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Foreword 

This book, written by experts in AI and machine learning, is unique. Unlike current books on this subject that either cover the theory and mathematical underpinnings 

of deep learning, or focus exclusively on programming-centric concepts, tools and 

languages,  this  book  addresses  and  bridges  both  aspects.  It  seamlessly  connects theoretical methods with pertinent technologies and toolsets in a manner that makes the material suitable for students, educators, and practitioners. 

Its proposition lies in its multifaceted treatment of the subject. It conveys com-

plex Deep Learning concepts in simple terms, making the material understandable 

to a wide audience. In addition, it elucidates the intricate landscape of the different technologies  and  toolsets  currently  available,  thereby  offering  readers  the  much needed clarity needed to make informed decisions for their respective applications and problem domains. 

By bridging theory and practice, this book empowers readers to not only grasp 

fundamental concepts but to also confidently navigate the practical applications of Deep Learning. Ultimately, this book will serve as a comprehensive guide for Deep 

Learning  enthusiasts,  practitioners,  educators,  and  researchers  alike.  Its  focus  on holistic understanding and actionable insights makes it an invaluable “must read,” 

and an essential resource for anyone interested in delving into the exciting realm of Deep Learning. 

Prof. John Hopcroft 

Turing Award Laureate 

Member of the NAE and NAS 

Cornell University
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Preface 

This book presents multiple facets of deep learning networks involved in the design, development,  and  deployment  of  these  networks.  More  specifically,  this  book  is an  introduction  to  the  toolset  and  its  associated  deep  learning  techniques.  The book  also  presents  design  and  technical  aspects  of  programming  and  provides pragmatic  tools  for  understanding  the  interplay  of  programming  and  technology for several applications. It charts a tutorial which provides wide-ranging conceptual and programming tools that underlie the deep learning applications. 

Furthermore,  the  book  presents  a  clear  direction  toward  a  path  forward  that profoundly engages and challenges the art of science and engineering programming 

for students taking undergraduate courses. 

Bangalore, India

Jayakumar Singaram 

Miami, FL, USA

S. S. Iyengar 

Los Angeles, CA, USA

Azad M. Madni
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Purpose  of  This  Book 

The reader is introduced to methods for designing, modeling, developing, building, training,  and  deploying  deep  learning  in  artificial  intelligence  applications.  These include IoT, computer vision, natural language processing, and reinforcement learning. A series of deep learning environment design and building exercises provide 

a  succinct,  project-driven  deep  learning  tutorial.  Furthermore,  this  book  offers  a comprehensive, consistent treatment of the current thinking and technology trends 

in this critical, rapidly expanding subject area. More importantly the book delivers fundamental  and  deep  learning  techniques  and  principles  packed  with  real-world deep learning applications and examples. The book also provides a forward-thinking perspective  in  advanced  deep  learning  infrastructure  building  and  deployment methods. Implementation issues are discussed in a companion framework of deep 

learning  networks  that  takes  the  reader  through  a  logical  sequence  of  discussions about core concepts and issues related to deep thinking. 

This book is unique in that it offers a comprehensive, end-to-end look at deep 

learning  principles  and  frameworks  for  building  implementation  algorithms.  As with business organizations and government standards, implementation guidelines 

are structured and organized within an overall programming strategy. This structure is a valuable contribution of this book. This book is intended to serve as a valuable resource in the artificial intelligence discipline for students, professionals, and data scientists who want to understand how a successful implementation of deep learning algorithms and frameworks looks like from the programming context. 

This  book  discusses  feed-forward  techniques  and  tools  for  setting  up  deep learning  applications  including  CPU  and  GPU  systems.  The  novelty  of  this  book stems  from  the  fact  that  it  provides  a  comprehensive  approach  and  toolset  for developing deep learning applications and building virtual environments for various AI  Platforms.  It  demonstrates  and  conveys  core  insights  into  various  native  AI hardware  configurations  including  Edge  Native  AI  hardware,  and  in  setting  up Jetson Nano in IoT Edge environment. It also describes and demonstrates the hand-holding techniques to configure the open-source operating system and edge devices. 

Advanced  deep  learning  deployments  are  discussed  and  illustrated  with  specific xi

xii
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examples  that  contribute  to  detailed  understanding  of  real-time  deep  learning applications. 

The book introduces the reader to neural nets, convolutional neural nets, word 

embeddings, recurrent or nets, sequence-to-sequence learning, deep reinforcement 

learning, unsupervised learning models, and other basic concepts and methods. As 

important, this book covers artificial intelligence research on design, development, training, test, and deployment of applications and hardware services including the IoT micro services. TensorFlow, an open- source machine learning platform, allows 

students, AI experts, and data scientist professionals to work through programs and master the fundamentals of deep learning. 

This book claims that building the best deep learning environment is the ultimate 

way  to  study  deep  learning  science,  and  the  book  reflects  this  philosophy.  Each section of the book presents stepwise command-oriented instructional guidelines to create,  configure,  and  build  the  deep  learning  environments  with  the  widely  used Tensorflow and other relevant tools in various hardware and software environments. 

Ultimately, this book aims to deliver deep learning insights with zero dependency 

or familiarity with probability, statistics, multivariate calculus, and linear algebra. It caters to a wide readership that includes both graduate and undergraduate students, practitioners, and researchers in academia. 
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Chapter  1 

Introduction 

 Artificial  Intelligence  is  the  future,  and  deep  learning  is  its  most powerful  tool. 

This  chapter  presents  a  comprehensive  concept  of  data,  deep  learning,  and  the design,  training,  testing,  loading,  and  saving  various  network  models  associated with  machine  learning.  Significantly,  it  does  so  using  the  PyTorch  and  TensorFlow open-source  tools  with  the  DLTrain  with  suitable  examples  and  simple  command-controlled  instructions.  Further  suitable  hardware  configuration,  setup,  testing, and  other  installation-associated  infrastructures  are  structured  within  a  simple programming  framework.  This  chapter  employs  the  simplest  and  most  widely 

used  deep  learning  training  models  that  frequently  take  first  place  in  competitions. 

The  learning  from  the  book  also  envisions  the  hands-on  experience  for  all  kinds of  machine  learning  users  with  strong  practical  demonstrations  by  supporting foundational  concepts.  It  is  recommended  that  the  reader  have  a  laptop  or  desktop handy  while  reading,  in  order  to  write  the  material  learned  into  a  permanent  memory for  greater  future  clarity. 

The  book  is  a  state-of-the-art  treatment  of  deep  learning  environments.  It  caters to  both  basic  users  and  experienced  data  scientists.  Standard  and  specific  tools in  demand  for  deep  learning  design,  development,  and  deployment  are  covered. 

Furthermore,  illustrative  screenshots  are  provided  for  every  topic  to  help  users acquire  hands-on  knowledge  in  deep  learning. 

“One  of  the  most  interesting  features  of  machine  learning  is  that  it  lies  at  the intersection  of  multiple  academic  disciplines,  principally  computer  science,  statistics,  mathematics,  and  engineering.”  Machine  learning  is  usually  studied  as  part of  artificial  intelligence,  which  puts  it  firmly  into  the  computer  science  discipline. 

However,  understanding  why  these  algorithms  work  requires  a  certain  level  of statistical  and  mathematical  sophistication  that  is  often  missing  in  computer  science undergraduate  courses.  Question:  Did  convolutional  neural  networks  (CNNs)  find  a way  around  statistical  or  mathematical  methods,  or  did  it  come  up  with  a  new  theory of  modeling  physical  processes? 
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Introduction

1.1 

Artificial  Intelligence  (AI) 

It  is  worth  recalling  that  AI  refers  to  a  computer  system’s  capacity  to  imitate  human cognitive  processes  such  as  learning  and  problem-solving  (Fig. 1.1).  A  computer system  today  can  replicate  human  reasoning  in  specific  domains,  learn  from  new knowledge,  and  make  judgments  in  a  particular  domain  using  AI. 

A  subdiscipline  of  artificial  intelligence  and  computer  science  known  as  machine learning  (ML)  focuses  on  using  data  and  algorithms  to  simulate  how  people  learn while  continuously  increasing  the  accuracy  of  the  model.  ML  is  the  practice  of assisting  a  computer  in  learning  without  direct  instruction  by  applying  mathematical models  of  data.  As  a  result,  a  computer  system  may  keep  picking  up  new  skills  and become  better  on  its  own.  In  general,  most  of  our  daily  activities  involve  the  use  of AI  and  ML.  Some  commonly  known  examples  include  the  following: 

1.  Siri,  Alexa,  and  other  smart  assistants 

2.  Self-driving  cars 

3.  Robo-advisors 

4.  Conversational  bots 

5.  Email  spam  filters 

6.  Netflix’s  recommendations 

AI  enables  the  incorporation  of  specific  aspects  of  human  intelligence  into machines  (algorithms).  AI  is  made  up  of  the  terms  “artificial”  and  “intelligence,” 

where  “artificial”  refers  to  anything  developed  by  humans  and  “intelligent”  refers to  the  capacity  to  comprehend  or  reason  in  accordance  with  the  circumstances  of  a problem  to  find  a  solution.  Artificial  intelligence  (AI)  teaches  computers  to  imitate the  workings  of  the  human  brain.  To  achieve  optimum  effectiveness,  AI  concentrates on  three  abilities:  learning,  reasoning,  and  self-correction.  AI  is  a  type  of  computer algorithm  that  demonstrates  intelligence  through  judgment  (Fig. 1.2). 

1. Artificial  narrow  intelligence  (ANI):  The  only  sort  of  artificial  intelligence  now in  use  in  our  society  is  artificial  narrow  intelligence  (ANI),  commonly  referred  to as  weak  AI.  Narrow  AI  is  goal-oriented,  is  trained  to  carry  out  a  single  job,  and is  extremely  clever  at  carrying  out  the  activity  that  it  is  trained  to  complete. 

Siri,  an  airplane’s  autopilot,  chatbots,  self-driving  cars,  etc.  are  a  few  instances of  ANI.  In  contrast  to  humans,  narrow  AI  systems  take  data  from  a  certain  data Fig.  1.1  AI  learning  illustration
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Fig.  1.2  Skeptical  ANI 

illustration 

Fig.  1.3  Skeptical  AGI  illustration 

set  and  only  carry  out  the  one  activity  for  which  they  were  created.  They  are  not aware,  sentient,  or  motivated  by  emotions  or  ethics  (Fig. 1.3). 

2. Artificial  general  intelligence  (AGI):  Artificial  general  intelligence,  often known  as  powerful  machines,  that  demonstrate  human  intellect  are  said  to  have artificial  intelligence  (AI).  In  this,  machines  can  learn,  comprehend,  and  behave in  a  way  that  is  identical  to  a  person  in  a  certain  circumstance. 

While  the  general  AI  does  not  yet  exist,  it  has  been  featured  in  several  science fiction  films  starring  humans  interacting  with  sentient,  feeling-driven,  and  self-aware  robots.  Strong  AI  will  enable  us  to  create  computers  that  can  reason,  plan, and  carry  out  a  variety  of  activities  in  a  variety  of  unpredictable  environments. 

While  making  decisions,  they  may  use  their  existing  knowledge  to  provide original,  creative,  and  out-of-the-box  answers. 

3. Artificial  superintelligence  (ASI):  The  concept  of  artificial  superintelligence (ASI)  envisions  a  future  in  which  robots  will  be  able  to  demonstrate  intellect  that is  greater  than  that  of  the  smartest  humans.  In  this  sort  of  AI,  robots  will  not  only have  the  multidimensional  intellect  of  people,  but  they  will  also  be  significantly more  capable  of  making  decisions  and  solving  problems  than  people.  It  is  the kind  of  AI  that  will  have  a  significant  influence  on  people  and  might  eventually wipe  out  the  human  species  entirely. 

[image: Image 5]
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1.2 

Machine  Learning  (ML) 

A  branch  of  artificial  intelligence  called  machine  learning  (Fig. 1.4) employs statistical  learning  algorithms  to  create  systems  that  can  automatically  learn  from their  experiences  and  get  better  over  time  without  explicit  programming. 

Most  of  us  utilize  machine  learning  every  day  when  we  use  services  like recommendation  engines  on  Netflix,  YouTube,  and  Spotify;  search  engines  like Google  and  Yahoo;  and  voice  assistants  like  Google  Home  and  Amazon  Alexa. 

With  machine  learning,  we  train  the  algorithm  by  giving  it  plenty  of  data  and  letting it  get  to  know  the  information  that  has  been  processed.  ML  algorithms  can  be broadly classified into three categories: supervised, unsupervised, and reinforcement learning.  An  algorithmic  approach  to  making  predictions  and  decisions  using  data (machine  learning)  is  a  subset  of  artificial  intelligence.  There  are  three  main  groups of  algorithms  in  ML: 

1. Supervised  learning:  The  labeling  of  the  data  set  used  for  supervised  learning is  often  done  by  an  external  supervisor,  a  subject  matter  expert  (SME),  an algorithm,  or  a  computer  program.  For  model  training  and  validation,  the  data set  is  divided  into  training  and  test  data  sets.  The  model  is  then  used  to  make predictions  on  unlabeled  data  that  has  not  been  seen  before  but  falls  into  the type  of  data  the  model  was  trained  on.  Once  more,  this  may  be  separated  into classification  and  regression,  with classification  being  utilized  in applications  like image  classification  and  11K-nearest  neighbors  to  detect  customer  churn.  Sales, property  prices,  and  other  variables  are  predicted  using  regression  methods. 

2. Unsupervised  learning:  Unsupervised  learning  is  the  process  of  discover-ing  hidden  patterns  in  an  unlabeled  data  set  by  using  reasoning.  They  are unsupervised  since  they  do  not  have  supervision  as  supervised  algorithms  do. 

Unsupervised  learning  can  generally  be  classified  into  clustering,  association, anomaly  detection,  and  dimensionality  reduction. 

3. Reinforcement  learning:  Reinforcement  learning  is  essentially  the  process  of learning  through  continually  interacting  with  the  environment.  It  is  a  form of  machine  learning  technique  in  which  an  agent  learns  from  an  interactive environment  in  a  trial-and-error  manner  while  continually  utilizing  input  from Fig.  1.4  Machine  learning  illustration
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its  prior  actions  and  experiences.  The  agents  in  reinforcement  learning  receive rewards  for  carrying  out  the  right  actions  and  penalties  for  doing  them  poorly. 

1.3 

AI  vs.  ML 

The  below  steps  show  how  AI  and  ML  can  be  seen  as  a  one  big  picture  and  ML  as a  part  of  AI: 

Step  1  An  AI  system  is  built  using  machine  learning  and  other  models. 

Step  2  Machine  learning  models  are  created  by  studying  patterns  in  the  data. 

Step  3  Data  scientists  optimize  the  machine  learning  models  based  on  patterns  in the  data. 

1.4 

Deep  Learning  (DL) 

Deep  learning  (Fig. 1.5),  a  method  of  machine  learning,  is  essentially  a  sort of  learning  from  examples  and  is  inspired  by  the  way  the  human  brain  filters information.  Using  layers  of  data  filtering  to  forecast  and  categorize  information is  helpful  to  computer  models.  Deep  learning  is  mostly  employed  in  applications that  people  perform  daily  since  it  processes  information  similarly  to  how  the  human brain  does.  Driverless  cars  can  detect  a  stop  sign  and  tell  a  pedestrian  from  a  lamp post  thanks  to  the  core  technology  that  powers  them.  Since  most  deep  learning techniques  make  use  of  neural  network  topologies,  they  are  sometimes  referred  to as  deep  neural  networks. 

Deep  learning  makes  use  of  neural  networks  with  several  layers  or  nodes.  Every node  in  each  layer  is  linked  to  the  layer  below  it.  The  network  is  built  deeper  as the  number  of  layers  increases.  Signals  tend  to  move  across  layers  of  nodes  and give  matching  weights  in  artificial  neural  networks.  The  impact  on  the  nodes  in  the following  layer  will  be  greater  if  a  layer  is  given  a  bigger  weight.  The  last  layer, Fig.  1.5  Deep  learning  illustration
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which  comes  before  creating  the  output,  compiles  the  weights  of  the  input  nodes and  proclaims  the  outcome.  Deep  learning  requires  sophisticated  mathematical computations  and  data  processing.  As  a  result,  the  system  hardware  must  be  highly strong.  Yet,  even  with  extremely  strong  technology,  training  neural  networks  on  it takes  weeks. 

1.5 

DL  vs.  ML 

Given  that  deep  learning  and  machine  learning  are  frequently  used  synonymously, it  is  important  to  understand  their  differences.  Neural  networks,  deep  learning, and  machine  learning  are  all  branches  of  artificial  intelligence.  Deep  learning  is a  subfield  of  neural  networks,  which  are  in  turn  a  subfield  of  machine  learning.  The way  each  algorithm  learns  is  where  deep  learning  and  machine  learning  diverge. 

While  supervised  learning,  sometimes  referred  to  as  labeled  data  sets,  can  be  used by  “deep”  machine  learning  to  guide  its  algorithm,  it  is  not  a  requirement.  Deep learning  can  automatically  identify  the  collection  of  features  that  separate  several categories  of  data  from  one  another  after  ingesting  unstructured  material  in  its  raw form  (such  as  text  or  photos).  This  reduces  the  need  for  some  human  interaction and  makes  it  possible  to  handle  bigger  data  sets.  Deep  learning  can  be  equated  to 

“scalable  machine  learning.”  Traditional,  or  “non-deep,”  machine  learning  is  more reliant  on  human  input.  In  order  to  grasp  the  distinctions  between  different  data inputs,  human  specialists  choose  a  set  of  features,  which  typically  requires  more structured  data  to  learn. 

Artificial  neural  networks  (ANNs),  often  known  as  neural  networks,  are  built from  node  layers  that  each  have  an  input  layer,  one  or  more  hidden  layers,  and an  output  layer.  Each  node,  or  artificial  neuron,  is  connected  to  others  and  has  a weight  and  threshold  that  go  along  with  it.  Any  node  whose  output  exceeds  the defined  threshold  value  is  activated  and  begins  providing  data  to  the  network’s uppermost  layer.  Otherwise,  that  node  does  not  transmit  any  data  to  the  network’s next  layer.  The  term  “deep  learning”  simply  describes  the  quantity  of  layers  in  a neural  network.  Deep  learning  algorithms  or  deep  neural  networks  can  be  defined as  neural  networks  with  more  than  three  layers,  inclusive  of  the  input  and  output. 

Just  a  basic  neural  network  is  one  with  three  layers  or  less.  Deep  learning  and neural networks are credited with quickening development  in fields including speech recognition,  computer  vision,  and  natural  language  processing. 

1.6 

Deep  Learning  and  Deep  Programming 

Deep  learning  is  a  subset  of  machine  learning  that  uses  artificial  neural  networks with  multiple  layers  to  model  and  solve  complex  problems.  It  involves  training the  neural  network  on  large  data  sets  to  learn  patterns  and  make  predictions  or

1.7 Deep Learning Networks

7

classifications.  Deep  learning  has  been  successful  in  a  wide  range  of  applications, including  computer  vision,  natural  language  processing,  speech  recognition,  and robotics. 

On  the  other  hand,  deep  programming  refers  to  the  process  of  creating  complex software  systems  with  many  layers  of  abstraction  and  complexity.  It  involves designing  and  implementing  software  systems  that  are  highly  modular,  scalable, and  maintainable.  Deep  programming  involves  a  range  of  programming  techniques and  paradigms,  such  as  functional  programming,  object-oriented  programming,  and design  patterns. 

While  both  deep  learning  and  deep  programming  involve  complex  systems 

with  many  layers  of  abstraction,  they  are  fundamentally  different  in  terms  of  their goals  and  techniques.  Deep  learning  is  concerned  with  learning  from  data  to  make predictions  or  classifications,  while  deep  programming  is  concerned  with  designing and  implementing  complex  software  systems  that  are  efficient,  maintainable,  and scalable. 

The  DL  model  uses  deep  learning  networks  such  as  NN,  CNN,  RNN,  etc.  to model  a  given  data  set.  A  data  set  may  be  an  outcome  of  the  Boltzmann  distribution of  a  particular  physical  process.  Observed  data  sets  can  be  considered  as  Gibbs sampling  on  a  given  physical  process. 

Deep  programming  is  emerging  as  a  new  trend  in  code  generation  in  a  given language  for  a  given  silicon  architecture. 

1.7 

Deep  Learning  Networks 

Deep  learning  networks  are  artificial  neural  networks  with  multiple  layers  of interconnected  nodes,  also  known  as  artificial  neurons.  These  networks  are  typically composed  of  an  input  layer,  one  or  more  hidden  layers,  and  an  output  layer.  Each layer  consists  of  many  nodes  that  perform  a  specific  computation  and  communicate with  nodes  in  the  adjacent  layers. 

The  input  layer  receives  data  from  the  outside  world  and  passes  it  to  the  hidden layers,  where  the  data  is  transformed  through  a  series  of  nonlinear  transformations. 

The  output  layer  produces  the  final  output  of  the  network,  which  is  a  prediction  or classification  based  on  the  input  data. 

Deep  learning  networks  can  be  divided  into  two  main  types:  feed  forward  neural networks  and  recurrent  neural  networks.  Feed  forward  neural  networks  are  the most  common  type  of  deep  learning  network  and  are  used  in  tasks  such  as  image recognition  and  speech  recognition.  Recurrent  neural  networks,  on  the  other  hand, are  used  in  tasks  such  as  natural  language  processing  and  speech  recognition,  where the  input  data  is  a  sequence  of  values,  such  as  a  sentence  or  a  sound  waveform. 

The  power  of  deep  learning  networks  comes  from  their  ability  to  automatically learn  complex  features  from  the  input  data  without  human  intervention.  This  makes them  well  suited  for  tasks  where  the  data  is  high-dimensional  and  complex,  such as  image  and  speech  recognition.  With  the  help  of  large  data  sets  and  powerful
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hardware,  deep  learning  networks  have  achieved  state-of-the-art  performance  in many  areas,  including  computer  vision,  natural  language  processing,  and  speech recognition. 

Deep  learning  is  essentially  a  human  brain  imitation;  it  is  also  a  multi-neural network  design  with  a  lot  of  parameters  and  layers.  Below  are  the  three  main  types of  network  designs. 

Convolutional  Neural  Network  Convolutional  neural  networks,  which  are  essentially  artificial  neural  networks,  are  most  frequently  employed  in  the  field  of computer  vision  for  the  analysis  and  classification  of  pictures.  It  is  a  deep  learning technique  that  takes  an  input  picture  and  applies  weights  or  biases  to  distinct characteristics  or  objects  so  that  it  can  distinguish  between  them.  Convolutional layers,  pooling  layers,  fully  connected  layers,  and  normalizing  layers  are  frequently seen  in  a  CNN’s  hidden  layers.  The  arrangement  of  the  visual  cortex  served  as inspiration  for  the  design  of  a  ConvNet,  which  is  like  the  connection  network  of neurons  in  the  human  brain. 

Recurrent  Neural  Network  Recurrent  neural  networks  are  a  class  of  neural network  design  that  are  widely  employed  in  the  discipline  of  natural  language processing  and  are  used  in  sequence  prediction  issues.  Recurrent  neural  networks (RNNs)  are  so  named  because  they  consistently  complete  the  same  job  for  every element  in  a  sequence,  with  the  results  depending  on  the  previous  calculations. 

Another  way  to  conceive  of  RNNs  is  that  they  have  a  “memory”  that  stores  details about  previous  calculations. 

Recursive  Neural  Network  To  make  a  structured  prediction  across  input  structures  of  varying  sizes  or  a  scalar  prediction  on  it,  a  recursive  neural  network  uses the  same  set  of  weights  repeatedly  over  a  structured  input.  This  is  done  by  traversing a  given  structure  in  topological  order. 

Deep  learning  is  a  category  of  ML  that  emphasizes  training  the  computer  about the  basic  instincts  of  human  beings.  Deep  learning  required  large  data  sets  to  learn from  and  to  train  the  model.  Deep  learning  is  used  in  many  real-world  scenarios such  as  the  following: 

1.  Vision  for  driverless  cars  (Tesla) 

2.  Services  of  chatbots  (insurance,  banking,  e-shopping) . •

3.  Pharmaceuticals  (customizing medicines based on the genome and diseases) 

Deep  learning  is  a  type  of  machine  learning  and  artificial  intelligence  (AI)  that imitates  the  way  humans  gain  certain  types  of  knowledge  [1]. It  is  beneficial  in collecting,  analyzing,  and  interpreting  large  volumes  of  data.  This  will  in  turn  speed up  the  process  and  fast  analytics  can  be  performed  to  obtain  accurate  predictions. 

A  deep  neural  network  (DNN)  is  a  neural  network  with  multiple  hidden  layers between  the  input  and  output  layers.  Similar  to  shallow  NNs,  DNNs  can  model complex  nonlinear  relationships. 

This  1D  convolution  is  a  cost-saver;  it  works  in  the  same  way  but  assumes  a 1-dimension  array  that  makes  a  multiplication  with  the  elements.  If  you  want  to
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visualize  a  matrix  of  either  row  or  columns,  i.e.,  a  single  dimension  when  we multiply,  we  get  an  array  of  the  same  shape  but  of  lower  or  higher  values;  thus, it  helps  in  maximizing  or  minimizing  the  intensity  of  values.  The  link  here  provides a  simulation  of  1D  convolution.  More  discussion  on  3D  convolution  here. 

3D  array  from  jpg  or  gif  file  data.  So  the  main  difference  is  that  it  can  pass  a  data format  argument  to  img_to_array  to  put  the  channels  either  at  the  first  axis  or  the  last axis.  Further,  it  would  ensure  that  the  returned  array  is  a  3D  array  (for  example,  if the  given  input  img  is  a  2D  array  which  might  represent  a  grayscale  image,  then it  would  add  another  axis  with  dimension  1  to  make  it  a  3D  array).  In  TensorFlow there  are  different  convolution  layers:  Conv1d,  Conv2d,  and  Conv3d.  The  first  one is  used  for  one-dimensional  signals  like  sounds;  the  second  one  is  used  for  images, grayscale  or  RGB  images;  and  both  cases  are  considered  to  be  two-dimensional signals.  The  last  one  is  used  for  three-dimensional  signals  like  video  frames  and images  as  two-dimensional  signals  vary  with  time.  In  this  case  Conv1d  is  used  as  a one-dimensional  signal  and  you  can  specify  the  number  of  filters  in  the  arguments of  a  method. 

1.8 

Deep  Learning  Network  Deployment 

Neural  network  (NN),  convolutional  neural  network  (CNN),  recursive  neural 

network  (RNN),  etc.  are  considered  to  be  deep  learning  networks.  Deep  learning networks  are  used  in  real-time  application  systems  in  various  domains  such  as  health and  industrial  technology  [2–11]. 

Deep  learning  is  a  subset  of  machine  learning  that  uses  artificial  neural  networks with  multiple  layers  to  model  and  solve  complex  problems.  It  is  inspired  by  the structure  and  function  of  the  human  brain,  where  each  neuron  processes  information and  communicates  with  other  neurons  through  connections  called  synapses. 

In  deep  learning,  a  neural  network  is  typically  composed  of  multiple  layers  of interconnected  nodes  that  process  input  data  and  gradually  transform  it  into  output data  through  a  process  called  forward  propagation.  During  training,  the  network adjusts  its  parameters  (weights  and  biases)  to  minimize  the  difference  between its  predictions  and  the  true  labels  of  the  training  data,  using  a  technique  called backpropagation. 

Deep  learning  has  proven  to  be  very  effective  in  solving  a  wide  range  of problems  in  computer  vision,  natural  language  processing,  speech  recognition,  and other  domains,  achieving  state-of-the-art  performance  on  many  benchmarks.  It  has enabled  many  applications  such  as  self-driving  cars,  image  recognition,  language translation,  and  more. 
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There  are  numerous  examples  of  deep  learning  applications  across  various 

domains.  Here  are  a  few  examples: 

Image  recognition: 

Deep  learning  has  been  used  to  develop  highly  accurate  image 

recognition  systems,  such  as  Google  Photos,  which  can  accurately  identify  and categorize  images  based  on  their  content. 

Natural  language  processing  (NLP): 

Deep  learning  has  been  applied  to  NLP  tasks 

such  as  sentiment  analysis,  language  translation,  speech  recognition,  and  text generation.  For  example,  the  Google  Assistant  uses  deep  learning  to  understand natural  language  queries  and  respond  with  relevant  information. 

Autonomous  vehicles: 

Deep  learning  is  a  key  technology  in  the  development  of 

autonomous  vehicles.  Self-driving  cars  use  deep  learning  to  analyze  sensor  data, such  as  camera  images,  LIDAR  data,  and  radar  data,  to  recognize  and  respond  to different  driving  scenarios. 

Healthcare: 

Deep  learning  is  being  used  to  improve  medical  diagnoses  and 

treatments.  For  example,  deep  learning  algorithms  can  analyze  medical  images to  detect  diseases  such  as  cancer  or  to  predict  patient  outcomes  based  on  medical records. 

Robotics: 

Deep  learning  has  been  applied  to  robotics,  enabling  robots  to  perform 

complex  tasks  such  as  grasping  and  manipulation  of  objects.  This  has  numerous applications  in  manufacturing,  agriculture,  and  other  industries. 

[image: Image 7]

Chapter  2 

Low-Code  and  Deep  Learning 

Applications 

 Simplicity  is  the  ultimate  sophistication  in  the  world  of  deep 

 learning  applications. 

2.1 

Role  of  Tool  Set  in  Applications 

Artificial  intelligence  (AI)  training  environments  are  different  from  deployment platforms.  A  similar  programming  environment  provides  obstruction  to  carry trained  networks  into  limited  deployment  capabilities.  In  creation  of  these  model developments,  there  is  certainly  a  strong  need  to  minimize  the  size  of  the  model in  the  context  of  weights  at  the  cloud  deployment.  This  optimization  process  is  not needed  if  there  are  cloud-side  deployment  policies. 

In  creation  of  these  model  developments,  there  is  certainly  a  strong  need  to minimize  the  size  of  the  model  in  the  context  of  weights  at  the  cloud  deployment. 

This  optimization  process  is  not  needed  if  there  is  a  cloud-side  deployment  policy. 

Deployment  of  trained  models  mapped  on  to  edge  requires  a  lot  more  attention and  specification.  In  the  context  of  an  Android  phone  working  as  an  IoT  device, it  will  work  well  for  small-size  models.  Deploying  a  huge  model  in  an  Android phone  might  create  challenges  and  may  not  work  well,  if  model  size  is  reduced  to fit  in  an  Android  phone.  Intelligence  IoT  edge  is  playing  a  critical  role  in  real-time inferencing. 

Historically,  there  have  been  systems  with  a  high  amount  of  engineering 

complexity  in  terms  of  deployment  and  also  in  operation.  For  example,  SCADA is  one  such  system  that  has  been  working  in  the  power  generation  industry,  oil  and gas  industry,  cement  factories,  etc.  In  fact,  SCADA  includes  humans  in  a  loop  and makes  it  as  supervisory  control  and  data  acquisition. 

In  the  advent  of  deep  learning  networks  and  its  success  in  the  modern  digital  side, there  have  been  huge  amounts  of  interest  among  researchers  to  carry  deep  learning models  to  abovementioned  industrial  verticals  and  trying  to  bring  up  intelligent control  and  data  acquisition.  In  the  place  of  a  supervisor,  it  appears  that  an  intelligent IoT  edge  is  coming  up  to  perform  those  tasks  that  are  handled  by  human  beings  in the  form  of  a  supervisor.  Thus,  there  is  immense  interest  in  making  IoT  edge  as 
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intelligent  systems  in  these  core  engineering  verticals  apart  from  consumer  industry requirements. 

Working  with  Deep  Learning  Networks 

Deploying  DL  networks   in  cloud  and  also  in  IoT  edge. 

1.  How  to  Scale  up  Deep  Learning  Workloads  in  IoT  Edge? 

2.  How  is  the  time  to  train  and  deploy  models  of  deep  learning  networks shortened? 

3.  How  is  a  lack  of  deep  learning  skills  in  a  given  organization  addressed? 

In  the  case  of  deployment,  there  is  a  trend  in  making  smartphones  as  IoT  edge such  that  the  same  device  can  be  used  without  much  investment  during  the  learning time  of  each  learner.  However,  industrial  deployment  is  expected  to  happen  in devices  like  Jetson  Nano,  Ultra96-V2,  mmWave  Radar  IWR  6843,  etc. 

Figure  2.1  provides  a  detailed  information  on  the  capability  of  the  tool  set  which is  used  in  the  design  and  development  of  AI  applications.  As  shown  in  Fig. 2.1, a good  tool  set  can  go  along  with  a  less  skilled  human  team.  AI  being  a  new  element  in industry,  there  is  not  much  maturity  in  the  tool  set  and  also  in  human  skill  on  given tasks.  Effort  is  made  to  provide  details  on  useful  tool  set  and  sample  commands. 

Moreover,  effort  is  given  to  train  human  resources  for  the  AI  market  segment.  Tool set  capability  has  been  improving  a  lot  in  open  source. 

Discussion  on  low  code  or  no  code  is  given  in  [12]. Mostly,  it  appears  that  low code  is  the  order  of  the  day  in  the  cloud  native  side  of  AI,  ML,  and  DL  applications. 

Fig.  2.1  Tool  set  in  AI 

applications

2.2 Schematic Representation of Deep Learning Architecture
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But  in  embedded  systems  (called  as  IoT  edge  or  IoT  node  in  modern  Industry  4.0), still  there  is  a  challenge  in  deploying  AI,  ML,  and  DL  applications  in  edge  or  in node  native  applications. 

In  the  past,  there  have  been  two  major  routes  for  businesses  to  take  on  their  way to  application  development.  Buy  apps  ready-made  from  an  external  vendor  or  build and  customize  them  from  scratch  using  skilled  developers  and  coders.  Trending news  in  market  shows,  there  is  rise  and  growing  sophistication  of  low-code  and  no-code  development  alternatives  that  bring  the  power  of  application  development  to users  across  the  business. 

Experiment  performed  on  chatGPT  to  get  code  for  “matrix  multiplication  in cores.”  A  generated  code  by  chatGPT  is  clean  and  as  good  as  a  hand  coded by  human.  It  appears  that  code  generation  is  much  more  involved  and  requires information  on  silicon  architecture  and  also  suitable  algorithms  for  the  same  silicon. 

Code  generation  is  not  new  in  industry,  for  example,  MATLAB  used  to  generate  C 

code  for  a  given  Simulink  diagram.  DLTRAIN  is  a  new-generation  tool  set  that  is going  step  ahead  and  it  is  very  close  to  the  no-code  route.  Tool  sets  play  a  major role  in  industry.  Most  of  them  are  open-source  tools  and  increasingly  complex  to use  and  provide  commercial  service  in  inference.  DLTRAIN  is  developed  to  serve as  a  single  tool  set  to  handle  training  and  embedded  deployment.  Discussion  from 

[13]  “Software  Engineering  Institute  in  Carnegie  Mellon  University”  is  given  in  the following. 

The  need  for  an  engineering  discipline  to  guide  the  development  and  deployment  of  AI capabilities  is  urgent.  For  example,  while  an  autonomous  vehicle  functions  well  cruising down  an  empty  race  track  on  a  sunny  day,  how  can  it  be  designed  to  function  just as  effectively  during  a  hail  storm  in  New  York  City?  AI  engineering  aims  to  provide a  framework  and  tools  to  proactively  design  AI  systems  to  function  in  environments characterized  by  high  degrees  of  complexity,  ambiguity,  and  dynamism.  The  discipline  of AI  engineering  aims  to  equip  practitioners  to  develop  systems  across  the  enterprise-to-edge spectrum,  to  anticipate  requirements  in  changing  operational  environments  and  conditions, and  to  ensure  human  needs  are  translated  into  understandable,  ethical,  and  thus  trustworthy AI. 

2.2 

Schematic  Representation  of  Deep  Learning  Architecture 

Data  collection  is  presented  in  the  bottom  layer  of  Fig. 2.2. Engineering  domain knowledge  is  key  to  handling  data  collection  for  training,  testing,  and  deployment of  deep  learning  networks. 

The  top  layer  handles  deployment  of  deep  learning  networks,  where  deployment might  happen  in  CPU,  GPU,  FPGA,  DSP,  or  combinations  of  mentioned  computing devices.  In  between  layer  includes  data  preprocessing,  training,  and  testing  of  deep learning  networks.  A  model  of  deep  leaning  networks  also  provided  the  above  data preprocessing  layer.  Generic  AI  applications  include  the  following  steps  as  part  of the  necessary  steps  to  design,  develop,  and  deploy  deep  learning  networks. 
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Fig.  2.2  Layers  in  AI  Application  design  and  deployment 

2.3 

Deep  Learning  Applications 

 2.3.1 

 Data  Set 

Independent  Chap. 5  is  added  to  provide  information  to  create  a  data  set  which  is used  to  train  and  test  restricted  Boltzmann  versions  of  deep  learning  networks. 

2.3 Deep Learning Applications
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Data  set  collection  requires  domain  knowledge  of  a  particular  physical  system. 

Thus,  readers  request  to  extend  their  reading  of  respective  domain  research  papers or  books  to  create  a  data  set. 

Configuration  “data  set  with  labels”  itself  is  a  huge  segment  of  programming. 

