro operator (!).
For procedural macros, the input and output are TokenStreams. The output TokenStream is the result of the macro. You can convert an input TokenStream into a DeriveInput , which is an Abstract Syntax Tree (AST). The DeriveInput is easier to inspect with fields such as ident. There are three types of procedural macros. Each of these is associated with a specific attribute.

Each of the procedural macros is applied differently. The derive macro is invoked as a derive macro. The attribute macro is invoked as a custom attribute. And finally, the function-like macro is invoked with the macro operator (!).
The limit to the capabilities of a macro is your imagination. So, start exploring!

Chapter 22. Interoperability
“No man is an island, entire of itself, every man is a piece of the continent” is a renowned adage from John Donne, an English poet. It is an appropriate phrase that applies to most programming languages, especially system programming languages, including Rust.
At times, Rust needs to communicate with applications and libraries written in other programming languages. This includes the ability to call operating system APIs. Even though crates.io and the Rust ecosystem offer a lot of capabilities, there are occasions when more is needed. This means you may need to leave the comfort of Rust, on occasion, to interface with another programming language or the operating environment itself. Interoperability provides the ability to communicate with foreign languages.
Rust supports the C ABI (Application Binary Interface). Despite some limitations, the C ABI is the preferred public interface of many programming languages and operating systems. In addition, C has been around, in some variation, for more than 50 years. For this reason, the catalog of applications written in C / C++ is extensive. It encompasses virtually every computing need, and more. Interoperability provides Rust developers access to this exhaustive repository of capabilities.
Exchanging data safely between different languages is a major challenge, especially with strings. For example, C strings are null-terminated, while Rust strings are not null terminated. Pascal strings are different also with length-prefixed strings. These different type systems can prevent conversations between those languages. Another potential problem is how pointers are managed, which can also vary between languages. The solution to these problems is the Foreign Function Interface (FFI) which provides the ability to marshal data between Rust and other (foreign) languages, in order to handle these differences. Marshaling is the capability of moving data back and forth between different binary standards.
In this chapter, we focus on Rust to C / C++ interoperability. It is the most common scenario for interoperability.
Foreign Function Interface
Foreign function interface (FFI) is the glue that makes interoperability function properly. It creates a translation layer between Rust and C to transmit data. Appropriately, the necessary ingredients of FFI are naturally found in the std::FFI module. There you will find the scalars, enums, and structs, necessary to marshal data from Rust to C in most circumstances.
Strings are the hardest type to correctly marshal. This is underscored with the differences between Rust and C / C++ strings.
 C strings are null terminated. Rust strings are not null terminated.
 C strings cannot contain nulls, while Rust strings are allowed nulls.
 C strings are directly accessible with raw pointers. Rust strings are accessed via a fat pointer, that has additional metadata.
 Rust strings are Unicode and UTF-8 encoding. For C, the string type can vary.
Even the Rust char is different from the C char. The Rust char is a Unicode scalar value while the char for C supports Unicode code points. A Unicode scalar value spans the core Unicode character sequence. Conversely, Unicode code points can be placed anywhere within the seven classes of Unicode values. For this reason, you can use characters in C that are not available in Rust.
In the FFI, the CString type is available for marshaling strings between Rust and C. The CStr type is for transforming a C string to a Rust &str. There are also the OsString and OsStr types for reading operating system strings, such as command-line arguments and environment variables.
The std::ffi module also offers types (Table 22.1) for marshaling primitive values.
Table 22.1
List of types for marshaling primitive types

In addition, some Rust types are fully compatible “as is”. This includes floats, integers, and basic enums. Conversely, dynamically sized types are not supported, such as trait objects and slices.
For a limited number of items, creating the proper interfaces for marshaling is manageable. However, this can quickly become unsustainable when there are hundreds of items to marshal. Marshaling portions of the C standard library is a good example. You would not want to marshal the entire stdlib.h header file for example. Fortunately, the libc crate provides binding to marshal entire portions of the C standard library.
Basic Example
As our first example, we begin with a hello, world example. Surprise, surprise! We plan to call a C function from Rust.
Here is the C source file. It offers a single function that displays the greeting. We want to export this function and call it from Rust.
Code Listing 22.1.
C program with hello function.
 // Hello.c
 #include <stdio.h>

 void hello () {
 printf("Hello, world!");
 }

We compile the C source and create a static library using the clang compiler and the LLVM tool. The library will be used to bind the hello function implementation to our Rust program
 clang hello.c -c
 llvm-lib hello.o

Important
Various C compiler and helper tools exist. Any traditional C compiler should work with the examples in this chapter, not just clang. I would recommend using whatever compiler you are most comfortable with. There’s no reason to learn a new tool.
In the Rust program, place function definitions for functions exported from the C library within an extern “C “ block. It will function as a Rust-style header. You can now call the function. However, you must call the function within an unsafe block. Rust cannot vouch for the safeness of a foreign function.
The hello function has neither parameters nor a return value. Therefore, you can simply call the function as shown in the next example.
Code Listing 22.2.
Rust program that calls C function.
 // greeter.rs
 extern "C" {
 fn hello();
 }

 fn main() {
 unsafe {
 hello();
 }
 }

It’s time to build the application. With the rustc compiler, you can build an executable crate from a Rust source file while linking to an external library. For the current example, this is the rustc command that creates the executable crate.
 rustc "greeter.rs" -l "hello.o" -L .

The command compiles greeter.rs. The -l option links to the hello.o library. In addition, the -L option identifies where the library can be found. The “ . ” indicates the library is in the current directory. The command will create an executable crate, greeter.exe, for this example.
When you run greeter, the following greeting is displayed.
 Hello, world!

You can automate the build process, including linking the library. This can be done within the build.rs script, which is similar to a makefile in other languages. This is convenient when the build includes multiple steps, managing a build pipeline, or just to automate the process. The build.rs file is automatically detected and executed by cargo during the build process. Fortunately, unlike a makefile, which can appear to be written in an alien language, the build.rs file looks like normal Rust code with build instructions as function calls.
Here is the build.rs file for the previous hello.
Code Listing 22.3.
Build.rs file that builds Rust binary linked to C library.
 extern crate cc;

 fn main() {
 cc::Build::new().file("src/hello.c").compile("hello");
 }

Like most Rust applications, main is the entry point for the build application, and where the script starts executing. The first step is to create a Build type using the Build::new constructor. The Build::file function identifies the input file, a C source file, to be compiled. The file::compile function performs the actual compilation and links to the library (.lib) file. These functions are found in the cc crate. You must add cc, which is found in crates.io, to the build-dependencies section in the cargo.toml file
 [build-dependencies]
 cc = "1.0"1

The hierarchical file structure for the greeter package is shown in Figure 22.1, including the build.rs file, which is highlighted.

