

[image: Image 1]

[image: Image 2]

Table of Contents

Preface

Part 1: Data Augmentation

Chapter 1: Data Augmentation Made Easy

Chapter 2: Biases in Data Augmentation

Part 2: Image Augmentation

Chapter 3: Image Augmentation for Classification

Chapter 4: Image Augmentation for Segmentation

Part 3: Text Augmentation

Chapter 5: Text Augmentation

Chapter 6: Text Augmentation with Machine Learning

Part 4: Audio Data Augmentation

Chapter 7: Audio Data Augmentation

Chapter 8: Audio Data Augmentation with Spectrogram

Part 5: Tabular Data Augmentation

Chapter 9: Tabular Data Augmentation

Index

Other Books You May Enjoy

Preface

Unleash the power of data augmentation for AI and Generative AI by utilizing real-world datasets. Improve your model’s accuracy and expand images, texts, audio, and tabular using over 150 fully functional object-oriented methods and open-source libraries.

Who this book is for

This book is intended for individuals interested in the AI discipline, including data scientists and students. While advanced AI or deep learning skills are not required, familiarity with Python programming and Jupyter Notebooks is necessary.

What this book covers

 Chapter 1, Data Augmentation Made Easy, is an introduction to data augmentation. Readers will learn the definition of data augmentation, data types, and its benefits. Furthermore, the readers will learn how to select the appropriate online Jupyter Python Notebook or install it locally. Finally,

 Chapter 1 concludes with a discussion on coding conventions, GitHub access, and the foundation of Object-Oriented class code, named Pluto.

 Chapter 2, Biases in Data Augmentation, defines the computation, human, and systemic biases with plenty of real-world examples to illustrate the differences between these types of biases. Readers will have the opportunity to practice identifying data biases by downloading three real-world image datasets and two text datasets from the Kaggle website to reinforce their learning. Once downloaded, readers will learn how to display image and text batches and discuss potential biases in the data.

 Chapter 3, Image Augmentation for Classification, has two parts. First, readers will learn the concepts and techniques of augmentation for Image classification, followed by hands-on Python coding and a detailed explanation of the image augmentation methods with a safe level of image distortion. By the end of this chapter, readers will learn the concepts and hands-on techniques in Python coding for classification image augmentation using six real-world image datasets. In addition, they will examine several Python open-source libraries for image augmentation and write Python wrapper functions using the chosen libraries.

 Chapter 4, Image Augmentation for Segmentation, highlights that both Image Segmentation and Image Classification are critical components of the Computer Vision domain. Image Segmentation involves grouping parts of an image that belong to the same object, also known as pixel-level classification. Unlike Image Classification, which identifies and predicts the subject or label of a photo, Image Segmentation determines if a pixel belongs to a list of objects or tags. The image augmentation methods for segmentation or classification are the same, except segmentation comes with an additional mask or ground-truth image. Chapter 4 aims to provide

continuing Geometric and Photometric transformations for Image Segmentation.

 Chapter 5, Text Augmentation, explores text augmentation, a technique used in natural language processing (NLP) to generate additional data by modifying or creating new text from existing text data. Text augmentation can involve techniques such as character swapping, noise injection, synonym replacement, word deletion, word insertion, and word swapping.

Image and Text augmentation has the same goal. They strive to increase the training dataset’s size and improve AI prediction accuracy. In Chapter 5, you will learn about Text augmentation and how to code the methods in the Python Notebooks.

 Chapter 6, Text Augmentation with Machine Learning, discusses an advanced technique that aims to improve ML model accuracy. Interestingly, text augmentation uses a pre-trained ML model to create additional training NLP data, creating a circular process. Although ML coding is beyond the scope of this book, understanding the difference between using libraries and ML for text augmentation can be beneficial. Chapter 6 will cover text

augmentation with Machine Learning.

 Chapter 7, Audio Data Augmentation, explains that similar to image and text augmentation, the objective of audio augmentation is to extend the dataset for gaining higher accuracy forecast or prediction in a Generative AI system. Audio augmentation is cost-effective and a viable option when acquiring additional audio files is expensive or time-consuming. Writing about audio augmentation methods poses unique challenges. The first is that audio is not visual like images or text. If the format is audiobooks, web pages, or mobile apps, we play the sound, but the medium is paper. Thus, we will transform the audio signal into a visual representation. Chapter 6

will cover Audio augmentation using Waveform transformation. You can play the audio file on the Python Notebook.