There  are  many  open-source  data  set  models  available  for  this  purpose.  In  the tutorial  chapter,  few  data  sets  are  given  to  use  with  workflow  in  learning.  For example,  MNIST  data  set  and  Potato  Leaf  data  set  are  those  two  items  used  in  the tutorial. 

 2.3.2 

 Model  Design  for  Deep  Learning  Network 

In  the  deep  learning  framework,  the  network  models  include  NN,  CNN, RNN, 

LSTM,  GAN,  VAE, etc.  Many  more  variations  also  persist  but  mostly  all  are  based on  the  restricted  Boltzmann  machine  (RBM). 

Independent  Chap. 6  is  included  to  handle  mathematical  theory  which  is  used  in designing  deep  learning  networks.  Readers  are  expected  to  refer  to  books  or  research papers  on  probability  distribution,  Boltzmann  distribution,  restricted  Boltzmann distribution,  and  neural  networks. 

 2.3.3 

 Train  Model 

Training  of  a  deep  learning  network  model  uses  the  available  hardware  and  is  one of  the  most  time-consuming. 

PyTorch  and  TensorFlow  are  two  major  open-source  platforms  that  are  generally used  in  training  a  given  deep  learning  network  model  through  the  available  data  set. 

The  TensorFlow  tool  set  is  used  in  this  book  to  illustrate  examples  and  associated events  in  training  NN  and  CNN. 

IBM  Cloud  service  offers  both  of  these  open-source  platforms  along  with  IBM 

WATSON  Studio. 

DLtrain  is  designed  and  developed  (with  no  dependency  on  open-source  AI 

software  packages). 

 2.3.4 

 Test  Model 

A  trained  model  is  required  to  undergo  testing  by  using  test  data  set  which is  segmented  for  testing.  Testing  also  requires  complex  platforms  like  PyTorch, DLtrain,  TensorFlow,  etc.  But  workload  may  be  compared  to  training  deep  learning networks. 
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 2.3.5 

 Save  Model 

A  trained  and  tested  model  is  required  to  be  stored  in  storage  media  by  using  save model  methods  that  are  defined  in  PyTorch,  TensorFlow,  DLtrain,  etc.  As  of  now there  is  no  IEEE  standard  file  format  to  store  a  deep  learning  network  model. 

 2.3.6 

 Load  Model 

A  trained  and  tested  model  is  useful  to  perform  inference.  Load  model  methods  are using  a  tool  set  available  in  PyTorch,  TensorFlow,  DLtrain,  etc.  The  model  can  be deployed  on  to  different  types  of  embedded  devices. 

 2.3.7 

 Deployment 

Microservice  appears  to  be  trending  in  using  the  inference  segment.  Example  is given  to  illustrate  methods  and  apparatus  used  in  the  training  of  DL  networks  by using  CPU  and  CPU. +GPU  hardware  configurations. 

DLtrain  provides  a  tool  set  which  can  be  used  in  cloud  native  AI  applications  and also  edge  or  node  native  AI  applications.  Thus,  the  deployment  team  is  not  required to  develop  a  new  set  of  tools  or  quantize  trained  networks  to  fit  in  small  computing infra-enabled  embedded  systems. 

2.4 

Custom  Framework:  DLtrain  for  AI 

Business  owners  for  enterprises  of  all  sizes  are  struggling  to  find  the  next  generation of  solutions  that  will  unlock  the  hidden  patterns  and  value  from  their  data.  Many organizations  are  turning  to  artificial  intelligence  (AI),  machine  learning  (ML), and  deep  learning  (DL)  to  provide  higher  levels  of  value  and  increased  accuracy from  a  broader  range  of  data  than  ever  before.  They  are  looking  to  AI  to  provide the  basis  for  the  next  generation  of  transformative  business  applications  that  span hundreds  of  use  cases  across  a  variety  of  industry  verticals.  AI,  ML,  and  DL  have become  hot  topics  with  global  IT  clients.  They  are  driven  by  the  confluence  of  next-generation  ML  and  DL  algorithms,  new  accelerated  hardware,  and  more  efficient tools  to  store,  process,  and  extract  value  from  vast  and  diverse  data  sources  that ensure  high  levels  of  AI  accuracy.  However,  AI  client  initiatives  are  complex  and often  require  specialized  skills,  ability,  hardware,  and  software  that  are  often  not readily  available.  AI-enabled  application  deployment  includes  both  the  software  and

2.4 Custom Framework: DLtrain for AI
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the  hardware  infrastructure  that  are  deeply  optimized  for  a  complete  production  AI system. 

The  engineering  workforce  in  industries  is  highly  enthusiastic  about  adopting new  development  tools  and  the  accompanying  environments.  Engineering  college teaching  staff  with  good  interest  in  setting  up  a  “Cognitive  Computing  Lab”  in  their college  after  going  through  the  proposed  workshop.  Self-motivated  students  with  an interest  in  learning  DL-based  application  development  and  deployment  in  IoT  edge. 

The  abovementioned  problems  and  associated  tool  sets  have  their  own  difficulties at  many  levels.  DLTRAIN  is  designed  to  remove  most  of  the  issues  and  provides  a good  solution  for  train,  test,  and  deploy  given  NN  and  CNN  models.  Deployment can  be  on  the  IoT  edge  as  well. 

A  custom  AI  framework  provides  consistency  across  AI  in  IoT  edges.  For 

example,  real-time  inference  is  emerging  as  a  critical  need  of  the  food  and  medical service  delivery  industry  to  process  and  extract  value  from  vast  and  diverse  data sources  that  ensure  high  levels  of  accuracy  in  delivered  service.  However,  AI-enabled  enterprise  service  initiatives  are  complex  and  often  require  specialized skills,  ability,  hardware,  and  software  that  is  often  not  readily  available.  AI-enabled application  deployment  requires  being  deeply  optimized  and  also  production-ready. 

The  host  OS  is  provided  by  NVIDIA  and  the  same  is  used  by  the  team  in NVIDIA.  NVIDIA  provides  a  driver  to  handle  A100  hardware  from  CPU.  Most importantly,  “container  runtime”  provides  remote  access  to  deploy  containers  for AI  model  training.  Enterprise  business  customers  have  the  option  to  use  their application  containers  for  DL/ML.  Fresh  AI  model  scripts  or  pre-trained  models can  be  used  as  an  input  to  build  AI  applications. 

Democratize  deep  learning:  Pushing  the  limit  on  deep  learning’s  accuracy 

remains  an  exciting  area  of  research,  but  as  the  saying  goes,  “perfect  is  the  enemy of  good.”  Existing  models  are  already  accurate  enough  to  be  deployed  in  a  wide range  of  applications.  Nearly  every  industry  and  scientific  domain  can  benefit  from deep  learning  tools.  If  many  people  in  many  sectors  are  working  on  the  technology, we  will  be  more  likely  to  see  surprising  innovations  in  performance  and  energy efficiency. 

The  DLTRAIN  platform  provides  options  to  train  NN  and  CNN  models  by  using an  image  class  of  data  set.  DLTRAIN  is  designed  to  make  easy-to-deploy  DL  in  edge computing  devices.  DLTRAIN  is  a  perfect  tool  to  handle  issues  in  porting  trained DL  models  in  edge  computers  that  are  having  CPU  and  GPUs.  A  silicon  vendor  can take  advantage  of  the  above  infrastructure  and  move  their  GPU  silicon  into  IoT  edge device  market.  Porting  PyTorch  and  TensorFlow  models  on  to  embedded  device  is one  of  the  challenging  problems  and  DLTRAIN  is  solving  the  same  issue.  DLTRAIN 

provides  C  and  C.++ code  along  with  a  license  for  the  customer  team  to  quickly deploy  DL-enabled  devices  into  the  market. 

[image: Image 8]
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2.5 

Sample  AI  Application  Deployment 

 2.5.1 

 Quick  Look:  IBM  Watson 

AI  is  used  everywhere  by  everyone,  specifically  by  professionals  to  transform  data; this  book  resources  the  innovative  business  models  with  AI.  Further,  the  book reveals  and  demonstrates  how  to  use data  to make  recommendations  with confidence and  design,  develop,  deploy,  and  conduct  advance  research  and  discovery  through IBM  Watson  and  other  open-source  tools  with  innovative  learning  experiences.  The goal  of  this  book  is  to  introduce  and  experience  the  AI  systems  to  supplement  human intelligence  along  with  IBM  Watson  Studio. 

Watson  Studio  streamlines  the  machine  learning  and  deep  learning  operations necessary  to  integrate  AI  into  your  company  and  spur  creativity.  It  offers  a  set  of tools  that  enable  data  scientists,  application  developers,  and  subject  matter  experts to  connect  to  data,  manage  it,  and  utilize  it  to  create,  train,  and  deploy  models  at scale.  An  extremely  strong  computational  infrastructure  is  necessary  for  successful AI  initiatives,  together  with  a  team,  data,  and  algorithms. 

 2.5.2 

 IBM  Watson  Service  and  Monitor  Tomato  Farm 

Customization-Ready  Visual  Recognition  Microservice 

Application  is  created  to  grade  tomato  quality.  Tomatoes  must  be  assessed  before they  are  submitted  to  distribution  outlets.  For  example,  sandwich  grade  tomato requires  “high  water  content  and  also  zero  spots  (as  shown  in  Fig. 2.3)  in  defection on  its  skin.”  This  is  because  uncooked  tomato  is  used  in  sandwiches  and  human beings  are  subjected  to  eat  uncooked  tomato  along  with  the  sandwich.  Thus, the  safety  of  human  health  is  important.  The  agriculture  sector  brings  up  major challenges  in  handling  workflow  to  monitor  the  health  of  growing  crops.  Most workers  look  at  crop  growth  on  a  daily  basis  and  make  a  decision  on  “to  apply pesticide  or  not.”  If  there  is  a  delay  in  applying  pesticides,  then  the  crop  will  not yield  a  good  harvest.  Labor  cost  per  day  increased  and  also  not  many  young  people Fig.  2.3  Agriculture  sector
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have  the  inclination  to  take  up  work  on  a  farm  on  a  daily  wage  basis.  Added  to  this, there  is  a  need  to  have  the  capital  to  train  these  workforces  and  deploy  them  in  the field.  All  these  added  up  to  the  level  in  which  farmland  owners  get  nervous  to  go  in for  short-term  crops  such  as  potato,  tomato,  wheat,  etc. 

IBM  Watson  Studio-based  visual  recognition  service  is  used  to  build  an  application  that  can  be  a  digital  assistant  to  the  agriculture  workforce  in  the  agriculture industry.  In  case,  if  this  is  expected  to  work  locally,  then  a  local  deployment  of infrastructure  (visual  insights)  is  required  for  visual  intelligence  service,  leveraging automation  to  enhance  agriculture  workers’  productivity,  identifying  crop  disease, and  acting  on  insights  faster  with  machine  learning  optimization.  This  will  lead  to sustained  output  from  harvest  and  also  provide  relief  to  agriculture  farm  owners to  manage  cash  flow  well.  Deploy  AI-based  applications  in  agriculture  farms  on  a large  scale  by  using  on-premise  inference  ability  in  the  form  of  mobile  applications or  web  applications.  In  this  direction,  IBM  cognitive  computing  (visual  insights) infrastructure  appears  to  be  the  best  fit  to  deliver  high-performance  computing requirements. 

Deployment  companies  can  customize  inference  applications  for  smartphones. 

Tomato  packing  line  workers  use  visual  intelligence  micro  web  service  to  become part  of  the  workflow  to  monitor  and  deliver  good-quality  tomatoes.  During  monitoring,  workers  can  be  efficient  by  using  a  “customized  visual  insight  application service”  as  a  digital  assistant  to  check  the  quality  of  tomatoes. 

Cost  per  diagnosis  is  a  critical  parameter  and  the  complexity  of  workflow  to perform  diagnosis  is  another  parameter.  “Customized  visual  insight  application service”  addresses  both  these  parameters  by  using  the  IBM  Watson  IoT  platform to  reduce  complexity  in  workflow  and  the  visual  recognition  platform  to  reduce cost  per  diagnosis.  Innovation  in  creating  optimal  yet  robust  models  by  using  deep learning  convolutional  neural  networks  has  led  to  low-cost  “customized  visual insight  application  service.” 

For  example,  agriworkers  start  diagnosis  work  and  get  results  within  2–3  minutes by  using  a  smartphone  app  with  a  few  clicks  (sub  5  clicks).  Also  cost  per  diagnosis is  5  Rs.  Workflow  complexity  for  diagnosis  is  removed  and  this  is  brought  down  to a  few  clicks  in  smartphone  applications. 

Tomato  crop  monitoring  requires  sensor  deployment  in  the  tomato  field.  These sensors  (IoT  node)  are  used  to  record  data  (for  example,  humidity,  wind  speed,  rain level,  sunlight  intensity,  soil  moisture,  etc.)  and  send  recorded  data  to  IoT  edge. 

The  application  of  artificial  intelligence  at  the  IoT  edge  is  aimed  at  comprehending incoming  sensor  data  and  transmitting  classification  or  prediction  outcomes  to  the Watson  IoT  platform. 

The  application  deployed  in  edge  works  as  an  MQTT  client  device  and  provides the  following  two  services:  send  notification  service  to  those  who  are  in  the subscription  list  and  receive  notifications  from  those  IoT  devices  that  are  in  the publish  list.  The  Pub-Sub  model-based  “application  deployed  in  edge”  provides the  latest  information  on  crop  health  to  agriculture  workers  and  also  to  those  in the  subscription  list.  IBM  Watson  provides  the  MQTT  broker  platform  to  manage MQTT  clients  that  are  deployed  in  IoT  nodes,  IoT  edge,  applications  in  IBM
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Cloud,  and  user  access  devices  such  as  smartphone,  desktop  PC,  etc.  For  example, applications  in  IoT  sensors  and  IoT  edge  are  working  in  asynchronous  mode.  In  this case,  there  is  a  need  to  have  a  broker  to  handle  data  collection  from  IoT  nodes  or from  IoT  edge  to  both.  “Application  deployed  in  edge”  is  designed  to  work  with  IoT 

nodes  or  IoT  edges  that  are  connected  via  4G  or  5G  or  Starlink  satellite  modem. 

“Application  deployed  in  edge”  is  working  as  a  microservice  to  manage  title-based Pub-Sub  message  handling  service.  IoT  nodes  and  IoT  edges  are  not  required  to have  global  IP  addresses  to  use  the  abovementioned  service.  It  is  expected  that  IoT 

node  devices  in  the  field  may  not  have  good  hardware  and  software  infrastructure  to have  clients  that  are  based  on  rest  API, XMPP,  etc.  “Application  deployed  in  edge” 

is  supporting  text  string,  number  string,  and  JPG  data. 

A  sensor  network  is  deployed  in  the  tomato  field.  Optionally,  sensor  nodes  can be  connected  directly  to  the  Watson  IoT  platform  by  using  the  MQTT  client  in  the sensor.  But  this  is  not  recommended  because  sensor  nodes  need  to  have  a  good amount  of  hardware  infrastructure  to  make  the  above  happen.  It  appears  that  the optimal  way  is  to  deploy  IoT  edges  in  the  field  and  connect  with  IoT  nodes  (sensors). 

In  this  process,  the  amount  of  investment  required  for  an  IoT  node  (sensor)  network will  be  optimal.  IoT  edge  will  have  MQTT  clients  and  edge  will  be  connected with  the  Watson  IoT  platform  as  well  by  using  4G  network  or  by  using  an  Internet connectivity  infrastructure  in  a  given  tomato  field. 

“Application  deployed  in  edge”  is  a  limited  capability  MQTT  broker  and  it is  used  to  include  all  those  nodes  and  edges  that  are  part  of  a  2G/3G  network. 

Mostly,  it  provides  customized  service  to  each  node,  each  edge,  agriworkers,  tomato traders,  tomato  buyers,  and  farm  owners.  Web  service  and  smartphone  app  services are  deployed  in  IBM  Cloud.  The  IBM  Watson  AI  component  is  used  to  provide machine  learning  and  deep  learning  capability  to  web  application  and  mobile application  service.  The  mentioned  service  is  deployed  by  using  containers  (for example,  Docker).  For  long-term  benefit  to  farm  owners,  it  is  recommended  to  have an  on-premise  mini  cloud  platform  such  that  monthly  expenditure  is  cut  down  in communication,  and  also,  farm  owners  can  derive  advantage  by  having  near  real-time  service  for  the  abovementioned  personas. 

“Create  a  real-time  stream  of  sensor  data  and  receive  control  data  for  the Agriculture  fields  with  MQTT  and  Kubernetes.”  This  is  meant  to  build  the  required product  technical  prototype  and  will  show  how  to  turn  open  data  into  an  open event  stream  with  MQTT  and  microservices  on  Kubernetes.  MQTT  is  a  lightweight messaging  protocol  which  is  useful  in  situations  of  low  network  bandwidth. 

Featured  technologies: 

1.  Kubernetes:  container  orchestration 

2.  MQTT:  lightweight  publish/subscribe  protocol 

3.  Application  deployed  in  edge  (limited  and  yet  AI-driven  MQTT  broker) 

Workflow  with  major  tool  chain: 

1.  Create  Kubernetes  cluster. 

2.  Setup  Openshift. 
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3.  Configure  container  registry. 

4.  Build  required  images. 

5.  Create  Helm  overrides.yaml. 

6.  Install  with  Helm. 

The  user  (farm  owner,  agriworker,  tomato  sales  shop,  tomato  buyer)  accesses the  website  to  get  to  know  the  tomato  field.  The  purpose  of  each  person  might  be different,  though  data  is  the  same  for  all.  Web  browsers  directly  access  the  MQTT 

service. 

Edge  native  application  polls  the  agriculture  field  every  minute  looking  for  new data.  Data  is  pushed  to  MQTT  broker.  The  user  is  subscribed  to  the  MQTT  service and  sends  all  new  data  to  the  database.  On  any  new  data,  it  computes  the  current state  of  the  tomato  crop  in  a  given  field  and  publishes  both. 

 2.5.3 

 Real-Time  Audit  of  IP  Networks 

Kanshi  is  an  application  which  is  using  deep  learning  networks  to  perform  real-time audit  of  IP  networks.  An  early  version  of  Kanshi  and  its  source  code  is  shared  in GitHub  and  Tutorial  chapters  provide  a  detailed  workflow  which  is  very  useful  for learners  or  experts  to  try  out  deep  learning  applications  in  a  short  period  of  time. 

More  importantly,  tutorial  is  based  mostly  on  no  code.  Mentioned  workflow  with screenshots  given  in  Google  Drive  slides  and  the  same  is  used  by  many  in  the  past to  learn  deploying  DL  in  IoT  edges. 

[image: Image 9]

Chapter  3 

Introduction  to  Software  Tool  Set 

 The  right  tools  are  the  bridge  between  ideas  and  results  in  the 

 world  of  deep  learning. 

This  section  of  the  book  presents  tool  sets  for  deep  learning  applications  and primarily  focuses  to  illustrate  the  instructions  to  configure  the  environment  step by  step  with  data,  operating  system,  application,  hardware,  and  other  auxiliary services.  The  novelty  of  this  section  is  describing  the  detailed  practical  configuration techniques  for  setting  up  of  virtual  environments  with  TensorFlow  and  PyTorch open-source  tools  in  governance  with  IBM  Watson  and  Keras  Support.  The  book further  presents  the  eye-opening  techniques  to  install,  configure,  and  run  methods for  machine  learning  coding  editors  such  as  Jupyter  Notebook  in  various  environments.  More  importantly,  the  practical  training  of  tool  engagement  for  deep  learning is  inevitable  for  students,  professionals,  domain  experts  and  data  scientists  which  is highly  recommended  to  gain  the  best  learning  experience. 

Also,  this  chapter  includes  a  real-time  console  diagram  on  each  of  the  tool  and application  configuration  that  makes  domain  experts  understand  data  science  and associated  workflows  that  are  possible  in  the  Watson  AI  platform.  On  the  other hand,  it  will  be  practically  infeasible  to  train  data  scientists  on  domain  knowledge. 

The  intent  is  to  ensure  readers  of  this  book  will  have  insight  knowledge  of  tools  and their  working  environment  prior  to  writing  deep  learning  techniques.  Open-source software  provides  a  major  boost  for  deep  learning  applications.  It  is  known  that open-source  software  might  undergo  rapid  change  or  it  might  vanish  as  well.  Thus, busing  applications  based  on  open-source  software  modules  require  its  own  list  of tool  sets  to  maintain  for  building  apps  and  deploying  applications. 

3.1 

Virtual  Environment  for  Required  Tool  Set 

virtualenv  is  a  tool  to  create  isolated  Python  environments.  virtualenv  creates  a folder  which  contains  all  the  necessary  executable  to  use  the  packages  that  a  Python project  would  need.  A  virtual  environment  provides  an  option  for  each  project 
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Fig.  3.1  Virtual  environments  for  projects 

to  have  its  own  tool  chain  for  the  development  of  an  application  and  also  for deployment  of  an  application.  In  a  given  machine  many  applications  might  have deployed  and  each  application  might  require  a  list  of  libraries  or  packages. 

For  example,  in  Fig. 3.1,  library  A  has  two  versions  such  as  A1  and  A2.  Suppose application  J1  is  using  A1  and  J2  is  using  A2.  In  this  case,  it  is  important  to  keep  two versions  of  library  A1  and  A2.  Keeping  two  versions  of  the  library  creates  problems at  a  given  point  of  time. 

In  the  above  example,  library  A  has  two  versions  such  as  A1  and  A2.  It  is  not safe  to  keep  A1  and  A2  in  Project  1  and  expect  application  J1  to  work  properly. 

For  example,  /tmp/AI/  is  a  folder  used  as  project  root  directory.  And  “WorkDL” 

is  used  as  a  name  for  a  virtual  environment.  Following,  it  creates  a  copy  of  Python in  an  /tmp/AI/  folder  in  which  the  user  runs  commands  and  also  places  it  in  a  folder named  WorkDL. 

Use  link  [14]  for  source  code  and  workflow  documentation. 

After  completing  installation  of  “virtualenv,”  users  can  use  pip  or  pip3  to  install packages  of  their  choice.  Importantly,  installed  packages  via  pip  or  pip3  will  be placed  in  the  WorkDL  folder.  The  same  installed  packages  will  be  not  available globally  in  a  given  PC  or  device.  Using  pip  will  be  placed  in  the  WorkDL  folder isolated  from  the  global  Python  installation.  The  following  is  used  to  check  versions of  pip  in  this  environment: 

Virtual  environment  1.7  onwards  appears  to  be  good. 

3.2 TensorFlow: An AI Platform
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Virtual  environment  1.7  onwards  will  not  include  the  packages  that  are  installed globally. 

Listing  tool  sets  installed  in  WorkDL  can  be  obtained  by  using  pip  or  pip3.  In  this case  both  pip  and  pip3  provide  the  same  result.  The  location  of  pip  will  be  useful and  use  the  following  to  get  the  location  of  the  installation  folder.  Use  freeze  to  keep the  user  environment  consistent.  File  requirements.txt  has  a  list  of  packages  that  are installed  or  requires  installation.  The  same  is  equal  to  “pip  list,”  where  “pip  list” 

displays  installed  packages. 

3.2 

TensorFlow:  An  AI  Platform 

TensorFlow  is  an  open-source  machine  learning  platform  to  handle  deep  learning, machine  learning,  and  other  tasks  including  statistical  and  predictive  analytics.  It provides  the  following  four  key  abilities: 

1.  Efficiently  executing  low-level  tensor  operations  on  CPU,  GPU,  or  TPU 

2.  Computing  the  gradient  of  arbitrary  differentiable  expressions 

3.  Scaling  computation  to  many  devices,  such  as  clusters  of  hundreds  of  GPUs 4.  Exporting  programs  (“graphs”)  to  external  runtimes  such  as  servers,  browsers, mobile,  and  embedded  devices 

Keras  is  a  deep  learning  API  written  in  Python,  running  on  top  of  the  machine learning  platform  TensorFlow.  The  following  steps  are  useful  to  set  up  Keras  and use  Keras  to  build  deep  learning  applications.  In  TensorFlow,  data  is  not  stored  as integers,  floats,  or  strings.  These  values  are  encapsulated  in  an  object  called  a  tensor, a  fancy  term  for  multidimensional  arrays.  It  is  good  to  keep  data  in  TensorFlow instead  of  a  list  in  Python. 

1. Parallelism  By  using  explicit  edges  to  represent  dependencies  between  operations,  it  is  easy  for  the  system  to  identify  operations  that  can  execute  in  parallel. 

2. Distributed  execution  By  using  explicit  edges  to  represent  the  values  that flow  between  operations,  it  is  possible  for  TensorFlow  to  partition  your  program across  multiple  devices  (CPUs,  GPUs,  and  TPUs)  attached  to  different  machines. 

TensorFlow  inserts  the  necessary  communication  and  coordination  between 

devices. 

3. Compilation  TensorFlow’s  XLA  compiler  can  use  the  information  in  your dataflow  graph  to  generate  a  faster  code,  for  example,  by  fusing  together  adjacent operations. 

Starting  with  TensorFlow  1.6,  binaries  use  AVX  instructions  which  may  not  run on  older  CPUs.  However,  it  is  good  to  use  TensorFlow  2.0  or  latest  versions  of TensorFlow. 

AVX  (Advanced  Vector  Extension)  is  very  useful  to  perform  SIMD  computations in  a  given  CPU  hardware.  The  following  is  useful  to  test,  given  CPU  provides  AVX 

computing  support  or  not. 
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If  the  user  machine  does  not  have  a  GPU  and  the  user  wants  to  utilize  CPU 

as  much  as  possible,  then  the  user  should  build  TensorFlow  from  the  source optimized  for  user  CPU  with  AVX,  AVX2,  and  FMA  enabled.  (This  is  required  to build  TensorFlow  for  a  given  CPU  instead  of  installing  TensorFlow  that  is  directly available  as  an  installation  executable.) 

Refer  to  link  [15]  for  the  source  code  and  sample  documentation. 

Check  the  TF  installed  in  the  user  virtual  environment.  For  example,  the  above is  an  old  virtual  environment  and  in  that  TF  is  installed.  In  a  given  new  virtual environment  WorkDL,  install  by  using  URL  [16] 

 3.2.1 

 Keras  in  TensorFlow 

Install  TensorFlow  and  Keras  in  WorkDL.  Use  link  [16]  for  more  information  on Keras  Installation 

File  requirements.txt  is  created  in  the  /tmp/jetson  folder  by  using  the  command 

“pip  freeze  requirements.txt.”  The  created  file  is  empty  and  has  added  items  for Keras  and  TF  installation.  Use  link  [17]  to  obtain  a  workflow  which  is  used  in  Keras to  train  the  TensorFlow  model. 

Step  1.  Set  up  your  environment. 

Step  2.  Install  Keras. 

Step  3.  Import  libraries  and  modules. 

Step  4.  Load  image  data  from  MNIST. 

Step  5.  Preprocess  input  data  for  Keras. 

Step  6.  Preprocess  class  labels  for  Keras. 

Step  7.  Define  the  model  architecture. 

Step  8.  Compile  model. 

Step  9.  Fit  model  on  training  data. 

Step  10.  Evaluate  the  model  on  test  data. 

 3.2.2 

 TensorFlow  Image  in  Docker 

What  is  needed  to  run  a  TensorFlow-based  application  in  a  container? 

Docker  is  the  easiest  way  to  enable  TensorFlow  GPU  support  on  Linux  since  only the  Nvidia®  GPU  driver  is  required  on  the  host  machine  (the  Nvidia®  CUDA® 

toolkit  does  not  need  to  be  installed).  Users  can  use  multiple  variants  at  once. 

For  example,  the  following  URL  TensorFlow  releases  images  to  your  machine TensorFlow  Docker  images  that  are  already  configured  to  run  TensorFlow. 

How  are  Python  3  and  TensorFlow  brought  up  in  Docker  to  run  a  TensorFlow container? 

The  above  given  questions  are  handled  in  URL  [14].  A  sample  code  is  given  with screenshots. 

3.5 Setting Up Edge AI Computer (Jetson Nano)
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3.3 

JupyterLab 

JupyterLab  is  a  popular  web-based  user  interface  for  Project  Jupyter.  Execution  can be  done  cell  by  cell  and  the  same  is  very  useful  for  design  engineers  to  trace  issues with  ease. 

How  is  Python  3-enabled  JupyterLab  brought  up? 

Install JupyterLab on Python 3.5 or above.  The above  given questions are handled in  URL  [14]. 

 3.3.1 

 Jupyter  Notebook 

The  Jupyter  Notebook  is  the  early  web  application  for  creating  and  sharing  computational  documents.  It  offers  a  simple,  streamlined,  document-centric  experience. 


Jupyter  supports  over  40  programming  languages,  including  Python. 

Install  Jupyter  Notebook  for  Python  3.5  or  above.  Details  on  the  use  of  Jupyter Notebook  is  given  in  [14]. 

Access  to  Remote  Jupyter  Notebook  is  a  very  useful  tool  set  while  working with  near  edge  machine.  Use  URL  [18]  to  access  information  on  “Remote  Jupyter Notebook.” 

3.4 

JupyterLab:  Latex 

Latex  is  very  useful  to  create  scientific  and  research-level  documents.  Jupyter  Lab provides  extensions  to  create  Latex  versions  of  content  that  are  present  in  cells  of Jupyter  Lab. 

Install  Latex  extension  with  JupyterLab  on  Python  3.5  or  above.  Use  URL  [14] 

for  more  information. 

To  convert  to  PDF,  nbconvert  uses  the  TeX  document  preparation  ecosystem.  It produces  an  intermediate  .tex  file  which  is  compiled  by  the  XeTeX  engine  with  the LaTeX2e  format  to  produce  a  PDF  output. 

Users  can  use  an  Overleaf  account  [19]  to  compile  and  generate  PDF  files  from a  given  file  which  are  output  from  the  Jupyter  Lab. 

3.5 

Setting  Up  Edge  AI  Computer  (Jetson  Nano) 

IoT  edge  devices  use  GPU  for  real-time  inference.  Jetson  Nano  is  one  of  the emerging  IoT  edge  devices  and  Nvidia  has  released  a  development  kit  for  Nvidia Jetson  Nano. 
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The  URL  [20]  offers  a  comprehensive  example  with  detailed  instructions  for configuring  an  AI  computer.  It  furnishes  15  essential  steps  for  the  installation  of  the required  software  to  conduct  inference  on  a  Jetson  Nano  device. 

3.6 

IBM  Watson  Machine  Learning:  Community  Edition 

IBM  Watson  Machine  Learning  Accelerator  for  Enterprise  AI:  Watson  Machine Learning  Accelerator,  a  new  piece  of  Watson  Machine  Learning,  makes  deep  learning  and  machine  learning  more  accessible  to  your  staff  and  brings  the  benefits  of AI  into  your  business.  It  combines  popular  open-source  deep  learning  frameworks, efficient  AI  development  tools,  and  accelerated  IBM®  Power  Systems™  servers. 

Now  your  organization  can  deploy  a  fully  optimized  and  supported  AI  platform  that delivers blazing performance, proven dependability,  and resilience. Watson Machine Learning  Accelerator  is  a  complete  environment  for  data  science  as  a  service, enabling  your  organization  to  bring  AI  applications  into  production.  It  enables  rapid deployment. 

It  includes  the  most  popular  deep  learning  frameworks,  including  all  required dependencies  and  files,  precompiled  and  ready  to  deploy.  The  entire  AI  suite has  been  validated  and  optimized  to  run  reliably  on  accelerated  power  servers.  It incorporates  the  most  popular  deep  learning  frameworks.  Watson  Machine  Learning Accelerator  gives  access  to  power-optimized  versions  of  all  of  the  most  popular deep  learning  frameworks  currently  available,  including  TensorFlow,  Caffe,  and PyTorch.  Watson  Machine  Learning  Accelerator  runs  on  IBM  Power-accelerated server  HPC,  a  platform  that  runs  not  only  your  deep  learning  but  also  a  wide variety  of  HPC  and  high-performance  data  analytic  workloads.  It  leverages  unique capabilities  of  accelerated  power  servers,  delivering  performance  unattainable  on commodity  servers,  and  provides  for  hyperparameter  search  and  optimization  and elastic  training  to  allocate  the  resources  needed  to  optimize  performance,  and distributed  deep  learning  provides  for  rapid  insights  at  massive  scale.  A  large  model support  facilitates  the  use  of  system  memory  with  little  to  no  performance  impact, yielding  significantly  larger  and  more  accurate  deep  learning  models. 

The  IBM  Watson  Machine  Learning  Community  Edition  is  available  as  a  no-

charge  orderable  part  number  from  IBM. 

Install  PowerAI  in  Conda  Environment  to  use  GPU  Get  “Conda”  for  Power  9 

machine  by  using  the  URL  [21]. 

The  WML  CE  packages  are  installed  into  a  Conda  environment,  so  after 

installation  is  complete,  the  frameworks  are  ready  for  use.  Each  framework  provides a  test  script  to  verify  some  of  its  functions.  These  test  scripts  include  tests  and examples  that  are  sourced  from  the  various  communities.  Note  that  some  of  the included  tests  rely  on  data  sets  (for  example,  MNIST)  that  are  available  in  the community  and  are  downloaded  at  run  time. 

[image: Image 11]
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3.7 

Tool  Set  to  Build  DLtrain 

DLtrain  is  an  embedded  AI-ready  tool  set.  Details  on  the  same  are  given  on  the GitHub  link  with  working  source  code.  Ubuntu  18.04  machine  is  used  to  build DLtrain.  And  also  it  is  built  for  X86,  arm,  ppc64le. 

The  DLtrain  platform  in  Fig. 3.2  uses  multiple  resources  (for  example,  CPU  and GPU)  to  train  deep  learning  networks.  The  DLtrain  platform  is  available  for  multiple CPUs  such  as  X86,  ARM,  and  ppc64le. 

Users  having  access  to  Jetson  series  hardware  can  use  DLtrain  to  run  training workload  and  also  inference  workload. 

The  DLtrain  platform  is  available  for  Windows  machines  as  well. 

 3.7.1 

 Target  Machine  Is  X86  with  Ubuntu 

The  GitHub  page  of  DLinIoTedge  provides  the  necessary  source  code  and  information  to  build  the  DLtrain. 

Reference  link  [22]  provides  the  source  code  of  deep  learning  networks  for  deep learning  network  training  application. 

Reference  link  [22]  provides  the  source  code  of  deep  learning  networks  for inference  by  using  a  deep  learning  network  model. 

The  abovementioned  deep  learning  network  model  training  and  inference  platform  is  named  as  DLtrain. 

Fig.  3.2  DLtrain  to  train  NN  and  CNN
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The  objective  is  to  build  DLtrain  for  x86  Ubuntu  machines. 

Use  URL  [23]  to  build  DLtrain  for  inference.  CMakeLists.txt  for  x86  gcc  tool  set is  given  in  the  above  URL. 

Use  cmake  to  generate  makefile.  Use  make  to  build  executable  of  DLtrain.  Use DLtrain  to  train  deep  learning  networks.  Use  DLtrain  to  perform  inference  by  using deep  learning  networks. 

Use  URL  [24]  to  build  DLtrain  to  train  deep  learning  networks.  The  abovementioned  four  steps  are  used  in  the  above  URL  to  build  DLtrain  for  the  training workload.  The  CMakeLists.txt  for  x86  gcc  tool  set  is  given  in  the  above  URL. 

 3.7.2 

 Use  Docker:  Target  Machine  Is  X86  with  Ubuntu 

The  Docker  image  of  DLtrain  is  created  by  using  a  source  code  in  the  following  link 

[25]. 

 3.7.3 

 Target  Machine  Is  Power  9  with  Ubuntu 

DLtrain  for  Power  9  machine  is  created  by  using  source  code  in  the  following  link 

[26]. 

Ubuntu  18.04-based  g++,  gcc  tool  set  used  (cmake  also  used  to  create  makefile) to  create  the  DL  application  that  is  running  in  Power  9. 

The  objective  is  to  build  DLtrain  for  Power  9  Ubuntu  machines. 

The  objective  is  to  build  DLtrain  for  Power  9  Ubuntu  machines. 

Run  it  in  Power  9  (training  workload)  and  store  it  in  a  model  with  the  name  as jjnet.  Where  jjnet  is  a  model  and  this  is  output  after  training.  For  inference,  this model  alone  is  enough  to  perform  inference  at  IoT  edge.  Then  use  the  jjnet  model and  perform  inference  by  using  edge  devices  and  DLtrain  for  edges. 

Use  URL  [26]  to  build  DLtrain  for  training  workload  and  also  for  inference workload.  The  CMakeLists.txt  for  Power  9  gcc  tool  set  is  given  in  the  above  URL. 

1.  Use  cmake  to  generate  makefile. 

2.  Use  make  to  build  executable  of  DLtrain. 

3.  Use  DLtrain  to  train  deep  learning  networks. 

4.  Use  DLtrain  to  perform  inference  by  using  deep  learning  networks. 

3.8 Docker Image of DLtrain Application to Train CNN
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 3.7.4 

 Target  Machine  Is  Jetson  Nano  with  Ubuntu 

DLtrain  for  Jetson  Nano  machine  is  created  by  using  the  source  code  in  the following  link  [27]. 

The  objective  is  to  build  DLtrain  for  machines. 

The  objective  is  to  build  DLtrain  for  Jetson  Nano  (  ARM  )  machines. 