Figure 22.1. Caption
With the build process scripted within build.rs, you can call cargo build to build the executable crate. Alternatively, you can call cargo run to build and run.
Libc Crate
As mentioned, the libc crate contains FFI bindings to marshal data with portions of the C Standard Library. This includes FFI bindings for stdlib.h. In an extern block, list items from the C Standard Library that you plan to use within your application. Nothing else is required; that is the benefit of the libc crate. You can now use the selected items wherever needed.
The following application uses the atof and atoi functions, both found in stdlb, to convert numbers stored as strings into normal numbers. The atof function converts a string to a float, while atoi converts a string to an integer.
Code Listing 22.4.
Rust application that uses libc to access C Standard Library.
 use std::ffi::{c_longlong, CString, c_double};

 extern "C" {
 fn atof(p:*const i8)->c_double;
 fn atoi(p:*const i8)->c_longlong;
 }

 fn main() {

 // Convert string float to c_string
 let f_string = "123.456".to_string();
 let mut f_cstring: CString =
 CString::new(f_string.as_str()).unwrap();
 let mut f_result:c_double;

 // Convert string integer to c_string
 let i_string = "123".to_string();
 let mut i_cstring: CString =
 CString::new(i_string.as_str()).unwrap();
 let mut i_result:c_longlong;

 unsafe {
 f_result=atof(f_cstring.as_ptr()); // to float
 i_result=atoi(i_cstring.as_ptr()); // to integer
 }

 println!("{}", f_result);
 println!("{}", i_result);
 }

Both the atol and atof functions accept strings as parameters and return either a 64-bit integer or float, respectively. We create test values as Strings: “123.45” and “123”. The CString::new constructor creates Cstrings from the String test values. We need Cstrings to marshal the function arguments. The as_ptr functon converts the CStrings to pointers, which is equivalent to char* . The results of calling the functions are saved to the proper types, c_double and c_longlong.
You can now compile this application as normal. Because of the libc crate, there are no special considerations for building the application.
Structs
Until now, we have focused on interoperability with basic types, such as integers, floats, and strings. However, you often need to marshal compound types also, such as structs. System APIs, for example, frequently require structs as a parameter or return value.
For marshaling, compound types require extra consideration. The memory alignment may be different. In addition, the memory layout of C structs can be affected by user-defined packing and memory boundaries. Furthermore, Rust makes no assurances about the memory layouts of its structs. These differences could make marshaling a nightmare. The solution is adopting the C model for structs that will be marshaled. Apply the #[repr(C)] attribute to the Rust struct. This will remove the difference in the memory layout between C and Rust structs.
Here is an example.
Code Listing 22.5.
Rust struct with C memory layout.
 #[repr(C)]
 pub struct astruct {
 }

Structs are marshaled at their most basic level. This means decomposing structs metaphorically into their constituent parts first. Only then can you determine the correct marshaling. This is a typical C struct where the constituent parts are the integers fields, where each can be marshaled.
Code Listing 22.6.
C style struct
 struct astruct {
 int field1;
 int field2;
 int field3;
 };

In Rust, the struct could be marshaled as shown next. The fields are assigned the appropriate FFI types. In this example, the constituents fully describe the composition of the struct, which is required.
Code Listing 22.7.
Rust struct with FFI.
 struct astruct {
 field1:c_int,
 field2:c_int,
 field3:c_int,
 }

In the following example, the C source code has a struct. Person represents a person and has fields for their first name, last name, and age. In addition, there is a global instance of Person , named gPerson . There are also get_person and set_person functions to manage gPerson . These are typical getter and setter functions. The get_person function returns a pointer to gPerson , while set_person replaces gPerson with its input parameter.
Code Listing 22.8.
C source file that manages Person type.
 // person.c

 #include <stdio.h>

 struct Person {
 char *first;
 char *last;
 int age;
 };

 struct Person gPerson;

 struct Person* get_person(){
 if(gPerson.last == 0) {
 gPerson=(struct Person) {"Bob", "Wilson", 23};
 }
 return &gPerson;
 };

 void set_person(struct Person new_person) {
 gPerson=new_person;
 }

We want to call the get_person and set_person functions in Rust. This will require marshaling the Person struct. The char* fields are marshalled as 64 bit const pointers, which is equivalent. For the age field, C int is marshaled as c_int .
Code Listing 22.9.
Person type in Rust.
 #[repr(C)]
 pub struct Person{
 pub first:*const i8, // C: char*
 pub last:*const i8, // C: char*
 pub age: c_int, // C: int
 }

Here is the remainder of the Rust application.
Code Listing 22.10.
Rust application that uses Person type.
extern "C" {
 fn get_person()->*mut Person;
 fn set_person(new_person:Person);
}

fn main() {
 let mut person;
 let new_person;

 unsafe {
 person=get_person();
 println!("{:?}", (*person).age);
 println!("{:?}", CStr::from_ptr((*person).first));
 println!("{:?}", CStr::from_ptr((*person).last));
 }

 let first=CString::new("Sally".to_string()).unwrap();
 let pfirst=first.as_ptr();
 let last=CString::new("Johnson".to_string()).unwrap();
 let plast=last.as_ptr();

 new_person=Person{
 first:pfirst,
 last:plast,
 age:12
 };

 unsafe {
 set_person(new_person);
 person=get_person();
 println!("{:?}", (*person).age);
 println!("{:?}", CStr::from_ptr((*person).first));
 println!("{:?}", CStr::from_ptr((*person).last));
 }
 }

Here is the description of the various sections in the application.
 The extern “C” block imports the get_person and set_person functions from the C library.
 In the first unsafe block, we get and display the default value for gPerson . Call get_person to return the default value, as *Person . Dereference the pointer to access the Person fields. Convert the first and last fields to string literals with the CStr::from_ptr function. You can then display all three fields within a println macro.
 Next, we update the Person in the library with the set_person function. Create the individual values for each Person field; then update a new Person with the values.
 In a second unsafe block, call set_person to update gPerson .
 Finally, call get_person to obtain the recently updated value. Display the Person as shown before.
Bindgen
You can spend considerable time creating the proper FFI binding to marshal data between Rust and C. The process is even more burdensome when converting a header file that may contain dozens, if not hundreds, of definitions that require marshaling. Furthermore, if done incorrectly, you could spend even more time debugging compilation errors and panics. Bindgen is a tool that can automate this process.
Bindgen creates the correct FFI binding for C definitions. This saves you from the drudgery of creating the mappings yourself. As importantly, bindgen can read a C header file and generate a Rust source file containing the proper bindings for everything. This is particularly useful for portions of the C standard library not included in libc.
Bindgen can be downloaded at crates.io. Alternatively, you can install bindgen directly using cargo. Here is the command.
 cargo add bindgen