 Chapter 8, Audio Data Augmentation with Spectogram, builds on the previous chapter’s topic of audio augmentation by exploring additional visualization methods beyond the Waveform graph. An audio spectrogram is another visualizing method to see the audio components. The inputs to the spectrogram are a one-dimensional array of amplitude values and the

sampling rate. They are the same inputs as the Waveform graph. An audio spectrogram is sometimes called sonographs, sonagrams, voiceprints, or voicegrams. The typical usage is for music, human speech, and sonar. A short standard definition is a spectrum of frequency maps with time duration. In other words, the Y-axis is the frequency in Hz or kHz, and the X-axis is the time duration in seconds or milliseconds. Chapter 8 will cover the audio spectrogram standard format, variation of a spectrogram, Melspectrogram, Chroma Short-time Fourier transformation (STFT), and augmentation techniques.

 Chapter 9, Tabular Data Augmentation, involves taking data from a database, spreadsheet, or table format and extending it for the AI training cycle. The goal is to increase the accuracy of prediction or forecast, which is the same for image, text, and audio augmentations. Tabular augmentation is a relativelynew field for Data scientists. It is contrary to using analytics for reporting, summarizing, or forecasting. In analytics, altering or adding data to skew the results to a preconceived desired outcome is unethical. In data augmentation, the purpose is to derive new data from an existing dataset. The two goals are incongruent, but they are not. There will be a slight departure from the image, text, and audio augmentation format. We will spend more time in Python code studying the real-world tabular dataset.

To get the most out of this book

I designed this book to be a hands-on journey. It will be more effective to read a chapter, run the code on the Python Notebook, re-read the chapter’s part that confused you, and jump back to hacking the code until the concept or technique is firmly understood.

Software/hardware covered in the book

Operating system requirements

Chrome, Edge, Safari, or FireFox

Python

browser on Windows, macOS, or

Linux.

Jupyter Notebook (Python

Notebook)

Python standard libraries,

Panda, Matplotlib, and Numpy

Python image, text, audio, and

tabular data augmentation

libraries.

The default online Jupyter Notebook is the Google Colab. You need a Google account. For other online Jupyter Notebook, like Kaggle, Microsoft, or other online Jupyter Notebook, you need sign up or have an account to their services.

If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

Downloading real-world dataset from the Kaggle website requires a Kaggle username and key.

Download the example code files

You can download the example code files for this book from GitHub at

https://github.com/PacktPublishing/Data-Augmentation-with-Python. If there’s an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos

available at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots and diagrams used in this book. You can download it here:

https://packt.link/FhpHV

Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Using the

fetch_kaggle_comp_data(), fetch_df(), and draw_batch() wrapper functions.”

A block of code is set as follows:

pluto.remember_kaggle_access_keys("your_username_here",

"your_key_here")

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

Instantiate Pluto

pluto = PackTDataAug("Pluto")

Any command-line input or output is written as follows:

!git clone https://github.com/duchaba/Data-Augmentation-with-Python

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold.

Here is an example: “Next, go to the Account page, scroll down to the API section, and click on the Create New API Token button to generate the Kaggle key.”

Tips or important notes

Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book,

email us at customercare@packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit

www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com..

Share your thoughts

Once you’ve read Data Augmentation with Python, we’d love to hear your

thoughts! Please click here to go straight to the Amazon review page for

this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

Download a free PDF copy of this

book

[image: Image 3]

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803246451

1. Submit your proof of purchase

2. That’s it! We’ll send your free PDF and other benefits to your email directly

Part 1: Data Augmentation

This part includes the following chapters:

 Chapter 1, Data Augmentation Made Easy

 Chapter 2, Biases in Data Augmentation

Data Augmentation Made Easy

Data augmentation is essential for developing a successful deep learning (DL) project. However, data scientists and developers often overlook this crucial step. It is no secret that you will spend the majority of your project time gathering, cleaning, and augmenting the dataset in a real-world DL

project. Thus, learning how to expand the dataset without purchasing new data is essential. This book covers standard and advanced techniques for extending image, text, audio, and tabular datasets. Furthermore, you will learn about data biases and learn how to code on Jupyter Python Notebooks.