Use  URL  [27]  to  build  DLtrain  for  the  training  workload  and  also  for  inference workload.  CMakeLists.txt  for  Power  9  gcc  tool  set  is  given  in  the  above  URL. 

1.  Use  cmake  to  generate  makefile. 

2.  Use  make  to  build  executable  of  DLtrain. 

3.  Use  DLtrain  to  train  deep  learning  networks. 

4.  Use  DLtrain  to  perform  inference  in  Jetson  Nano  by  using  deep  learning networks. 

Running  inference  workload  is  the  key  focus  by  using  ARM  and  GPU.  The  above URL  is  handling  ARM  and  also  GPU  during  creating  executables.  The  GPU  side  of the  source  code  required  further  development. 

 3.7.5 

 Target  Machine  Is  X86  Windows  10 

DLtrain  for  Windows  10  machine  is  created  by  using  the  source  code  in  the following  link  [28]. 

The  objective  is  to  build  DLtrain  for  X86  Windows  10  machines. 

Use  the  above  URL  to  build  DLtrain  for  the  training  workload  and  also  for  the inference  workload. 

3.8 

Docker  Image  of  DLtrain  Application  to  Train  CNN 

DLtrain  is  an  embedded  compatible  deep  learning  platform  to  handle  issues  in porting  trained  AI  models  in  edge  computers  and  also  perform  inference  in  edge devices.  A  drawback  with  this  multiplatform  support  is  that  one  Docker  image  has
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to  be  built  for  each  specific  target  platform,  for  example,  a  specific  operating  system and  hardware  CPU  architecture.  It  is  required  to  create  a  Docker  image  of  a  DLtrain for  a  specific  target  platform.  Docker  image  read-only  templates  are  nothing  but  the building  blocks  of  a  Docker  container.  A  Docker  container  is  the  running  instance of  a  Docker  image. 

URL  [29]  provides  details  on  “using  Docker  image  of  DLtrain.” 

3.9 

Deploy  DL  Networks  in  Near  Edge 

DLtrain  is  a  tool  set  which  can  be  used  to  train  NN  and  CNN  models  of  deep learning  networks.  DLtrain  is  used  in  the  deployment  of  “deep  learning  networks in  near  edge.”  DLtrain  is  the  best  option  for  the  embedded  application  development team  and  also  for  the  deployment  team.  Algorithms  and  edge  silicon  startups have  attracted  huge  investment,  but  tool  developers  are  still  catching  up.  Tool development  is  compensating  for  lingering  skills  gaps  by  moving  to  higher  levels  of abstraction. 

Open-source  tool  sets  are  used  in  the  training  of  NN  or  CNN.  But  during deployment,  there  is  a  need  to  use  a  tool  set  from  a  particular  silicon  vendor. 

Inference  engine  clients  are  expected  to  work  from  near  edge  and  receive  input  data in  real  time  from  IoT  nodes,  for  example,  home  gateway  machine  receiving  image or  video  from  doorbell  camera  for  real-time  inference. 

Add  the  following  port  along  with  the  IP  address  of 

1

h t t p   : / / 1 9 2 . 1 6 8 . 1   3 : 8 7 6 5 /  

2

l o c a l h o s t   . 

The  following  might  help  users  to  get  connected  with  near  edge  and  IoT  nodes via  the  TCP/Ip  network. 

If  a  user  runs  a  web  server  listening  on  127.0.0.1  as  opposed  to  0.0.0.0  or  user-specific  IP,  127.0.0.1  is  the  local  loop  back  device  and  is  only  accessible  to  the device  which  is  running  on.  0.0.0.0  is  used  to  make  an  application  listen  on  all network  devices.  Users  can  provide  IP  addresses  to  edge.  For  example,  an  address can  be 

1

h t t p   : / / 1 9 2 . 1 6 8 . 1 . 7 : 8 0 0 0 /  

or  similar  in  local  network  with  a  local  IP  address.  Users  can  use  the  above  URL 

from  other  networked  IoT  devices  to  run  client  applications. 

URL  [30]  has  a  necessary  workflow  for  the  following  five  steps  in  near  edge: Step  1  Virtual  environment:  Activate  virtual  environment  and  in  this  case  dlBox  is the  virtual  environment  in  near  edge  machine. 

Step  2  use  Jupyter  Notebook:  Run  a  Jupyter  Notebook  as  given  below.  Keep  in server  mode  and  no  browser  mode  is  on,  and  in  this  process,  the  remote
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machine  can  use  its  own  browser  to  work  with  a  Jupyter  Notebook  that  runs in  a  near  edge  (Power  9)  processor. 

Step  3  Near  edge  is  live:  The  above  is  running  in  a  near  edge  (Power  9)  machine (or  running  in  ssh  terminal  to  near  edge  which  is  a  Power  9  machine).  Users should  leave  this  open  and  in  running  mode. 

Step  4  Local  Server  to  handle  near  edge:  Open  another  terminal  in  user  machine  (if it  is  a  Ubuntu  machine  )  and  use  the  ssh  command  to  connect  and  read  the URL  of  the  near  edge  (Power  9)  machine  such  that  the  Jupyter  Notebook 

can  be  used  in  the  user  machine  via  a  web  browser.  Users  can  use  URL 

1 

l o c a l h o s t   : 8 8 8 9   work@171  . 6 1 . 1 2 3 . 7 6  

to  reach  edge  from  the  local  PC  browser.  Use  the  following  command  from the  local  PC  to  reach  the  near  edge  machine. 

1 

s s h   −N  −f  −L   l o c a l h o s t   : 8 8 8 6   l o c a l h o s t   : 8 8 8 9   work@171  

. 6 1 . 1 2 3 . 7 6  

The  following  is  useful  to  create  an  instance  of  a  Jupyter  Notebook  and also  kill,  if  it  is  not  used. 

Step  5  Web  browser  in  local  server 

Open  web  browser  in  local  machine  by  using  URL 

1

h t t p   :   /   /   l o c a l h o s t   : 8 8 8 6 /  

The  above  will  open  a  web  page  in  the  user  machine  and  ask  for  a  token, bring  a  token  from  Step  2.  The  same  token  will  be  displayed  in  the  running window  of  the  Jupyter  Notebook. 

Successful  deployment  of  the  abovementioned  workflow  will  lead  users 

to  have  good  control  on  near  edge  machines,  where  near  edge  machines 

are  expected  to  run  real-time  inference  service  for  applications  that  are subscribed  inference  service  from  a  given  near  edge  machine. 

 3.9.1 

 Deploy  DL  Networks  by  Using  TensorFlow  RT 

TensorFlow  Lite  is  the  official  (from  Nvidia)  solution  for  running  machine  learning models  on  mobile  and  embedded  devices.  It  enables  on-device  machine  learning inference  with  low  latency  and  a  small  binary  size  on  Android,  iOS,  etc.  TensorFlow Lite  10.2  uses  many  techniques  for  this  such  as  quantized  kernels  that  allow  smaller and  f  aster  (fixed-point  math)  models.  Though  deep  learning  networks  run  faster,  it comes  at  a  trade-off  of  having  lower  accuracy. 

Use  URL  [31]  to  install  and  use  TensorFlow  Lite. 

[image: Image 12]

Chapter  4 

Hardware  for  DL  Networks 

 In  the  realm  of  deep  learning,  hardware  is  the  foundation  upon 

 which  intelligence  is  built. 

This  section  proceeds  to  engage  the  previous  section  learning  to  empower  the advanced  hardware  system  knowledge  that  powers  a  sturdy  performance  to  train the  deep  learning  networks.  A  detailed  hardware  environment  setting,  configuration, and  presentation  are  presented  on  various  processing  and  computing  kinds  including AMD, POWER9, ARM, ARM . + GPU, and X86 systems. These processing environments  are  showcased  with  an  installation,  setup,  and  configuration  on  edge  servers. 

Deep  learning  needs  high  computing  systems  with  customized  configurations  for various  applications  and  tools,  and  hence,  the  book  is  not  limited  to  deep  learning tools  and  application,  but  as  well  educates  users  and  professionals  to  know  insights of  what  kinds  of  hardware  and  performance  settings  should  be  configured  to  achieve the  best  deep  learning  results. 

The  book  also  provides  sufficient  URL  reference  links  for  coders  to  readers  to quickly  download  all  relevant  tools,  applications,  and  hardware  configuration  techniques  in  the  need  of  the  hour.  Further,  advanced  installations  like  NVIDIA  CUDA compiler,  GPU  hardware,  GeForce  multiprocessor,  thread  processing,  IBM  Watson CE,  and  large-scale  AI  business  enterprise  suite  configuration  are  demonstrated  in simple  steps.  At  last,  deployment  of  AI  on  X86  and  Android  phone  is  also  presented. 

Increase  in  hardware  performance  is  necessary  to  train  deep  learning  networks. 

The  market  is  witnessing  a  proliferation  of  specialized  hardware  that  not  only offers  better  performance  on  deep  learning  tasks,  but  also  increased  efficiency (performance  per  watt).  Figure  4.1  provides  CPU  and  CPU  . + GPU  combinations which  are  used  in  enterprise  level  and  also  in  research  labs  in  academic  institutes. 

DGX  Station  A100  is  very  popular  in  enterprise-level  performance  and  also multiple  of  them  form  an  on-prem  cluster  to  manage  the  required  computing in  training  deep  learning  networks.  AC922  and  V100  GPUs  are  in  the  high-performance  segment.  OpenPOWER  CPU  and  PCI  card  (RTX  2080  or  2070)  are 

providing  options  to  the  cost-sensitive  enterprise  market. 

The  Jetson  series  Xavier  and  Orin  are  providing  entry-level  performance  to  train deep  learning  networks. 

©  The  Author(s),  under  exclusive  license  to  Springer  Nature  Switzerland  AG  2024 
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Fig.  4.1  Computing  devices  to  train  deep  learning  networks 

CPU  and  FPGA  are  providing  more  options  in  the  inference  segment. 

AI  community’s  demand  for  GPUs  led  to  Google’s  development  of  TPUs  and 

pushed  the  entire  chip  market  towards  more  specialized  products. 

In  the  next  few  years  we  will  see  NVIDIA,  Intel,  SambaNova,  Mythic,  Graphcore, Cerebras, and other companies bring more focus to hardware for AI workloads. 

The  Silicon  Vendor  team  can  take  advantage  of  emerging  requirements  for 

accelerated  computing  and  move  their  GPU  silicon  into  the  IoT  edge  market.  For example,  TI  has  their  own  inference  engine  (TIDL);  Qualcomm  has  their  own (SPNE)  as  well  ST  Micro  and  many  other  silicon  vendors. 

4.1 

Open  Source  for  Edge  Native  Hardware 

Open  source  is  a  boon  for  digital  transformation! 

4.2 POWER9 with RTX 2070 GPU
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Fig.  4.2  Open  source  is 

moving  to  hardware 

Yes  it  is  a  boon  for  AI-based  application  developers.  But  mostly  open-source opportunities  exist  in  the  software  segment.  Still  there  is  not  much  good  news  from the  hardware  segment  on  open  source,  which  is  shown  in  Fig. 4.2. 

In  addition  to  open  sourcing  the  POWER  ISA,  IBM  is  also  contributing  a  newly developed  softcore  to  the  community.  In  a  very  short  time,  an  IBM  engineer  was able  to  develop  a  software  on  the  POWER  ISA  and  get  it  up  and  running  on a  Xilinx  FPGA.  This  softcore  implementation  is  being  demonstrated  this  week at  OpenPOWER  Summit  North  America.  “Through  the  growing  open  ecosystem 

of  the  POWER  Architecture  and  its  associated  technologies,  the  OpenPOWER 

Foundation  facilitates  its  Members  to  share  expertise,  investment  and  intellectual property  to  serve  the  evolving  needs  of  all  end  users.”  At  Raptor  Computing  Systems our  top  priority  has  always  been  owner-controlled,  auditable  systems. 

4.2 

POWER9  with  RTX  2070  GPU 

OpenPOWER  Foundations  [32]  is  in  progress  to  make  the  hardware  part  also open  such  that  the  open-source  community  gets  to  contribute  in  the  development of  enhanced  hardware  for  the  deep  learning  network  segment  also  for  high-performance  computing  requirements. 

POWER9’s  large  caches  and  high  SMT  levels  ensure  deep  learning  applications run  smoothly,  even  with  full  system  utilization.  Hardware  virtualization  extensions keep  VMs  running  at  near  native  speeds. 

Talos™  II  is  first  to  market  with  the  brand  new,  14-nm  POWER9  processor,  built on  IBM  OpenPOWER  technology.  Talos™  II,  the  world’s  first  computing  system to  support  the  new  PCIe  4.0  standard,  also  boasts  substantial  DDR4  memory,  dual POWER9  CPUs,  and  next-generation  security.  According  to  Talos™  II  datasheet, Lower  your  power  use.  Enable  development  of  next-generation  cards.  Be  ready  for tomorrow’s  requirements  today  with  Talos™  II.  What  goes  best  with  PCIe  4.0  bandwidth? 

Lots  of  DDR4  main  memory.  Shuffling  your  data  in  and  out  of  the  CPU  isn’t  a  problem with  Talos™  II’s  plentiful  DDR4  slots.  Vital  data  integrity  is  ensured  through  registered DIMM  interfaces  and  ECC  support.  In  an  industry  first,  Talos™  II  ships  with  fully  open and  auditable  BMC  firmware,  based  on  the  Open  BMC  project.  Gone  are  the  days  when you  had  to  carefully  isolate  the  buggy,  insecure  BMC  port  from  threats  at  the  firewall  level. 

With  Talos™  II,  the  BMC  is  just  another  Linux  system  that  can  be  maintained  as  part of  normal  workflow.  Find  a  bug  or  vulnerability?  No  problem;  just  patch,  recompile,  and
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install.  Talos™  II  drives  the  state  of  the  art  of  secure  computing  forward.  Talos™  II  gives you  —  and  only  you  —  full  control  of  your  machine’s  security.  Rest  assured  knowing that  only  your  authorized  software  and  firmware  are  running  via  POWER9’s  secure  boot features.  Don’t  trust  us?  Look  at  the  secure  boot  sources  yourself  —  and  modify  them  as you  wish.  That’s  the  power  of  Talos™  II. 

Talos™  II  Entry-Level  Developer  System  TLSDS3  [33]  includes  the  following items: 

1.  EATX  chassis  with  500W  ATX  power  supply 

2.  A  single  Talos™  II  Lite  EATX  mainboard 

3.  One  4-core  IBM  POWER9  CPU 

4.  4  cores  per  package 

5.  SMT4  capable 

6.  POWER  IOMMU 

7.  Hardware  virtualization  extensions 

8.  90W  TDP 

9.  One  3U  POWER9  heat  sink/fan  (HSF)  assembly 

10.  8 GB  DDR4  ECC  registered  memory 

11.  2  front  panel  USB  2.0  ports 

12.  128 GB  internal  NVMe  storage 

13.  Recovery  DVD 

Built  for  the  world’s  biggest  AI  challenges,  POWER9  delivers  unprecedented performance  for  modern  HPC,  analytics,  and  AI.  It  deploys  data-intensive  workloads,  like  deep  learning  frameworks  and  accelerated  databases,  with  confidence. 

CPU  information  is  very  useful  to  plan  for  a  given  project  and  also  getting  the associated  operating  system.  The  user  can  get  cpuinfo  [34]  by  using  the  script  given in  the  following  link. 

 4.2.1 

 OpenPOWER  CPU  with  ASPEED  VGA  Controller 

During  installation  of  CUDA  SDK  and  its  requirements,  it  is  part  of  routine  checks to  make  sure  of  the  VGA  controller  and  its  resource  allocation.  In  some  cases, VGA  controllers  also  go  through  PCI,  so  it  is  necessary  to  remove  resource  conflict between  other  devices  in  PCI.  Making  a  CPU  to  support  GPU  devices  via  PIC 

requires  the  above  study  on  resources  used  for  VGA  controllers. 

The  ASPEED  controller  as  in  Fig. 4.3  has  a  baseboard  management  controller, or  BMC  [35],  which  is  a  small  computer  that  sits  on  virtually  every  server motherboard.  Other  components  such  as  higher-end  switches,  JBODs,  JBOFs,  and other  devices  now  include  BMCs  as  well.  The  largest  vendor  for  BMCs  today  is ASPEED  whose  AST2400  BMC  is  pictured  below. 

BMC  support:  Discrete  GPU  (VGA-compatible  controller:  GeForce  RTX  2070). 

Is  it  true  that  GeForce  RTX  2070  is  a  discrete  GPU?  Most  modern  discrete  GPUs require  firmware.  As  Talos™  II  is  aimed  at  a  security-conscious  audience,  it  does not  currently  include  GPU  firmware  in  the  production  firmware  images. 

[image: Image 13]

4.2 POWER9 with RTX 2070 GPU

39

Power 9 

USB 2.0 

x1 PCLe Gen10.4GB/s 

LPC 33MHz 

(Optional) TPM 

Analog Video 

DDR3 

128 MB 

SMBUS (8) 

Rear I/O Panel

BMC 

16MB 

SPI 

Flash 

2x USB 

(Optional) RMM4 Dedicated 

RGMII 

NIC Module Connector 

Serial Port A (DB9. external) 

Serial Port B (DH-10 internal) 

Fig.  4.3  BMC  hardware 

Does  this  mean  GeForce  RTX  2070  does  not  have  firmware  support  in  Talos™ 

II? 

In  case  yes,  how  can  Talos™  II  support  firmware  for  GeForce  RTX  2070?  The following  boot  sequence  is  useful  to  resolve  issues  during  boot. 

Boot: 

1.  Does  Talos™  II  supports  Trusted  Boot  or  Secure  Boot? 

2.  In  case  Talos™  II  has  a  Secure  Boot  on,  then  how  do  you  disable  the  same? 

Trusted  Boot  is  the  measurement  (hashing)  of  system  firmware  boot  components and  the  creation  of  secure  cryptographic  artifacts  that  unambiguously  demonstrate that  particular  firmware  has  been  executed  by  the  system.  Trusted  Boot  artifacts  can be  used  to  remotely  verify  system  integrity  or  to  seal  secrets  so  that  they  are  only available  after  certain  firmware  has  been  executed. 

Secure  Boot  is  the  cryptographic  signing  and  verification  of  firmware  boot components,  failure  of  which  is  flagged  for  system  administrator  investigation  and action,  including  logging  an  error  and  halting  the  system  boot.  Secure  Boot  prevents the  system  from  executing  either  accidentally  or  maliciously  modified  firmware. 

VGA  ports  in  PCIe  (is  it  gen  3  or  4?)  bus  of  Talos™  II 

VGA-compatible  controller, NVIDIA  Corporation  Device  (0000:01:00.0),  and VGA-compatible  controller,  ASPEED  Technology,  Inc.  (0005:02:00.0),  are 

placed  in  PCIe  slots  of  Talos™  II. 
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Workaround  1:  Disable  the  onboard  VGA  output  via  the  VGA  disable  jumper, J10109.  See  the  user’s  guide  for  additional  information. 

Workaround  2:  Select  desired  GPU  at  run  time  (yes,  this  option  is  put  in  use). 

More  information  “about  configuring  ASPEED  controllers”  is  discussed  in  [34] 

and  the  particular  file  name  is  ASPEED.md. 

 4.2.2 

 CUDA  Installation  and  PCI  Driver  for  RTX  2070 

Hardware  configurations  are  listed  in  the  following: 

1.  Hardware  used  in  CUDA  computing 

2.  Hardware  from  NVIDIA:  GeForce  RTX  2070 

3.  GPU  Turing  architecture 

4.  NVIDIA  CUDA®  Cores  2304 

5.  RTX-OPS  42T 

6.  Boost  clock  1620 MHz 

7.  Frame  buffer  8 GB  GDDR6 

8.  Memory  speed  14 Gbps 

The  following  is  used  to  check  the  driver  for  RTX  2070  GPU  (PCI)  hardware installed  in  Talos™  II  Edge  Server. 

Option  1  To  enable  the  VGA  port  on  the  GPU,  disable  the  onboard  ASPEED  VGA which  the  system  defaults  to. 

Option  2  As  seen,  there  is  no  explicit  driver  for  the  RTX2070  on  ppc64le.  However, some  engineers  have  been  successful  in  running  with  the  standard  driver  (418.39) that  comes  with  CUDA  10.1,  which  is  what  we  should  point  users  to  do. 

VGA-compatible  controllers  from  NVIDIA  and  ASPEED  are  listed.  It  appears 

that  ASPEED  VGA  controllers  become  a  default  in  Talos™  II.  There  is  a  need  to remove  the  ASPEED  VGA  controller  from  the  VGA  port  and  make  the  NVIDIA VGA  controller  as  a  default  VGA  port  controller  in  Talos™  II.  Remove  any  CUDA PPAs  that  may  be  set  up  and  also  remove  the  NVIDIA  CUDA  toolkit  if  there  is  a past  installation. 

 4.2.3 

 Build  Application  Using  nvcc 

GeForce  RTX  2070  Super  comes  with  the  following  resources. 

In  one  RTX  2070,  there  are  40  SMs.  Each  SM  includes  one  RT  core,  8  Tensor Cores,  4  texture  units,  and  64  CUDA  cores.  The  same  is  shown  in  Fig. 4.4. 

One  RT  core  (RT  cores  specifically  accelerate  the  key  math  needed  to  trace virtual  rays  of  light  through  a  scene).  The  ray-tracing  algorithm  builds  an  image

4.2 POWER9 with RTX 2070 GPU
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by  extending  rays  into  a  scene  and  bouncing  them  off  surfaces  and  towards  sources of  light  to  approximate  the  color  value  of  pixels. 

Ray  tracing  is  capable  of  simulating  a  variety  of  optical  effects  such  as  reflection, refraction,  soft  shadows,  scattering,  depth  of  field,  motion  blur,  caustics,  ambient occlusion,  and  dispersion  phenomena  (such  as  chromatic  aberration).  It  can  also  be applied  to  track  the  trajectory  of  sound  waves,  much  like  it  does  with  light  waves. 

This  feature  makes  it  a  suitable  choice  for  enhancing  the  immersive  sound  design in  video  games  by  generating  lifelike  reverberations  and  echoes.  Additionally,  it’s important  to  note  that  there  are  64  CUDA  cores  in  this  context.  CUDA  kernels  also have  access  to  a  unique  variable  that  provides  information  about  the  number  of threads  within  a  block. 

.blockDim.x Using  this  variable,  in  conjunction  with  blockIdx.x  and  threadIdx.x, increased  parallelization  can  be  accomplished  by  organizing  parallel  execution across  multiple  blocks  of  multiple  threads  with  the  idiomatic  expression 

. threadIdx.x + blockIdx.x × blockDim.x

The  warp  scheduler  as  shown  in  Fig. 4.5  looks  at  all  warps  assigned  to  it,  to determine  which  have  instructions  that  are  ready  to  issue.  The  warp  scheduler  then chooses  1  or  2  instructions  that  are  ready  to  execute  and  issues  those  instructions. 

The  process  of  issuing  an  instruction  involves  assigning  functional  units  within  an SM  to  that  execution  (scheduling)  of  that  instruction,  warp-wide.  A  warp  is  always 32  threads;  therefore,  32  functional  units  in  one  clock  cycle,  or  a  smaller  number distributed  across  multiple  clock  cycles,  must  be  scheduled  (and  therefore  must  be 

“available”)  to  issue  the  instruction. 

Let  “queue  of  blocks”  be  associated  with  each  kernel  launch.  As  resources  on  an SM  become  available,  the  block  scheduler  will  deposit  a  block  from  the  “queue” 

42

4

Hardware for DL Networks

Fig.  4.5  Infrastructure  in  a  GPU 

onto  that  SM.  The  block  scheduler  does  not  deposit  blocks  warp-by-warp.  It  is an  all-or-nothing  proposition,  on  a  block-by-block  basis.  Let  us  consider  a  block that  is  already  deposited  on  an  SM.  A  warp  is  “eligible”  when  it  has  one  or  more instructions  that  are  ready  to  be  executed. 

4.2 POWER9 with RTX 2070 GPU
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1.  UBlock  scheduling  does  not  include  warp  scheduling. 

2.  Block  scheduler  is  a  device-wide  entity. 

3.  Warp  scheduler  is  a  per  SM  entity. 

Ampere  GPU  The  maximum  number  of  concurrent  warps  per  SM  remains 

the  same  as  in  Volta  (i.e.,  64).  The  high-priority  recommendations  from  those guides  are  as  follows:  Find  ways  to  parallelize  sequential  code.  Minimize  data transfers  between  the  host  and  the  device.  Adjust  kernel  launch  configuration to  maximize  device  utilization.  Ensure  global  memory  accesses  are  coalesced. 

Minimize  redundant  accesses  to  global  memory  whenever  possible. 

Avoid  long  sequences  of  diverged  execution  by  threads  within  the  same  warp. 

Devices  with  the  same  major  revision  number  are  of  the  same  core  architecture. 

The  major  revision  number  is  9  for  devices  based  on  the  NVIDIA  Hopper  GPU 

architecture,  8  for  devices  based  on  the  NVIDIA  Ampere  GPU  architecture,  7 

for  devices  based  on  the  Volta  architecture,  6  for  devices  based  on  the  Pascal architecture,  5  for  devices  based  on  the  Maxwell  architecture,  and  3  for  devices based  on  the  Kepler  architecture. 

The  minor  revision  number  corresponds  to  an  incremental  improvement  to  the core  architecture,  possibly  including  new  features. 

The  compute  capability  version  of  a  particular  GPU  should  not  be  confused  with the  CUDA  version  (for  example,  CUDA  7.5,  CUDA  8,  CUDA  9),  which  is  the version  of  the  CUDA  software  platform.  The  CUDA  platform  is  used  by  application developers  to  create  applications  that  run  on  many  generations  of  GPU  architectures, including  future  GPU  architectures  yet  to  be  invented.  While  new  versions  of  the CUDA  platform  often  add  native  support  for  a  new  GPU  architecture  by  supporting the  compute  capability  version  of  that  architecture,  new  versions  of  the  CUDA platform  typically  also  include  software  features  that  are  independent  of  hardware generation. 

The  multiprocessor  creates,  manages,  schedules,  and  executes  threads  in  groups of  32  parallel  threads  called  warps.  When  a  multiprocessor  is  given  one  or  more thread  blocks  to  execute,  it  partitions  them  into  warps  and  each  warp  gets  scheduled by  a  warp  scheduler  for  execution. 

The  way  a  block  is  partitioned  into  warps  is  always  the  same.  A  warp  executes one  common  instruction  at  a  time,  so  full  efficiency  is  realized  when  all  32  threads of  a  warp  agree  on  their  execution  path.  The  SIMT  architecture  is  akin  to  SIMD 

(single  instruction,  multiple  data)  vector  organizations  in  that  a  single  instruction controls  multiple  processing  elements. 

All  functional  units  are  pipelined.  Most  functional  units  can  accept  a  new instruction  of  the  type  they  are  designed  to  handle,  on  each  clock  cycle.  The  pipeline depth  determines  when  that  instruction  completes  or  retires.  Each  SP  refers  most directly  to  a  floating-point  ALU.  It  handles  floating-point  adds  and  multiplies,  but not  other  instructions  generally  speaking.  If  there  is  a  need  for  an  integer  add,  for example,  an  SP  would  not  be  scheduled  to  handle  that  instruction;  instead,  it  would be  an  integer  ALU.  All  instructions  are  issued  warp-wide  and  require  32  functional units  of  the  appropriate  type  to  be  scheduled.  This  can  be  32  functional  units  in  a

44

4

Hardware for DL Networks

single  clock  cycle,  or,  e.g.,  16  over  2  clock  cycles,  or  8  over  4  clock  cycles,  etc. 

The  following  questions  provide  a  hint  to  understand  more  on  SM  and  its  efficient usage: 

1.  What  are  all  the  different  types  of  functional  units  in  an  SM? 

2.  How  many  of  functional  unit  X  are  in  SM  architecture  Y? 

3.  What  is  the  pipeline  depth  of  functional  unit  X? 

4.  What  is  the  exact  algorithm  by  which  a  warp  scheduler  chooses  instructions  to issue? 

Vector  addition  in  CUDA  code  (*.cu) 

Get  source  code  of  vectorAdd  example  from  the  Samples  folder  .  /Simulations/ 

Build  vectorAdd  application  by  using  make.  Section  3  in  URL  [36]  has  an  example code  for  vector  addition  in  GPU. 

nbody  example  in  CUDA  code  (*.cu) 

Use  URL  [34]  to  get  more  details  on  running  body  examples  in  RTX  2070  GPU. 

PTX  file  creation 

Following  command  line  instructions,  make  output  “user2”  from  “ex1.cu”  and run  it  as  well.  Produce  the  PTX  for  the  CUDA  kernel.  Section  4  in  URL  [36] is handling  PTX  file  creation  and  its  use. 

Use  Python  to  use  GPU  in  run  time 

Use  Python  code  to  perform  computation  in  CUDA  cores.  Matrix  multiplication is  done  in  GPU0  by  using  Python  code.  Matrix  addition  is  done  in  GPU1  by  using Python  code. 

Following  Python  code,  run  TensorFlow  on  multiple  GPUs.  The  same  code 

provides  the  option  to  construct  a  defined  model  in  a  multitower  fashion  where each  tower  is  assigned  to  a  different  GPU.  Use  the  following  URL  to  get  code  and associated  workflow. 

Following,  Python  code  is  used  to  test  GPU  availability  for  computation  in  Talos II.  Use  link  [36]  to  get  ts1.py,  tst3.py,  and  tst4.py  files.  Use  the  same  files  to  test GPU  availability  in  OpenPOWER  CPU. 

 4.2.4 

 Edge  Native  AI  Hardware 

DLtrain  is  used  to  handle  AI  inference  workflow  such  as  the  following: 

1.  Inferencing  by  using  the  NN  model 

2.  Inferencing  by  using  the  CNN  model 

The  above  AI  inferring  workload  is  ported  into  Android  phones  as  well  by  using Android  NDK.  In  addition  it  is  ported  to  many  edge  computer  boards  such  as  Jetson Nano.  For  example,  see  [37]. 

[image: Image 14]
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J7  app  is  a  popular  example  application  in  Android  phones.  Deployment  of  a training  AI  model  in  Android  phones  is  handled  in  the  J7  app  and  very  good  details are  given  above. 

 4.2.5 

 On-Prem  Requirement 

The  training  platform  is  different  from  the  deployment  platform.  The  same  provides obstruction  to  deploy  a  trained  AI  model  (CNN,  RNN  networks,  etc.)  into  limited capability  deployment  edge.  Mostly,  there  is  a  need  to  cut  down  the  AI  model  size or  optimize  weights  of  the  AI  model.  Optimization  of  the  AI  model  size  or  changing weight  of  the  AI  model  may  not  be  there  if  deployment  happens  in  the  edge  side  by using  DGX  Station  A100.  Enterprise  business  owners  of  all  sizes  are  struggling  to find  the  next-generation  AI  solutions  that  will  unlock  the  hidden  patterns  and  value from  their  huge  volume  of  data. 

Emerging  AI-enabled  microservices  in  a  given  enterprise  are  driven  by  the confluence  of  ML/DL  algorithms.  Figure  4.6  provides  details  on  layers  in  DGX 

Station  A100.  Enterprise  on-prem  requirement  appears  to  be  matching  with  speci-Fig.  4.6  Edge  native  AI  workload  for  enterprise  business
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fications  of  DGX  Station  A100  which  provides  high  levels  of  accuracy  in  business solutions.  However,  AI-enabled  enterprise  service  initiatives  are  complex  and  often require  specialized  skills,  ability,  hardware,  and  software  that  are  often  not  readily available. 

1.  Training  data  set  creation  (on-prem  or  in  IBM  Cloud  or  in  Colab  or  any  other) 2.  Building  AI  model  by  using  TensorFlow  or  PyTorch.  Building  an  AI  model  using the  custom  framework  DLtrain  (for  NN,  limited  version  of  CNN) 

3.  Training  AI  model  by  using  DGX  Station  A100 

4.  Deploying  AI  model  in  IoT  edge  for  inference  service  in  real  time 

 4.2.6 

 DGX  Station  A100  for  DL  Networks 

Enterprise  customers  have  the  option  to  train  large  models  using  a  fully  GPU-optimized  software  stack  and  up  to  320  gigabytes  (GB)  of  GPU  memory.  With  DGX 

Station  A100,  enterprise  can  provide  multiple  users  with  a  centralized  AI  resource for  all  workload  training,  inference,  and  data  analytics.  DGX  Station  A100  brings AI  out  of  the  data  center  with  a  server-class  system  that  can  plug  in  anywhere  to perform  real-time  inference.  DGX  Station  A100  uses  the  NVIDIA  DGX  ™  software stack  and  it  is  an  ideal  platform  for  teams  from  all  enterprises,  large  and  small. 

Data  science  teams  effortlessly  providing  multiple,  simultaneous  users  with  a centralized  AI  resource,  DGX  Station  A100  is  the  work  group  appliance  for  the age  of  AI.  It  is  capable  of  running  training,  inference,  and  analytics  workloads  in parallel,  and  it  can  provide  up  to  28  separate  GPU  devices  to  individual  data  science teams. 

The  AI  workgroup  server  delivering  2.5  peta  FLOPS  organizations  around  the world  can  provide  multiple  users  with  a  centralized  AI  resource  for  all  workloads that  delivers  an  immediate  on-ramp  to  NVIDIA  DGX™-based  infrastructure  and works  alongside  other  NVIDIA-certified  systems  with  a  DGX  Station  A100  rental, which  is  a  new-generation  enterprise  offering  in  multi-instance  GPU  (MIG),  including  four  NVIDIA  A100  Tensor  Core  GPUs,  a  top-of-the-line  server-grade  GPU, superfast  NVMe  storage,  and  leading-edge  PCIe  Gen4  buses.  A100  includes  remote management  so  enterprise  customers  can  manage  their  DGX  Station  A100  like  a server.  With  no  complicated  installation  processes  or  significant  IT  infrastructure required,  the  DGX  Station  A100  can  truly  be  placed  anywhere  an  enterprise customer  data  science  team  requires  complex  computations.  Simply  plug  your station  into  any  standard  wall  outlet  to  get  it  up  and  running  in  minutes—and  work from  anywhere. 

This  supercomputer  was  truly  designed  for  today’s  agile  data  science  teams  that work  in  corporate  offices,  labs,  research  facilities,  or  even  from  home  as  the  DGX 

Station  A100  can  run  simultaneous  processes  from  multiple  users  without  affecting performance. 
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NVIDIA  DGX  Station  A100  is  providing  an  opportunity  to  use  the  world’s  only office-friendly  system  with  four  fully  interconnected  and  MIG-capable  NVIDIA A100  GPUs,  leveraging  NVIDIA®  NVLink®  for  running  parallel  jobs  and  multiple users  without  impacting  system  performance. 

DGX  Station  A100  is  a  server-grade  AI  system  that  does  not  require  data  center power  and  cooling.  It  includes  four  NVIDIA  A100  Tensor  Core  GPUs,  a  top-of-the-line,  server-grade  CPU,  superfast  NVMe  storage,  and  leading-edge  PCIe  Gen4 

buses,  along  with  remote  management  so  you  can  manage  it  like  a  server.  It  is suitable  for  use  in  a  standard  office  environment  without  specialized  power  and cooling. 

 4.2.7 

 Deployment  of  AI  in  X86  Machine 

Deployment  of   trained  CNN  model  in  X86  machine   has  the  following  items  as  part of  its  deployment: 

1.  Ubuntu  18.04  OS  is  used  in  deployment  machine  which  is  X86. 

2.  Python  is  not  required  in  deployment  machine  which  is  X86. 

3.  TensorFlow  is  not  required  in  deployment  machine  which  is  X86. 

4.  FPGA  (via  PCI  add-on)  is  not  required  in  deployment  machine  which  is  X86. 

5.  GPU  (via  PCI  add-on)  is  not  required  in  deployment  machine  which  is  X86. 

6.  Item  (b)  and  item  (c)  are  always  true. 

7.  Item  (e)  may  be  true  sometimes. 

8.  Others. 

Problem  4.2.1  Deployment  of  DLtrain  application  to  train  NN  or  CNN  model has  a  well-defined  workflow.  What  are  the  items  required  in  the  following  list to  successfully  complete  deployment  of  DLtrain  for  training  a  deep  learning network? 

(a)  User  machine  needs  to  install  Docker  (Ubuntu  18.04  X86  machine). 

(b)  User  pulls  “dltrain:1.0.0”  docker  image  from  Docker  hub. 

(c)  User  uses  “dltrain:1.0.0”  to  train  CNN  model. 

(d)  CNN  model  definition  is  given  in  a  txt  file  which  is  located  in  the  user  machine (current  working  folder). 

(e)  Images  folder  is  also  required  to  be  in  the  current  working  folder. 

(f)  Images  and  Network. _prop.txt  file  are  downloaded  from  Google  Drive  link which  is  provided  during  demonstration. 

(g)  All  items  are  true. 

(h)  Item  (f)  may  not  be  true  always. 
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 4.2.8 

 Deployment  of  AI  in  Android  Phone 

Problem  4.2.2  Deployment  of  “trained  CNN  model  in  Android  Phone”  has  the following  items  as  part  of  its  workflow  for  successful  completion  of  deployment: (a)  NDK  is  (in  Android  Studio)  used  to  build  inference  engine  which  is  developed in  C  and  C++. 