In the next example, the application displays the current date and time as a string. We will use time.h , which is part of the C Standard Library. The following bindgen command reads the time.h header file, generates the proper FFI binding, and saves the result to time.rs.
 bindgen time.h > time.rs

There are plenty of mappings in the time.rs file. The tm struct, as shown here, is an example.
Code Listing 22.11.
The tm type from time.h header file.
 #[repr(C)]
 #[derive(Debug, Copy, Clone)]
 pub struct tm {
 pub tm_sec: ::std::os::raw::c_int,
 pub tm_min: ::std::os::raw::c_int,
 pub tm_hour: ::std::os::raw::c_int,
 pub tm_mday: ::std::os::raw::c_int,
 pub tm_mon: ::std::os::raw::c_int,
 pub tm_year: ::std::os::raw::c_int,
 pub tm_wday: ::std::os::raw::c_int,
 pub tm_yday: ::std::os::raw::c_int,
 pub tm_isdst: ::std::os::raw::c_int,
 }

The following application relies upon the imported functions and types from time.h.
 The time64 function returns the number of seconds since January 1, 1970, at midnight (UTC / GMT).
 The _localtime64 function converts a tm to a local time.
 The asctime function converts the time to a string.
 Both the _localtime64 and asctime functions use the tm type, shown previously.
Code Listing 22.12.
Rust code that uses time.h from C Standard Library.
 mod time;
 use time::*;
 use std::ffi::CStr;

 fn main() {
 let mut rawtime:i64=0;
 let mut pTime:* mut __time64_t=&mut rawtime;

 unsafe {
 let tm=_time64(pTime);
 let ptm=&tm as *const __time64_t;
 let tm2=_localtime64(ptm);
 let result=asctime(tm2);
 let c_str=CStr::from_ptr(result);
 println!("{:#?}", c_str.to_str().unwrap());
 }
 }

C Calling Rust Functions
So far, we have focused on Rust applications calling foreign functions, most notably via the C ABI. You may want to reverse direction and call a Rust function from a foreign application. Much of the semantics for marshaling remains the same, including using the FFI.
For interoperability, precede Rust functions to be exported with the extern keyword.
Rust mangles the name of its functions for a unique identity. The mangled name combines the crate name, hash, the function name itself, and other factors. This means that other languages will not recognize the internal name for the function. For this reason, name mangling should be disabled on exported functions by applying the no_mangle attribute.
Here is an example of a Rust function, display_rust , that can be called from another language. Notice the no_mangle attribute and extern keyword that adorn the function.
Code Listing 22.13.
Exported Rust function.
 #[no_mangle]
 pub extern fn display_rust() {
 println!("Greetings from Rust");
 }

To interoperate with other languages, you must build a static or dynamic library for the Rust application. The library will provide other languages access to the implementation of the exported functions. Add a lib section to the cargo.toml file to create a library for the crate. In the crate-type field, staticlib will create a static library. For a dynamic library, set the crate-type field to cydlib . The name of library will default to the package name. If desired, you can set the name explicitly using the name field.
Here is a snippet of a cargo.toml file that requests both a static and dynamic library for the Rust application.
 [lib]
 name = "greeting"
 crate-type = ["staticlib", "cdylib"]

To call a Rust function from C, you should create a header with the function definition in C. If there are function parameters and return values, this will also determine the data marshaling that needs to occur. Here is the header file that includes the display_rust function, from the previous example.
 // sample.h
 void display_rust();

With the header file, you can now call the exported function as a normal function.
Code Listing 22.14.
C program calling Rust function.
 // sample.c
 #include "hello.h"

 int main (void) {
 display_rust();
 }

When building the C application, you must include the C source file and link to the library created for the Rust application. In this example clang command-line, that would be greeting.dll.lib.
 clang sample.c greeting.dll.lib -o sample.exe

Cbindgen
We recently introduced the bindgen tool. It created the FFI binding to marshal data between Rust and C ABI. The cbindgen tool is functionally the reverse of the bindgen tool. The cbindgen tool creates a C header file from a Rust source file that contains the necessary definitions for interoperability. This is done in lieu of you creating the C header file yourself, as shown in the previous example. Cbindgen is found in crates.io.
You can combine the cbindgen tool with build.rs to automate the process. We will demonstrate this in the next example. The max3 function is a Rust function that returns the maximum number amongst three integers. We want to call the function from C++. Here is the function.
Code Listing 22.15.
Rust function to be exported.
 #[no_mangle]
 pub extern fn max3(first: i64, second: i64, third: i64) -> i64 {
 let value= if first > second {
 first
 } else {
 second
 };

 if value > third {
 return value;
 }

 Third
 }

In the cargo.lib file, cbindgen is added as a build dependency. It will be used in build.rs during the build process. We also request that both a static and dynamic library be generated. Here is the final cargo.toml file.
Code Listing 22.16.
Cargo.toml file with cbindgen dependency.
 [dependencies]

 [build-dependencies]
 cbindgen = "0.24.0"

 [lib]
 name = "example"
 crate-type = ["staticlib", "cdylib"]

Next, the cbindgen tool is used within build.rs to create the proper C header file. As part of the build process, the C header is automatically updated whenever necessary to reflect changes to the Rust source file. Here is the build.rs file that uses cbindgen. CBindgen is used to create a new Builder. The Builder then generates the proper binding that is written to the max3.h header file, using the write_to_file function.
Code Listing 22.17.
Build file that uses cbindgen.
 extern crate cbindgen;

 fn main() {
 cbindgen::Builder::new()
 .with_crate(".")
 .generate()
 .expect("Unable to generate bindings")
 .write_to_file("max3.h");
 }

Shown below are the contents of the max3.h header file. It contains the definition for the max3 function, which is the only function exported from the Rust example. You did not have to create the proper definition. Cbindgen performed the task for you. This can be enormously helpful when a number of items are being exported from Rust, not just one, as shown here.
Code Listing 22.18.
The max3.h header file created with the cbindgen tool.
 // max3.h
 #include <cstdarg>
 #include <cstdint>
 #include <cstdlib>
 #include <ostream>
 #include <new>

 extern "C" {

 int64_t max3(int64_t first, int64_t second, int64_t third);