 Chapter 1 will introduce various data augmentation concepts, set up the coding environment, and create the foundation class. Later chapters will explain various techniques in detail, including Python coding. The effective use of data augmentation has proven to be the deciding factor between success and failure in machine learning (ML). Many real-world ML

projects stay in the conceptual phase because of insufficient data for training the ML model. Data augmentation is a cost-effective technique that can increase the size of the dataset, lower the training error rate, and produce a more accurate prediction and forecast.

Fun fact

The car gasoline analogy is helpful for students who first learn about data augmentation and artificial intelligence (AI). You can think of data for the AI engine as the gasoline and data augmentation as the additive, such as the Chevron Techron fuel cleaner, that makes your car engine run faster, smoother, and further without extra petrol.

In this chapter, we’ll define the data augmentation role and the limitations of extending data without changing its integrity. We’ll briefly discuss the different types of input data, such as image, text, audio, and tabular data, and the challenges in supplementing it. Finally, we’ll set up the system requirements and the programming style in the accompanying Python notebook.

I designed this book to be a hands-on journey. It will be most effective to read a chapter, run the code, re-read the part of the chapter that confused you, and jump back to hacking the code until you firmly understand the concept or technique that was presented.

You are encouraged to change or add new code to the Python notebook. The primary purpose of this book is interactive learning. So, if something goes wrong, download a fresh copy from the book's GitHub. The surest method to learn is to make mistakes and create something new.

Data augmentation is an iterative process. There is no fixed recipe. In other words, depending on the dataset, you select augmented functions and jiggle the parameters. A subject domain expert may provide insight into how much distortion is acceptable. By the end of this chapter, you will know the general rules for data augmentation, what type of input data can be augmented, the programming style, and how to set up a Python Notebook online or offline.

In particular, this chapter covers the following primary topics: Data augmentation role

Data input types

Python Notebook

Programming styles

Let’s start with the data augmentation role.

Data augmentation role

Data is paramount in any AI project. This is especially true when using the artificial neural network (ANN) algorithm, also known as DL. The success or failure of a DL project is primarily due to the input data quality.

One primary reason for the significance of data augmentation is that it is relatively too easy to develop an AI for prediction and forecasting, and

those models require robust data input. With the remarkable advancement in developing, training, and deploying a DL project, such as using the FastAI framework, you can create a world-class DL model in a handful of Python code lines. Thus, expanding the dataset is an effective option to improve the DL model’s accuracy over your competitor.

The traditional method of acquiring additional data is difficult, expensive, and impractical. Sometimes, the only available option is to use data augmentation techniques to extend the dataset.

Fun fact

Data augmentation methods can increase the data’s size tenfold. For example, it is relatively challenging to acquire additional skin cancer images. Thus, using a random combination of image transformations, such as vertical flip, horizontal flip, rotating, and skewing, is a practical technique that can expand the skin cancer photo data.

Without data augmentation, sourcing new skin cancer photos and labeling them is expensive and time-consuming. The International Skin Imaging Collaboration (ISIC) is the authoritative data source for skin diseases, where a team of dermatologists verified and classified the images. ISIC

made the datasets available to the public to download for free. If you can’t find a particular dataset from ISIC, it is difficult to find other means, as accessing hospital or university labs to acquire skin disease images is laced with legal and logistic blockers. After obtaining the photos, hiring a team of dermatologists to classify the pictures to correct diseases would be costly.

Another example of the impracticality of attaining additional images instead of augmentation is when you download photos from social media or online search engines. Social media is a rich source of image, text, audio, and video data. Search engines, such as Google or Bing, make it relatively easy to download additional data for a project, but copyrights and legal usage are a quagmire. Most images, texts, audio, and videos on social media, such as YouTube, Facebook, TikTok, and Twitter, are not clearly labeled as copyrights or public domain material.

Furthermore, social media promotes popular content, not unfavorable or obscure material. For example, let’s say you want to add more images of parrots to your parrot classification AI system. Online searches will return a lot of blue-and-yellow macaws, red-and-green macaws, or sulfur-crested cockatoos, but not as many Galah, Kea, or the mythical Norwegian-blue parrot – a fake parrot from the Monty Python comedy skit.

Insufficient data for AI training is exacerbated for text, audio, and tabular data types. Generally, obtaining additional text, audio, and tabular data is expensive and time-consuming. There are strong copyright laws protecting text data. Audio files are less common online, and tabular data is primarily from private company databases.