(b)  Inference  engine  is  not  using  GPU  in  phone. 

(c)  Inference  engine  is  not  using  DSP  in  phone. 

(d)  Inference  engine  is  capable  of  using  updated  trained  CNN  model  from  Ubuntu machine  (X86)  via  WiFi. 

(e)  Inference  engine  is  used  to  collect  data  from  the  user  (in  this  case  the  LKG 

student). 

(f)  Inference  engine  is  showing  inference  output  in  display. 

 4.2.9 

 Deployment  of  AI  in  Rich  Edge 

Rich  edge  is  expected  to  have  Python  with  installed  virtual  environment.  If  the  CNN 

model  or  NN  model  is  small  enough  to  fit  within  the  constraints  of  rich  edge,  then deployment  will  go  through  successfully.  In  case  there  is  an  issue  in  memory  size available  to  load  the  trained  CNN,  then  there  are  expected  issues  that  might  require pruning  of  the  trained  CNN  model  such  that  it  can  fit  in  rich  edge. 

Rich  edge  may  not  have  FP32  support,  or  if  FP32  computation  is  costly,  then there  is  a  need  to  move  towards  INT32  computation  during  inference. 

Problem  4.2.3  Deployment  of  TensorFlow  version  of  the  NN  or  CNN  model  in  IoT 

edge  is  required  to  quantize  the  trained  NN  or  CNN  model.  This  happens  because (a)  The  CNN  model  in  Python  is  not  ready  to  be  deployed  in  IoT  edge. 

(b)  The  CNN  model  in  TensorFlow  is  not  ready  to  be  deployed  in  IoT  edge. 

(c)  The  trained  CNN  model  might  have  floating  point  weights. 

(d)  The  trained  CNN  model  might  have  too  many  neurons. 

(e)  IoT  edge  technology  is  very  different  from  deep  learning-based  inference technology. 

(f)  All  the  above  are  true. 

(g)  Others. 

Setup  Jetson  nano  AI  computer  and  more  information  is  given  in  [38]  to  set  up Jetson  nano. 

AI  Edge  Computer:  Run  CUDA  program  in  Jetson  Series  Devices. 

[image: Image 15]

Chapter  5 

Data  Set  Design  and  Data  Labeling 

 Data is the lifeblood of deep learning, and its design and 

 labeling are the artisans’ work. 

5.1 

Insight 

This  section  presents  the  most  “tricky”  and  advanced  data  processing  techniques in the easiest way for the readers. More importantly, the book chapter reveals how to read data from audio, speech, image, and text in different modes and techniques for  data  sanitization  and  scaled  data  processing  systems.  The  book  also  explains statistical  methods  for  interpreting  and  analyzing  data  for  different  deep  learning models; the Maxwell-Boltzmann statistic technique is deeply described specifically with image signal processing, which demonstrates its main use in open CV libraries. 

MNIST data handling is presented with training, test, and deployment mechanism. 

More importantly, a novel technique, pixel normalization for image processing, is 

presented  including  the  global  standards  that  facets  the  sequences  in  prediction, classification,  and  sequence  generation  and  sequence  classification  [39, 40]  (see Fig. 5.1). 

5.2 

Description 

A data set is an essential part in training deep learning networks. In the following paragraphs,  various  sources  are  given  and  these  sources  form  mostly  a  basis  for modern-generation  data  sets  to  train  deep  learning  networks  and  also  machine learning networks. The leftmost side in Fig. 5.2 indicates a low volume of data and the rightmost side indicates huge volume of data. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
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Fig.  5.1  Input to data set 

Develop a ID Generative Adversarial Network by using Keras 

Statistical Machine Translation 

Audio 

Machine Learning for Audio 

Published in IEEE JSTSP 

Sentiment Classification 

Image Captioning 

RNN 

Language Translation 

Speech 

predict the next word in as sentence 

Neural Machine Translation (seq2seq) Tutorial 

machine translation, 

Image 

CNN

speech recognition, 

Moral Machine 

text summarization. 

How to Develop a Deep CNN for Fashion 

MNIST Clothing Classification 

Text 

Fig.  5.2  Data set size growth 

5.3 

Source  of  Data:  Human  and  Machine 

Human  beings  generate  too  much  data  and  add  to  this  every  digital  device  (IoT) also creating 100 times more data compared to human beings. Imagine, 2000 plus 

electricity  transformers  in  a  given  city  (may  be,  for  example,  Chennai  in  Tamil Nadu) might produce too much of data for every hour. It will be almost impossible 

for “Engineer in Power distribution substation or at Feeder to take a call by looking at  huge  amounts  of  data  from  each  transformer.”  AI  can  reduce  these  data  sizes and  provide  good  inference-level  data  to  engineers  to  decide  on  load  dispatch. 

[image: Image 18]
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Healthcare is also coming up. Things are happening and few companies emerged 

in this data-driven business segment as well. 

Generated  text  data  has  been  used  to  perform  intelligent  gathering  for  well-defined  objectives.  Image  data-based  intelligence  report  regeneration  and  notification service are becoming very popular  at enterprise level and also getting into consumer industries in the form of a doorbell with computer vision, advanced driver assistance  system  (ADAS)  with  computer  vision,  and  many  more  applications  in the healthcare segment as well. A proposed workshop provides an introduction to 

cognitive computing in multimedia applications. 

5.4 

Data  Set  Creation  and  Statistical  Methods 

As shown in Fig. 5.2, collection of data might require different kinds of experiments with the help of domain experts. Experiments, mostly statistical in nature, and, in the following, popular statistical experiences are discussed. 

Data  set  creation  required  a  good  amount  of  domain  knowledge  in  a  given domain.  For  example,  the  following  diagram  illustrates  the  kind  of  signal  and associated networks that are used in deep learning models. 

Data  set  size  growth  early-stage  deep  learning  networks  had  used  text  data  as an input, but major success came after image data set is used in training models. 

Speech and audio are also getting in as a part of natural language processing and 

many more associated applications. Advanced driver assistance systems (ADASs) 

appear to be integrating real-time sensor data as well. 

Posterior  probability  distribution  is  the  probability  distribution  of  an  unknown quantity, treated as a random variable, conditional on the evidence obtained from an experiment or survey. 

In Fig. 5.3, 

.  k = 1 for Bernoulli trial 

.  k >  1 for binomial trial 

.  k = ∞, for Poisson trial 

Fig.  5.3  Poisson trials 

Bernoulli Trial 

 P( k) =  p(1 –  p) k–1

Binomial Experiment 

Geometric distribution 

Trials required to get first 

Poisson trials 

success 
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5.5 

Statistical  Methods 

 5.5.1 

 Bernoulli:  Binary  Classification  of  Data 

It  is  a  random  experiment  with  exactly  two  possible  outcomes,  “success”  and 

“failure,” in which the probability of success is the same every time the experiment is  conducted.  It  is  named  after  Jacob  Bernoulli,  a  seventeenth-century  Swiss mathematician. 

Let p be the probability of success in a Bernoulli trial and q be the probability 

of  failure.  By  definition  these  are  complementary  events,  for  example,  “success” 

and  “failure”  are  mutually  exclusive  and  exhaustive.  The  following  relations  are used to illustrate the abovementioned relations. p . = 1. − q and q. = 1. − p. These two equations can be stated as p . + q. = 1: 

 p = 1 −  q

 q = 1 −  p

.  p +  q = 1

(5.1) 

 S = { x 1 , x 2 , . . . xr }

 X(xi) = 1

Let S be a set of observable in a given experiment as a possible outcome during 

each measurement, where xi is an observable at a given measurement. There are “r” 

measurements included in a set S. 

A random variable X is a measurable function from S to E, where S is a set of 

possible outcomes. Measurable space is E and in this case it can be assumed that 0 

and 1 are two elements in E. 

.  X(xi ) = 1 or .  X(xi ) = 0

As shown above X can take a value 1 or 0 in E. Probability mass function (PMF) 

is  a  function  that  gives  the  probability  that  a  discrete  random  variable  is  exactly equal to some value. The following experiment is performed to create a data set. 

Measure  the  respiration  rate  of  an  individual,  which  indicates  the  number  of lung breaths per minute. Consider that this experiment is conducted multiple times, denoted as “r,” with the same sensor device to record the respiratory rate of the same person. 

.  xi  takes the value from 0 to 200, where 0 is the minimum breathing rate and 200 

is the maximum breathing rate. 

Figure  5.4  provides  a  histogram  obtained  using  recorded  samples,  where  the horizontal axis is the number of breathing rates shown by the device during each 

measurement. Vertical axis is number of times that the number of breathing rates 

recorded.  Is it defined only at its value 1 and 0? 
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Fig.  5.4  Data set design: 

recorded samples 

Figure  5.4  is  one  element  in  a  data  set  which  will  be  used  in  training  NN  or CNN. Each picture is associated with a label, where the label has two values such 

as “normal” and “abnormal.” For normal values, xi is in the range of 60 to 80. 

 P (X(xi)) = 1 =  p

. 

(5.2) 

 P (X(xi)) = 1 −  p =  q

.  P (X(xi )) = 1 is the probability mass function. After r recording, get one picture and use the same as an input to train CNN for training data set. 

Inference result = normal breathing rate (1) or abnormal breathing rate (0). The 

same provides a notification for a person’s breathing condition such as normal or 

abnormal. 

One sample recorded for each trial. Number of samples per trial = 1. 

In the above example, E is [0 and 1] and it is a discrete case in which experiment provides  a  binary  outcome.  But  in  general  E  includes  values  in  an  interval.  For example, .  E ∈ [ a, b], where a can be 0 and b can be 1. 

.  f (a) =  P (X(xi )) =  a

(5.3) 

is a probability mass function, where a . = 1 or a. = 0 



 F (a) =

 f (x)

. 

(5.4)

 x≤ a
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where  F(a)  is  using  probability  mass  function  to  define  probability  distribution function, and the same can be defined as 

.  F (a) =  P (X(xi ) ≤  a)

(5.5) 

The following uses a probability distribution function to define probability mass 

function f(a). 

.  f (a) =  F ((a) −  lmith→0 F (a −  h)

(5.6) 

A  breathing  rate  example  is  designed  to  use  a  probability  mass  function  with binary  outcome.  P(X . = xi)  is  a  probability  mass  function  that  differs  from  a probability density function (PDF) in that the latter is associated with continuous rather than discrete random variables. A PDF must be integrated over an interval to yield a probability. The probability distribution of a random variable is a function that takes the sample space as input and returns probabilities; in other words, it maps possible outcomes to their probabilities. 

 5.5.2 

 Binomial:  Binary  Classification  of  Data 

It consists of a fixed number n of statistically independent Bernoulli trials, each with a probability of success p, and counts the number of successes, the probability of exactly k successes in the experiment. Binomial distribution describes the number 

of successes (k) in a sequence of n number of Bernoulli trials. 



 n

.  P (k) =

 pkqn− k

(5.7) 

 k



 n

. 

is a binomial coefficient. 

 k

X is a random variable defined on a sample space which has  r  measurement at a time. Function X takes  n inputs and provides one integer output. For example,  n trials might lead to three trial successes and the rest .  (n − 3 )  are failures and then the output of .  X  is 3. 

.  X :  S ×  S ×  S ×  . . . ×  S →  Z

(5.8) 

Perform  n trials and each trial  r  recordings. After completing  n trials, create a histogram of recorded data which is shown in Fig. 5.5. 

Breath  rate  80  to  100  is  normal  and  the  rest  is  abnormal.  In  the  Bernoulli experiment .  n = 1 and  in  binomial .  n >  1.  The  rest  of  the  workflow  is  given  in data set creation in the Bernoulli trial. 
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Fig.  5.5  Data set design: 

binary mode 

.  P (X(xi )) = 1 is the probability mass function. After  r recording, get one picture and use the same as an input to train CNN for training data set. 

Inference result = normal breathing rate (1) or abnormal breathing rate (0). 

The  same  provides  a  notification  for  a  person’s  breathing  condition  such  as normal or abnormal. 

 r samples recorded for each trial. Number of samples per trial .  r >  1. 

 5.5.3 

 Poisson:  Binary  Classification  of  Data 

Poisson distribution expresses the probability of a given number of events occurring in  a  fixed  interval  of  time.  Poisson  distribution  provides  interesting  things  like finding  the  probability  of  a  number  of  events  in  a  time  period  or  finding  the probability  of  waiting  some  time  until  the  next  event.  Stochastic  process  that  is continuous in time but discrete in space is the Poisson process. 

Poisson sampling is a process where each element of the population is subjected 

to an independent Bernoulli trial. The discrete nature of the Poisson distribution is a probability mass function and not a density function. Figure 5.6 provides a sample plot  in  which  the  x-axis  is  the  integer  count  on  a  number  of  events  (there  are  no fractional events). Vertical coordinates provide probability for that number of events to happen. Curve is associated with a specific lambda. 

What is the probability that infinitely many times events can happen in a given 

time  period  is  zero?  Thus,  the  above  graph  is  valid  for  a  sample  space  in  which period is fixed. For a different T and for the above given, the same lambda curve can be very different. This is critical for data set design, 
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Fig.  5.6  Events vs. associated probability 

Table  5.1  Bernoulli vs. 

Trial no  Bernoulli trial  Poisson trial 

Poisson trial 

1

p , q

.  p 1 , .  q 1

2

p , q

.  p 2 , .  q 2

3

p , q

.  p 3 , .  q 3

. . . 

. . . 

n

p , q

.  pn , .  qn

where p is the normal breathing rate (assigned value is 1) (Table 5.1 provides a detailed comparison) 

where q is the abnormal breathing rate (assigned value is 0) 

where .  p 1 is the normal breathing rate (assigned value is 1) during the first trial where .  q 1 is the abnormal breathing rate (assigned value is 0) during the first trial where .  pn  is the normal breathing rate (assigned value is 1) during the nth trial where .  qn  is the abnormal breathing rate (assigned value is 0) during the nth trial where .  p 1 is not equal to .  p 2 and so on 

where .  q 1 is not equal to .  q 2 and so on 

 P (X(xi) = 1 ) =  pi

. 

(5.9) 

 P (X(xi) = 0 ) = 1 −  pi =  qi

The above shows probability .  pi  might be different from .  pi+1. 

Let lambda be the expected number of events in the interval 

 λk

.  P (k) =  e− λ

(5.10)

 k! 
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The above is a probability for  k events to happen in a given interval. 

For example, people from different communities in a given geography may have 

small probability differences in the number of heart attacks each year. Analysis of heart attacks often involves Poisson trials, as probabilities change with each instance of month or year. When these probabilities are unequal for each Bernoulli trial of independent events, it becomes a Poisson trial. 

Number of samples per trial .  r = ∞. 

The  above  constraint  leads  to  many  challenges  in  collecting  samples.  For example, having an infinite number of samples will be assumed to be a sufficiently high  number  of  samples.  A  Poisson  trial  is  a  collection  of  Bernoulli  trials  with unequal probabilities. 

Let us assume .  Ti  is a period. 

.  r 1 is  the  number  of  breathing  beats  in  the  above  given  .  T 1.  .  r 2 is  number  of breathing beats in .  T 2 above given. 

What is the number of breathing beats for .  Ti, 

where .  Ti  is in .[ T 1 , T 2]? 

The  above  guidelines  are  used  to  create  a  data  set  which  can  be  used  to  train CNN. And then the trained CNN can be used for inference. For example, the above 

question is transformed into an inference question by using trained CNN. 

Perform  n trials and each trial  r  recordings. After completing  n trials, create a histogram of recorded data, breath rate 80 to 100 is normal, and the rest is abnormal. 

In the Bernoulli experiment .  n = 1 and in binomial .  n >  1. The rest of the workflow is given in the data set creation in the Bernoulli trial. 

Problem  5.5.1  80  beats  recorded  (as  an  average)  for  1  minute.  What  will  be  the number of beats for 5 min? 

.  λ 1 = 80 and .  t 1 = 1

.  λ 2 =?? and .  t 2 = 5

 λ 2

 t 2

. 

=  t 2 =⇒  λ 2 =  λ 1

(5.11) 

 λ 1

 t 1

 t 1

The above steps are useful to create a data set for many new lambda values from 

a given set of lambda values. 

5.6 

Image  Signal  Processing 

 5.6.1 

 Image  Data  and  Maxwell-Boltzmann  Statistics 

Gaussian blur which is also known as Gaussian smoothing is the result of blurring 

an  image  by  a  Gaussian  function.  It  is  used  to  reduce  image  noise  and  reduce details.  The  visual  effect  of  this  blurring  technique  is  similar  to  looking  at  an image through the translucent screen. It is sometimes used in computer vision for

[image: Image 19]
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Fig.  5.7  2D filter use in image processing 

image enhancement at different scales or as a data augmentation technique in deep 

learning. The basic Gaussian function looks like 





.  Log(x, y) = −

1

1 −  x 2 +  y 2  e−  x 2 +  y 2

2 π σ  4

2 σ  2

2 σ  2

In practice, it is best to take advantage of the Gaussian blur’s separable property by dividing the process into two passes. In the first pass, a one-dimensional kernel is used to blur the image in only the horizontal or vertical direction. In the second pass, the same one-dimensional kernel is used to blur in the remaining direction. 

Image 1 in Fig. 5.7 is the input image. 

Image 2 in Fig. 5.7 is a gray version of the input image. Image signal processing algorithms are used to bring a complex problem into an easily computable problem. 

Image 3 in Fig. 5.7 is the 2D filtered version of input image. It is a computable problem but complexity is high. 

Image 4 in Fig. 5.7 is an output after applying a circle on each detected object (mostly point in image). 

Image 5 in Fig. 5.7 is a version that is filtered via object detection. The same is used for counting the number of stars in a given input image. Mostly, Image 5 is the result in a computable problem. 

The resulting effect is the same as convolving with a two-dimensional kernel in a 

single pass. The following example is used to illustrate the application of Gaussian filters to an image enhancement. If the filter is normally distributed and when it is applied to an image, the results look like that as given in Fig. 5.7. 

The source code for the above example is given in [41]
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 5.6.2 

 Working  with  Image  Files 

1.  OpenCV library 

2.  PIL library 

3.  URLLIB library 

4.  matplotlib library 

5.  pickle module 

6.  skimage library 

The  following  URL  provides  a  code  to  read  the  fashion  mnist  data  set.  The mentioned data set is read from the URL base and also from the local PC [42]. 

It  is  an  order  5  tensor,  and  the  dimensions  are  BatchSize  × Depth×Height  × 

Width×Channels 

MNIST  Data  Set  Handling 

A data set of 60,000 .28×28 grayscale images of the 10 digits, along with a test set of 10,000 images. The original black and white images of MNIST had been converted 

to grayscale in dimensions of 28*28 pixels in width and height, making a total of 

pixels. Pixel values range from 0 to 255, where higher numbers indicate darkness 

and lower as lightness. 

Refer: [43] provides details on MNIST data set file format and also a necessary code to read MNIST file. 

After completing adding one file and testing, use all other files from your own 

data set. Pixel values are often unsigned integers in the range between 0 and 255. 

Although these pixel values can be presented directly to neural network models in 

their raw format, this can result in challenges during modeling, such as slower than expected  training  of  the  model.  Instead,  there  can  be  a  great  benefit  in  preparing the  image  pixel  values  prior  to  modeling,  such  as  simply  scaling  pixel  values to  the  range  0–1  to  centering  and  even  standardizing  the  values.  This  is  called normalization and can be performed directly on a loaded image. The example below 

uses the PIL library (the standard image handling library in Python) to load an image and normalize its pixel values. 

Problem  5.6.1  MNIST data set is used in DLtrain to train the NN or CNN model. 

Given the MNIST data set is having a well-defined format and also its use in DLtrain to train the NN or CNN model. In the following items, list items that are valid for the above-defined MNIST data set: 

(a)  MNSIT data set includes 70,000 images. 

(b)  .28 × 28 is image size used in MNIST. 

(c)  Each pixel is having 0 or 1 value in MNIST image file. 

(d)  Images for 0,1,2,3,4,5,6,7,8,9 are given in MNIST data set. 

(e)  Each pixel has a gray (0 to 1) value in MNIST image file. 

(f)  All of the above are true but item (e). 

(g)  All of the above are true but item (c). 

60

5

Data Set Design and Data Labeling

 5.6.3 

 Pixel  Normalization 

How to normalize pixel values to a range between zero and one. Use [44] to access source code and perform normalization on a given image file. 

 5.6.4 

 Global  Centering 

How to center pixel values both globally across channels and locally per channel. 

Use the following URL [44] to get a source code for global centering. 

 5.6.5 

 Global  Standardization 

How to standardize pixel values and how to shift standardized pixel values to . +ve domain. 

Use the following URL [44] to get a source code for global standardization. 

The given example calculates the mean and standard deviation across all color 

channels  in  the  loaded  image  and  then  uses  these  values  to  standardize  the  pixel values. 

5.7 

Data  Set:  Read  and  Store 

 5.7.1 

 Data  Set  with  Label  Data 

Mostly, ML-based networks use data with labels during training and testing phases. 

Image classification networks (DL based) also use data with label for training and testing.  Labeling  a  given  data  is  mostly  manual  and  it  is  driving  a  very  vibrant industry.  There  are  companies  providing  service  for  data  label  work.  By  using computer  vision,  there  is  a  mix  of  manual  and  partly  automatic  also  getting  into data label workflow. 

Volume of data set defines storage options. For example, a local machine will be 

the best option to store a data set, but a high-volume nature will require an on-prem data center or cloud data center for large-volume data storage. Moreover, different file systems are coming up to handle the distributed nature of data storage. In fact, this  is  a  vibrant  segment  and  a  lot  more  invention  happening  in  every  financial quarter of the business cycle. 

Stored data is required to be used in training DL/ML networks. For this there are 

many methods and tool sets emerging. PyTorch, TensorFlow, etc. provide methods 

to  handle  data  set  reading.  But  for  large  volumes  of  data  set  reading,  there  are vendor-specific tool sets and services are emerging. 

5.8 Audio Signal Processing
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 5.7.2 

 Working  with  CSV  Files 

Load  a  file  directly  using  the  NumPy  function  loadtxt().  There  are  eight  input variables and one output variable (the last column). Once loaded we can split the 

data set into input variables (X) and the output class variable (Y). Use the following URL to get a source code which is useful to read CSV file. Refer to [45]. 

5.8 

Audio  Signal  Processing 

Text  to  speech  synthesis  (TTS)  uses  deep  learning  networks  to  synthesize  high-quality speech for a given speech: 

1.  Text is input. 

2.  Normalization. 

3.  Text preprocessing. 

4.  Phoneme (database of phoneme for a given word and also given language). 

5.  Acoustic model for given phoneme. 

6.  Speech waveform is output. 

In the above, step 5 uses deep learning networks to synthesize speech. But other 

steps from 1 to 4 provide processed data for step 5. 

Speech  data  set  creation  requires  Mel  spectrogram  computation  for  a  given phoneme. 

Concatenation synthesis (words, syllables, diphones, or even individual phones), 

statistical  parametric  synthesis  (HMM),  speech  synthesis  evaluation  (MOS),  and speech synthesis with deep learning. 

 5.8.1 

 Speech  Synthesis  by  Using  Deep  Learning  Networks 

Problem  5.8.1  Let Y be input text sequence; target speech X can be derived by 

.  X = arg Max P (X| Y, θ )

where  theta is the model  parameter.  Create a data set by using speech  signal and train deep learning network model such that trained deep learning network model is used to estimate above X. 

A neural vocoder achieves the encoding/decoding using a neural network. GAN-

based  TTS  and  EATS  (end-to-end  adversarial  text-to-speech  by  Deepmind).  It operates  on  pure  text  or  raw  phoneme  sequences  and  produces  raw  waveform  as output [46–48]. 

[image: Image 20]

62

5

Data Set Design and Data Labeling

5.9 

Data  Set  by  Using  PCAP  File  and  Stream  to  Tensor 

IP stream data is stored in PCAP file. Overall, combining IP stream analysis with 

deep learning can lead to more accurate and effective tools for network analysis and security. 

PCAP  file-based  data  is required  to  transform into Tensor  for  TensorFlow  and also Tensor for PyTorch. 

Refer  to  file  tcpdump.md  in  [49]  to  get  information  on  flow  capture  tool  set tcpdump. 

Figure 5.8 provides workflow in capturing data from the IP network. 

Code in file ScapyPCAP2CSV.ipynb in [50] is used to convert PCAP file in CSV 

file,  where  the  CSV  file  is  used  as  a  data  set  to  train  the  deep  learning  network model. 

Fig.  5.8  Data stream in IP networks

[image: Image 21]

Chapter 6 

Model of Deep Learning Networks 

 Deep  learning  models  are  the  architects  of  artificial 

 intelligence,  shaping  its  intelligence  and  character. 

6.1  Insight 

This section of the book primarily addresses the deep learning model designing and development.  Deep  learning  network  is  emerging  as  another  tool  set  to  model  a given physical process [51–53]. Observed data of a given physical process is used in the design and development of deep learning networks. Probability distribution 

for  a  given  data  set  is  associated  with  deep  learning  networks  which  represent  a given data set. A neural network is used to model Boltzmann machine, but training 

Boltzmann machine is still an open problem. Thus, restricted Boltzmann machine 

[54] is trending as a way ahead and the same is used in a model neural network, convolutional  neural  network,  etc.  The  mentioned  restricted  Boltzmann  machine uses  Bayes  network  and  data  collection  is  required  to  support  model  parameters. 

Innovation  of  CNN  had  resulted  in  providing  a  tool  set  to  handle  modeling  of observed data. Brooks–Iyengar algorithm [55, 56] provides methods and apparatus to  solve  a  special  class  of  Boltzmann  machine  which  is  in  line  with  multilayer perceptron (MLP). The design of deep learning network uses NN, CNN, RNN, etc. 

to model a network. The development  of deep learning networks [57] requires to train  NN,  CNN,  RNN,  etc.  by  using  a  data  set.  Finding  a  probability  distribution for a given data is defined as a computability problem in the sense of Kolmogorov 

computability [58]. Back propagation is one class of algorithms that leads to sub-optimal  deep  learning  networks.  Pre-trained  deep  learning  networks  become  a starting step to train a network with additional data set. Compression (quantization of bias and weights, pruning) of a trained deep learning network also appears to be critical for successful deployment of a trained deep learning network in a given IoT 

native device or cloud native system. The abovementioned items are discussed in 

this chapter, but still there is a scope to enhance with a lot more detail in Kolmogorov complexity and also the use of Pontryagin duality [59–61] to handle Kolmogorov complexity. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 

63

J. Singaram et al.,  Deep  Learning  Networks, 

https://doi.org/10.1007/978-3-031-39244-3_6

64

6

Model of Deep Learning Networks

6.2  Data and Model 

Deep learning starts with the following set of questions: 

1.  Find a model of a given binary data. 

2.  What is the need to model binary data? 

3.  What can one do with a model? 

4.  What can be done with a model that emerged from binary data? 

5.  How is probability assigned to each binary vector? 

6.  How is the above connected to the weights of Boltzmann machine? 

The main concern appears to be gathering existing data and utilizing deep learning networks to learn a new capability. For example, the following list includes a few problems that have good attraction in the research segment of a deep learning network model design: 

1.  Sequence (set with order) 

2.  Sequence prediction 

3.  Sequence classification 

4.  Sequence generation 

5.  Sequence to sequence prediction 

 6.2.1 

 Sequence  Prediction 

Predicting  the  next  value  or  kth  value  from  the  present  value  for  a  given  input sequence. 

Weather forecasting: Given a sequence of observations about weather over time, 

predict the expected weather tomorrow. 

Stock market prediction: Given a sequence of movements of a security over time, 

predict the next movement of the security. 

Product  recommendation:  Given  a  sequence  of  past  purchases  of  a  customer, predict the next purchase of a customer. 

 6.2.2 

 Sequence  Classification 

Predicting  class  label  for  a  given  input  sequence.  The  input  sequence  may  be comprised of real values or discrete values. 

DNA sequence classification: Given a DNA sequence of ACGT values, predict 

whether the sequence codes for a coding or noncoding region. 

Anomaly  detection:  Given  a  sequence  of  observations,  predict  whether  the 

sequence is anomalous or not. 

6.3 Data and Probability Model
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Sentiment  analysis:  Given  a  sequence  of  text  (ex  tweet),  predict  whether sentiment of the text is positive or negative. 

 6.2.3 

 Sequence  Generation 

Generating a new output sequence that has the same general characteristics as other sequences in the corpus. 

Text  generation:  Given  a  corpus  of  text,  such  as  the  works  of  Shakespeare, generate new sentences or paragraphs of text that read like Shakespeare. 

Handwriting  prediction:  Given  a  corpus  of  handwriting  examples,  generate 

handwriting for new phrases that have the properties of handwriting in the corpus. 

Music generation: Given a corpus of examples of music, generate new musical 

pieces that have the properties of the corpus. Image caption generation: Given an 

image as input, generate a sequence of words that describe an image. 

 6.2.4 

 Sequence  to  Sequence  Prediction 

It  is  a  subtle  but  challenging  extension  of  sequence  prediction  where  rather  than predicting a single next value in the sequence. 

Multistep time series forecasting: Given a time series of observations, predict a 

sequence of observations for a range of future time steps. 

Text summarization: Given a document of text, predict a shorter sequence of text 

that describes the salient parts of the source document. 

Program  execution:  Given  the  textual  description  program  or  mathematical 

equation, predict the sequence of characters that describes the correct output. 

6.3  Data and Probability Model 

 6.3.1 

 Measurement  and  Probability  Distribution 

Measurements of any kind, in any experiment, are always subject to uncertainties 

or errors, as they are more often called. Measurement process is, in fact, a random process described by an abstract probability distribution whose parameters contain the information desired. The results of a measurement are then samples from this 

distribution  which  allow  an  estimate  of  the  theoretical  parameters.  In  this  view, measurement  errors  can  be  seen  as  sampling  errors.  Most  observable  phenomena are random in nature and it is termed as random process or random experiment. 

Random  processes  have  outcomes,  and  subsets  of  these  outcomes  are  called events.  These  events  are  mapped  to  a  numeric  form  by  using  random  variables. 

[image: Image 22]
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Fig. 6.1  Observed data and associated model 

Stochastic models predict the output of an event by providing different choices (of values of a random variable) and the probability of those choices. 

If  a  distribution  has  unknown  (not  inferred  yet)  parameters,  then  it  leads  to  a family of distributions. Each value of the parameter is a different distribution. This family  is  called  a  statistical  model  with  parametrization.  For  example,  Bernoulli, binomial, exponential is a class of statistical model. 

The  term  “probability  model”  (probabilistic  model)  is  usually  an  alias  for  a stochastic  model  [51]. Figure  6.1  provides  a  link  between  observed  data  and  the associated model. 

1.  Providing different choices (of values of a random variable) 

2.  Probability of those choices 

Probability mass function is a function that gives the probability that a discrete random variable is exactly equal to some value. A probability mass function differs from  a  probability  density  function  (PDF)  in  that  the  latter  is  associated  with continuous rather than discrete random variables. 

.  P (Y =  y, X =  x) =  P (X =  x)P (Y =  y| X =  x) (6.1) 

The  probability  distribution  of  a  random  variable  is  a  function  that  takes  the sample  space  as  input  and  returns  probabilities:  In  other  words,  it  maps  possible outcomes to their probabilities. The joint probability distribution is useful in cases where we are interested in the probability that x takes a specific value while y takes another specific value. For instance, what would be the probability to get a 1 with the first dice and 2 with the second dice? The probabilities corresponding to every pair  of  values  are  written .  P (x =  x, y =  y)  or  P(x,y).  This  is  what  we  call  the joint probability .  P (y =  y| x =  x)  that describes the conditional probability: It is the probability that the random variable y takes the specific value y given that the random variable x took the specific value x. 

It is different from .  P (y =  y, x =  x)  which corresponds to the probability of getting both the outcome y for the random variable y and x for the random variable x. 

In the case of conditional probability, the event associated with the random variable x has already produced its outcome (x). 

[image: Image 23]
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The probability that the random variable y takes the value y given that random 

variable x took the value x is the ratio of the probability that both events occur (y takes the value y and x takes the value x) and the probability that x takes the value x is 

.  P (Y =  y, X =  x) =  P (Y =  y| X =  x) (6.2) 

 P (X =  x)

It may be more intuitive to look at it in another direction, as in the following: 

.  S =  x 1 , x 2 , . . . , xr [0 ,  1]

(6.3) 

 Posterior, in this context, means after taking into account the relevant evidence related to the particular case being examined. The posterior probability distribution is the probability distribution of an unknown quantity, treated as a random variable, conditional on the evidence obtained from an experiment or survey. 

Figure 6.2 provides details on increasing complexity in probability models on the right side and on the left side it provides details on models for inference. “k” trials are required to obtain the first success in geometric distribution. 

Bernoulli Trial 

Binomial Experiment 

 P( k) =  p(1 –  p) k–1 

Geometric distribution 

A Bayesian network (also known 

as a Bayes network, belief 

Poisson trials 

network, or decision network) 

Restricted Boltzmann 

Machine 

Boltzmann Machine 

Fig. 6.2  Probability distribution
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6.4  Boltzmann Distribution 

Bayesian networks are directed acyclic graphs whose nodes represent variables in 

the Bayesian sense; they may be observable quantities, latent variables, unknown 

parameters,  or  hypotheses  [52]. Edges  represent  conditional  dependencies;  nodes that are not connected (no path connects one node to another) represent variables 

that  are  conditionally  independent  of  each  other.  Each  node  is  associated  with  a probability  function  that  takes,  as  input,  a  particular  set  of  values  for  the  node’s parent variables and gives (as output) a probability distribution. 

It is a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph. Boltzmann distribution is a probability  distribution  that  gives  the  probability  of  the  state  as  a  function  of  the state’s energy and a temperature of a system [53]. 

Gibbs sampling is applicable when the joint distribution is not known explicitly 

or  is  difficult  to  sample  from  directly,  but  the  conditional  distribution  of  each variable is known. The Gibbs sampling algorithm [62] generates an instance from the  distribution  of  each  variable  in  turn,  conditional  on  the  current  values  of  the other variable. Gibbs sampling is particularly well adapted to the sampling posterior distribution of a Bayesian network, since Bayesian networks are typically specified as a collection of conditional distributions. 

Maxwell–Boltzmann Statistics 

The original derivation in 1860 by James Clerk Maxwell was an argument based on 

molecular collisions of the kinetic theory of gases as well as certain symmetries in the speed distribution function. 

Maxwell  also  gave  an  early  argument  that  these  molecular  collisions  entail  a tendency  towards  equilibrium.  After  Maxwell,  Ludwig  Boltzmann  in  1872  also derived the distribution on mechanical grounds and argued that gases should over 

time tend towards this distribution, due to collisions. 

Maxwell  later  (1877)  derived  the  distribution  again  under  the  framework  of statistical thermodynamics. Starting with the result known as Maxwell–Boltzmann 

statistics  (from  statistical  thermodynamics).  Maxwell–Boltzmann  statistics  gives the average number of particles found in a given single-particle microstate. Under certain assumptions, the logarithm of the fraction of particles in a given microstate is proportional to the ratio of the energy of that state to the temperature of the system: Ni

. −  log

 )

∝  Ei

(6.4) 

 N

 T

The assumptions in this equation are that the particles do not interact and that 

they are classical. 

Each particle’s state can be considered independently from the other particles’ 

states.  Additionally,  the  particles  are  assumed  to  be  in  thermal  equilibrium.  This
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relation can be written as an equation by introducing a normalizing factor: 

 Ni =

 e−  Ei

 kT

. 

(6.5) 

 N

 N

 j =1  e−  Ej

 kT

where 

1.  .  Ni  is the expected number of particles in the single-particle microstate i 2.  N is the total number of particles in the system 

3.  .  Ei  is the energy of microstate i 

4.  the sum over index j takes into account all microstates 

5.  T is the equilibrium temperature of the system 

6.  k is the Boltzmann constant 

The denominator in the equation is a normalizing factor so that the ratios .  Ni :  N

add  up  to  unity;  in  other  words  it  is  a  kind  of  partition  function  (for  the  single-particle system, not the usual partition function of the entire system). 

Because  velocity  and  speed  are  related  to  energy,  the  equation  can  be  used  to derive relationships between temperature and the speeds of gas particles. All that is needed is to discover the density of microstates in energy, which is determined by dividing up momentum space into equal-sized regions. 

In  the  given  context,  .  Ei  represents  energy,  .  T  stands  for  temperature,  and  .  k represents  the  Boltzmann  constant.  In  a  sensor  network,  the  term .  T  is  associated with  the  noise  generation  term  in  a  measurement  process.  If  .  T  is  . 0,  then  the measurement is clean (which may not be true in the real world of sensing). 

A probabilistic graphical model represents a set of variables and their conditional dependencies  via  a  directed  acyclic  graph  (DAG).  Figure  6.3  provides  details  on 

“supervised” vs. “autonomous” learning. 

Bayesian networks as shown in Fig. 6.4 is a directed acyclic graph whose nodes represent variables in the Bayesian sense. 

Nodes  can  be  observable  quantities,  latent  variables,  unknown  parameters,  or hypotheses. 

Edges represent conditional dependencies. 

Nodes that are not connected (no path connects one node to another) represent 

variables that are conditionally independent of each other. 