 }

This is a C++ application that calls the max3 function. For this purpose, the header file that cbindgen generated is included.
Code Listing 22.19.
C++ program that calls a Rust function.
// myapp.cpp
#include <stdio.h>
 #include "max3.h"

 int main() {
 long answer=max3(10, 5, 7);
 printf("Max value is: %ld", answer);
 return 0;
 }

This command will compile the C++ program and link to the Rust library.
 clang myapp.cpp example.dll.lib -o myapp.exe

It’s important to note that we can easily interoperate with a C++ application, similar to a C application.
In Conclusion
Interoperability is important in its ability to expand the universe of capabilities available to Rust applications - at least until crates.io contains every fathomable functionality in the universe!
Interoperability is a broad topic. In this chapter, we focused on the C ABI, which is the most prevalent programming interface. However, Rust can interact with a variety of languages, not just C / C++.
External functions imported into Rust must reside in an extern “C” block. Because Rust cannot assure the safeness of functions from another language, you must place any reference to those functions in an unsafe block. For functions exported from Rust, you should prefix the function with the no_mangle attribute and the extern keyword.
A major consideration for interoperability is to correctly marshal data from Rust to another language. The Foreign Function Interface (FFI) provides the interoperable types necessary to successfully marshal data between incongruent languages.
Although the FFI is helpful, marshaling is still dependent on you making the correct decisions. The bindgen tool helps by automating the creation of the correct FFI binding. The tool consumes a C header file and generate the related FFI binding, saved in a Rust source file.
Cbindgen is the reverse of the bindgen tool. It creates a C header file from Rust source code. The header file can then be included in a C / C++ programs to call Rust functions.
Building a Rust crate that interfaces with C can require additional steps and a complex command. Using the cc crate, you can automate the build process.

Chapter 23. Modules
Modules help developers better organize their source code. You can organize code hierarchically and based on context. The alternative to using modules is a monolithic approach where the entire application resides in a source file. This approach becomes cumbersome when an application includes hundreds, even thousands, of lines of source code. Monolithic applications of that size are hard to navigate and maintain. You can reorganize your application into modules to prevent these sorts of problems.
Fundamentally, modules allow you to group related items. This includes structs, enums, functions, and globals. However, modules can also be empty. The name of the module hopefully indicates its context. For example, a module named calculus would include algorithms and constants related to that area of math. A solar system module would include information about the eight planets, plus Pluto (long story).
Rust itself relies on modules extensively to group language features and also provide context. Within this book, we have referred to many of the modules. Here are some common modules mentioned in this book:
 The std::string module that contains items related to strings, including the frequently used String type.
 The std::fmt module provides support for the format! macro.
 The std::io module groups items related to input/output, such as Stdout, Stdin, and Stdout type.
In the beforementioned list, the content of the module provides context. The std::io module has the input / output context for example. However, Rust also creates logical hierarchies using modules, such as the std::os::linux::net module path. Modules in a module path use :: as a separator. Std is the crate that contains the os module. The other two modules are submodules, as shown in Figure 22.1, which is a module tree. The context of the net module combines that of its descendant modules, which is Linux networking. For that reason, the net module includes Linux specific implementations of the TcpStreamExt and SocketAddrExt types.

Figure 23.1
Module hierarchy for the net module.
Inevitably, when speaking of modules, many developers make comparisons to namespaces. Namespaces is a feature in other languages, including C++, Java and Python, that have some similarity to modules. However, modules have other capabilities, such as module files, so a direct comparison is not very helpful.
There are two types of modules: module items and module files. A module item is contained within a sources file, while a module file is an external file.
The conversation about modules is complicated because of the existence of two models: the current and old model. The current model for modules was introduced in Rust 1.30. However, both models remain supported and are widely used, adding to the confusion. For that reason, both are included here, starting with the current model.
Modules
Modules are declared with the mod keyword. You can declare a module item within a source file. Here is the syntax.
 mod name {
 /* module items… */
 }

Within the curly braces, you add items included in the module, such as structs and other items. For visibility outside the module, prefix the item with the pub keyword. The default is private visibility for items. Private items are not accessible outside of the module. This is the syntax for referencing an item within a module.
 module::item_name

In Listing 23.1, the application displays a greeting in standard English and with an Australian variation. For this reason, we define two hello functions. The first function is in the root module, which is the default module. It is also the implicit module. The other hello function is defined in the australian module. In main, we call the default hello and the hello function found in the australian module.
Code Listing 23.1.
Application with hello and australian::hello functions.
 fn hello() {
 println!("Hello, world!");
 }

 mod australian {

 pub fn hello(){
 println!("G'day, world!");
 }
 }

 fn main() {
 hello();
 australian::hello();
 }

The module tree for this application is shown in Figure 23.2.

Figure 23.2
Module tree for australian module.
In the previous example, notice the pub prefix for the hello function in the australian module. This makes the function visible outside of the module. Consequently, we can call the function in main .
Avoiding name conflicts is a key feature of modules. The hello function appears in two modules: the root and australian module. However, the modules resolve the name conflict with the hello functions. With applications that have a moderate amount of source code, modules help prevent name conflicts, including with the Rust language.
Modules share the same namespace as structs, enums, and others. For that reason, within the same scope, you cannot share a name with a type and module. Listing 23.2 demonstrates this possible problem.
Code Listing 23.2.
Module and struct have same name.
 mod example {

 }

 struct example {

 }

 fn main(){

 }

In the application, both the module and struct are named example . Because they are at the same scope, this will create the error message shown in the following.
 |
1 | mod example {
 | ----------- previous definition of the module `example` here
...
5 | struct example {
 | ^^^^^^^^^^^^^^ `example` redefined here
 |
 = note: `example` must be defined only once in the
 type namespace of this module

You can declare modules within modules. Nested modules are called submodules. In this manner, you can create a logical hierarchy within your application. There is no limit to the depth of submodules. When accessing an item, you must precede it with the full module path. Let’s assume the addition function is found in the algebra module, which is declared within the math module. Here is the syntax to call the function.
 math::algebra::addition(5, 10);

In Listing 23.3, we model the solar system using modules. There is a module for the solar system and a submodule for each planet. Each module for a planet will have the get_name function, which returns the planet name. The constants submodule, within each planet module, contains various constants related to that planet. Notice that the submodules are declared public with the pub keyword. This makes the submodules visible outside the parent module. In main , we display information on planet earth.
Code Listing 23.3.
Modules that model the solar system.
 mod solar_system {
 pub mod earth {

 pub fn get_name()->&'static str {
 "Earth"
 }

 pub mod constants {
 pub static DISTANCE:i64=93_000_000;
 pub static CIRCUMFERENCE:I32=24_901;
 }
 }

 /* and the other eight */
 }

 fn main() {
 println!("{}",
 solar_system::earth::get_name());
 println!("Distance from Sun {}",
 solar_system::earth::constants::DISTANCE);
 }

Here is the module tree for the previous code listing.

Figure 23.3
Module tree for the solar system application.
Encapsulation is another feature available with modules. Within a module, you can define a public interface, while hiding the details. The public items, defined with the pub keyword, form the public interface. Everything else is hidden. This allows developers to better model real-world entities within their application. The result is applications that are more maintainable, extensible, and predictable.
Next, we will model a vehicle. Within the car module, the car struct implements both a public and private interface, as shown in Listing 23.4. As such, the public interface includes ignition and gas_pedal . This exposes functionality readily available to drivers, with each including the pub keyword. All other functionality, such as engine, alternator, and throttle, involve the inner workings of a vehicle, not normally exposed to the driver.
In main , the various public functions are called. Calling the throttle function, which is private, will cause a compiler error.
Code Listing 23.4.
Modules that model the solar system.
 mod car {

 pub struct Car {}

 impl Car {
 pub fn ignition(&self) { // public
 self.engine();
 }

 pub fn gas_pedal(&self) { // public
 self.throttle();
 }

 fn engine(&self) { // private
 self.alternator();
 println!("engine started");
 }

 fn alternator(&self) { // private
 println!("alternator started");
 }

 fn throttle(&self){ // private
 println!("throttle open...");
 }
 }
 }

 fn main() {
 let mycar=car::Car{};
 mycar.ignition();
 mycar.gas_pedal();
 mycar.throttle(); // does not work
 }

Module Files
Modules files are dedicated to a specific module. Until now, we have discussed module items, which are contained within a source file. With module items, the curly braces define the scope or perimeter of the module, within that file. With a module file, the module spans an external file. You define a module file in the parent module by simply using the mod keyword and name. The external file is modname .rs.

 mod mymod; // mymod.rs

Whether in a module item or module file, as an external file, the module tree and path does not change. You still use :: to separate modules within the path.
Listing 23.5 shows a module file. In main.rs, the mod hello statement declares a module file, hello.rs . For that reason, this code listing contains two files: main.rs and hello.rs. In the main function, we call the hello function in the hello module.
Code Listing 23.5.
Modules that model the solar system.
 // main.rs
 mod hello;

 fn main() {
 hello::hello();
 }

 // hello.rs
 pub fn hello(){
 println!("Hello, world!");
 }

In the preceding example, the external file for the module is placed in the same directory as the parent module. However, you may want to place the external file in a separate directory to create both a logical and physical hierarchy. This is possible when defining a module file within a module file. The external file for the child module is placed in a subdirectory, which is the name of the parent module.
This is best demonstrated with an example. We will create an application that displays “Hello, world!” in a variety of languages: English, French, Korean, and Hindi. The application defines the following module tree, as shown in Figure 23.4.

Figure 23.4
Module tree for the solar system application.
The application is shown in Listing 23.6. In main.rs, we declare a greeting as a submodule found in an external file, greeting.rs. Both main.rs and greeting.rs reside in the same directory. In the main function, the various hello functions are called using their module path, as described in the module tree.
Code Listing 23.6.
Modules that model the solar system.
 // main.rs

 mod greeting;

 fn main() {
 greeting::english::hello();
 greeting::french::bonjour();
 greeting::hindi:: ();
 greeting::korean::안녕하세요();
 }

The submodules for each language are declared in greeting.rs, as shown in Listing 23.7. There will be an external file created for each submodule, such as english.rs, french.rs, and so on. Because the parent module is greeting, the external files are placed in the greeting subdirectory.
Code Listing 23.7.
Modules that model the solar system.
 // greeting.rs

 pub mod english;
 pub mod french;
 pub mod korean;
 pub mod hindi;

 pub fn hello(){
 println!("Hello, world!");
 }

In the greeting subdirectory, you will find the external files for each submodule. The individual files are shown in Listing 23.8.
Code Listing 23.8.
Submodules in the greeting subdirectory.
 // english.rs

 pub fn hello(){
 println!("Hello, world");
 }

 // french.rs

 pub fn bonjour(){
 println!("Bonjour le monde!");
 }

 // hindi.rs

 pub fn (){
 println!(" !");
 }

 // korean.rs

 pub fn 안녕하세요(){
 println!("안녕, 세계!");
 }

Path Attribute
With the path attribute, you can explicitly set the location of a module, overriding the default module path. You apply the path attribute directly to a module. The attribute names the external file, including the directory path and where to find the module. In Listing 23.9, the path attribute places the abc module in the cooler.rs external file. In main, the funca is called from the abc module.
Code Listing 23.9.
Setting the location of an external file.
 #[path =".\\cool\\cooler.rs"]
 mod abc;

 fn main() {
 abc::funca();
 }

 // cooler.rs ".\cool\cooler.rs"

 pub fn funca(){
 println!("Doing something!")
 }

Functions and Modules
You can even declare modules within functions. The rationale remains the same. Modules can be used to group items within a function, creating a hierarchy, disambiguating items, and so on.
Modules defined in a function have the scope of the application but the visibility of the function. For that reason, you cannot access the module, or its items, outside the function. Items within the module must be public to be accessible within the function.
Variables declared directly within the module must be either static or const.
In the next example, funca contains two modules, as shown in Listing 23.10. The modules disambiguate the do_something functions. The correct do_something is called based on the function argument.
Code Listing 23.10.
The function, funca, contains two modules.
 fn funca(input:bool) {

 if input {
 mod1::do_something();
 } else {
 mod2::do_something();
 }

 mod mod1 {
 pub fn do_something(){
 println!("in mod1");
 }
 }

 mod mod2 {
 pub fn do_something(){
 println!("in mod1");
 }
 }

 }

 fn main(){
 funca(true);
 }

Crate, Super, and Self keywords
You can use the crate , super , and self keywords, with a module path.

 Crate starts navigation at the crate module (root). From within any module, this is a fixed path and will always navigate to the same place.