Each node is associated with a probability function that takes, as input, a particular set of values for the node’s parent variables and gives (as output) a probability distribution. A probabilistic graphical model represents a set of variables and their conditional dependencies via a directed acyclic graph. Boltzmann distribution is a probability distribution that gives the probability of a state as a function of the state’s energy and a temperature of a system. 

Gibbs sampling is applicable when the joint distribution is not known explicitly 

or  is  difficult  to  sample  from  directly,  but  the  conditional  distribution  of  each variable  is  known.  The  Gibbs  sampling  algorithm  generates  an  instance  from  the

[image: Image 24]
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Fig. 6.3  Supervised learning 

Fig. 6.4  Bayesian networks 

distribution of each variable in turn, conditional on the current values of the other variable. 

Gibbs sampling is particularly well adapted to sampling the posterior distribution of  a  Bayesian  network,  since  Bayesian  networks  are  typically  specified  as  a collection of conditional distributions. 

.  pi =

 e−  Ei

 kT



(6.6) 

 N


 j =1  e−  Ej

 kT

where .  Ei  is energy and .  T  is temperature and .  k  is Boltzmann constant. 
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In a sensor network, the term .  T 6.6 is associated with the noise generation term in a measurement process. If .  T  is . 0, then the measurement is clean (which may not be true in the real world of sensing). 

A probabilistic graphical model represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). Bayesian networks are directed 

acyclic graphs (DAGs) whose nodes represent variables in the Bayesian sense: They 

may be observable quantities, latent variables, unknown parameters, or hypotheses. 

Edges  represent  conditional  dependencies;  nodes  that  are  not  connected  (no  path connects one node to another) represent variables that are conditionally independent of  each  other.  Each  node  is  associated  with  a  probability  function  that  takes,  as input, a particular set of values for the node’s parent variables and gives (as output) the probability (or probability distribution, if applicable) of the variable represented by the node. Gibbs sampling is applicable when the joint distribution is not known explicitly or is difficult to sample from directly, but the conditional distribution of each variable is known and is easy (or at least, easier) to sample from. The Gibbs sampling algorithm generates an instance from the distribution of each variable in turn, conditional on the current values of the other variable. 

Gibbs sampling in Fig. 6.5 is particularly well adapted to sampling the posterior distribution of a Bayesian network, since Bayesian networks are typically specified as a collection of conditional distributions. Given an input vector v, we are using p(h|v)  for  the  prediction  of  the  hidden  values  h.  Knowing  the  hidden  values  we use .  p(v| h)  for  the  prediction  of  new  input  values  v.  This  process  is  repeated  k times. After k iterations we obtain another input vector .  vk  which was recreated from original input values .  v 0, the specified multivariate probability distribution, where .  Ei is the probability of a certain state of our system .  pi  and N is the number of sensors in a given sensor network. 

Particles  which  are  regulated  by  Maxwell–Boltzmann  statistics  have  to  be 

distinguishable  from  each  other  and  one  energy  state  can  be  occupied  by  two  or more particles. Reconstruction is different from regression or classification. 

Reconstruction estimates the probability distribution of the original input instead of associating a continuous/discrete value to an input example. Gibbs sampling is 

particularly well adapted to sampling the posterior distribution of a Bayesian net-Fig. 6.5  Gibbs sampling
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work, since Bayesian networks are typically specified as a collection of conditional distributions. 

Problem 6.4.1  What  is  the  necessary  condition  “on  a  given  image”  such  that  a computationally  tractable  algorithm  is  used  to  count  the  number  of  objects  in  a given image? 

(a)  The given image needs to have Maxwell–Boltzmann statistics. 

(b)  The given image needs to have Bose–Einstein statistics. 

(c)  Only (a) is true and (b) is not true. 

(d)  (a) is not true and (b) also not true. 

(e)  (a) is true and (b) also true. 

Boltzmann  and  Helmholtz  machines  are  strongly  related  to  Markov  random 

fields and conditional random fields. This leads to the development of algorithms 

for inference that can be applied to both kinds of models, as, for example, fractional belief propagation. 

Boltzmann machine models given a “set of binary vectors.” Trained Boltzmann 

machine is deployed to find out the distribution of an input stream. 

A sensor classification work is a special case of the abovementioned process in 

Boltzmann machines. The example using restricted BM is used as a deep learning 

network  to  classify  nodes  in  a  TCP/IP  network.  In  the  Boltzmann  machine,  each undirected edge represents dependency. In Fig. 6.6, there are three hidden units and four  visible  units.  This  is  not  a  restricted  Boltzmann  machine.  Input  is  fed  to  all nodes(green and yellow) during interval 0 to T. 

Step 1  (input to Boltzmann machine): Provide an external input to network which 

is subjected to system temperature for all neurons. Network is then trained 

using data from all systems that are exposed to the same system temperature. 

However,  there  may  be  variations  in  temperature  levels  among  different 

states, which is a subject of investigation. 
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Fig. 6.7  Inference by using Boltzmann machine 

Fig. 6.8  Distribution and model 

Step 2  (output  from  Boltzmann  machine):  Measure  each  state  that  is  supporting measurable conditions. The maximum possible energy of the above system 

will provide provision to quantize energy levels. 

The output energy E in Fig. 6.7 is a combination of all four energies from each node v. Each energy level provides a possible state of each node. But in the above E 

there is no contribution from hidden nodes but there is indirect contribution which needs to be estimated by using a model of dynamical system [51]. 

Input  vector .  v  is  used  to  find .  p(h| v)  to predict hidden values h. Knowing the hidden  values,  use .  p(v| h)  for  the  prediction  of  new  input  values  v.  This  process is repeated k times. After .  k  iterations, input vector .  k  is recreated from the original input value .  v 0. Target states include all possible states of the sensor. 

Distribution is associated with a model and it is shown in Fig. 6.8. For a given input data set, find a distribution and it is equal to finding a model. 
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6.5  Multilayer Neural Network 

Multilayer  perceptron  (MLP)  [63]  Hopfield  networks  are  deterministic  networks. 

MLP can be shown to estimate the conditional average on the target data. An MLP 

is a fully connected class of feed forward artificial neural network (ANN). 

The term MLP is used ambiguously, sometimes loosely to mean any feed forward 

ANN,  sometimes  strictly  to  refer  to  networks  composed  of  multiple  layers  of perceptrons (with threshold activation). MLPs are sometimes colloquially referred 

to as “vanilla” neural networks, especially back propagation, a generalization of the least mean squares algorithm in the linear perceptron. 

Hopfield is a deterministic recurrent neural network, deterministic because once 

the  initial  state  is  given,  its  dynamics  evolves  following  the  Lyapunov  function. 

It has been shown that it can solve combinatorial problems and learn time series. 

Helmholtz  and  Boltzmann  machines  are  stochastic  networks,  meaning  that  given an  input,  the  state  of  the  network  does  not  converge  to  a  unique  state,  but  to  an ensemble  distribution.  BM  provides  a  probability  distribution  of  the  state  of  the neural network. They are the stochastic equivalent of the Hopfield network, when 

they  have  a  single  hidden  layer.  Learning  occurs  in  the  perceptron  by  changing connection weights after each piece of data is processed, based on the amount of 

error in the output compared to the expected result. This is an example of supervised learning. 

6.6  Reduction of Boltzmann Machine to the Hopfield Model 

Boltzmann machine reduces to the Hopfield model. Figure 6.9 provides details on the mentioned relationship between Boltzmann machine and Hopfield network. The 

Boltzmann network energy level is a function of temperature. If temperature is high, then energy also will be high in the Boltzmann network. If T . = 0 (temperature), then the Boltzmann network reaches an energy level which is in equilibrium (energy level need not be zero). In a sense at T . = 0, Boltzmann network becomes a deterministic network.  In  particular,  Boltzmann  network  becomes  Hopfield  network,  because Hopfield is having Lyapunov function which can be considered as a constraint (as it comes from energy). In the case of MLP, there is no Lyapunov function and thus no 

constraint as well. The BI algorithm is closer to multilayered perceptrons (MLPs), because  the  BI  algorithm  is  deterministic  and  does  not  have  Lyapunov  function. 

Training the MLP network, the back propagation algorithm is used. 

The  BI  algorithm  is  similar  to  back  propagation  to  arrive  at  convergence  in node value. The Brooks–Iyengar algorithm performs the following: Every node is 

given its input and also average values from other nodes (average over T). Nodes 

jointly  provide  deterministic  output.  In  the  above,  it  is  clear  that  no  Lyapunov  or temperature is used in BI, and thus, BI is a special case of Hopfield network where

[image: Image 28]
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Fig. 6.9  Boltzmann machine and Brooks–Iyengar algorithm 

there  is  no  constraint  from  Lyapunov.  BI  is  another  version  of  MLP  where  the network provides deterministic output by using conditions of other nodes. 

6.7  Kolmogorov Complexity for a Given Data 

Kolmogorov complexity has its roots in probability theory [58], information theory, and  philosophical  notions  of  randomness.  Idea  is  intimately  related  to  problems in  both  probability  theory  and  information  theory.  Kolmogorov  complexity  is  the length  of  the  shortest  binary  program  from  which  the  object  can  be  effectively reconstructed. 

Combining concepts of computability and statistics, we can express the complex-

ity of a finite object in terms of Kolmogorov complexity. Kolmogorov complexity 

represents the length of the shortest computer program (algorithm) that can produce the object as output. This complexity measure takes into account both the computational aspects (computability) and the statistical aspects (probability) of describing the object. In essence, it quantifies the minimum amount of information needed to 

generate  the  object  using  a  universal  Turing  machine  or  a  similar  computational model. It may be called the algorithmic information content of a given object: What is the shortest binary representation of a program from which a parameter can be 

reconstructed  by  using  N-r  sensors,  w  here  N  is  the  number  of  sensors  used  in  a sensor  network  and  r  is  the  number  of  faulty  sensors?  Output  s  is  observed  from Turing  machine  T,  where  p  is  a  program  in  T  that  outputs  s  and  K  T  (s)  is  used to detect regularities of a given sensor data in order to find new information from a given sensor. For example, expression K is computable if and only if there is an
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effective procedure that, given any (k-tuple) x of natural numbers, will produce the value f (x). f : Nk . → R. In agreement with this definition, computable functions take finitely many natural numbers as arguments and produce a value which is a single 

natural number. 

Construction of dual space of given sensor network G is the first step in getting 

the shortest binary representation of a program. In Sect. 6.2, there are illustrations that  provide  steps  to  construct  dual  space.  The  function  f  definition  is  key  in  the construction of dual space. But f definition needs to have physical relevance to the measurement process which is using an N-r good sensor. To measure the same, the 

first dual space of G is constructed. And Kolmogorov complexity of G is estimated. 

The  method  mentioned  above  for  measuring  the  entropy  of  a  given  G  indirectly relies on the Kolmogorov complexity of G. It employs a well-defined result from 

Pontryagin duality and utilizes the Kolmogorov complexity outcome as part of its 

approach. 

6.8  Restricted Boltzmann Machine 

A  restricted  Boltzmann  machine  (RBM)  [54]  is  a  simplification  over  the  general Boltzmann  machine  approach,  in  the  sense  of  imposing  more  restrictions  on  the structure of the graphical model. A bipartite graph is created, composed of hidden states and observed (or visible) states. There are no connections among hidden and no connections among visible states themselves. These restrictions force the system to learn parameters and converge over iterations. 

Each undirected edge represents dependency. 

For example, in Fig. A.1 there are three hidden units and four visible units. This is a restricted Boltzmann machine. 

Restricted  Boltzmann  machines  are  probabilistic.  As  opposed  to  assigning 

discrete values, the model assigns probabilities. At each point in time, the RBM is in a certain state. The state refers to the values of neurons in the visible and hidden layers  v and  h. 

Both the visible and the hidden vectors are binary vectors. The hidden vector is 

selected from the visible vector by application of the W matrix and setting the bits of the h vector based on a probability from a sigmoid activation function. Similarly, the visible vector is generated back from the h vector based on the sigmoid activation function. 

The difference between the reconstructed visible vector .  vr  and the actual visible vector .  v is minimized over the data set X. 

Deep neural networks that perform stochastic gradient descent with huge param-

eter counts and massive data have achieved stunning triumphs over the past decade. 

Figure  A.2  provides  details  on  stochastic  gradient  descent  algorithm  to  compute model parameters. The gradients of such models are typically computed using back 

propagation, a technique Hinton helped pioneer. 

[image: Image 29]
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Problem 6.8.1  The NN or CNN model is used in deep learning networks. Optimal model design requires many items to consider and arrive at parameter value. In the following list, locate items that are used in deep learning model design: 

(a)  Kernel size option is given to user. 

(b)  Number of layer option is given to user. 

(c)  Each layer user can provide number of neurons. 

(d)  User can provide label on each image file. 

(e)  User can drop some of the connection in between layers. 

(f)  All of the above are true but item (e) and (d). 

(g)  All of the above are true but item (e). 

This  is  the  point  where  restricted  Boltzmann  machines  meet  physics  for  the second time. The joint distribution is known in physics as the Boltzmann distribution which  gives  the  probability  that  a  particle  can  be  observed  in  the  state  with  the energy E. As in physics we assign a probability to observe a state of v and h, which depends  on  the  overall  energy  of  the  model.  Unfortunately,  it  is  very  difficult  to calculate  the  joint  probability  due  to  the  huge  number  of  possible  combinations of  v  and  h  in  the  partition  function  Z.  Much  easier  is  the  calculation  A.3  of  the conditional probabilities of state h given the state v and conditional probabilities of state v given the state h and so on. The essential is here, energy-based probability. 

Global energy 





 E =

 wij sisj +

 θisi

 i<j

 i

. 

(6.7) 

 s 1 =  v 1 , s 2 =  v 2 , s 3 =  v 3 , s 4 =  v 4 , s 5 =  h 1

 s 6 =  h 3 , s 7 =  h 3

Reconstruction  is  different  from  regression  or  classification  in  that  it  estimates  the  probability  distribution  of  the  original  input  instead  of  associating  a continuous/discrete  value  to  an  input  example.  Figure  6.10  is  used  to  show  the above-mentioned issue in reconstruction. 

Fig. 6.10  Classification vs. distribution
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Alex  Krizhevsky,  Ilya  Sutskever,  and  Geoffrey  Hinton  created  a  “large,  deep convolutional  neural  network”  (CNN)  that  was  used  to  win  the  2012  ILSVRC 

(ImageNet Large-Scale Visual Recognition Challenge). 

DL  network  developers  focus  on  designing  models  with  a  reduced  number  of parameters in the CNN model, thus reducing memory and execution latency while 

aiming to preserve high accuracy. 

“One  of  the  most  interesting  features  of  machine  learning  is  that  it  is  on  the boundary  of  several  different  academic  disciplines,  principally  computer  science, statistics, mathematics, and engineering. Machine learning is usually studied as part of artificial intelligence, which puts it firmly into computer science. Understanding why these algorithms work requires a certain amount of statistical and mathematical sophistication  that  is  often  missing  from  computer  science  undergraduates.”  It appears that the convolutional neural network is a very new and yet proven tool to model a given physical process as long as the given physical process can be captured in the form of images or in the forming of video. 

Problem 6.8.2  Error  in  “Image  classification  in  Deep  Learning  Network  Model based method” is less compared to a human being or compared to ML-based image 

classification methods. List items in the following that is useful in the mentioned reduction in error: 

(a)  Deep learning network model training methods are using CNN. 

(b)  Deep learning network model training methods are using NN. 

(c)  Deep  learning  network  model  training  methods  are  using  CPU . + GPU  for training. 

(d)  Deep learning network model training methods do not require feature vector. 

(e)  Deep learning network model training methods use too many kernel filters to 

learn feature vector. 

6.9  Brooks–Iyengar Algorithm for Binary Classification 

Brooks–Iyengar Algorithm [55] is very similar to MLP [56, 64]. The same is shown in a flowchart by using Fig. 6.11. 

Each sensor [65] has an energy level at a given time period. The energy level of other sensors is also expected to have energy in a similar range. However, it is not expected  to  have  too  much  of  a  difference  in  energy  level  from  sensor  to  sensor. 

Sensor  fusion  using  the  BI  algorithm  6.11  is  using  a  processing  element  (PE)  to compute the accuracy range and also the measured value estimation. Let sensor .  j be used .  t  sec duration to record .  k  samples. And also let sensor .  j  receive measured values from other sensors in a given network. 

The PE of a given sensor .  j  is using: 

1.  Recorded k samples (0 to .  t  sec) in sensor .  j

2.  Measured values from other sensors from 1 to N but not sensor j

[image: Image 30]
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Fig. 6.11  Brooks–Iyengar algorithm 

The  above  workflow  is  part  of  each  PE  at  a  given  sensor  from  1  to  N. 

Measurement is done for a duration t sec in a given sensor and the same measured 

data is used in PE, where PE is using these samples to compute its “measured value” 

by using measured values from other sensors. The assumption is that the measured 

value from other sensors is a proper time sequence. Keeping the timestamp in each 

measured value is another area of research and that is handled well in IEEE 1588 

standard. It is assumed that the uniform interval is used to collect each sample in a  given  sensor.  And  also,  all  sensors  are  synchronized  with  the  clock  to  start  the sample collection process. 

The BI algorithm removes sensors with faulty conditions and uses only sensors 

with  no  error.  BI  is  using  heuristic  algorithms  or  variance-based  algorithms  to classify  sensors.  If  a  sensor  is  providing  an  image  signal,  then  BM  can  handle  it with  ease  and  perform  sensor  classification  work.  BI  appears  to  be  having  issues in handling image as an input, thus converting the image signal as time series data might help the BI algorithm. However, BI algorithm extensions to handle image data can use BM and keep the temperature equal to zero. T = 0 in the equation results in p i = 1 for all i. Having p i = 1 for all sensors for all time is not good and the same results in not a good model of sensor network. Thus, making T = small value results in a model which can be used for deterministic algorithms like the BI algorithm. 
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But  there  is  increasing  interest  in  whether  the  biological  brain  follows  back propagation  or,  as  Hinton  asks,  whether  it  has  some  other  way  (instead  of  back propagation) of getting the gradients needed to adjust the weights on its connections. 

6.10  Pre-Trained Model 

A  pre-trained  model  is  a  deep  learning  model  that  has  already  been  trained  on  a large data set and saved. The saved model can be used as a starting point for training new models, or it can be used directly for making predictions on new data [66–71]. 

Pre-trained  models  have  become  popular  in  deep  learning  due  to  their  ability to  save  time  and  computational  resources.  Instead  of  training  a  new  model  from scratch, developers can use a pre-trained model as a starting point and fine-tune it on their own data set. This can be especially useful when the data set is small or when computational resources are limited. 

Pre-trained  models  are  often  trained  on  large  and  diverse  data  sets,  such  as ImageNet for image classification and BERT for natural language processing. These 

models  are  usually  trained  using  deep  learning  techniques  such  as  convolutional neural networks (CNNs) or recurrent neural networks (RNNs). 

Using pre-trained models has many benefits, such as the following: 

Reduced  training  time:  Using  a  pre-trained  model  can  significantly  reduce  the time required to train a new model from scratch. 

Improved  accuracy:  Pre-trained  models  are  often  trained  on  large  and  diverse data sets, which can improve the accuracy of the model. 

Transfer  learning:  Pre-trained  models  can  be  used  for  transfer  learning,  where the  model  is  fine-tuned  on  a  smaller  data  set  for  a  specific  task,  such  as  object recognition. 

Overall, pre-trained models have become an important tool in the deep learning 

toolbox, allowing developers to leverage existing models and data sets to solve new problems more efficiently. 

Post-training  quantization  reduces  computing  power  demand  and  energy  con-

sumption at the expense of a slight loss in accuracy. 

With  sophisticated  pre-training  objectives  with  huge  model  parameters,  large-scale PTMs are effectively capturing knowledge from massive labeled and unlabeled 

data. Knowledge is stored into huge parameters and also fine-tuning process used on specific tasks such that precision inference is possible. Rich knowledge implicitly encoded  in  huge  parameters  can  benefit  a  variety  of  tasks  in  industries  such  as agriculture, healthcare, transport, food, education, etc. In the recent past, the same has  been  extensively  demonstrated  via  experimental  verification  and  empirical analysis. 

Get  results  sooner  by  using  pre-trained  models  and  scripts  are  used  more  in translating effort into better results sooner over by “do it yourself.” Large-scale pre-trained models (PTMs) such as BERT and GPT are used in cloud native deployment 

and  still  these  models  are  not  very  popular  in  embedded  devices.  Recently,  use

6.11 Compression of DL Networks

81

of  pre-trained  models  has  been  achieving  great  success  and  become  an  attractive milestone in the field of artificial intelligence (AI) for enterprise business owners. 

It  is  now  the  consensus  of  the  deep  learning  community  to  adopt  PTMs  as backbone for well-defined tasks rather than develop learning models from scratch. 

Deploying pre-trained models is discussed and also examples are given in tutorial 

sessions. 

6.11  Compression of DL Networks 

Model compression allows the user to run the model on tiny devices and there are 

two main ways to reduce the network: 

1.  Lower  precision  (fewer  bits  per  weight).  By  default,  the  model  weights  are float32-type  variables,  which  lead  to  two  problems:  Firstly,  the  model  is  very large  because  4  bytes  are  associated  with  each  weight,  with  a  considerable memory requirement; secondly, the execution is remarkably slow compared to 

uint8-type  variables.  It is  possible  to considerably  reduce  the  weights  from 32 

bits  to  8  bits,  obtaining  a  4x  reduction  in  the  size  of  the  NN.  TensorFlow  and Keras give the possibility to apply quantization. 

2.  Fewer weights (pruning). This involves creating a smaller DNN that imitates the behavior of larger DL networks. This is done by training the smaller DL networks 

using  the  output  predictions  produced  from  the  larger  one  and  the  smaller  DL 

networks approximate the function learned by the larger one. 

Note  that  post-quantization  is  a  technique  that  is  carried  out  after  training  the model, but it could be done even before training. DLtrain can be used efficiently to model the number of bits required for weights in a given CNN or NN. 

As  stated  above,  the  reduction  of  the  model  size  can  be  obtained  not  only with  quantization,  but  also  with  pruning  techniques  that  allow  the  elimination of  connections  that  are  not  useful  to  the  NN.  This  leads  to  a  decrease  of  the computation  request  and  program  memory.  Quantization  and  pruning  approaches have been considered individually as well as jointly. 
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Chapter  7 

Training  of  Deep  Learning  Networks 

 Training  deep  learning  networks  is  the  forge  where  intelligence 

 is  honed  and  refined. 

Insight 

This  section  of  the  book  details  training  deep  learning  networks. 

PyTorch  is  one  of  the  popular  AI  frameworks  to  model  deep  learning  networks  and also  train,  test,  and  deploy  deep  learning  networks. 

TensorFlow  is  another  AI  framework  that  has  similar  functionalities  to  PyTorch. 

These  two  mentioned  AI  frameworks  provide  low-code  options  for  developers. 

However,  major  limitations  arise  from  its  dependency  from  many  other  open-source packages  in  Python. 

DLtrain  overcomes  the  above  issues  and  provides  a  clean  AI  framework  which can  be  classified  as  no-code  category.  DLtrain  is  developed  by  using  C.++ and  it is  easy  to  port  on  to  many  platforms  across  silicon  vendors.  Moreover,  DLtrain  is GPU-friendly  and  it  can  be  revised  for  large-scale  CUDA  Core  machines  like  DGX 

Station  A100  or  higher  versions.  Further,  it  also  demonstrates  and  showcases  how  to create,  build,  and  configure  Docker  images  of  DLtrain  for  large-scale  CNN  models and  also  including  the  support  services  [72]. 

7.1 

DLtrain  Is  a  No-Code  Deep  Learning  Framework 

A  hyperparameter  plays  a  major  role  in  the  quality  of  a  training  deep  learning network  model  and  also  the  quality  of  inference  by  using  a  trained  deep  learning network  model. 

Domain  experts  appear  to  be  playing  a  major  role  in  setting  up  hyperparameters before  starting  training  of  deep  learning  networks. 

Domain  experts  are  also  new  to  hyperparameters  and  its  associated  quality  of inference.  There  is  a  challenge  in  setting  up  hyperparameters. 

Challenges  in  setting  up  hyperparameters  are  handled  in  DLtrain  which  provides minimal  hyperparameter  options  to  domain  experts  such  that  it  enables  domain 
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experts  to  learn  quickly  and  take  good  control  of  training  of  a  deep  learning  model with  training  data  set. 

An  image  classification  problem  is  solved  by  using  deep  learning  networks  and  in particular  by  using  convolutional  neural  networks.  The  industrial  segment  appears to  be  using  CNN  for  image  classification  with  enterprise  quality  in  inference. 

Being  an  early-stage  tool  set,  many  of  them  moved  away  from  regular  use  and only  few  of  the  tool  set  stayed  back,  for  example,  PyTorch  and  TensorFlow  are those  two  to  stay  in  regular  use.  Most  interestingly,  these  two  appear  to  be  using  too many  open-source  packages  with  version-specific  nature  in  its  functional  use.  The industry  segment  looks  for  a  tool  set  which  can  be  customized  and  also  free  from dependencies  on  open-source  packages. 

DLtrain  is  a  platform  designed  to  work  to  train  NN  and  CNN  models  by  using image  signals  as  a  training  data  set.  DLtrain  is  created  by  using  the  “nvcc”  tool  set from  CUDA  10.2  (NVIDIA)  and  DLtrain  is  tested  in  IBM  Power  AC922  processor with  GeForce  RTX  2070  GPU  hardware.  DLtrain  works  well  for  a  given  training image  data  set  and  performs  high-speed  classification  of  a  given  image  during inference. 

DLtrain as in Fig. 7.1  is  designed  to  remove  most  of  the  issues  because  of  too many  dependencies  in  open-source  packages  to  support  PyTorch  and  TensorFlow. 

DLtrain  provides  a  good  solution  to  developers  to  perform  training  of  deep  learning networks,  test,  and  deploy  given  NN  and  CNN  models.  Deployment  can  be  on  the cloud  native  side  and  also  in  edge  native  devices  such  as  IoT  nodes  and  IoT  edges. 

Fig.  7.1  DLtrain  is  an  autonomous  deep  learning  framework

7.1 DLtrain Is a No-Code Deep Learning Framework
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In  Fig. 7.1, the  left  side  shows  a  dependency  list  for  the  WML  (Watson  Machine Learning)  tool  set  to  train  deep  learning  networks. 

The  right  side  of  the  above  picture  shows  the  clean  nature  of  DLtrain  on  its  zero dependency  from  open-source  tool  sets.  DLtrain  is  capable  of  training  CNN  and  NN 

models  of  deep  learning  networks.  In  the  case  of  WML,  it  appears  that  there  are  100 

plus  dependencies  to  have  successful  installation  of  WML.  But  on  the  right  side, DLtrain  does  not  have  any  dependency. 

CUDA  SDK  is  required  for  DLtrain  to  use  NVIDIA  CUDA  Core  and  Tensor 

Cores  in  GPUs  such  as  V100,  A100,  etc.  The  enterprise  application  development team  can  use  CUDA  Core  and  Tensor  Core  computing  as  part  of  their  customized tool  set  to  train  deep  learning  networks. 

Watson  Machine  Learning  Accelerator  gives  access  to  power-optimized  versions of  all  of  the  most  popular  deep  learning  frameworks  currently  available,  including TensorFlow,  Caffe,  and  PyTorch.  Watson  Machine  Learning  Accelerator  runs  on IBM  Power-accelerated  server  HPC,  a  platform  that  runs  not  only  on  deep  learning training  workloads  but  also  on  a  wide  variety  of  HPC  and  high-performance data  analytic  workloads.  It  leverages  unique  capabilities  of  accelerated  power servers,  delivering  performance  unattainable  on  commodity  servers.  For  example, a  large  model  support  facilitates  the  use  of  system  memory  such  that  there  is no  performance  impact  in  POWER9  CPU,  yielding  significantly  larger  and  more accurate  deep  learning  models.  The  Watson  Machine  Learning  Community  Edition (WML  CE)  is  delivered  as  a  set  of  software  packages  that  can  deploy  a  functioning deep  learning  environment,  potentially  within  a  few  hours  by  using  a  few  simple commands. 

The  DLtrain  framework  is  ported  on  to  POWER9  CPU  with  Ubuntu  22.04  OS. 

DLtrain  enables  enterprise  and  academic  researchers  with  ease  of  training  their  deep learning  network  models  such  as  NN  and  CNN.  Most  importantly,  they  can  follow the  no  coding  path  while  using  DLtrain  to  train  deep  learning  network  models. 

Moreover,  DLtrain  does  not  use  any  third-party  library,  and  thus,  it  is  fully  secured and  safe  for  enterprise  and  academic  researchers  to  use  DLtrain  to  run  their  AI workloads. 

DLtrain  provides  an  inference  engine  which  can  be  deployed  in  IoT  edges. 

Currently,  we  are  witnessing  a  proliferation  of  specialized  hardware  that  not  only offers  better  performance  on  deep  learning  tasks,  but  also  increased  efficiency (performance  per  watt).  The  AI  community’s  demand  for  GPUs  led  to  Google’s development  of  TPUs  and  pushed  the  entire  chip  market  towards  more  specialized products.  In  the  next  few  years,  there  will  be  a  vendor  list  that  includes  NVIDIA, Intel,  SambaNova,  Mythic,  Graphcore,  Cerebras,  and  other  companies  that  bring more  focus  to  hardware  for  deep  learning  network-based  training  and  inference workloads. 

“Bring  Your  Data  on  to  Your  Table”  to  perform  training  of  the  deep  learning model  and  also  to  deploy  for  your  enterprise.  In  this  process,  the  data  set  stays within  the  customer  premise  and  also  it  provides  high  security  to  the  customer  data set. 
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DLtrain  is  used  to  train  deep  learning  models  such  as  NN  and  CNN  by  using  a computing  infrastructure  that  is  available  on  your  table.  DLtrain  provides  a  quick solution  for  the  abovementioned  by  using  OpenPOWER/IBM  Power  Systems  that form  a  basis  for  “computing  infra  on  your  table.” 

As  previously  mentioned,  the  computing  infrastructure  setup  will  be  completed in  just  a  few  hours.  Subsequently,  the  development  team  can  seamlessly  deploy  the deep  learning  network  model  training  workload  onto  this  infrastructure.  This  entire process  is  carried  out  adhering  to  the  highest  engineering  standards,  ensuring  that there  are  no  external  dependencies  on  obscure  or  untraceable  software  components from  open-source  origins.  DLtrain  is  developed  by  using  C  and  C.++ such  that  it can  run  best  in  the  given  CPU  of  various  silicon  vendors. 

Most  importantly,  effort  is  given  to  make  DLtrain  very  useful  to  subject  matter experts  (domain  knowledge  holders)  to  bring  their  best  via  their  own  custom  model without  doing  a  single  line  of  coding. 

DLtrain  also  provides  provision  to  run  the  trained  model  in  the  above  and  move to  an  Android  phone  such  that  large-scale  deployment  is  feasible.  After  moving  the trained  model  to  an  Android  phone,  the  application  is  designed  to  use  phone  camera or  local  files  to  get  the  input  image  to  perform  inference  in  the  phone  locally.  There is  no  need  to  connect  the  camera  with  cloud  for  inferencing. 

DLtrain  is  ported  onto  various  silicons  and  the  following  provide  more  details. 

DLtrain 

DLtrain   is  ported  onto  many  CPU  and  GPU  combinations.  For  example: 

1.  Ported  DLtrain  to  work  in  X86  with  Ubuntu  and  also  Windows  10  OS. 

Tested  DLtrain  with  training  of  CNN  model  by  using  the  MNIST  data  set. 

2.  Ported  DLtrain  to  work  in  OpenPOWER  Raptor  system  (POWER9  CPU). 

Tested  DLtrain  with  training  of  a  CNN  model  by  using  the  MNIST  data 

set. 

3.  Ported  DLtrain  to  work  in  the  OpenPOWER  Raptor  system  (POWER  9 

CPU)  and  RTX  2070  GPU.  Tested  DLtrain  with  training  of  the  CNN  model 

by  using  the  MNIST  data  set. 

4.  Ported  DLtrain  to  work  in  X86  with  Windows  OS.  Tested  DLtrain  with 

inference  workload  by  using  a  trained  CNN  model  and  using  input  image 

from  local  machine. 

5.  Ported  DLtrain  to  work  in  Jetson  Series  SOMs(for  example,  Nano).  Tested DLtrain  with  inference  workload  by  using  a  trained  CNN  model  and  using 

input  an  image  from  the  local  machine. 

6.  Deployed  trained  CNN  model  in  Android  phone  and  successfully  inference is  performed  on  a  given  local  image. 

GPU  acceleration:  takes  advantage  of  the  massively  parallel  architecture  of  GPUs to  get  the  biggest  benefit  in  these  algorithms. 

[image: Image 33]
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Dynamic  memory  management:  is  using  high-speed  next-generation  NVIDIA NVLink  connection  between  the  POWER9  CPU  and  the  NVIDIA  Tesla  V100 

GPUs,  due  to  the  ability  to  move  the  large  data  set  from  the  system  memory  to the  GPU  memory  much  faster.  Dynamic  data  transfer  algorithm  runs  on  the  CPU  to determine  which  data  to  move  next  to  the  GPU. 

Efficient  cluster  scaling:  is  feasible  with  a  data  parallel  framework,  which  enables developers  to  scale  out  and  train  with  massive  data  sets  by  distributing  the  data across  multiple  servers. 

7.2 

DLtrain:  Training  of  NN  and  CNN  Models 

 7.2.1 

 Preprocessing  Data  Set 

Data  set  preprocessing  is  one  of  the  most  important  tasks.  In  Fig. 7.2, the  preprocessing  flow  is  provided  for  DLtrain,  TensorFlow,  and  PyTorch. 

Input  to  TensorFlow  and  PyTorch  is  Tensors;  most  importantly,  input  to  TensorFlow  and  PyTorch  is  not  Numpy  Arrays.  Added  to  that,  input  Tensor  to  TensorFlow is  very  different  from  input  Tensor  to  PyTorch. 

The  amount  of  data  copy  and  conversion  effort  is  required  for  the  abovementioned  conversion  of  data  from  a  given  file  to  input  to  TensorFlow  and  PyTorch.  In fact,  the  same  is  highly  challenging  for  huge  data  sets. 

Fig.  7.2  Data  set  to  training  DL  network  model
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DLtrain  takes  the  input  file  name  of  the  data  set.  Read  data  from  file  (for  example, image)  and  copy  to  input  array  which  is  directly  used  by  the  next  module  to  perform training  deep  learning  network  model. 

DLtrain  is  highly  efficient  in  reducing  the  movement  of  data  from  memory  to memory.  DLtrain  is  good  for  large-scale  models  and  also  for  huge  data  sets. 

 7.2.2 

 Design  Deep  Learning  Network  Model 

Developers  are  required  to  design  their  own  custom  model  in  the  form  of  CNN  or in  the  form  of  NN. 

For  example,  the  NN  model  requires: 

1.  The  number  of  neuron  in  the  input  layer 

2.  The  number  of  hidden  layer 

3.  The  number  of  neurons  on  each  hidden  layer 

4.  The  number  of  neurons  in  the  output  layer 

5.  The  kernel  size 

6.  The  number  of  kernel 

The  abovementioned  parameters  can  be  stored  in  a  txt  file  which  can  have  a  file name  as  well.  Designing  a  CNN  model  or  NN  model  requires  no  coding.  The  above given  reference  provides  a  sample  value  for  listed  parameters. 

For  example, 

-c  network. _config.txt 

is  a  file  name  and  the  same  file  has  information  about  CNN. 

 7.2.3 

 Training  Algorithm 

The  algorithm  used  in  DLtrain  to  train  CNN  or  NN  is  given  in  Fig. A.2. 

The  reference  code  for  Fig. A.2  is  provided  in  [73]. 

Problem  7.2.1  Compute  the  score  (f)  function:  During  the  forward  pass,  the  score function  computes  the  class  scores,  stored  in  vector  f. 

Problem  7.2.2  Compute loss function: The loss function contains two components— 

the  data  loss  computes  the  compatibility  between  the  scores  f  and  the  labels  y.  The regularization  loss  is  only  a  function  of  the  weights. 

Problem  7.2.3  Compute  gradient:  During  gradient  descent,  compute  the  gradient of  weights  (and  optionally  on  data)  and  use  it  to  perform  a  parameter  update  during gradient  descent. 

7.3 DLtrain Tested in POWER9 with GPU
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 7.2.4 

 Training  Deep  Learning  Network  Model 

1.  The  reference  code  is  provided  in  [74]  and  the  same  is  used  to  train  the  CNN  and NN  network. 

2.  The  reference  code  is  provided  in  [75] and  the same is used to train  the C NN  

network. 

 7.2.5 

 Save  Deep  Learning  Network  Model 

The  reference  code  is  provided  in  [76]  and  the  same  is  used  to  save  the  trained  CNN 

or  NN  networks  in  a  file.  Section  2  of  [76]  handles  saving  for  the  DLtrain  framework and  Section  1  of  [76]  handles  saving  for  the  TensorFLow  framework. 