 Super starts navigation at the parent module. This is a relative path, relative to the location of the parent module within the module tree. This is typically less brittle than using a fixed path with the crate keyword.

 Self refers to the current module.
There is a saying − “all roads lead to Rome.” With the navigation keywords, that is often. It is not uncommon for there to be multiple paths to the same modules. As often, the proper path can be subjective. The two most common criteria are brevity and complexity. This means choosing either the shortest or less complex path to a module. In addition, relative paths are preferred to fixed paths.
The next example demonstrates navigation using the crate , super , and self keywords. The module tree, shown in Figure 23.5, is created.

Figure 23.5
Module tree for application.
Listing 23.11 will establish the model tree. In funca , it uses the three keywords to navigate the module tree.
Code Listing 23.11.
Example that includes the crate, super, and self keywords.
 mod mymod {
 pub mod moda {
 pub fn funca(){
 crate::mymod::modb::funcb();
 super::modb::funcb();
 self::funcc();
 }

 pub fn funcc(){println!("moda::funcc")}
 }

 pub mod modb {
 pub fn funcb(){println!("modb::funcb")}
 }
 }

Let’s review the module paths presented in this example.
 The crate::mymod::modb module path starts navigation at the root module. From there, we navigate to mymod and modb , where funcb is found.
 For the super::modb module path, the super keyword refers to the parent, which is mymod . From mymod , we can proceed to modb and call funcb .
 The self path refers to the current module, which is module moda . You can then call funcc .
Old Model
As previously mentioned, a new model for modules was introduced in Rust 1.30. However, the old model remains available and is used by some developers. In addition, there is plenty of older Rust code that adheres to this model. For these reasons, it is helpful to be familiar with the old model for modules. There is absolutely no difference between a module created with the old versus new model, as shown in the first portion of this chapter.
The primary difference between the two models relates to module files and the mod.rs file. For the old model, here are the steps for creating a module file:
1. Declare a child module within a parent module as mod name .
2. Create a subdirectory using the module’s name.
3. In the subdirectory, place a mod.rs.
4. Within mod.rs, name all the submodules with the mod keyword.
5. Create a module file for each submodule in the module directory. The names should be submodule .rs.
In next example, we want to repeat the example that can display hello in various languages. Here is the module tree for the application. Within the all module, the hello_all function displays the greeting for every language. Each language module, such as english, displays “hello, world!” in that language.

Figure 23.6
Module tree with a submodule for each language.
In main.rs, the hello mod is declared, as shown in Listing 23.12. In main, we call the hello_all function to display hello in the various supported languages.
Code Listing 23.12.
In main.rs, declaring the hello module.
 // main.rs

 mod hello;

 fn main(){
 hello::all::hello_all();
 }

Next, we create the hello subdirectory for the submodule declared in main.rs. The presence of the mod.rs indicates that the directory contains module files. For our example, we list the module for each language. Each is a module file with an external file.
Code Listing 23.13.
In main.rs, declaring the hello module.
 // mod.rs - crate::hello

 pub mod english;
 pub mod french;
 pub mod korean;
 pub mod hindi;
 pub mod all;

Listing 23.14 shows the external file for each language module. Each module contains a function to display the greeting in that language.
Code Listing 23.14.
In main.rs, declaring the hello module.
 // all.rs - crate::hello::all

 pub fn hello_all(){
 super::english::hello();
 super::french::bonjour();
 super::korean::안녕하세요();
 super::hindi:: ();
 }

 // english.rs - crate::hello::englsh
 pub fn hello(){
 println!("Hello, world!");
 }

 // french.rs - crate::hello::french
 pub fn bonjour(){
 println!("Bonjour le monde!");
 }

 // hindi.rs - crate::hello::hindi
 pub fn (){
 println!(" ");
 }

 // korean.rs - crate::hello::korean
 pub fn 안녕하세요(){
 println!("안녕, 세계!");
 }

Summary
Modules help developers better organize their applications. Instead of a monolithic application, you can use modules to create a hierarchical approach and group related items together. Declare a module with the mod keyword. You access items in a module using the module::item syntax.
There are several benefits to modules:
 Hierarchical organization
 Avoiding name conflicts
 Creating public interfaces
 Grouping items
There are two types of modules. Module items are contained within a file with scope defined within curly braces. You can even include module items within functions. Alternatively, there are module files that span an entire external file.
There are two models for modules. Regardless, modules are modules. There is no difference between modules created with the current model versus the old model. For the old model, you create external modules with a subdirectory using a mod.rs file. The current model does not use mod.rs.
Submodules are nested modules. You can have multiple levels of modules. When described, separate each module with the :: operator.
A module path can be prefixed with the crate , super , and self keywords. The crate keyword creates a fixed path, starting at the crate’s root module. The super keyword creates a module path relative to the parent module. The self keyword refers to the current location within the module path.

Author Bio
Donis Marshall has over 20 years of experience in designing and building enterprise software utilizing Microsoft technologies for leading companies across industry segments. He is an endorsed trainer for Microsoft Global Learning Services, and has been training Microsoft developers and engineers for many years. Donis is the author of the Programming Microsoft Visual C# 2005, Programming Microsoft Visual C# 2008, and Solid Code, published by Microsoft Press.

images/00069.jpg
L— crate root/
— mymod/
| b moda
| — modb

images/00068.jpg
1ype Entity Borrow Lifetime

input refl numl 'b

output refl numl 'b

Target result numl 'a

images/00071.jpg
array_1

offset

images/00070.jpg

images/00073.jpg
DONIS MARSHALL

images/00072.jpg
Name Operator Example Result
Addition + a +=b a=35
Subtraction - a-=>b a=15
Multiply o a *=b a=250
Division / a=/b a=2
Division / y =/ z 25
Modulus % a %=b 5

images/00075.jpg
@ heto-ust

c e

Crate hello
Version 01.0

Alltems.

Functions

Crates
hello

x +
file/1Ccodeustfdocumentation_comments/helloftarget/doc/nelo/ndex i e % » 02
& Clickor pressS'to search, 7 for more options. 2 ®
Crate hello £ source -]

(] Hello library crate
Author: Donis Marshall
Apache 2.0license

Functions

hello_world Display hello based on the language (major. MINOR) provided. Languages support:
enUS, enUK, frFR, and hilN.

images/00077.jpg
fn do_something<'a, 'b>(refl:&'a 132, ref2:&'b 132)->&'b 132{
ref2

£n main() (
let result;

let numl=1; =

. '

let numz=2;

]

result=do_something (&numl, &num2);

|

}

println! ("(}", result)

images/00076.jpg
Rust C/C++

c_char char (i8)
c_char char (u8)
c_schar signed char
c_uchar unsigned char
c_short Short
c_ushort unsigned short
c_int int

c_uint unsigned nut
c_long long

c_ulong unsigned long

c_longlong

long long

c_ulonglong

unsigned long long

c_float Float
c_double Double
c_void Void

cover.jpeg
DONIS MARSHALL

images/00058.jpg
Name Operator Example Result

Addition * a+b 35
Subtraction - a-b 15
Multiply * a*b 250
Division / a/b 2
Division / y/z 2.5
Modulus % a%h 5

Negation - -a -25

images/00060.jpg
fn do_something<'a>(refl:&'a i32, ref2:&i32)->&'a i32{
refl

fn main() {
let numl=1;
let num2

let result; B

result=do_something(

&numl, &num2);
println!

{}", result)

images/00059.jpg
v/ greeter
vV src
C hello.c
® mainrs
< .gitignore
@ build.rs
£ Cargo.lock

¥ Cargo.toml

images/00062.jpg
0xe024f1£60c

0xe024f1£610

Stack

val_a

10

ref_a

0xe024£f1f60c

Indirect
value

images/00061.jpg
padding

println! ("Result: {2:<08.1%} {3:.1s)", 10, 2, f1l, £2);

images/00064.jpg
fn do_something(refl:&132){

// doing something
}

fn main() {
[
let numl=1; N “aisthe.
a lifetime
do_something (&num1) formum

‘ ;

images/00063.jpg
Operation | LHS | RHS | Result
A 4 5 0
M 2 6 0
D 9 3 0
S 5 6 0

images/00066.jpg

images/00065.jpg
Al
mpl <T,..,> Wrapper<T,.
eyword Y J °p struct

X name

type parameter used
within impl

images/00067.jpg
Type Size Range

i8 8-bit —128 to 127

il6 16-bit —32768 to 32767

i32 32-bit 2147483648 to 2147483647

64 64-bit -9223372036854775808 to 9223372036854775807
i128 128-bit —170141183460469231731687303715884105728 to

170141183460469231731687303715884105727

isize Pointer Architecture dependent
sized

images/00009.jpg
® relonorainbelo Rt x|+
€ 5 C O Fie | fles//Clcodelrustdocumenttion comments/hellofarget/doc/hello/fnbhello worl.. & e % O &
| Clickor press S'to search, 7 for more options. : ®
Function hello::hello_world source - [-]
In hello .
pub fn hello_world(language: &str) —> &'static str
Functions
ke wor 11 Display hello based on the language (major:MINOR) provided. Languages support:

enUS, enUK, fiFR, and hilN.

Examples

let greeting=hello::hello_world("hiIN");
assert_eq! (greeting, "TH g ;

images/00008.jpg
Name Operator Example Result
Equal = a==>b False
Less than < a<b False
Great than > a>b True
Less than or equal <= a <=b False
Great than or equal ~ >= a>b True
Not equal I= al=b False

images/00011.jpg
— crate root/

= os/

| — linux/

| L net/

| |— TcpStreamext type
| L SocketAddrExt type

images/00010.jpg
Vector Heap

0xe024f1f60c 5 10 | 0xe024f1f60c

8 i

0xe024£1£60c | » — [12

13

115

images/00013.jpg
0x3516affbac

0x3516aff6b0

0x3516aff6b8

Stack

val_a 10
ref_a 0x3516afféac
iref_ref a| 0x3516aff6b0

Referenced
j values

images/00012.jpg
fn do_something<'a>(refl:&'a i32, ref:

refl

fn main() {
let result;
let numl=1;
{

let num

result=do_something (&numl,
)
println! ("(}", result)

&num2) ;

'a i32)->s'a 1321(

*numl

Tnum2

‘a

images/00002.jpg
Function

Local

Stack Frame

main

vara

0

display

varb and varc

1

images/00001.jpg
>

<

Right alignment
Left alignment

Center alignment

images/00004.jpg
Byte

R

images/00003.jpg
// lifetime: ‘a 'a
fn do_something (refl:si32)->&i32(
refl // lifetime 'a returned

fn main() {

; ' aisthe
Itetime.

a
let result=do_something (&numl), (ram
)]

let numl

images/00006.jpg
Type Entity Borrow Lifetime

input refl numl 'a

output refl numl 'a

target result numl 'b

images/00005.jpg
Impl block Trait name Struct Name
A

It L
[I | [i

impl<T> ATrait<T> for XStruct<T>

images/00007.jpg
L— crate root/
|— hello/

— an1

}— english
}— french
|7 korean

L— hindi

images/00029.jpg
Notation

Example

Purpose

& let a:&i32=x; Declare a reference

Mut let b:&mut Declare a mutable reference
i32=y;

& let c=&10; Get address of

let d:i32=*a;

Get the referenced value

images/00028.jpg
Escape Type Description

\n ASCII Newline

\r ASCII Carriage return

\t ASCII Tab

\o ASCII Null

\\ ASCII Backslash

\x{nn} ASCII 7-bit character code
\x{nn} ASCII 8-bit character code
\u{nnnnnn} Unicode 24-bit Unicode character
\! Quote Single quote

\"

Quote

Double quote

images/00031.jpg
Type Size Range (Approximate)

32 32-bit —3.4 x 1038 to 3.4 x 1038

fo4 64-bit —~1.8 x 10308 to 1.8 x 10308

images/00030.jpg
10

images/00033.jpg
input lifetime:'b

/

fn do_something (refl:&i32)->8i32(

! refl v\

output lifetime:'b

fn main() {

let result;

ins
{ for result

aisthe

let numl=1; P

etime

result=do_something (&numl) ;

Target
lifetime:'a

)
println! ("(}", result);

images/00032.jpg
Repetition

|
[|

($(code fragment) sep * |+|?)