7.3 

DLtrain  Tested  in  POWER9  with  GPU 

The  deep  learning  accelerator  is  essential  to  fulfill  computing  requirements  in  training  the  deep  learning  network  model.  The  Watson  Machine  Learning  Accelerator runs  on  IBM  Power-accelerated  server  HPC,  a  platform  that  runs  not  only  for  deep learning  applications  but  also  a  wide  variety  of  HPC  and  high-performance  data analytics  workloads.  The  Watson  Machine  Learning  Accelerator  leverages  unique capabilities  of  accelerated  power  servers,  delivering  performance  unattainable  on commodity  servers,  and  provides  for  hyperparameter  search  and  optimization and  elastic  training  to  allocate  the  resources  needed  to  optimize  performance. 

Distributed  deep  learning  provides  for  rapid  insights  at  massive  scale.  Large  model support  facilitates  the  use  of  system  memory  with  little  to  no  performance  impact, yielding  significantly  larger  and  more  accurate  deep  learning  models. 

The  IBM  Watson  Machine  Learning  Accelerator  for  enterprise  AI,  a  new  piece of  Watson  Machine  Learning,  makes  deep  learning  and  machine  learning  more accessible  to  the  development  team  and  brings  the  benefits  of  AI  into  enterprise business.  It  combines  popular  open-source  deep  learning  frameworks,  efficient  AI development  tools,  and  accelerated  IBM®  Power  Systems™  servers.  Developers can  deploy  a  trained  AI  model  and  supported  AI  platform  that  delivers  real-time performance  during  inference.  The  Watson  Machine  Learning  Accelerator  is  a complete  environment  for  data  science  as  a  service,  enabling  enterprise  to  bring  AI applications  into  production.  It  includes  the  most  popular  deep  learning  frameworks, including  all  required  dependencies  and  files,  precompiled  and  ready  to  deploy. 

The  Watson  Machine  Learning  Accelerator  gives  access  to  power-optimized 

versions  of  all  of  the  most  popular  deep  learning  frameworks  currently  available, including  TensorFlow  and  PyTorch.  The  abovementioned  solutions  are  from  IBM. 

[image: Image 34]
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Fig.  7.3  POWER9  server  with  RTX  2070  GPU 

DLtrain  is  ported  on  power  servers  with  GPU  computing  support.  DLtrain  is tested  in  power  server  over  a  period  of  a  few  months  to  optimize  performance  during training  of  a  deep  learning  network  model. 

TalosTM  II  version  of  hardware  with  POWER9  CPU  is  used  in  porting  DLtrain and  also  during  testing  of  DLtrain  with  MNIST  data  set  and  CNN  model.  Ubuntu 18.04  OS  is  used  in  Fig. 7.3  and  is  using  a  POWER9  server. 

 7.3.1 

 Build  DLtrain  for  POWER9  Servers 

The  source  code  for  DLtrain  is  provided  in  [77]. CMakeLists.txt  is  also  given  in 

[77]. 

Developers  are  required  to  use  the  “cmake”  tool  set  to  build  Makefile.  After  the successful  creation  of  Makefile,  developers  were  required  to  use  “make”  to  create an  executable  version  of  DLtrain  for  POWER9  servers.  Mentioning  these  two  steps, cmake  and  make  are  shown  in  [77]. 

 7.3.2 

 DLtrain  to  Train  CNN  in  POWER9  Servers 

The  MNSIT  data  set  is  used.  The  version  of  DLtrain  given  in  [77]  handles  MNIST 

data  set  efficiently  and  makes  use  of  the  same  in  training  CNN. 

Hyperparameters  are  available  for  developers  to  choose  the  optimal  value  for  a given parameter. For example, the following parameters are available for developers:

7.4 Docker Image of DLtrain for X86 with Ubuntu
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1

. /   D L t r a i n   −m t r a i n  −s  NewNetwork  .  d a t  −c n e t w o r k P r o f .   t  x t  −n 2000  −e 30  −d  /  home  /  j k  /  Images  / 

1.  . −c  is  input.  File  name  which  has  parameters  of  the  model. 

2.  . −d  is  input.  Data  set  folder  path. 

3.  . −n  is  input.  It  is  the  number  of  images  to  use  from  the  data  set  (optional  default is  10000). 

4.  . −e  is  input.  It  is  the  number  of  epochs  (optional;  the  program  will  request  it  later on  if  not  given). 

5.  . −m  is  input.  It  is  for  training  (this  can  have  train  or  infer  as  a  string). 

6.  . −s  is  output.  It  is  a  file  name  in  which  the  trained  model  is  saved. 

 7.3.3 

 DLtrain  for  Inference  in  POWER9  Servers 

Inference  workload  is  run  in  the  POWER9  server,  as  given  in  the  following: 1

. /   D L t r a i n   −m i n f e r  −s  NewNetwork  .  d a t  −c   n e t w o r k P r o p   .   t x t   −f img  .  raw 

Where 

1.  . −c  is  input.  File  name  which  has  parameters  of  the  model. 

2.  . −d  is  input.  Data  set  folder  path. 

3.  . −m  is  input.  It  is  for  training  (this  can  have  train  or  infer  as  a  string). 

4.  . −s  is  output.  It  is  a  file  name  in  which  the  trained  model  is  saved. 

5.  . −f  is  the  name  of  the  input  file  which  is  used  for  inference. 

Developers  are  required  to  refer  to  [77]  for  more  information  on  inference  work. 

7.4 

Docker  Image  of  DLtrain  for  X86  with  Ubuntu 

Docker  is  an  open-source  container  engine  and  a  set  of  tools  to  compose,  build,  ship, and  run  distributed  applications. 

The  reference  code  is  provided  for  the  following  [78]. 

A  drawback  with  this  multi-platform  support  is  that  one  Docker  image  has  to  be built  for  each  specific  target  platform: 

1.  A  specific  operating  system 

2.  Hardware  architecture(x86,  ppc64el,  arm,  CUDA  Core,  Tensor  Core,  DSP,  etc.)
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Developers  are  required  to  create  two  Docker  images,  one  for  Linux  and  one for  Windows.  Developers  are  required  to  create  each  Docker  image  using  a  Docker engine  running  on  the  specific  target  platform. 

Few  commands  (to  manage  Docker)  are  provided  in  the  above  reference  and  the same  commands  are  useful  to  manage  workflow  to  create  the  DLtrain  Docker  image and  also  use  the  DLtrain  Docker  image  to  perform  training  of  the  CNN  network  and perform  inference  on  a  given  input  by  using  trained  CNN. 

7.5 

DLtrain:  Train  DL  Models  in  Windows  10 

DLtrain  is  built  for  Windows  machines  and  also  the  same  is  available  for  use  in  the following  reference  in  GitHub. 

The  reference  code  is  provided  for  the  following  [79]. 

There  is  an  issue  with  the  runtime  library  in  the  Windows  machine.  Steps  are given  in  the  above  reference  to  obtain  the  missing  library  in  Windows  machine  to run  DLtrain  successfully.  The  LibGCC  library  part  creates  the  above  issue  and  the same  is  resolved  by  downloading  those  two  files  and  keeping  it  in  the  path  or  project folder. 

DLtrain  executable  (for  Windows  OS  with  X86)  is  used  to  train  NN  or  CNN 

models. 

The  data  set  is  placed  in  the  path  or  project  folder. 

Developers  are  required  to  model  in  a  file,  for  example,  “Network. _prop.txt”  is  a file  which  can  be  used  as  input. 

Output  is  stored  as  NewNetwork.dat  and  the  same  file  includes  parameters  of .  W

and   b. 

DLtrain  executable  (for  Windows  OS  with  X86)  is  used  to  train  the  NN  or  CNN 

model  by  using  a  data  set  in  the  path  or  project  folder.  Figure  7.4  provides  the necessary  workflow  to  use  DLtrain  in  Windows  machine. 

Fig.  7.4  DLtrain  in  windows  machine

7.6 DLtrain: Large Model Support
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7.6 

DLtrain:  Large  Model  Support 

A  deep  learning  network  model  is  growing  towards  billions  or  more  of  neurons. 

Trending  applications  in  deep  learning  are  using  large  models  and  training  the  same with  necessary  data  sets.  But  having  such  a  large-scale  model  might  result  in  good accuracy  in  inference. 

For  example,  the  electricity  delivery  network  of  any  huge  city  requires  a  large model  to  represent  its  power  delivery  network.  Each  house  can  contribute  a  few hundred  million  neurons  to  model  the  load  pattern  in  a  given  day  or  night.  For  a citywide  power  delivery  network,  it  can  be  close  to  trillion  neurons  or  more.  To  train such  a  model,  it  requires  software  infrastructure  to  distribute  training  of  the  model. 

It  requires  another  huge  model  to  simulate  and  understand  real-time  requirements. 

Another  example  model  is  to  perform  weather  forecasting  for  a  given  city.  For precision  in  terms  of  time  and  spatial  location,  it  requires  a  large  model  to  represent the  abovementioned  physical  process  in  the  form  of  digital  twin. 

The  DLtrain  platform  is  equipped  to  support  large  models.  Recent  research  work in  large  model  support  is  attracting  new-generation  researchers  who  are  having  good experience  in  parallel  computing  and  HPC  (high-performance  computing).  Along with  the  compute  capability  using  CPU  and  GPU,  it  is  important  to  have  ultrahigh-speed  input  and  output  link  capability  to  share  training  data  and  give  GPU  to  many other  CPUs. 

Mathematical  theory appears  to be evolving  to support  large model-based  parallel computing  by  using  CUDA  Core  and  Tensor  Cores.  In  parallel,  neural  networks proved  its  worth  at  a  high  level  on  understanding  huge  data.  For  example,  NN,  CNN, RNN,  and  many  more  models  are  used. 

Amazing  things  are  happening  in  distributed  deep  learning  (DDL)  and  this  is creating  new  technologies  in  processor  to  processor  communication.  For  example, NVLINK  is  one  such  connection  between  CPU  and  GPU  and  also  GPU  and  GPU. 

IBM  and  NVIDIA  are  doing  too  many  things  in  distributed  computing.  In  DDL, there  is  a  huge  amount  of  customization  of  computing  load  and  this  area  of  research is  coming  up.  This  means  fast  computing  along  with  fast  communication  between processors. 

Large  model  support  is  a  very  important  and  active  area  of  research.  The following  picture  provides  three  types  of  models  for  networks. 

The  right  side  of  Fig. 7.5  provides  models  that  are  fully  random  and  mostly  fully connected  networks.  The  probability  of  each  node  being  connected  to  another  node is  very  high.  In  the  middle  of  the  picture  shows  the  small-world  network  model. 

There  is  very  little  probability  that  each  node  is  connected  to  all  other  nodes.  In fact,  in  a  small-world  network,  there  is  a  high  probability  that  a  group  of  nodes  are connected  and  the  rest  are  connected.  In this  process,  there  will  be  many  small-world networks  in  the  middle  picture.  The  leftmost  side  of  the  picture  provides  a  regular network  model.  Maybe  the  regular  network  is  not  showing  good  potential  to  model the  large  model  of  NN  or  CNN. 

The  random  network  model  appears  to  be  a  good  choice  to  represent  NN  or  CNN. 

[image: Image 35]
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Fig.  7.5  Fully  connected  networks  vs.  small-world  networks 

Fully  Connected 

Random  network  model   to  small-world  model. 

Step  1.  Let  us  assume  the  “given  CNN  is  a  random  network”  before  starting training  CNN  (in  the  place  of  CNN,  NN  can  be  used  as  well). 

Step  2.  After  training,  there  is  a  high  probability  that  CNN  will  tend  towards the  small-world  network. 

The  abovementioned  process  from  step  1  to  step  2  indicates  that  the  random network  becomes  a  small-world  network  after  training.  Parallel  computing  of  step  1 

to  step  2  is  challenging. 

Suppose  you  start  with  a  small-world  network  (many  small  networks  of  a  given big  network)  and  provide  all  input  to  each  small  network  during  training. 

Fully  Connected 

Random  network  model   to  small-world  model. 

R-Step  1.  Train  small-world  networks  with  all  or  most  of  the  given  input. 

Perform  for  all  small-world  networks. 

R-Step  2.  Combine  all  small-world  models  to  obtain  a  big  model  which  can handle  all  given  inputs  and  provide  inference  for  defined  labels. 

The  above  given  revised  steps  appear  to  be  good  for  parallel  computing  and also  represent  a  large  model.  The  above  can  be  verified  or  it  can  be  worked  out independently.  But  the  key  challenge  is  still  open  on  “training  large  models”  by using  distributed  deep  learning  networks. 

7.7 Train NN and CNN Models in TensorFlow
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Small-world  networks  have  direct  mapping  with  influence  matrix.  Issues  with influence  matrix  are  not  known  a  priori.  Maybe  the  course  computation  of  the influence  matrix  is  very  useful  to  start  a  small-world  network  and  its  training  by using  a  parallel  computing  infrastructure. 

7.7 

Train  NN  and  CNN  Models  in  TensorFlow 

 7.7.1 

 Setup  Tool  Chain  for  TensorFlow 

Using  TensorFlow  requires  a  particular  tool  chain  in  a  given  computer  and  also compatible  versions  of  open-source  software.  In  this  regard  detailed  work  is provided  in  the  GitHub  page  and  developers  can  use  the  same  (or  vary  if  necessary) to  set  up  a  working  version  of  tool  chain  for  TensorFlow. 

The  reference  code  is  provided  for  the  following  in  [80]. 

A  virtual  environment  is  recommended  for  a  given  project.  In  some  sense  it is  a  lightweight  version  of  a  Docker  image  running  environment  like  Container. 

Having  different  versions  of  packages  is  possible  if  each  project  has  its  own  virtual environment. 

TensorFlow  2.0  or  above  is  recommended  for  new  developers.  In  case  developers are  required  to  support  the  old  model  (version  before  TF  2.0),  then  it  will  be  good  to convert  the  old  TF  model  into  the  TF  2.0  model.  Keras  is  tightly  integrated  with  TF 

2.0  onwards,  and  thus,  it  is  easy  to  use  Keras  to  train  a  NN  or  CNN  model  by  using TensorFlow,  where  Keras  is  the  layer  above  TensorFlow  and  it  is  making  workflow easy  for  developers. 

Jupyter  Notebook  is  recommended  and,  along  with  Jupyter  Lab,  also  will  help developers  during  debugging  time  of  the  application  development  process.  All  these mentioned  work  well  in  Python  3.6  or  above. 

 7.7.2 

 MNIST  Data  Set  to  Train  NN  or  CNN  Model 

The MNIST data set has handwritten images of numbers from 0 to 9. A large number 

of  images  are  created  for  each  number.  It  has  60,000  images. 

The  reference  code  is  provided  for  the  following  in  [81]. 

Developers  can  use  the  MNIST  data  set  during  the  early  level  of  the  project and  then  move  on  to  the  custom  data  set  of  a  given  project.  However,  there  is  a need  to  arrive  at  a  data  set  size  in  terms  of  the  number  of  images  per  label,  number of  pixels  per  image,  image  width,  and  image  height.  These  mentioned  parameters required  critical  revision  because  it  contributes  to  the  quality  of  inference  of  a  given application. 

The  above  example  uses  the  MNIST  data  set  locally,  but  it  can  be  downloaded from  multiple  URL  locations.  Details  are  shared  in  the  above  reference  link. 
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Developers  are  required  to  partition  the  data  set  into  two  parts.  The  first  part  is for  the  training  NN  or  CNN  model.  The  second  part  is  to  test  the  training  NN  and CNN  model. 

For  inference,  developers  can  use  a  real-time  image  or  image  from  file  to  perform inference  by  using  the  training  NN  or  CNN  model. 

Problem  7.7.1  Training  the   NN  or  CNN  model  by  using  the  MNIST  data  set   uses a  well-defined  process.  For  example,  import  data  set  from  file  and  transform  data into  Tensor,  in  particular  Tensor  which  can  be  used  as  a  input  to  train  the  model  via TensorFlow  training.  List  items  from  the  following  to  perform  successful  use  of  a MNIST  data  set  to  a  train  NN  or  CNN  model  by  using  TensorFlow: 

(a)  CPU  is  used  in  training  workload. 

(b)  GPU  is  used  in  training  workload. 

(c)  The  number  of  epochs  is  set  to  the  number  which  is  above  100. 

(d)  The  number  of  layers  is  taken  from  the  “model  configuration  file”  and  used  in constructing  the  CNN  model  for  training. 

(e)  Item  (a)  is  always  true. 

(f)  Item  (b)  may  be  true  sometimes. 

(g)  Item  (c)  may  be  correct.  In  case  yes,  what  will  be  number  set  to  epochs? 

 7.7.3 

 Colab:  Train  NN  and  CNN  Models 

Colab  provides  an  option  to  load  the  data  set  from  various  sources.  Cloud  annota-tions  focus  on  the  data  set  creation  aspect  of  the  model  development  life  cycle  and leaving  the  training  part  to  other  tool  sets.  For  example,  use  TensorFlow  in  Colab  to train  CNN. 

There  are  many  ways  to  train  NN  and  CNN  models,  each  with  their  own  use cases  and  trade-offs.  Developers  can  train  from  scratch  using  a  framework  like TensorFlow  or  PyTorch. 

Use  the  following  references  to  get  the  source  code  and  sample  examples  to  use Colab  to  train  deep  learning  networks  (Reference  [82]  and  [83]). 

7.8 

DLtrain  for  Jetson  Nano  Series  SOM 

 7.8.1 

 Build  DLtrain  for  Jetson  Nano  Series  SOM 

The  source  code  for  DLtrain  is  provided  in  [84]. CMakeLists.txt  is  also  given  in 

[84]. 

Developers  are  required  to  use  the  “cmake”  tool  set  to  build  Makefile.  After  the successful  creation  of  Makefile,  developers  are  required  to  use  “make”  to  create  an

7.8 DLtrain for Jetson Nano Series SOM
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executable  version  of  DLtrain  for  POWER9  servers.  Mentioning  these  two  steps, cmake  and  make  are  shown  in  Section  3  of  [84]. 

 7.8.2 

 DLtrain  to  Train  CNN  in  Jetson  Nano  Series  SOM 

7.9.2  Jetson  Nano  Series  SOM  The  MNIST  data  set  is  used.  The  version  of  DLtrain given  in  [84]  handles  the  MNIST  data  set  efficiently  and  makes  use  of  the  same in  training  CNN.  Developers  are  required  to  refer  to  Section  4  of  [84]  to  get  more details  on  the  “use  of  DLtrain  to  train  CNN  by  using  Jetson  Nano.” 

Hyperparameters  are  available  for  developers  to  choose  the  optimal  value  for  a given parameter. For example, the following parameters are available for developers: 1

. /   D L t r a i n   −m t r a i n  −s  NewNetwork  .  d a t  −c n e t w o r k P r o f .   t  x t  −n 2000  −e 30  −d  /  home  /  j k  /  Images  / 

1.  . −c  is  input.  File  name  which  has  parameters  of  the  model. 

2.  . −d  is  input.  Data  set  folder  path. 

3.  . −n  is  input.  It  is  the  number  of  images  to  use  from  the  data  set  (optional  default is  10,000). 

4.  . −e  is  input.  It  is  the  number  of  epochs  (optional;  the  program  will  request  it  later on  if  not  given). 

5.  . −m  is  input.  It  is  for  training  (this  can  have  train  or  infer  as  a  string). 

6.  . −s  is  output.  It  is  the  file  name  in  which  the  trained  model  is  saved. 

 7.8.3 

 DLtrain  for  Inference  in  Jetson  Nano  Series  SOM 

The  inference  workload  is  run  in  Jetson  Nano  SOM,  as  given  in  the  following. 

Developers  are  required  to  refer  to  [84]  for  more  information  on  inference  work. 

1

. /   D L t r a i n   −m i n f e r  −s  NewNetwork  .  d a t  −c   n e t w o r k P r o p   .   t x t   −f img  .  raw 

Where 

1.  . −c  is  input.  File  name  which  has  parameters  of  the  model. 

2.  . −d  is  input.  Data  set  folder  path. 

3.  . −m  is  input.  It  is  for  training  (this  can  have  train  or  infer  as  a  string). 

4.  . −s  is  output.  It  is  the  file  name  in  which  the  trained  model  is  saved. 

5.  . −f  is  the  name  of  the  input  file  which  is  used  for  inference. 

[image: Image 36]

Chapter  8 

Deployment  of  Deep  Learning  Networks 

 The  true  power  of  deep  learning  shines  when  it  is  deployed, 

 bringing  AI  to  life. 

8.1 

Insight 

In  recent  years,  embedded  systems  started  gaining  popularity  in  the  AI  field.  Due to  the  transition  of  the  AI  and  deep  learning  revolution  from  software  to  hardware, embedded  systems  are  now  equipped  with  plug-in  SOMs  (System-on-Modules)  that incorporate  essential  components  such  as  processors,  memory,  power  supply,  and external  interfaces.  Since  an  embedded  system  is  dedicated  to  specific  tasks,  design engineers  can  optimize  it  for  a  given  workflow  and  reduce  the  size  and  cost  of the  product  and  enhance  reliability  and  performance.  They  are  commonly  found in  consumer,  cooking,  industrial,  automotive,  medical,  commercial,  and  military applications. 

The  surge  on  the  Internet  and  data  has  led  to  advanced  deep  learning  systems,  and hence,  the  book  also  presents  techniques  for  Internet  of  Things  IoT  in  association with  deep  learning  networks.  This  section  discusses  and  reveals  the  computing infrastructure  that  sits  on  the  edge  of  a  network.  More  importantly  in  this  section, the  chapter  reveals  the  best  deployment  of  deep  learning  network  on  IoT  edge devices  and  reveals  the  benefits  of  the  implementation.  The  core  areas  addressed here  are  how  to  reduce  the  latency,  enhance  the  security,  and  communicate  with  less bandwidth  by  deploying  deep  learning  networks.  Further,  the  chapter  demonstrates and  details  a  comprehensive  way  to  set  up,  install,  compile,  run,  test,  and  deploy different  IoT  edge  devices.  Through  this  chapter  readers  also  understand  and gain  strong  learning  in  event  data  collection,  flow  data  collection,  vulnerability assessment,  network  analysis,  packet  inspection,  android  deployment  diagnosis,  and neural  data  communication  with  android  services. 

At  the  higher  side,  in  this  section  the  book  presents  how  to  set  up  and  run  the IBM  Watson  Visual  Recognition  service  in  an  Android  device  and  associated  visual recognition  application  services.  Further,  deep  learning  network  model  pruning and  optimization,  joint  probability  weight  quantizer,  and  edge  compilers  are  also 
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discussed.  The  chapter  enumerates  case  studies  on  agriculture  connected  to  IoT  and deep  learning  networks  for  reader  understanding. 

8.2 

Description 

Deep  learning  networks  and  the  Internet  of  Things  (IoT)  edge  are  interconnected  in various  ways  [85–88]. IoT  edge  refers  to  the  computing  infrastructure  that  sits  at  the edge  of  a  network,  close  to  the  devices  that  generate  data.  These  devices  can  include sensors,  cameras,  and  other  data  sources  that  produce  massive  amounts  of  data. 

Deep  learning  networks  can  be  deployed  on  IoT  edge  devices  to  process  and analyze  this  data  in  real  time,  allowing  for  faster  decision-making  and  more  efficient use  of  resources.  This  is  especially  important  in  applications  such  as  smart  cities, autonomous  vehicles,  and  industrial  automation,  where  real-time  processing  and decision-making  are  critical. 

The  deployment  of  deep  learning  networks  on  IoT  edge  devices  has  several advantages,  including  the  following: 

1.  Reduced  latency:  By  processing  data  at  the  edge,  deep  learning  networks  can reduce  the  latency  associated  with  sending  data  to  a  remote  data  center  or  cloud. 

This  is  important  in  applications  where  real-time  processing  is  critical,  such  as in  autonomous  vehicles. 

2.  Improved  security:  By  processing  data  at  the  edge,  deep  learning  networks  can help  reduce  the  risk  of  data  breaches  and  ensure  that  sensitive  data  is  kept  secure. 

3.  Reduced  bandwidth:  By  processing  data  at  the  edge,  deep  learning  networks  can help  reduce  the  amount  of  data  that  needs  to  be  transmitted  to  the  cloud,  reducing bandwidth  requirements  and  associated  costs. 

Overall,  the  connection  between  deep  learning  networks  and  IoT  edge  is 

crucial  in  enabling  real-time  decision-making  and  efficient  use  of  resources  in  IoT 

applications. 

Intelligence  in  IoT  edge  is  playing  a  critical  role  in  services  that  require  real-time inferencing. Historically, there have been systems with a high amount of engineering complexity  in  terms  of  deployment  and  also  in  operation.  For  example,  SCADA  is one  such  system  that  has  been  working  in  the  power  generation  industry,  oil  and gas  industry,  cement  factories,  etc.  In  fact,  SCADA  includes  humans  in  a  loop  and makes  it  as  supervisory  control  and  data  acquisition. 

In  the  advent  of  deep  learning  and  its  success  in  the  modern  digital  side,  there have  been  huge  amounts  of interest among  researchers  to carry deep  learning  models to  the  abovementioned  industrial  verticals  and  trying  to  bring  up  intelligent  control and  data  acquisition.  In  the  place  of  a  supervisor,  it  appears  that  an  intelligent  IoT 

edge  is  coming  up  to  perform  those  tasks  that  are  handled  by  human  beings  in the  form  of  a  supervisor.  Thus,  there  is  immense  interest  in  making  IoT  edge  as intelligent  systems  in  these  core  engineering  verticals  apart  from  consumer  industry requirements. 

[image: Image 37]
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Fig.  8.1  Variables  in  IoT  edge 

CNN  is  one  particular  class  of  deep  learning  networks.  After  training  CNN,  it is  necessary  to  deploy  CNN  in  a  machine  such  that  that  inference  work  can  be performed  on  a  given  set  of  input  data.  Inference  work  can  be  image  classification, or  object  detection  or  sequence  to  sequence  translation.  Edge  devices  might  have any  one  of  these  following  combinations  to  perform  computation: 

1.  CPU 

2.  CPU+GPU 

3.  CPU+FPGA 

4.  CPU+GPU+FPGA 

Variables  in  IoT  edge  are  shown  in  Fig. 8.1.  Trained  DL  networks  might  be modified  to  fit  in  a  given  computing  capability  of  IoT  edge. 

Emerging  trend  shows  that  “embedded  devices”  also  have  GPU  along  with 

multicore  CPU.  Some  OEM  devices  appear  to  be  including  FPGA  as  well.  Thus, the  challenge  is  to  port  trained  deep  learning  networks  on  to  embedded  devices  and run  inference  service  applications. 

Deployment  of  “trained  CNN  model  in  X86  machine”  requires  many  items  for successful  completion.  The  list  given  in  the  following  has  items  that  might  be essential  to  complete  CNN  deployment  in  X86  (CPU)  machines. 

Problem  8.2.1  Identify  necessary  items  in  the  following  list  for  successfully porting  CNN  model  on  to  X86  CPU  processor.  And  also  provide  reason  for  selecting a  particular  item  as  a  part  of  essentials  for  deployment  of  CNN  on  X86  CPU. 

(a)  Ubuntu  22.04  OS-based  devices. 

(b)  Python  is  not  required  in  deployment  devices. 

(c)  TensorFlow  is  not  required  in  deployment  devices. 
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(d)  FPGA  (via  PCI  add-on)  is  not  required  in  deployment  devices. 

(e)  GPU  (via  PCI  add-on)  is  not  required  in  deployment  devices. 

(f)  Item  (b)  and  item  (c)  are  true. 

(g)  Item  (e)  may  be  true  sometimes. 

(h)  Others. 

Understanding  the  above  problem  will  provide  guidelines  to  deployment  engineers  to  handle  deployment  of  deep  learning  networks  in  a  given  embedded  device. 

The  following  items  are  used  to  illustrate  challenges  in  porting  deep  learning networks  in  a  given  embedded  device: 

1.  Porting  DL  networks  into  Android  phones  (this  work  requires  NDK  support along  with  support  from  the  SDK  of  a  given  Android  Studio) 

2.  Ported  on  to  many  edge  computer  boards  such  as  Jetson  Nano,  Jetson  Xavier  NX, Jetson  Xavier  AGX,  and  Jetson  Orin 

3.  Ported  DL  networks  on  to  an  embedded  device  which  has  FPGA 

For  example,  porting  “trained  CNN  model  in  Android  phone”  has  challenges  to use  CPU  or  CPU+GPU  to  run  the  CNN  model.  Android  applications  are  using  Java as  a  language  to  code  applications.  But  the  NN  or  CNN  model  is  required  to  code in  C  or  in  C++  such  that  efficient  execution  is  possible. 

Problem  8.2.2  Identify  necessary  items  in  the  following  list  for  porting  the  CNN 

model  onto  an  Android  device.  And  also  provide  a  reason  for  selecting  a  particular item  as  a  part  of  essentials  for  deployment  of  CNN  on  an  Android  device.  Assume that  the  inference  engine  source  code  is  available  in  C  or  C++  or  in  both. 

(a)  NDK  is  (in  an  Android  Studio)  used  to  build  an  inference  engine. 

(b)  Inference  engine  is  not  using  GPU  in  Android  devices. 

(c)  Inference  engine  is  not  using  DSP  in  Android  devices. 

(d)  Inference  engine  is  capable  of  using  an  updated  trained  CNN  or  NN  model  from Ubuntu  machine  (X86)  via  Wi-Fi. 

(e)  Inference  engine  is  used  to  collect  data  from  users. 

(f)  Inference  engine  is  used  to  show  inference  output  in  display  for  a  given  input data. 

(g)  Other. 

Deployment  of  TensorFlow  or  PyTorch  models  in  a  given  embedded  device 

requires  the  following  listed  modification  on  a  trained  DL  model: 

1.  Optimize  trained  deep  learning  network  model. 

2.  Truncate  trained  deep  learning  network  model. 

3.  Quantize  coefficients  in  trained  deep  learning  network  model. 

4.  Request  embedded  device  vendor  to  use  X86  or  POWER9  CPUs. 

Problem  8.2.3  Identify  items  in  the  following  list  for  porting  the  CNN  model  on to  an  embedded  device.  And  also  provide  reason  for  selecting  a  particular  item  as a  part  of  essentials  for  deployment  of  CNN  or  NN  on  to  an  embedded  device  (IoT 

edge). 

[image: Image 39]
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(a)  The  CNN  or  NN  model  is  in  Python  and  it  is  not  ready  to  be  deployed  in  IoT 

edge. 

(b)  The  CNN  or  NN  model  is  in  TensorFlow  and  it  is  not  ready  to  deploy  in  IoT 

edge. 

(c)  The  trained  CNN  model  might  have  floating  point  weights  and  bias  coefficients. 

(d)  The  trained  CNN  or  NN  models  might  have  too  many  neurons  and  embedded devices  might  not  have  resources  for  all  neurons. 

(e)  IoT  edge  technology  is  very  different  from  deep  learning-based  inference technology. 

(f)  All  the  above  are  true. 

(g)  Other. 

DLtrain  designed  to  support  custom  models  by  using  NN  and  CNN.  Figure  8.2 

provides  a  detailed  workflow  to  deploy  NN  in  IoT  edge.  DLtrain  is  used  to  train  a (CNN  and  NN)  model  with  training  data  and  validate  trained  (CNN  and  NN)  models before  use  in  deployment  in  IoT  edge. 

In  the  case  of  deployment,  there  is  a  huge  interest  in  making  smartphones  as  IoT 

edge  such  that  the  same  device  can  be  used  without  much  investment  during  the learning  time  of  each  learner.  However,  industrial  deployment  is  expected  to  happen in  devices  like  Jetson  Series  GPUs,  zynq  ultrascale+s  FPGA,  mmWave  Radar,  etc. 

The  DLtrain  inference  source  code  is  in  C,  C++. 

The  DLtrain  inference  source  code  is  open  for  developers  for  further  value addition  on  the  same. 

Fig.  8.2  DLtrain  for  IoT  devices

[image: Image 40]
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Fig.  8.3  AI  in  IoT 

Problem  8.2.4  Provide  your  thought  process  to  find  a  method  and  apparatus  to  port DL  networks  in  an  embedded  device  by  using  DLtrain. 

REST  API  appears  to  be  a  method  in  which  the  client  can  communicate  with  the inference  engine  which  is  performing  inference  for  a  given  input  data,  where  input data  comes  from  client  applications  which  are  written  in  different  languages. 

Intelligence  IoT  edge  plays  a  critical  role  in  services  that  are  required  for  real-time  inferencing.  Historically,  there  have  been  such  systems  with  high  amounts  of engineering  complexity  in  terms  of  deployment  and  also  in  operation.  For  example, SCADA  is  one  such  system  that  has  been  working  in  the  power  generation,  oil  and gas  industry,  cement  factories,  etc.  In  fact,  SCADA  includes  humans  in  a  loop  and makes  it  as  supervisory  control  and  data  acquisition. 

Figure  8.3  provides  healthcare  support  workers  vs.  use  of  Watson  in  healthcare. 

During  pandemic  time  there  is  a  need  to  manage  a  given  bed,  and  there  is  a  need to  have  supporting  healthcare  staff.  The  following  appears  to  be  a  valid  issue  among the  healthcare  team. 

At  the  forefront  of  the  battle  are  healthcare  workers  who  have  been  struggling  to  cope  both physically  and  mentally 

Once  a  medical  Dr  had  said,  “Bed  does  not  treat  Patients.” 

Yes,  it  may  have  been  a  valid  statement  10  years  ago.  But  now  the  kind  of innovation  in  sensing  has  resulted  in  MEMS  sensors.  mmWave  Radar-based  vital sign  monitoring,  camera-based  AI  inference,  and  robot-based  delivery  of  food  will give  a  way  to  make  a  bed  be  autonomous  without  much  routine  help  from  supporting healthcare  staff. 

IBM Watson Discovery  service and Assistant service are used in creating a digital assistant  in  the  healthcare  segment.  Fortunately,  the  mentioned  services  and  sensors provide  scope  to  go  for  accelerated  deployment  in  clinical  stage  hospital  and  also  in quarantine  facility  centers.  Figure  8.4  and  8.5  provides  details  on  Watson  in  loop  to monitor  and  control  a  given  patient. 

[image: Image 41]
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Fig.  8.4  AI  and  IoT  in  life 

Fig.  8.5  Healthcare 

The  advent  of  deep  learning  and  its  success  in  the  modern  digital  side  have  been igniting  a  huge  amount  of  interest  among  researchers  to  carry  deep  learning  models to  the  abovementioned  industrial  verticals  and  try  to  bring  off  intelligent  control  and data  acquisition. 

In  the  place  of  a  supervisor,  it  appears  that  intelligent  IoT  edges  are  coming  up  to perform  those  tasks  that  are  handled  by  human  beings  in  the  form  of  a  supervisor. 
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Thus,  there  is  immense  interest  in  making  IoT  edge  as  intelligent  systems  in  these core  engineering  verticals  apart  from  consumer  industry  requirements. Kalman filter  has  been  there  for  50  plus  years.  Moreover,  it  provides  instant  prediction with  local  measurement  data.  Figure  A.4  provides  workflow  in  IoT  edge  to  perform inference  by  using  CPU  along  with  GPU. 

1.  Create  an  NN  model. 

2.  Training  data  (mostly  use  MNIST). 

3.  Train  an  NN  model. 

4.  Validate  trained  NN  model. 

5.  Go  for  deployment. 

Deep  learning  is  good  and  it  will  outperform  results  that  are  obtained  by using  Kalman  filter 

In  the  case  of  deployment,  there  is  a  huge  interest  in  making  a  smartphone  as  IoT 

edge  such  that  the  same  device  can  be  used  without  much  investment  during  pilot deployment  time.  However,  industrial  deployment  is  expected  to  happen  in  devices like  Jetson  Nano,  Ultra96-V2,  etc. 

Problem  8.2.5  Deployment  of  a   trained  CNN  model  in  X86  machine   has  a  well-defined  workflow  for  successful  deployment.  List  items  in  the  following  such  that they  are  used  in  successful  deployment: 

(a)  Ubuntu  18.04  OS  is  used  in  a  deployment  machine  which  is  X86. 

(b)  Python  is  not  required  in  a  deployment  machine  which  is  X86. 

(c)  TensorFlow  is  not  required  in  a  deployment  machine  which  is  X86. 

(d)  FPGA  (via  PCI  add-on)  is  not  required  in  a  deployment  machine  which  is  X86. 

(e)  GPU  (via  PCI  add-on)  is  not  required  in  a  deployment  machine  which  is  X86. 

(f)  Item  (b)  and  item  (c)  are  always  true. 

(g)  Item  (e)  may  be  true  sometimes. 

8.3 

Silicon  Vendors  in  IoT  Edge  Segment 

Deep  learning  network  algorithms  are  characterized  by  extensive  linear  algebra, matrix,  and  vector  data  operations. 

Traditional  processor  architectures  are  not  optimized  for  deep  learning  inference workloads,  and  hence,  specialized  processing  architectures  are  necessary  to  meet  the low  latency  requirements  of  running  complex  deep  learning  algorithm  operations. 

Figure  8.6  provides  information  on  few  silicon  vendors’  AI  tool  set.  As  such,  factors to  be  considered  while  choosing  the  edge  device  include  balancing  the  model  architecture  (accuracy,  size,  operation  type)  requirements  with  device  programmability, throughput,  power  consumption,  and  cost. 