/ N\

token sequence delimiter repetition operator

images/00035.jpg
46

printin!("{3} + {} + {} + {}= {4}", first, second, third, fourth, result}

\ |
10
1n

images/00034.jpg
Type Value Borrow Lifetime
input refl numl 'a
input ref2 num2 'b
output ref2 num2 'b
target result num2 'e

images/00026.jpg
- crate root/
|— australian/

images/00025.jpg
Yariablca variableb

s s eger | 5
il Shallon

wt rass oopy wt rass

FALE

images/00027.jpg
struct Data<'a>{
fieldl:s'a 132

)

0 main() (
let numl=1; ‘aisthe.
let obj=Data(fieldl:snuml}; co-
println! ("(}", obj.fieldl) bl

images/00018.jpg

images/00020.jpg
Next

Next

println! ("Total {} + {} = {)", augend, addend, augend + addend);

L

Default cursor

images/00019.jpg
Type Value Borrows Lifetime
input refl numl 'a
input ref2 num2 'b
output refl numl ‘a
target result numl e

images/00022.jpg

images/00021.jpg
ZStruct T (field1) V (field2) Explicit Specialization
objl integer bool Yes for T (i8)

obj2 float integer Yes for T (£32)

obj3 float bool Yes for T (£32)

obj4 char integer No for T (char)

images/00024.jpg
Get Help Pol Social
he cargo ook [— © rustiangleratesio

[p— el Support - P —

[— mstatus privacy policy Q scrtesioteam

images/00023.jpg
Description Operation Example Result Short Circuit
Logical And && false && true True Yes
Logical And && true && false False No
Logical Or I true || false True Yes
Logical Or I false || true False No
Logical Not | True N/A No

images/00015.jpg
Type Size Range

u8 8-bit 0to 255

ul6 16-bit 0 to 65535

u32 32-bit 0 to 4294967295

u64 64-bit 0 to 18446744073709551615

ul28 128-bit 0 to 340282366920938463463374607431768211455

usize

Pointer sized Architecture dependent

images/00014.jpg
Description
Binary

Octal

Decimal (default)
Hexadecimal

Hexadecimal (uppercase)

Base
Base 2
Base 8
Base 10
Base 16
Base 16

Format Specifier

images/00017.jpg
input lifetime: 'a

fn do_something (refl:&i32)->8i32(
refl

output lifetime: 'a

fn main() {

let numil:
Target { ‘a
lifetime:'b E——|
let result; iste
result=do_something (&numl); ko

println! ("(}", result);
)

aisthe
etime
fornum

images/00016.jpg
Keyword Identifier Delimiter

\ l

fn do_something(var:i8) {
let a=5+10;

VN

Literal Literal Punctuation

images/00049.jpg
Type Value Borrow Lifetime

input refl numl a='numl N 'num2
input ref2 num2 'a="numl N 'num2
output refl numl 'a='numl N 'num2
target Result 'b

images/00048.jpg
FnOnce

FnMut

Fn

images/00051.jpg
Name Operator Example Result
Bitwise And & a&=b 20r 0010
Bitwise Or | al=b 140r 1110
Bitwise Exclusive Or & a"=b 12 or 1100
Bitwise Shift-left << a<<=1 20 or 10100
Bitwise Shift-right >> a >>=1 50r0101

images/00050.jpg
fn main() {

let refl; —_—
'a
(
let numl=2; g
refl=gnuml; 1p formmt

' 1

println! ("{}", refl);

alsthe
etime.
forrer)

images/00053.jpg
stringa stringb

capacity capcity
ef ef

Son-the haag™ Somthe heap™

images/00052.jpg
Name Description Value

E Euler’s number 2.7182818284590451f64
FRAC_1_PI I/ 0.31830988618379069f64
FRAC_1_SQRT_2 1/sqrt(2) 0.70710678118654757f64
FRAC_2_PI 2/ 0.70710678118654757f64
FRAC_2_SQRT_2 2/sqrt(2) 1.1283791670955126f64
LN_10 In(10) 2.3025850929940459f64
LOG10_2 Logl0(2) 0.3010299956639812f64
PI It 3.1415926535897931f64
SQRT_2 sqrt(2) 1.4142135623730951f64
TUA 2n 6.2831853071795862f64

images/00055.jpg
fn either one<'a, 'b>(refl:&'a 132,

ref2:6'b 132, flag:bool)->&’b i32 (

if flag {
refl
} else {
ref2
}
}
£n main() { alsthe
fetime.
let numl=1; g forret
{
E—
let num2=2; bisthe
b liftime

let result=either_one (&numil,

&num2, true);
}

fornum

images/00054.jpg
— std crate/
I— greeting/

I— English
I— French
|— Korean

L— Hindi

images/00057.jpg
Package

RS RS RS RS RS .RS
Source File Source File Source File Source File Source File Source File

Rust

images/00056.jpg
Ist 2nd 3¢, d|mensmn

[[[type; elements]; elements]; elements...]

images/00047.jpg
println! ("Result: {1:<10.08} {2:.08}", 3, fl1l, £2);

images/00038.jpg
Ox36d52££40

images/00040.jpg
Name Operator Example Result
Bitwise And & as&b 20r 0010
Bitwise Or | alb 14 0r 9110
Bitwise Exclusive Or & a”b 12 or 1100
Bitwise Shift-left << a<<1 20 or 10100
Bitwise Shift-right >> a>> 1 50r0101

images/00039.jpg
yariaplca

variableb
e |5 | 4
=
o s | g = py

[RS—
.
»

FCEA

images/00042.jpg
struct Data<'a>
fieldl:&'a i32,

impl<'a> Data<'a> {
fn do_something(self:sSelf, refl:&'a i32)->&'a 132 (
refl

fn main () {
let numl=1;
let obj=Data{fieldl:&numl};

‘numl
let result;
«
let num2=2;
result=obj.do_something (&num2) ; ‘num2 ‘a

)
printlnt ("()"

result);

images/00041.jpg
— crate root/
|— planet/

|— earth/

| '— constants
|— jupiter/

| — constants

f— mars/

| — constants

— mercury/
| — constants

—

images/00044.jpg
pure_blue.is_pure_color (Colo.

impl RGB (
fn is_pure_color(&self, color:Color)

{

z

images/00043.jpg
Stack Ditt

array_1 0x6f612ff7e8 |0

array 2 Ox6f6l2fflec |4

array_3 0x6£612f£f7f4 B

images/00046.jpg
fn do_something<'a>(refl:&'a i32)->&'a i32(
refl

fn main() {

let numl=1; etime
— ‘a is namec
let result=do_something (snuml)7 =" 5
'b
println! ("(}", result): isinfarred

[

images/00045.jpg
Derive

#[proc_macro_derive (Hello)]

Attribute

#[proc_macro_attribute]

Function-like

[proc_macro)

images/00037.jpg

images/00036.jpg
Pattern

Match Guard

Execute match arm

Match True Yes
Non Matching True No
Match False No
Non Matching False No