Problem  8.3.1  Deployment  of  the  TensorFlow  model  or  PyTorch-based  model  in IoT  edge  is  required  to  optimize  and  quantize  the  trained  CNN  model.  What  are  the

[image: Image 43]
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Fig.  8.6  IoT  edge  silicon  from  silicon  vendors 

items  required  to  form  the  following  for  successful  completion  of  deployment  of  the abovementioned  model  in  IoT  edge? 

(a)  The  CNN  model  in  Python  is  not  ready  to  be  deployed  in  IoT  edge. 

(b)  The  CNN  model  in  TensorFlow  is  not  ready  to  be  deployed  in  IoT  edge. 

(c)  The  trained  CNN  model  might  have  floating  point  weights. 

(d)  The  trained  CNN  model  might  have  too  many  neurons. 

(e)  IoT  edge  technology  is  very  different  from  deep  learning-based  inference technology. 

(f)  All  the  above  are  true. 
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Deploying  deep  learning  networks  in  a  given  silicon  requires  effort  to  work with  software  tool  chain  and  also  silicon  architecture  to  successfully  port  inference engine.  Mostly,  silicon  vendors  have  released  versions  of  tool  sets  which  can  take the  TensorFlow  model  as  an  input  and  provide  a  model  which  is  good  for  their silicon. 

Low-cost  embedded  processors  have  limited  compute  capability,  and  thus,  there is  a  need  to  obtain  a  deep  learning  network  which  can  fit  in  in  terms  of  computing requirement  and  also  memory  requirements. 

1.  Extensible  inference  engines 

2.  Platform  independent  libraries  supporting  image  transformations 

3.  Validation  tools  capable  of  guaranteeing  the  algorithm  functionality  across different  platforms 

The  choice  of  the  algorithm  to  be  used  is  important  to  run  a  model  on an  edge  device.  However,  this  must  also  be  coupled  to  an  optimal  choice  of hardware.  The  metric  to  be  used  for  choosing  the  hardware  is  based  on  accuracy, energy  consumption,  throughput,  and  cost.  The  accuracy  of  deep  learning  network algorithms  must  be  measured  on  a  data  set  large  enough  to  be  able  to  affirm  that  the obtained  result  is  valid.  Energy  efficiency,  on  the  other  hand,  is  closely  related  to deployment  feasibility  and  the  size  of  deep  learning  networks. 

The  high  size  and  the  variability  of  the  scenario  imply  an  increase  in  terms  of computation.  In  particular,  the  high  size  of  the  deep  learning  networks  increases  the number  of  neurons,  and,  instead,  programmability  involves  the  need  to  access  the memory,  read  the  weight  value,  and  modify  it.  This  generally  involves  an  increase in  energy  consumption. 

Microcontrollers  can  be  used  for  AI  but  implementing  the  algorithm  on  them  is challenging.  They  are  excellent  choices  in  IoT  applications  and  may  run  networks that  are  not  too  large  for  low-data  fusion  tasks. 

A  good  tool  to  facilitate  the  implementation  of  deep  learning  networks  on  a microcontroller  is  the  X-CUBE-AI,  suitable  only  for  STMicroelectronics  MCUs. 

It  is  an  expansion  of  the  STM32CubeMX  environment  that  extends  the  potential of  the  tool,  allowing  an  automatic  conversion  of  pre-trained  NNs  to  low-resource hardware.  X-CUBE-AI  also  optimized  libraries  by  modifying  layers  and  reducing the  number  of  weights  to  make  the  network  more  “memory-friendly.” 

The  Qualcomm  Neural  Processing  SDK  is  designed  to  help  developers  run  one or  more  neural  network  models  trained  in  Caffe,  Caffe2,  ONNX,  or  TensorFlow. 

TIDL  is  a  set  of  open-source  Linux  software  packages  and  tools  enabling  offload of  deep  learning  (inference  only)  compute  workloads  from  ARM  cores  to  hardware accelerators  such  as  EVE  and/or  C66x  DSP.  The  objective  for  TIDL  is  to  hide the  complexity  of  a  heterogeneous  device  for  machine  learning/neural  network applications  and  help  developers  focus  on  their  specific  requirements.  In  this  way, ARM  cores  are  freed  from  the  heavy  compute  load  of  deep  learning  tasks  and  can be  used  for  other  roles  in  your  application.  This  also  allows  the  use  of  traditional computer  vision  (via  OpenCV)  augmenting  deep  learning  algorithms. 

[image: Image 46]
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Fig.  8.7  Dialog  in  IP  networks 

At  the  moment,  TIDL  software  primarily  enables  convolution  neural  network inference,  using  offline  pre-trained  models,  stored  in  device  file  system  (no  training on  target  device).  Models  trained  using  Caffe  or  TensorFlow-slim  frameworks  can be  imported  and  converted  (with  provided  import  tool)  for  efficient  execution  on  TI devices. 

Neural  network  structures  supported  by  e-AI  Translator  is  from  Renesas  Electronics. 

Free  Source  code  shared  in  the  following  link  can  be  used  to  deploy  DL  networks in  Jetson  series  SOMs  such  as  Nano,  TX2,  Xavier  and  Orin.  To  access  FREE  source of  DLtrain  inference  engine,  click  on  “cpuTraincmake”  button  in  [89]. 

8.4 

Deploying  DL  Networks  in  Kanshi 

Kanshi  [90]  is  a  security  audio  application  in  IP  network  packets  stream  by  using Deep  learning  Networks.  Figure  8.8  provides  an  overview  on  Kanshi  by  using  IBM 

Watson  Assistant  service  in  Figure  8.7. 

Engineers  at  work  invest  more  “effort”  in  innovation  and  less  time  used  in  coding applications  to  deploy  a  deep  learning  network  in  edge  to  monitor  TCP/IP  traffic. 

IoT  edge  flows  represent  network  activity  by  normalizing  IP  addresses,  ports, byte  and  packet  counts,  and  other  data  into  flow  records,  which  are  records  of network  sessions  between  two  hosts.  Flows  are  a  differentiating  component  in QRadar  that  provide  detailed  visibility  into  your  network  traffic.  Figure  8.8  provides information  on  QRadar. 
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Fig.  8.8  Flows  in  IP  networks 

What  is  the  difference  between  events  and  flows  in  an  IP  network? 

Application  identification,  flow  direction,  and  superflows  are  part  of  analysis. 

Perhaps  the  same  can  be  defined  as  events  in  the  IP  network.  To  identify  events  in IP  networks,  deep  learning  networks  are  used. 

 8.4.1 

 Event  Data  Collection 

Event  data  collection  requires  a  packet  sniffing  tool  set  to  collect  IP  packets  in  real time.  Events  are  generated  by  log  sources  such  as  firewalls,  routers,  servers,  and intrusion  detection  systems  (IDS)  or  intrusion  prevention  systems  (IPS). 

 8.4.2 

 Flow  Data  Collection 

Flows  provide  information  about  network  traffic  and  can  be  sent  to  IoT  edge  in various  formats  and  the  list  is  given  in  the  following: 

1.  Including  flow  log  files 

2.  NetFlow 

3.  JFlow 

4.  sFlow 

5.  Packeteer 

Data  provides  flow  arrival  time,  common  dst  port,  and  RFC  1700  ports  0-1023. 

TAP  devices  provide  a  way  to  access  the  data  flowing  across  a  computer  network, typically  for  the  benefit  of  network  security  and  performance  monitoring  tools.  The monitored  traffic  is  referred  to  as  the  “pass  through”  traffic  and  the  ports  used  for monitoring  are  called  “monitor  ports.” 
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For  greater  visibility  into  the  network,  a  TAP  can  be  placed  between  the  router and  the  switch.  To  begin  with,  port  mirroring,  also  known  as  SPAN  or  roving analysis,  is  a  method  of  monitoring  network  traffic  that  forwards  a  copy  of  each incoming  and/or  outgoing  packet  from  one  or  more  port  (or  VLAN)  of  a  switch  to another  port  where  the  network  traffic  analyzer  is  connected.  SPAN  is  often  used on  simpler  systems  to  monitor  multiple  stations  at  once  by  using  the  following  data format. 

arp,  ether,  fddi,  cmp,ip,  p6,  link,  pp.  radio,  rarp,  slip,  tcp,  tr,  udp,  wlan In  network  communication,  a  packet  typically  consists  of  two  main  parts:  the header  and  the  payload.  Here’s  a  breakdown  of  the  information  typically  found  in each: 

Packet  Header: 

Source  and  Destination  Addresses:  The  header  contains  information  about  the source  and  destination  IP  addresses  or  MAC  addresses,  depending  on  the  layer  of the  network  protocol  stack  (e.g.,  IP  addresses  in  the  network  layer,  MAC  addresses in  the  data  link  layer). 

Packet  Length:  The  total  length  of  the  packet,  including  both  the  header  and  the payload. 

Packet  Sequence  Number:  In  some  cases,  there  may  be  sequence  numbers  to ensure  packets  arrive  in  the  correct  order. 

Error  Checking  Information:  Checksums  or  CRC  (Cyclic  Redundancy  Check) values  are  included  in  the  header  to  verify  the  integrity  of  the  packet. 

Protocol  Information:  Indicates  the  type  of  data  carried  in  the  payload  (e.g.,  TCP, UDP,  ICMP). 

Time-to-Live  (TTL)  or  Hop  Limit:  Prevents  packets  from  circulating  indefinitely by  decrementing  on  each  hop  in  the  network. 

Packet  Payload: 

Data:  The  actual  content  of  the  packet,  which  can  include  application  data, messages,  or  any  other  information  being  transmitted.  To  investigate  the  information in  the  header  and  payload,  various  technologies  and  tools  can  be  used: 

Packet  Sniffers/Analyzers:  Tools  like  Wireshark,  tcpdump,  or  Microsoft  Network Monitor  can  capture  and  analyze  network  packets,  providing  detailed  insights  into both  headers  and  payloads. 

Protocol  Analyzers:  These  specialized  tools  focus  on  specific  network  protocols, making  it  easier  to  dissect  and  understand  the  information  contained  in  the  header and  payload  of  those  protocols. 

Deep  Packet  Inspection  (DPI)  Systems:  DPI  systems  go  beyond  basic  packet analysis  to  inspect  the  content  of  packets  for  security,  quality  of  service,  or  traffic
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shaping  purposes.  They  can  analyze  and  classify  payloads  based  on  application-layer  content. 

Network  Monitoring  and  Intrusion  Detection  Systems  (IDS/IPS):  These  systems  can  inspect  packet  headers  and  payloads  for  patterns  that  may  indicate  network intrusions  or  malicious  activities. 

Custom  Software:  Depending  on  your  needs,  you  can  develop  custom  software to  parse  and  analyze  packet  headers  and  payloads,  especially  when  working  with proprietary  or  custom  protocols. 

Remember  that  investigating  the  payload  content  may  require  additional  knowledge  and  tools  specific  to  the  application  or  protocol  being  used  in  the  communication. 

The  flow  inspection  level  might  require  network  packet  appliances  to  capture up  to  10 Gbps.  Packet  header  and  payload:  which  information  is  available  in  the header  and  packet  and  which  technologies  to  use  to  investigate  header  and  payload information. 

IoT  edge  analyzes  TCP/IP  traffic  flow  data  for  applications,  flow  direction,  and superflows.  Deployment  engineers  also  learn  how  to  build  an  IoT  edge  flow  rule  and how  to  perform  flow  searches  in  IoT  edge. 

SSH  in  a  nonstandard  port  might  be  an  issue.  The  header  does  not  have  extra information  on  issue,  but  payload  might  have  it. 

IoT  edge  collects  network  activity  information,  or  what  is  referred  to  as  “flow records.”  Flows  represent  network  activity  by  normalizing  IP  addresses,  ports,  byte, and  packet  counts,  as  well  as  other  details,  into  “flows,”  which  effectively  represent  a session  between  two  hosts.  QRadar  can  collect  different  types  of  flows,  which  differ greatly  in  the  collected  details.  The  following  list  provides  available  IoT  edges  in the  market  to  handle  flow  collection. 

1.  Cisco  NetFlow 

2.  QRadar  QFlow 

3.  QRadar  Network  Insights  (QNI) 

 8.4.3 

 Vulnerability  Assessment 

Packet  analysis  use  deep  learning  networks  to  perform  real-time  inference  to  get vulnerability  assessment  (VA)  information.  IBM  Cloud  account  provides  use  of Watson  Assistant  in  the  development  of  Kanshi  to  perform  security  audit  in  IP 

networks.  IoT  edge  can  import  VA  information  from  various  third-party  scanners. 

IoT  edge  network  insight  appliances  connect  to  network  TAPs,  SPAN,  or  mirror ports  to  access  full  packet  data  for  real-time  analysis.  Mostly,  IoT  edge  network insight  appliances  provide  a  detailed  analysis  of  network  flows  to  extend  the  threat detection  capabilities  of  network  insight  appliances. 
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IoT  edge  network  insight  appliance  provides  a  detailed  analysis  of  network  flows to  extend  the  threat  detection  capabilities  of  IBM  QRadar.  CPU  and  GPU  are  used in  IoT  edge  to  obtain  real-time  performance.  More  secure  operating  systems  run  on Red  Hat  Enterprise  Linux®  version  7.9. 

Berkeley  Packet  Filters  (BPFs)  provide  a  powerful  tool  for  intrusion  detection analysis.  Use  BPF  filtering  to  quickly  reduce  large  packet  captures  to  a  reduced  set of  results  by  filtering  based  on  a  specific  type  of  traffic.  Both  admin  and  non-admin users  can  create  BPF  filters.  Build  complex  filter  expressions  by  using  modifiers  and operators  to  combine  protocols  with  primitive  BPF  filters. 

Cyber  Physical  Systems  Increasingly  Under  Threat  from  “n00bs” 

Throughout  2021,  we  observed  low  sophistication  threat  actors  learn  that  they  could create  big  impacts  in  the  operational  technology  (OT)  space—perhaps  even  bigger  than they  intended.  Actors  will  continue  to  explore  the  OT  space  in  2022  and  increasingly use  ransomware  in  their  attacks.  This  targeting  will  occur  because  of  the  need  to  keep OT  environments  fully  operational,  especially  when  the  systems  are  part  of  critical infrastructure.  Attacks  against  critical  OT  environments  can  cause  serious  disruption  and even  threaten  human  lives,  thereby  increasing  the  pressure  for  organizations  to  pay  a ransom.  To  compound  the  issue,  many  of  these  OT  devices  are  not  built  with  security  at the  forefront  of  the  design,  and  we’re  currently  seeing  a  massive  uptick  in  the  number  of vulnerabilities  being identified  in  OT  environments. Reference  R E P O R T | M A N D I A N  T,  14  cyber  security  predictions  for  2022  and  beyond. 

Investigation  of  cybersecurity  threats  using  the  IoT  edge  Analyst  Workflow provides  security  analysts  with  a  new  UI  to  investigate  offenses  and  search  for threats. 

It  enables  analysts  to  initiate  a  search,  define  operators,  customize  table  columns, group  and  sort,  and  define  a  time  range  using  interactive  modules.  The  following features  highlight  the  new  investigation  workflows: 

1.  Critical  information  to  help  inform  your  decision-making  is  one  click  away. 

Select  objects  like  IP  addresses,  log  sources,  events,  insights,  magnitude,  and more  to  open  a  side  pane  that  provides  more  context  and  details. 

2.  Narrow  down  results  in  tables  with  filters. 

3.  Search  for  common  objects  like  IP,  hash,  URL,  and  more  with  Ariel  Query Language  (AQL)  smart  query  builder  and  with  no  need  to  build  a  query. 

4.  Load  screens  and  navigate  between  workflows  with  improved  performance. 

Analyst  Workflow  provides  new  methods  for  filtering  offenses  and  events, 

and  graphical  representations  of  offenses,  by  magnitude,  assignee,  and  type.  The improved  offense  workflow  provides  a  more  intuitive  method  to  investigate  offense to  determine  the  root  cause  of  an  issue  and  work  to  resolve  it.  Use  the  built-in  query builder  to  create  AQL  queries  by  using  examples  and  saved  or  shared  searches,  or by  typing  plain  text  into  the  search  field. 

114

8

Deployment of Deep Learning Networks

 8.4.4 

 IP  Stream  Analysis 

IP  stream  analysis  and  deep  learning  are  two  fields  that  can  be  combined  to  create powerful  tools  for  analyzing  network  traffic  and  detecting  anomalous  behavior. 

IP  stream  analysis  involves  capturing  and  analyzing  network  traffic  to  identify patterns  and  trends,  detect  security  threats,  and  troubleshoot  network  issues.  This can  involve  analyzing  data  at  the  packet  level,  looking  at  protocol  headers,  or examining  flow  records. 

Deep  learning,  on  the  other  hand,  is  a  subset  of  machine  learning  that  uses  artificial  neural  networks  with  multiple  layers  to  model  and  solve  complex  problems. 

It  involves  training  the  neural  network  on  large  data  sets  to  learn  patterns  and  make predictions  or  classifications. 

By  combining  IP  stream  analysis  with  deep  learning,  it  is  possible  to  create sophisticated  tools  for  detecting  anomalies  and  security  threats  in  network  traffic. 

For  example,  deep  learning  models  can  be  trained  on  large  data  sets  of  normal network  traffic  to  learn  patterns  of  behavior.  These  models  can  then  be  used  to  detect deviations  from  normal  behavior,  which  could  indicate  a  security  threat. 

One  example  of  this  is  using  deep  learning  to  detect  distributed  denial-of-service (DDoS)  attacks.  By  analyzing  network  traffic  and  training  a  deep  learning  model to  identify  patterns  of  normal  traffic,  the  model  can  be  used  to  detect  when  traffic patterns  deviate  from  the  norm.  This  can  help  to  detect  and  mitigate  DDoS  attacks in  real  time. 

Overall,  combining  IP  stream  analysis  with  deep  learning  can  lead  to  more accurate  and  effective  tools  for  network  analysis  and  security. 

Scapy  is  a  utility  for  allowing  a  user  to  manipulate  packets  on  networks.  Scapy is  a  powerful  Python-based  interactive  packet  manipulation  program  and  library. 

Figure  8.9  provides  workflow  to  obtain  a  data  set  from  the  PCAP  file. 

Write  a  program  that  can  use  malicious  pcap  files  as  data  sets  and  predict  if  other pcaps  files  have  malicious  packets  in  them. 

1.  Download  two  pcap  files  and  concatenate  them  to  extract  packet. _timestamp  and packet. _data. 

2.  Preprocess  the  packet. _data,  add  labels  on  it,  and  create  a  training  data  set. 

3.  Create  testing  data  set;  if  it  is  in  a  file,  then  zip  them  to  pcap  files. 

4.  Passing  a  data  set  of  (feature,  label)  pairs  is  all  that  is  needed  from  the  above. 

Researchers  working  on  computer  network  or  cyber  security  often  need  to 

analyze  network  traffic.  In  that  case,  they  use  a  Wireshark  Packet  Analyzer  or any  other  similar  traffic  analysis  tools  to  capture  and  analyze  packets.  However, if  you  want  to  perform  data  analysis,  cleaning,  modeling,  or  feature  analysis  and classification  for  the  network  traffic,  you  might  want  to  convert  the  PCAP  files  into a  CSV  file. 

1.  Wireshark  is  an  open-source  cross  platform  software. 

2.  tcpdump  is  Linux  utility. 

3.  Firesheep  is  Firefox  extension. 

4.  Packet  sniffers  can  store  captured  packets  in  PCAP  (PacketCAPture)  files. 
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Fig.  8.9  Data  set  for  DL  networks 

Fig.  8.10  IP  packet  format 

Figure  8.10  provides  details  on  IP  packet  format. 

Refer  to  file  scapy.md  in  [91]  to  get  information  on  the  flow  capture  tool  set scapy. 

pcap2TF.ipynb  code  is  to  train  deep  learning  network  model  by  using  a  PCAF 

file-based  data  set.  Refer  to  file  pcap2TF.ipynb  in  [92]. 
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8.5 

Deploying  DL  in  Android  Phone 

How  to  port  trained  NN  or  CNN  models  onto  Android  phones? 

Figure  8.11  provides  details  to  perform  porting  of  NN  on  to  an  Android  phone. 

A  model  is  required  to  fit  in  an  Android  phone.  Moreover,  the  computer capability  of  a  phone  may  be  the  same  as  a  host  machine  in  which  a  NN  or  CNN 

model  is  trained.  Perhaps  there  is  a  need  to  quantize  coefficients  in  models  such  that it  is  possible  to  run  a  model  in  an  Android  phone  for  inference. 

Resource  used  is  listed  in  the  following: 

1.  POWER9  or  x86  with  GPU-based  DL  training 

2.  CUDA  SDK  10.1  or  above 

3.  Inference  app  in  Android  phone 

4.  Watson  Studio  for  ML  app 

5.  Android  SDK  handling  and  working  knowledge  (advantage) 

6.  Watson  studio  for  image  classification  service  design  and  deployment 

7.  App  in  android  to  work  with  Watson  VR  microservice 

Fig.  8.11  J7  app  development
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 8.5.1 

 Installing  Android  Studio 

DLtrain  is  coded  in  C  and  C++.  To  build  an  inference  engine  in  an  Android  phone by  using  DLtrain,  it  is  required  to  use  NDK,  where  Android  NDK  is  used  to  make a  library  for  a  C  and  C++  source  code  of  DLtrain.  The  following  provides  steps  for the  installation  of  Android  Studio  along  with  the  installation  of  NDK.  Ubuntu  18.04 

x86  machine  is  used.  PC  OS  is  Ubuntu  18.04  or  higher. 

Installation  of  dependencies  is  critical.  For  example,  Android  Studio  requires OpenJDK  version  8  or  above  to  be  installed  to  the  development  PC  system. 

1.  sudo  apt  update 

2.  sudo  apt  install  openjdk-8-jdk 

3.  Java  version 

1.  Install  Android  Studio 

2.  sudo  snap  install  android-studio—classic 

Recommended  Android  SDK  version  is  22  or  above. 

In  J7  app,  SDK  version  29  is  used  to  build  the  J7  app  project. 

Start  Android  Studio  either  by  typing  android-studio  in  the  Development  PC 

terminal  or  by  clicking  on  the  Android  Studio  icon  (  Activities  −>  Android  Studio). 

Installation  of  NDK  is  required  to  use  the  SDK  Manager.  For  example,  use  the SDK  manager  to  install  the  following  components  of  NDK.  And  also  the  following components  in  the  list  are  useful  to  build  JNI  for  DLtrain  inference  engine. 

Packages  to  install: 

1.  LLDB  3.1  (lldb;3.1) 

2.  CMake  3.10.2.4988404  (cmake;3.10.2.4988404) 

3.  NDK  (side  by  side)  20.1.5948944  (ndk;20.1.5948944) 

Fix  for  3.1.2  or  Newer  Versions  Developers  had  faced  the  same  issue  on  Android Studio  3.1.2,  but  a  simple  sync  did  not  help.  For  example,  the  solution  was  a  bit different. 

1.  File  −>  Invalidate  Caches  −>  Invalidate. 

2.  ( File   −>  Close  Project. 

3.  Remove  the  project  from  the  Android  Studio  project  selector  window. 

4.  Quit  from  Android  Studio. 

5.  Start  AS  and  open  project  again. 

NDK  3.1.2  issue  is  discussed  in  [93]  and  Android  Studio  installation  is  discussed in  [94]. 

[image: Image 47]
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Fig.  8.12  J7  app  development 

 8.5.2 

 Build  Inference  Engine 

Android  studio  is  used  to  build  inference  engines  as  given  in  the  following  workflow. 

Use  file  transfer  functionality  to  copy  created  APK  into  Android  phone.  Workflow for  the  same  is  provided  in  Fig. 8.12. 

Windows  10  or  Ubuntu  18.04  with  Android  Studio  is  used  in  the  J7  app  project, where  the  latest  stable  version  of  Android  Studio  version  is  3.3.1.0 . 

NDK  20.1.5948944  (ndk;20.1.5948944)  is  used  to  build  JNI  lib  for  inference  engine. 

Inference  engine  full  source  code  is  given  in  [95]. 

Update  inference  engine  with  the  revised  model.  The  model  update  application source  code  is  given  in  [95]. 

The  following  diagram  provides  information  on  workflow  to  create  a  J722 

application  in  the  form  of  APK. 

 8.5.3 

 Send  CNN  or  NN  Model  to  Phone 

Figure  8.13  provides  an  IP  network  configuration  and  the  same  is  recommended  to transfer  the  trained  NN  or  CNN  model  to  an  Android  phone  from  a  host  machine. 

Workflow  is  given  in  Fig. 8.13,  using  host  CPU  and  Android  phone. 

Successful  operations  in  the  above  result  in  “deployment  of  trained  model  NN  or CNN”  in  Android  smartphones. 

Inference  engine  application  in  Android  phones  is  designed  to  use  the  latest model  from  the  host. 

[image: Image 48]
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Fig.  8.13  J7  app  classroom  demonstration 

Fig.  8.14  Model  download  on  to  Android  device 

The  Send2Phone  source  code  in  Java  runs  in  POWER9  machine  or  in  X86 

machine.  Figure  8.14  provides  workflow  to  download  the  model  from  the  server. 

Question:  How  to  build  toPhone/SndModel.jar? 

javac  main.java 

Question:  How  to  use  toPhone/SndModel.jar? 

java  −jar  toPhone/SndModel.jar 

Send  a  file  to  the  J722  app  which  is  installed  in  the  Android  phone. 

1

j k   : ~ /   J a n 2 8 $   j a v a   − j a r   t o P h o n e   /   SndModel   .   j a r 2

Open   J 7 2 2   and   Load  

3

E n t e r   f   i   l   e   p a t h   :   j 2 x x x x
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Developers  need  to  provide  a  CNN  model  file  name. 

Enter  IP:  192.168.1.3 

This  is  the  IP  number  of  an  Android  device  which  has  the  J7  app  and  also connected  via  the  same  subnet  IP  address. 

Done 

The  Send2Phone  source  code  is  given  in  [96]. 

 8.5.4 

 Using  the  J7  Application  in  Android  Phone 

The  following  provides  a  guideline  to  use  the  J7  app  in  an  Android  phone. 

1.  Local:  The  trained  model  from  the  local  storage  of  an  Android  phone  can  be loaded  into  the  application. 

2.  Go:  Use  the  button  to  perform  inference  after  the  user  enters  their  choice  of number  in  a  given  scripting  window. 

3.  Network:  Use  the  network  button  to  load  a  “successfully  trained  network.”  Wi-Fi link  is  used  to  load  trained  models.  The  host  application  is  given  and  the  same  is required  to  be  used  along  with  the  network  button.  More  detail  on  this  is  given  in the  following  page. 

4.  Previous:  Use  the  previous  button  to  move  to  the  earlier  inference  image  sample in  a  given  list. 

5.  Next:  Use  the  next  button  to  move  to  the  next  inference  image  sample  in  a  given list. 

6.  Clear:  Press  clear  button  to  clear  inference  details  given  in  a  display. 

 8.5.5 

 Mini  Project  1:  Inference  Using  GPU 

Use  the  GPU  of  the  Android  device  to  perform  computation  in  inference  for  a  given image  as  input.  Many  Android  phones  may  not  have  GPU,  but  in  case  the  Android phone  has  GPU,  then  how  is  GPU  used  to  perform  computation  which  is  part  of inference. 

Problem  8.5.1  Develop  CUDA  Core  code  for  a  given  C,  C++  source  code  of  a  J7 

app  inference,  where  a  C,  C++  code  is  working  well  in  the  CPU  of  an  Android phone.  The  inference  engine  source  code  of  NN/CNN  is  given  in  [95]. 

Objective   Port  J7  app  inference  engine  C,  C++  code  into  CUDA  programming and  use  CUDA  cores  of  GPU  of  a  given  Android  phone  for  real-time  inference. 

Figure  8.15  provides  details  on  workflow  for  the  abovementioned  application. 
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Fig.  8.15  Use  GPU  in  J7 

application 

 8.5.6 

 Mini  Project  2:  On  Sharing  Trained  CNN 

Objective  Share  the  trained  deep  learning  network  model  in  the  host  PC  with  J7 

app  in  the  Android  device. 

Share  the  trained  deep  learning  network  model  in  the  host  PC  with  J7  app  in  the Android  device.  Assume  the  host  PC  and  Android  device  are  connected  via  local Wi-Fi  access  point.  Figure  8.16  provides  details  on  “workflow”  for  sharing  CNN 

with  J7  application. 

Design  and  develop  server  application  in  host  PC  and  run  it  in  PC. 

J7  app  has  a  client  application  on  Android  phones. 

Host  machines  (Windows  or  Ubuntu)  use  DLtrain  to  train  NN  or  CNN.  Assume that  the  MNIST  data  set  is  available  in  the  above  host  machine. 

A  sample  application  is  made  for  the  above  functional  requirements.  The  source code  of  the  mentioned  sample  application  is  shared  in  [95]. Perhaps  focus  on  the host  processor  side  and  revise  the  given  source  code  to  perform  better  ways  to transfer  the  “trained  deep  learning  model  from  the  host  PC  to  the  Android  device.” 

Problem  8.5.2  Develop  application  in  host  (which  can  improve  the  above  work  in Mini  Project  2)  such  that  users  can  transfer  trained  deep  learning  network  models such  as  NN  or  CNN  from  the  host  computer  to  the  Android  device.  Assume  that both  are  connected  via  the  TCP/IP  network  and  have  the  same  subnet  address. 
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Fig.  8.16  Sharing  trained  CNN  with  J7  application 

 8.5.7 

 Mini  Project  3:  Pull  Trained  CNN  from  Host 

Objective  Pull  the  trained  deep  learning  network  model  into  the  Android  device via  Wi-Fi  by  using  an  application  in  the  Android  device  and  also  running  server application  in  the  host  processor.  Figure  8.17  provides  a  detailed  workflow  to  pull the  trained  model  from  the  host  PC. 

The  J7  app  is  a  client  application  that  is  designed  to  perform  receiving  trained NN  or  CNN  from  the  host  machine  by  using  Wi-Fi  (local  network). 

Problem  8.5.3  Develop  application  in  Android  device  such  that  it  can  automatically  perform  synchronization  to  pull  a  revised  deep  learning  networks  from  the GitHub  server  or  any  other  server. 

The  source  code  of  the  J7  app  is  given  in  [95]. 

[image: Image 50]
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Fig.  8.17  Pull  trained  CNN  from  host 

Fig.  8.18  Visual  recognition  in  IBM  Watson
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 8.5.8 

 IBM  Watson  Visual  Recognition  Service 

The  IBM  Watson  Visual  Recognition  service  is  deployed  in  IBM  Cloud.  Client application  in  the  Android  device  is  used  to  collect  image  data  by  using  the  device camera  and  send  image  data  to  the  IBM  Cloud-based  VR  service  for  inference.  The mentioned  visual  recognition  service  in  IBM  Cloud  appears  to  be  having  a  status  as given  in  Fig. 8.18. 

IBM  Watson  leverages  unique  capabilities  of  accelerated  power  servers,  delivering  performance  unattainable  on  commodity  servers  and  provides  for  hyperparameter  search  and  optimization,  and  elastic  training  to  allocate  the  resources  needed to  optimize  performance.  Distributed  deep  learning  provides  for  rapid  insights  at massive  scale.  Large  model  support  facilitates  the  use  of  system  memory  with  little to  no  performance  impact,  yielding  significantly  larger  and  more  accurate  deep learning  models. 

IBM Watson  Visual  Recognition  service  uses  deep  learning  algorithms  to  analyze images  of  scenes,  objects,  and  other  content.  The  response  includes  keywords  that provide information about  the content. The Watson Machine Learning Accelerator, a new  piece  of  Watson  Machine  Learning,  makes  deep  learning  and  machine  learning more  accessible  to  team  in  the  customer  side  and  brings  the  benefits  of  AI  into customer  business.  It  combines  popular  open-source  deep  learning  frameworks, efficient  AI  development  tools,  and  accelerated  IBM®  Power  Systems™  servers. 

Now  small  and  medium  organization  can  deploy  a  fully  optimized  and  supported AI  platform  that  delivers  blazing  performance,  proven  dependability,  and  resilience. 

The  Watson  Machine  Learning  Accelerator  is  a  complete  environment  for  data  science  as  a  service,  enabling  small  and  medium  organization  to  bring  AI  applications into  production. 

It  enables  rapid  deployment  in  customer  locations.  The  deployment  process includes  most  popular  deep  learning  frameworks,  including  all  required  dependencies  and  files,  precompiled  and  ready  to  deploy.  The  entire  AI  suite  has  been validated  and  optimized  to  run  reliably  on  accelerated  power  servers. 

It  incorporates  the  most  popular  deep  learning  frameworks.  The  Watson  Machine Learning  Accelerator  gives  access  to  power-optimized  versions  of  all  of  the most  popular  deep  learning  frameworks  currently  available,  including  TensorFlow, Caffe,  and  PyTorch.  Watson  Machine  Learning  Accelerator  runs  on  IBM  Power-accelerated  server  HPC,  a  platform  that  runs  not  only  customer  deep  learning networks  but  also  a  wide  variety  of  high-performance  computing  workloads. 

Important:  Deprecated  IBM  Watson®  Visual  Recognition  is  discontinued. 

Existing  instances  are  supported  until  December  1,  2021,  but  as  of  January 7,  2021,  you  cannot  create  instances.  Any  instance  that  exists  on  December  1, 2021,  will  be  deleted. 

[image: Image 51]
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Fig.  8.19  Visual  recognition  in  IBM  Watson 

The  following  provides  information  on  the  visual  recognition  service  in  IBM 

and  also  providing  quick  learning  to  create  applications  on  visual  recognition. 

Figure  8.19  provides  a  workflow  for  the  design  and  development  of  deep  learning application  by  using  IBM  Watson.  Most  importantly,  there  is  no  coding  required to  create  custom  visual  recognition.  Visual  recognition-based  applications  are emerging  across  different  verticals  that  span  all  engineering,  medical,  science,  and art  departments. 

Visual  recognition  (via  deep  learning)  is  moved  in  to  the: 


1.  Hands  of  makers 

2.  Self-taught  experts 

3.  Professional  and  embedded  engineers 

Coding  skill  is  not  required,  but  modeling  skill  is  required. 

1.  One  type  of  picture  is  color  and  what  is  another  type  of  picture? 

(a)  Gray  color 

(b)  Black  and  white 

2.  Image  (or  picture)  file  formats,  and  provide  the  names  of  four  file  formats: (a)  jpeg 

(b)  png 

(c)  bmp 

(d)  gif
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3.  Image  capturing  (color,  gray),  and  provide  names  of  two  types  of  camera: (a)  usb  camera 

(b)  CSI  camera 

4.  Image  synthesis  (drawing  by  using  software),  and  provide  the  name  of  one software  that  provides  option  to  edit  pic  and  save  pic: 

(a)  Paint  brush 

(b)  GNU  Image  Manipulation  Program 

5.  What  unit  is  used  to  measure  the  size  of  the  image? 

(a)  Number  of  pixels  in  horizontal  axis 

(b)  Number  of  pixel  in  vertical  axis 

6.  How  many  bytes  are  required  to  store  one  pixel? 

(a)  Color  8:8:8  bits 

(b)  White  and  black:  8  bits 

(c)  binary  1  bit 

7.  How  do  you  create  one  file  by  using  many  picture  files? 

(a)  Use  zip  or  gz 

(b)  Compression  tool  to  perform  the  above 

Key  Items 

Data  set,  NN  model,  CNN  model,  training  of  NN/CNN  model,  deep  learning  model, testing  DL  model,  deployment  of  trained  model,  inferencing  on  given  hypothesis Challenges  in  the  rollout  of  deep  learning  enabled  service  for  enterprise  requirements. 

1.  Inferencing  required  a  well-trained  deep  learning  model. 

2.  Deployment  for  a  trained  DL  model  in  camera  is  not  easy. 

3.  The  cost  of  the  camera  will  be  high,  if  the  camera  performs  inference  on  a  given click. 

4.  Training  of  a  CNN  model  requires  huge  data  set. 

5.  Training  of  a  large  CNN  model  requires  IBM  Watson  Visual  Recognition  service. 

Infrastructure  The  following  list  provides  items  that  are  required  before  starting a  project: 

1.  IBM  Cloud  account  (free  or  paid  version) 

2.  PC  (Windows  or  Ubuntu  machine)  with  Internet  connection 

3.  One  or  few  smartphones  (Android) 

4.  Android  Studio  (Windows  machine  or  Ubuntu  machine) 

5.  Watson  Studio  Project 

6.  Watson  Visual  Recognition  service 

7.  Cloud  object  storage  service  in  IBM  cloud
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Fig.  8.20  AI  client  in  Android  phone  and  use  IBM  Watson  VR  service Figure  8.20  provides  a  detailed  workflow  for  a  client  application  in  Android  to work  with  the  IBM  Watson  VR  service. 

Step  1.  Watson  Studio,  create  an  IBM  Cloud  account  (https://cloud.ibm.com/ 

login). 

Step  2.  Use  Watson  Studio  to  create  projects  which  can  perform  image  classification  by  using  visual  recognition.  Refer  to  the  associated  link  in  [97]. 

Step  3.  Use  the  visual  recognition  service  of  Watson  (this  is  out  of  service).  Refer to  the  associated  link  in  [97]. 

Step  4.  Create  your  custom  model.  Refer  to  the  associated  link  in  [97]. 

Step  5.  Train  the  custom  model  and  deploy  it  in  IBM  Watson.  Model  training might  take  a  long  time.  Training  session  had  been  deployed  after  successful training.  Refer  to  the  associated  link  in  [97]. 

Step  6.  Test  custom  model.  Refer  to  the  associated  link  in  [97]. 
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Step  7.  Client  application  in  an  Android  phone  is  designed  to  collect  image  data by  using  camera  in  Android  phone  and  send  the  image  to  the  IBM  Watson VR  service  for  inference.  The  deployed  model  in  IBM  Cloud  will  perform 

inference  and  send  the  result  to  the  client  application  which  is  running  in  an Android  phone.  Refer  to  the  associated  link  in  [97]. 

Successful  completion  of  the  above  steps  will  provide  many  more  questions  and will  come  up  with  a  “data  set”  and  model  used  to  train  with  a  given  data  set, where  image-based  data  set  is  very  popular  and  it  is  emerging  as  a  fast-growing 

“unstructured  data.”  Data  set  preparation  plays  a  major  role  in  application  quality during  inference. 

Problem  8.5.4  Locate  items  in  the  following  such  that  those  items  are  used  in  IBM 

Watson  Studio  project  for  image  classification  application: 

(a)  IBM  Visual  Recognition  service. 

(b)  IBM  Cloud  Object  Storage  service. 

(c)  jpg  files  to  train  custom  model. 

(d)  jpg  file  to  test  custom  model. 

(e)  Java  or  python  or  C++  coding  expert  to  work  with  Watson  Studio  project. 

(f)  All  of  the  above  are  true  but  item  (e). 

(g)  All  of  the  above  are  true  but  item  (b). 

 8.5.9 

 Build  a  Custom  Model  to  Test  Tomato  Quality 

The  following  problems  can  be  formulated  as  an  image  classification  problem  and train  IBM  Watson  Visual  Recognition  service. 

Visual  data  is  emerging  from  various  fields.  A  detailed  study  on  each  vertical with  the  associated  subject  matter  expert  will  result  in  good-quality  “data  set.” 

Problem  8.5.5  Creation  of  custom  model  for  image  classification  is  very  useful  to have  high-quality  inference  service.  In  the  following,  list  items  that  are  used  in  the IBM  Watson  Studio  project: 

(a)  Minimum  15  images  per  label. 

(b)  Minimum  200  images  per  label. 

(c)  Image  to  be  part  of  “Negative  Class.” 

(d)  Image  format  can  be  in  “jpg’ 

(e)  Every  label  requires  in  one  zip  file  that  includes  jpg  pictures. 

(f)  Zip  file  in  item  (e)  can  be  uploaded  from  local  PC. 

(g)  All  above  is  true  but  not  item  (b). 

(h)  All  above  is  true  but  not  item  (a). 

Problem  8.5.6  Build  a  custom  model  to  test  tomato  quality.  Reject  a  tomato  if  it has  yellow  patch  on  it. 
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Problem  8.5.7  Deploy  an  application  in  a  mobile  phone  by  using  “custom  model for  image  classification.”  The  following  items  are  required  to  solve  the  mentioned problem  in  “custom  model-based  image  classification”: 

(a)  URL  to  IBM  Watson  Visual  Recognition  service 

(b)  API  key  to  access  IBM  Watson  Visual  Recognition  service 

(c)  File-based  picture  reading  or  camera-based  picture  collection  ability  in  phone (d)  MQTT  client  in  Android  phone 

(e)  Internet  connection  in  Android  phone  to  reach  IBM  Watson  Visual  Recognition service 

(f)  None  of  the  above  required 

Problem  8.5.8  Deploy  custom  model  for  image  classification.  The  IBM  Watson Visual  Recognition  service  is  used  to  create  custom  models.  And  also  the  IBM 

Watson  Studio  is  used  to  train,  test,  and  deploy  custom  models  in  IBM  Cloud.  User application  in  Android  phone  can  perform  the  following: 

(a)  Take  a  picture  by  using  the  camera  and  send  it  to  IBM  Watson  for  inferencing. 

(b)  Receive  inferencing  result  from  IBM  Watson  and  display  result  locally. 

(c)  The  automatic  driver  assistance  system  in  a  car  can  use  items  (a)  and  (b)  such that  ADAS  can  help  the  driver. 

(d)  Non-real-time  applications  can  use  (a)  and  (b)  such  that  the  image  classification result  is  useful  in  their  application. 

(e)  Batch  processing  of  given  images  can  be  handled  by  using  (a)  and  (b). 

 8.5.10 

 Deploying  DL  in  FPGA  (Ultra96-V2) 

New-generation  IoT  edge  for  AI-driven  applications  uses  FPGA  devices  to  perform real-time  inference.  Creating  applications  on  FPGA  requires  VHDL  or  Verilog. 

There  is  a  challenge  to  run  deep  learning  models  that  are  trained  in  TensorFlow or  in  PyTorch.  In  this  regard,  there  is  a  need  to  use  C,  C++  languages  to  deploy  deep learning  networks  in  FPGA. 

A  very-early-stage  tool  set  is  provided  to  deploy  a  deep  learning  network  which is  trained  by  using  TensorFlow.  Perhaps  this  revised  tool  set  can  bring  down  effort required  to  deploy  deep  learning  networks  in  FPGA.  Developers  can  create  high-quality  IoT  edge  with  inference  ability.  Input  to  inference  engine  can  come  from  a camera  which  is  there  in  the  embedded  device.  Figure  8.21  provides  details  on  a tool  set  which  is  used  in  porting  DL  networks  on  to  Xilinx  FPGA. 

Custom  board  Ultra96-V2  uses  “Zynq  UltraScale  +  MPSoC  ZU3EG  A484.”  The 

DLtrain  version  of  the  deep  learning  tool  set  does  not  use: 

1.  “Ai  model  pruning  and  optimization” 

2.  “  AI  model  quantizer” 
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Fig.  8.21  FPGA:  IoT  edge 

These  two  mentioned  efforts  are  plugged  in  model  creation  time  such  that  the model  used  in  training  is  ready  for  deployment  as  well  without  going  through  the abovementioned  truncation  of  the  trained  model. 

Xilinx  provides: 

1.  Edge  compiler  (DNNC  is  used) 

2.  Edge  run  time 

The  above  tool  set  provides  easy  options  to  deploy  the  custom  model  in  FPGA. 

OEMs  can  get  the  trained  model  from  vendors  and  deploy  it  in  the  embedded  device which  has  FPGA.  The  DLtrain  AI  framework  has  a  provision  to  use  the  custom model.  DLtrain  is  developed  by  using  C  and  C++  such  that  it  is  feasible  to  work with  embedded  devices  that  are  using  FPGA. 

A  neural  network  is  designed  and  coded  to  work  with  POWER9  and  also  with  the NVIDIA  RTX  2070  GPU.  Customers  can  focus  fully  on  training  their  model  instead of  worrying  about  400+  dependency  packages  for  Python  3.6  and  TensorFlow  2.0. 

Moreover,  training  of  the  DL  model  in  DLtrain  is  distributed  in  POWER9  and  also in  GPU  (via  CUDA  10.1).  This  will  make  training  time  short  and  also  fine-tune hyperparameters  with  ease. 

8.5 Deploying DL in Android Phone
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A  hyperparameter  plays  a  major  role  in  training  time  and  quality  of  inference. 

Thus,  domain  experts  appear  to  be  playing  a  major  role  in  setting  up  these parameters,  but  domain  experts  are  also  new  to  hyperparameters  and  its  associated quality  of  inference.  The  same  provides  a  challenge  in  setting  up  hyperparameters. 

In  this  aspect,  DLtrain  provides  minimal  hyperparameter  options  to  domain experts  such  that  the  domain  expert  also  learns  quickly  and  takes  full  control  of the  training  aspect  of  a  given  DL  model  with  training  data.  Inference  in  real  time is  amazing  functionally  in  the  hands  of  a  system  builder  by  using  deep  learning technology  for  their  IoT  edges  and  IoT  nodes. 

As  a  prototype  board,  Avnet  Ultra96-V2  provides  a  low-power  IoT  edge  device to  perform  real-time  inference  (image  classification  and  object  detection). 

Detailed  steps  are  given  in  URL  [98]  to  bring  up  the  abovementioned  Avnet Ultra96-V2  board.  It  accelerates  IP  creation  by  enabling  C,  C++,  and  System  C 

specifications  to  be  directly  targeted  into  Xilinx  programmable  devices  without the  need  to  manually  create  RTL.  Supporting  both  the  ISE®  and  Vivado  design environments,  Vivado  HLS,  provides  system  and  design  architects  alike  with  a  faster path  to  IP  creation. 

1.  Abstraction  of  algorithmic  description,  data-type  specification  (integer,  fixed point,  or  floating  point),  and  interfaces  (FIFO,  AXI4,  AXI4-Lite,  AXI4-Stream) 2.  Extensive  libraries  for  arbitrary  precision  data  types,  video,  DSP,  and  more. . . . 

See  the  below  section  under  Libraries 

3.  Directive-driven  architecture-aware  synthesis  that  delivers  the  best  possible  QoR 

4.  Fast  time  to  QoR  that  rivals  hand-coded  RTL 

5.  Accelerated  verification  using  C/C++  test  bench  simulation,  automatic  VHDL  or Verilog  simulation,  and  test  bench  generation 

6.  Automatic  use  of  Xilinx  on-chip  memories,  DSP  elements,  and  floating-point library 

Changes  in  the  tool  set  are  given  in  Fig. 8.22  and  the  workflow  is  listed  in  the following: 

1.  facedetection.cc 

2.  DLtrianedge.cc 

3.  float.prototxt 

4.  float.caffemodel 

are  used  in  decent  models.  But  in  the  following  revised  tool  set  configuration,  above mentioned  items  were  removed.  DLtrain-based  NN  model  as  an  input  to  DNNC. 

Details  on  emerging  method  is  given  in  Figs. 8.23  and  8.24 

Deploying  Deep  Learning  Networks  model  in  FPGA  device  is  illustrated  in  the following  diagram.  Deep  Neural  Network  Compiler  (DNNC)  allows  the  productivity  in  deploying  AI  inference  on  Xilinx  platforms.  In  fact,  it  provides  a  solution  for deep  neural  network  applications.  Following  diagram  provides  DNNC  tool  for  the FPGA  integration  of  Deep  Neural  Network  and  Convolutional  Neural  Network. 
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Fig.  8.22  OLD  method  to  deploy  AI  in  edge 

Compression  Tool,  DECENT,  employs  coarse-grained  pruning,  trained  quantiza-

tion  and  weight  sharing  to  address  these  issues  while  achieving  high  performance and  high  energy  efficiency  with  very  small  accuracy  degradation. 

DNNC  is  the  dedicated  proprietary  compiler  for  the  DPU.  DNNC  maps  the 

neural  network  algorithm  to  the  DPU  instructions  to  achieve  maxim  utilization  of DPU  resources  by  balancing  computing  workload  and  memory  access 

Deep  Neural  Network  Assembler  (DNNAS)  is  responsible  for  assembling  DPU 

instructions  into  ELF  binary  code. 

8.5 Deploying DL in Android Phone
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Fig.  8.23  Emerging  method  to  deploy  AI  in  edge 

 8.5.11 

 Port  FP32  Inference  Code  to  INT32 
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Fig.  8.24  Emerging  method 

to  deploy  AI  in  edge 

FP32  is  the  same  as  a  32-bit  floating  point  number.  DLtrain  uses  the  following data  format: 

1.  wi,j  is  a  32-bit  floating  point  number  (FP32). 

2.  bj  is  a  32-bit  floating  point  number  (FP32). 

3.  ai  is  a  32-bit  floating  point  number  (FP32). 

Above  items  8.1  in  list  use  FP32  for   wi,j ,  bj ,  and   ai.  Performing  FP32 

multiplication  and  addition  in  FPGA  might  consume  a  high  amount  of  resources. 

Problem  8.5.9  Let 

1.  wi,j  be  a  32-bit  integer  (INT32) 

2.  bj  be  a  32-bit  integer  (INT32). 

3.  ai  be  a  32-bit  integer  (INT32). 

Use  the  above  INT32  values  in  Eq. 8.1  above  that  connects   wi,j ,  bj ,  and   ai.  Provide the  method  to  match  the  quality  of  inference  by  using  INT32  computations  instead of  FP32  computations. 

Problem  8.5.10  Let 

1.  wi,j  be  a  32-bit  integer  (INT32). 

2.  bj  be  a  32-bit  integer  (INT32). 

3.  ai  be  a  16-bit  integer  (INT16). 

Use  INT32  and  INT16  to  represent  the  above  parameters  in  Eq. 8.1  above  that connects   wi,j ,  bj ,  and   ai.  Provide  the  method  to  match  the  quality  of  inference in  INT32  (for   wi,j , bj ),  INT16  (for   ai)  computations  instead  of  using  FP32 

computations  in  the  above  equation. 

[image: Image 52]

Chapter  9 

Tutorial:  Deploying  Deep  Learning 

Networks 

 The  journey  of  deploying  deep  learning  networks  is  an 

 exploration  of  the  digital  universe,  where  data  and  models  meet 

 reality. 

The  tutorial  is  designed  to  handle  workflow  from  data  set  creation,  deep  learning networks  model  design,  training  the  deep  learning  networks  model,  testing  the deep  learning  networks  model,  and  deploying  the  deep  learning  networks  model in  Internet  of  Things  (IoT)  edges  and  also  in  cloud  native  applications.  Moreover, there  is  a  list  of  challenges  involved  in  deploying  trained  deep  learning  networks  in IoT  edges.  In  particular,  if  the  application  is  in  real-time  service,  then  a  microservice is  introduced  into  IoT  edge.  Figure  9.1  shows  the  steps  in  the  tutorial. 

1.  Train  and  validate  a  neural  network  (NN),  convolutional  neural  network  (CNN) model  with  a  user-defined  data  set 

2.  Deployment  of  the  NN,  CNN  models  of  the  deep  learning  network  in  the  IoT 

edge. 

For  example,  sub  systems  are  used  to  collect  real-time  sensor  data  from respective  sources  and  perform  inference  in  the  IoT  edge  to  provide  micro  service to  other  applications. 

Loading  the  trained  deep  learning  network  model  onto  embedded  systems  is  a challenging  task  and  many  silicon  vendors  appears  to  be  providing  custom-made solutions  to  fit  into  their  own  silicon  devices. 

The  tutorial  provides  the  necessary  documents  in  Google  Drive  and  source  code in  GitHub.  Most  importantly,  the  tutorial  connects  the  above-mentioned  assets  via a  web  page  that  is  designed  to  support  the  user  to  navigate  the  tutorial  session  in autonomous  learning  by  optimal  use  of  the  resources.  The  tutorial  provides  a  quick start  and  guide - a  person  can  refer  to  a  resource  document  online  and  make  quick progress  in  learning  how  to  deploy  “deep  learning  networks  in  edges.”  The  URLs  of the  necessary  resources  are  associated  with  a  QR  code  or  via  a  reference  link. 

Data  set  processing  is  presented  in  item  1.  It  appears  that  domain  knowledge  in  a particular  data  set  will  help  to  create  an  effective  data  set  to  train  the  deep  learning network  model. 

©  The  Author(s),  under  exclusive  license  to  Springer  Nature  Switzerland  AG  2024 
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Fig.  9.1  Tutorial  work  flow 

Training  the  deep  learning  network  model  is  presented  in  item  2,  which  has  many sub  items.  A  few  of  those  items  require  CPU. +GPU  hardware  such  that  accelerated computing  is  used  to  train  deep  learning  networks.  Also  mentioned  are  training  tasks illustrated  by  examples  for  using  cloud  native  servers  in  Colab  to  train  deep  learning networks  or  in  on-premises  Power  9  server  clusters. 

Deployment  of  the  trained  model  onto  an  edge  requires  a  lot  more  care  and  hard work.  The  training  platform  is  different  from  the  deployment  platform.  Mostly  there is  a  need  to  perform  pruning  of  a  trained  model  or  optimize  the  weights  of  each  node by  using  INT8,  INT16,  etc.,  instead  of  using  FP32. 

9.1 

Prerequisites 

Prerequisites  to  successfully  completing  the  tutorial. 

1.  Ubuntu  18.04  or  higher  or  Windows  10-based  computer 

2.  Internet  connection  to  go  through  the  workflow  along  with  team  members 3.  Skill  in  coding,  mostly  in  Python  and  JavaScript  is  optional 

4.  Exposure  to  deep  learning  network  model  design  by  using  TensorFlow  with Keras  (optional) 

5.  Working  knowledge  of  Android  SDK-based  project  handling  (advantage) 

6.  Neural  network  theory  (optional) 

7.  Working  knowledge  of  back-propagation  algorithm  (optional) 

8.  Image  creating  and  editing  image  files 

9.  Working  level  skill  in  Google  Drive  documents 

10.  Microservice  design  and  deployment  on  the  web  (advantage)

9.2 Deploying Deep Learning Networks
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9.2 

Deploying  Deep  Learning  Networks 

 9.2.1 

 Deploying  Deep  Learning  Networks  in  Cloud  and  Edge 

The  following  steps  are  used  in  the  deployment  of  Deep  Learning  Networks  in cloud  native  and  also  in  edge  native  applications.  The  tutorial  is  designed  so  that the  given  steps  can  be  handled  within  30  h.  Most  of  the  workflow  requires  good attention  to  read  a  given  document  for  a  specific  workflow  and  implement  the recommended  workflow  such  that  accelerated  learning  is  possible  in  a  short  period of  time.  However,  there  will  be  issues  that  might  come  up  and  they  will  be  discussed in  trying  out  the  new  workflow. 

Tutorial:  30-Hour  Version 

Train  and  deploy  NN  or  CNN   in  Cloud  and  Edge. 

1.  Data  set  handling:  1a,  1b 

2.  Training  deep  learning  networks:  2a,  2b,  2c,  2d,  2e,  3,  4 

3.  Inference  as  a  microservice:  6a,  6b,  6c,  6d 

4.  Inference  in  on-premises  Power  9  server  cluster,  IoT  edge:  5a,  5b,  5c,  5d 5.  Creating  a  user-defined  custom  data  Set:  7b 

6.  Early  attention  in  the  theory  of  the  deep  learning  network  model:  7a,  7b, 7c,  7d 

 9.2.2 

 Deploying  Deep  Learning  Networks  in  Edge  Native 

Edge  side-engineering  devices  magnify  open  source  challenges,  opportunities,  and provide  a  new  growth  segment  for  embedded  systems.  The  following  steps  are recommended  for  deploying  deep  learning  networks  in  edge  native  devices.  The tutorial  is  designed  so  that  the  given  steps  can  be  handled  within  10  h.  Embedded engineers  will  find  it  very  useful  to  learn  steps  involved  in  handling  the  deployment of  deep  learning  networks  in  edge  devices. 

Tutorial:  10-Hour  Version 

Deploying  Deep  Learning  Networks   in  Edge. 

1.  DLtrain  to  train  and  deploy  deep  learning  networks  in  an  Ubuntu  machine: 5d 

(continued)
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2.  Loading  the  model  into  an  IoT  edge/node  device:  5a 

3.  Local  inference  in  the  IoT  edge/node  device:  5b 

4.  Adding  custom  data  to  a  Modified  National  Institute  of  Standards  and Technology  (MNIST)  data  set:  7b 

 9.2.3 

 Deploying  Deep  Learning  in  Cloud  Native 

The  following  steps  are  recommended  for  deploying  deep  learning  networks  in cloud  native  systems.  The  tutorial  is  designed  to  handle  the  required  workflow within  6  h.  Cloud  application  engineers  will  find  it  very  useful  to  learn  the  steps involved  in  handling  the  deployment  of  deep  learning  networks  in  cloud-based servers. 

Tutorial:  6-Hour  Version 

Deploying  Deep  Learning  Networks   in  the  Cloud. 

1.  Data  set  handling:  1b 

2.  Training  deep  learning  model:  2b 

3.  Inference  as  a  microservice:  6d 

4.  Create,  use,  and  define  the  custom  data  set:  7c,  7b 

9.3 

Deep  Learning  Networks,  Digital  Twin,  Edge 

The  tutorial  workflow  uses  documents  from  Google  Drive  so  that  a  learner  can  refer to  a  resource  document  online  and  make  quick  progress  in  learning  how  to  deploy 

“DL  networks  in  an  edge.”.  The  URL  of  a  given  resource  is  associated  with  a  QR 

code.  The  following  is  the  QR  code  for  URLs  that  are  used  in  the  tutorial. 

 9.3.1 

 CNN  Model 

item  7a  in  the  defined  workflow  is  handled. 

Google  Drive-based  slides  are  provided  for  understanding  the  model  part  of  the deep  learning  network. 

9.4 Data Set Used in Training Deep Learning Networks
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An  error  in  “Image  classification  in  deep  learning  network  model  based  method” 

is  less  than  a  human  or  compared  with  machine  learning-based  image  classification methods.  There  is  a  problem  included  in  6.8.2  on  this. 

Object  counting  is  an  application  that  is  used  in  multiple  engineering  segments. 

There  is  a  problem  included  in  6.4.1  on  this. 

Locating  items  in  the  following  so  that  those  items  are  used  in  the  IBM  Watson studio  project  for  the  image  classification  application.  There  is  a  problem  included in  8.5.4  on  this. 

Creation  of  a  custom  model  for  image  classification  is  very  useful  to  have  a  high-quality  inference  service.  There  is  a  problem  included  in  8.5.5  on  this. 

The  NN  or  CNN  model  is  used  in  deep  learning  networks.  The  optimal  model design  requires  many  items  to  consider  and  arrive  at  the  parameter  value.  There  is  a problem  included  in  6.8.1  on  this. 

 9.3.2 

 Digital  Twin 

Item  7c  provides  information  on  digital  twin  and  the  associated  physical  process. 

The  URL  [99]  offers  a  brief  introduction  to  the  concept  of  a  digital  twin  within  the context  of  a  deep  learning  network. 

9.4 

Data  Set  Used  in  Training  Deep  Learning  Networks 

 9.4.1 

 Data-Set  Storage  in  a  Local  Machine 

Item  1b  handles  the  workflow  to  store  a  data  set  in  a  local  machine  and  use  a  locally stored  data  set  for  training  a  CNN  or  NN  model.  There  is  no  link  associated  with  1b because  it  is  trivial  to  handle  image  data  from  a  local  machine. 

 9.4.2 

 Adding  Custom  Image  Data  Along  with  an  MNIST  Data 

 Set 

Item  7b  handles  the  workflow  to  “add  custom  image  data  along  with  MNIST  data set.” 

An  MNIST  data  set  trains  an  NN  or  CNN  model  by  using  TensorFlow.  The 

MNIST  data  set  is  well  defined  and  it  uses  an  image  of  hand  written  numbers  from 

.0 ,  1 ,  2  . . .  9.  There  is  a  problem  included  in  5.6.1  on  this. 
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User-generated  custom  image  data  is  incorporated  into  a  provided  MNIST 

dataset,  and  then  the  deep  learning  training  process  (DLtrain)  is  executed  using  this revised  dataset. 

9.5 

Training  the  Deep  Learning  Networks  Model  by  Using  a 

CPU  and  a  GPU 

Specialized  hardware  for  accelerated  computing,  such  as  Graphics  Processing  Units (GPUs)  or  Tensor  Processing  Units  (TPUs),  is  employed  to  facilitate  the  training  of deep  learning  networks.  In  this  case,  the  MNIST  dataset  is  utilized  to  train  a  Neural Network  (NN)  or  Convolutional  Neural  Network  (CNN)  model  with  the  TensorFlow framework.  This  hardware  acceleration  significantly  speeds  up  the  training  process and  allows  for  more  efficient  model  development. 

 9.5.1 

 Training  Deep  Learning  Networks  in  Colab 

Item  2a  handles  the  workflow  for  “Training  Deep  Learning  Networks”  in  Colab. 

Colab  is  used  to  train  the  TensorFlow  model.  The  link  [82]  provides  a  detailed workflow  on  this  and  the  learner  can  use  their  Colab  account  in  Google. 

 9.5.2 

 Training  in  Ubuntu  18.04 ×86   CPU 

Item  2b  handles  the  workflow  for  “Training  Deep  Learning  Networks”  in  a  . ×86

Ubuntu  machine 

The  URL  [24]  provides  more  information  on  the  above  task. 

 9.5.3 

 Training  in  Power  9  CPU +  RTX  2070  GPU 

Item  2d  handles  the  workflow  for  “Training  Deep  Learning  Networks”  by  using Power  9  servers  along  with  RTX  2070  GPU. 

If  there  is  access  to  the  above  system,  then  they  can  use  the  following  link  to perform  the  given  task  on  a  Power  9  CPU. 

The  URL  [77]  has  a  CPU  version. 

9.8 Deploying Deep Learning Networks in an IoT Device
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 9.5.4 

 Training  Deep  Learning  Networks  in  a  Jetson  Nano  GPU 

Item  2e  handles  the  defined  workflow  on  “Training  Deep  Learning  Networks  in  a Jetson  Nano  GPU.” 

The  URL  [84]  has  details  with  examples. 

 9.5.5 

 Watson  VR  Service:  Deprecated 

Item  2f  handles  the  defined  workflow. 

The  Watson  VR  service  is  deprecated  and  thus  it  is  not  possible  to  use  it  to  train a  custom  model. 

9.6 

Saving  Deep  Learning  Networks 

Item  3  handles  the  workflow  that  is  used  in  “Saving  Deep  Learning  Networks”  by using  the  TensorFlow  tool  set. 

The  save  model  is  used  to  store  in  local  storage  or  in  cloud  storage.  The  URL 

[100]  provides  a  workflow  for  understanding  tasks  involved  in  storing  deep  learning networks. 

9.7 

Loading  Deep  Learning  Networks 

Item  4  handles  the  defined  workflow  for  “Loading  Deep  learning  Networks.” 

Loading  a  model  from  local  storage  or  from  cloud  storage  is  handled  at  the  URL 

[101]. 

9.8 

Deploying  Deep  Learning  Networks  in  an  IoT  Device 

Deployment  of  a   trained  CNN  model  in  an  .×86  machine   has  a  well-defined workflow  for  successful  deployment.  There  is  a  problem  included  in  8.2.5  on  this. 

Deployment  of  DLtrain  to  train  a  NN  or  CNN  in  a  developer  machine  requires a  well-defined  workflow  for  successful  completion.  There  is  a  problem  included in  4.2.1  on  this. 

Deployment  of  deep  learning  networks  in  an  Android  device  requires  a  well-defined  workflow.  There  is  a  problem  included  in  4.2.2  on  this. 

Deployment  of  deep  leaning  networks  in  Rich  Edge  requires  a  well-defined workflow.  There  is  a  problem  included  in  4.2.3  on  this. 
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The  URL  of  a  given  resource  is  associated  with  a  QR  code.  The  following  is  a QR  code  for  URLs  that  are  used  in  the  tutorial.  For  example,  item  5a  is  linked  to  the QR  code  URL18,  where  item  5a  handles  loading  a  trained  deep  learning  network  in an  IoT  edge  or  an  IoT  node. 

Deployment  of  a  TensorFlow  model  or  a  PyTorch-based  model  in  an  IoT  edge  is required  to  optimize  and  quantize  a  trained  CNN  model.  There  is  a  problem  included in  8.3.1  on  this. 

Item  5a  handles  the  workflow  that  is  required  to  load  a  deep  learning  network model  into  an  IoT  edge.  The  URL  [101]  can  be  used  to  access  detailed  workflow documentation  with  examples. 

Item  5b  is  handles  the  workflow  that  is  required  to  load  a  deep  learning  networks model  into  an  Android  device.  The  URL  [95]  can  be  used  to  access  detailed workflow  documentation  with  examples. 

Item  5c  handles  the  workflow  using  DLtrain  in  a  Windows  machine  to  train  a deep  learning  network  model  and  also  for  inference.  The  URL  [28]  can  be  used  to access  detailed  workflow  documentation  with  examples. 

Item  5d  handles  the  workflow  using  DLtrain  in  an  Ubuntu  machine  to  train  a deep  learning  network  model  and  also  for  inference.  The  URL  [74]  can  be  used  to access  detailed  workflow  documentation  with  examples. 

9.9 

Inference  as  a  Microservice 

 9.9.1 

 Microservice  Using  the  Flask  Micro  Framework 

Item  6a  handles  the  workflow  that  is  required  to  deploy  a  deep  learning  network model  by  using  the  Flask  microservice.  The  URL  [102]  can  be  used  to  access detailed  workflow  documentation  with  examples. 

 9.9.2 

 JavaScript  to  Run  TensorFlow  Models  in  a  Browser 

Item  6b  handles  the  workflow  that  is  required  to  deploy  a  deep  learning  network model  using  JavaScript.  The  URL  [103]  can  be  used  to  access  detailed  workflow documentation  with  examples. 

 9.9.3 

 Docker  Image  for  a  TensorFlow  Serving  Model 

Item  6d  handles  the  workflow  that  is  required  to  deploy  a  deep  learning  network model  by  using  TensorFlow  Serving.  The  URL  [104]  can  be  used  to  access  detailed workflow  documentation  with  examples. 

Glossary 

DLtrain 

Deep  Learning  Model  Training  Platform.  And  also  perform  Inference 

by using Deep Learning Networks in a given IoT Edge. 16, 29 

Kanshi 

Name  of  network  security  audit  software  by  using  Deep  Learning 

networks. 21 

MQTT 

Message Queuing Telemetry Transport .messaging protocol for the Inter-

net of Things (IoT). 19 

XMPP 

Extensible Messaging and Presence Protocol. 20 
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Appendix  A 

Training  Restricted  Boltzmann  Machine 

A.1 

Gradient  Descent  Is  Used  to  Minimize  Cost  Function 

For a neural network, the technique of gradient descent is used to minimize the cost function  C. Here is an overview of how it works. 

Cost  Function 

Firstly, we define a cost function: 

.  C : [0 ,  1] k × [0 ,  1] n −→ [0 ,  1]

This function works by taking two vectors, the input to the neural network and 

the predetermined correct output we want from the neural network. It then runs the input  through  the  entire  network  and  then  checks  how  much  the  final  layer  of   n neurons varies from the provided correct output. In short minimizing this function is the goal of our optimization problem. 

Neural  Network 

Now here is a construction of a neural network, it is important to define the parts properly so that calculating the derivatives later on becomes trivial. 

The neural network as a whole is a function 

.  N : [0 ,  1] k → [0 ,  1] n. 

Now  N has multiple layers .  N 1 , N 2 , . . . , Nr . 

Where each layer is a function, for example, Fig. A.1 has two layers. 
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Fig.  A.1  Neural network 

model 

.  Ni : [0 ,  1] ki−1 → [0 ,  1] ki

where .  kr =  n  and .  k 0 =  k. 

Then the entire network is just a composition of these layers 

.  N =  Nr ◦  Nr−1 ◦ · · · ◦  N 1. 

Next, we need a logistic function .  σ : R → [0 ,  1]. 

Then we can concretely define the functions .  Ni. 

Let .  σi : [0 ,  1] i → [0 ,  1] i

be defined as 

.  σi (x 1 , x 2 , . . . , xi ) =  (σ (x 1 ), σ (x 2 ), . . . , σ (xi )). 

Using this we define 

.  Ni (⃗

 v) =  σk (W

 i

 i ⃗

 v + ⃗

 bi)

where .  Wi  is the weight matrix of the edges connecting the neurons from layer  i to 

⃗

.  i + 1 and the vector .  bi  is a vector corresponding to the biases. 

The  Derivative 

Let’s  take  a  brief  diversion  to  define  the  concept  of  derivatives  for  functions  in multidimensional spaces. 

If .  f : R m → R n  is a function, then the derivative is a function 

.  Df : R m →  L( R m,  R n). 

where .  L( R m,  R n)  stands for the space of all linear maps from .R m  to . R n, in other words the space of all .  n ×  m  matrices over real numbers. 
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The function  Df  assigns to every point .  x ∈ R m  a linear map .  Df (⃗

 x)  which is the 

best linear approximation of  f  at . ⃗

 x. 

In other words it assigns a matrix to every point which at that point is the best 

linear approximation of  f . Concretely we can define the derivative as follows if 

.  f ( ⃗

 x) =  (f 1 (⃗

 x), f 2 (⃗

 x), . . . , fm(⃗

 x))  and . ⃗

 x =  (x 1 , x 2 , . . . , xn)

and the partial derivatives are defined like 

 ∂fi(⃗

 x)

 f (⃗

 x +  t ⃗

 xj ) −  f (⃗

 x)

. 

= lim

 ∂ ⃗

 xj

 t →0

 t

where . ⃗

 xj =  ( 0 ,  0 , . . . ,  1 ,  0 , . . . ,  0 )  where 1 is in the  j  th position. 

Then the derivative is 

⎡

⎤

 ∂f 1 (⃗

 x) ∂ ∂f 1 (⃗ x) . . . ∂f 1 (⃗ x)

⎢  ∂ ⃗ x 1

 ∂ ⃗

 x 2

 ∂ ⃗

 xn

⎢  ∂f

⎥

2 ( ⃗

 x)

⎢

⎥

 ∂ ⃗

 x 1

⎥

.  Df (x) = ⎢  . 

⎣  . 

 . 

⎥

 . 

 . . 

⎦

 ∂fn(⃗

 x)

 ∂fn(⃗

 x) . . . ∂fn(⃗ x)

 ∂ ⃗

 x 1

 ∂ ⃗

 x 2

 ∂ ⃗

 xm

This derivative also follows the beloved chain rule which we will now exploit. 

We define the Hadamard product of two matrices of the same dimension as 

.  A ⊗  B = [ aij ·  bij ]. 

Suppose we have a function 

.  f : [0 ,  1] → [0 ,  1]

and we define 

.  fi : [0 ,  1] i → [0 ,  1] i

in a similar way from before; then 

.  D(f ◦  g)( ⃗

 x)(⃗

 h) =  (f '  )i(g(⃗

 x)) ⊗  Dg(⃗

 x)(⃗

 h). 

This is saying that the best linear approximation of .  fi ◦  g  at . ⃗

 x  is the map that 

takes ⃗

.  h  to the vector 

.  (f '  )i (g( ⃗

 x)) ⊗  Dg(⃗

 x)(⃗

 h). 

Now we want to compute the derivatives of the cost function with respect to the 

weights and biases. The cost function is 

.  C( ⃗

 x, ⃗ o) =  d(N(⃗

 x), ⃗

 o)

where  d is some function with range .[0 ,  1] that tells how far apart two vectors are. 

Now the derivative with respect to the weights in the  i th layer can be calculated as 

.  C( ⃗

 x, ⃗ o) =  d(Nr ◦  Nr−1 ◦ · · · ◦  Ni(Wi ⃗ a +  bi), ⃗ o) Then we apply the  D operator but we differentiate with respect to .  Wi  that is we assume everything else is a constant so we get the following by the repeated chain rule:
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.  d '  (N ( ⃗

 x), ⃗ o)DNr (Nr−1 ◦ · · · ◦  Ni(Wi ⃗ a +  bi))DNr−1 (Nr−2 ◦ · · · ◦  Ni(Wi ⃗ a +  bi))

.  . . . DNi (Wi ⃗

 a +  bi))⃗ a

We can compute this for a value of  i to see what it looks like; let .  i =  r; then this map is as follows: 

.  W →  d'  (N ( ⃗

 x), ⃗ o)((σ '  )k (W

 r

 r ⃗

 a +  br ) ⊗  W ⃗ a

Computationally, this can be hard to program so an easier way to compute the 

derivative with respect to the weights is as follows: 

Let .  Mi =  Wi ⃗ a +  bi

where . ⃗ a  is the activation values of the .  i − 1 layer of nodes. 

Then the derivative of  C with respect to .  Mr  is 

 ∂C

. 

 W

 (M

 ∂M

 r+1  (σ '  )k

 r )

 r+1

 r

This is then used recursively from a top-down approach to compute all  ∂C

. 

; then 

 ∂Mi

we can compute 

 ∂C

 ∂Mi

. 

=  ∂C

=  ∂C ⃗ a

 ∂Wi

 ∂Mi ∂Wi

 ∂Mi

 ∂C

 ∂Mi

. 

=  ∂C

=  ∂C

 ∂bi

 ∂Mi ∂bi

 ∂Mi

A.2 

Score  and  Loss  Functions 

(Fig. A.2) 

A.3 

Data  Flow  in  Computation  of  W 

(Fig. A.3) 

A.4 

Use  of  GPU  to  Compute  W 

(Fig. A.4)

A

Training Restricted Boltzmann Machine

149

Fig.  A.2  Score and loss functions in training CNN
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Fig.  A.3  Training NN or CNN
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Run  Inference  Load  in  Edge 

IoT  Edge 

Android  Device, 

C++,  C  and  Java 

Jetson  Nano 

ppc64le,  DSP,  X86,ARM 

nvcc  and  nvidia  driver 

are  used  for  a  given  GPU 

Block  ++ 

GPU  CUDA  Core

GPU  Tensor  Core 

Threads  are  assigned  to 

SM  in  block  granularity 

Scheduling  SPs  or  SIMTs 

till  all  warps 

Use  64  ore  more  SP  (or 

SIMT)  to  run  one  Warp 

run  32  Threads  (in  32  SPs  ) 

Till  all  warps 

Write  in  Shared  Memory 

in  a  Bloack 

Fig.  A.4  Inference in IoT edge
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