The following section will define the four commonly used data types.

Data input types

The four data input types are self-explanatory, but it is worth clearly defining the data input types and what is out of scope:

Image definition

Text definition

Audio definition

Tabular data definition

[image: Image 4]

Figure 1.1 – Image, text, tabular, and audio augmentation

 Figure 1.1 provides a sneak peek at image, text, tabular and audio augmentation. Later in this book, you will learn how to implement augmentation methods.

Let’s get started with images.

Image definition

Image is a large category because you can represent almost anything as an image, such as people, landscapes, animals, plants, and various objects around us. Pictures can also represent action, such as sports, sign language, yoga poses, and many more. One particularly creative use of images is capturing a computer mouse’s movement over time to predict whether a user is a computer hacker or not.

The techniques for increasing the number of pictures are horizontal flip, vertical flip, enlarge, zoom in, zoom out, skew, warp, and lighting. Humans are experts at processing images. Thus, if a picture is slightly distorted or darkened, you can still tell that it is the same image. However, this is not the same for a computer. AI represents a color picture as a three-dimensional array of float numbers – the width, height, and RGB as depth. Any image distortion will yield an array with different values.

Graphs, such as time series data charts, and mathematical equation plots, such as 3D topology plots, are outside the scope of image augmentation.

Fun fact

You can eliminate the overfitting problem in DL image classification training by creatively using data augmentation methods.

Text augmentation has different concerns than image augmentation. Let’s take a look.

Text definition

The primary text input data is in English, but the same techniques for text augmentation can be applied to other West Germanic languages. Python lessons use English as the text input data.

The techniques for supplementing the text input are back translation, easy data augmentation, and albumentation. A few methods might be counterintuitive at first glance, such as deleting or swamping words in a sentence. However, it is an acceptable practice because, in the real world, not everyone writes perfect English.

For example, movie reviewers on the American Multi-Cinema (AMC) website write incomplete or grammatically incorrect sentences. They omit verbs or use inappropriate words. As a rule of thumb, you should not expect perfect English for text input data in many NLP projects.

If an NLP model is trained in perfect English as text input data, it could cause bias against typical online reviewers. In other words, the NLP model will predict inaccurately when deployed to a real-world audience. For example, in sentiment analysis, the AI system will predict whether a movie review has a positive or negative sentiment. Suppose you trained the system using a perfect English dataset. In that case, the AI system might forecast a false positive or false negative when people write a short line with misspelled words and grammatical errors.

Language translation, ideograms, and hieroglyphs are outside the scope of this book. Now, let’s look at audio augmentation.

Audio definition

Audio input data can be any sound wave recording such as music, speech, and natural sounds. Sound wave attributes such as amplitude and frequency are represented as graphs, which are technically images, but you can’t use any image augmentation methods for audio input data.

The techniques for expanding audio input are split into two types: waveform and spectrograph. For raw audio, the transformation methods range from time-shifting and pitch scaling to random gain, while for spectrographs, the functions are time masking, time stretching, pitch scaling, and many others.

Speech in a language other than English is outside the scope of this book.

This is not due to technical difficulties but rather because this book is written in English. Writing about the aftermath effects of switching to a different language would be problematic.Audio augmentation is demanding, but tabular data is even more challenging to expand.

Tabular data definition

Tabular data is information in a relational database, spreadsheet, or text file in comma-separated values (CSV) format. Tabular data augmentation is a

fast-growing field in ML and DL. The tabular data augmentation techniques are transforming, interacting, mapping, and extraction.

Fun challenge

Here is a thought experiment. Can you think of data types other than image, text, audio, and tabular? A hint is Casablanca and Blade Runner.

There are two parts to this chapter. The first half discussed the various concepts and techniques; what follows is hands-on Python coding on a Python Notebook. The book will use this learn-then-code pattern in all the chapters. It is time to get your hands dirty and write Python code.

Python Notebook

Jupyter Notebook is an open source web application that is the de facto choice for AI, ML, and data scientists. Jupyter Notebook supports multiple computer languages, and the most popular is Python.

Throughout this book, the term Python Notebook will be used synonymously for Jupyter Notebook, JupyterLab, and Google Colab Jupyter Notebook.

For Python developers, there are many choices of integrated development environment (IDE) platforms, such as Integrated Development and Learning Environment (IDLE), PyCharm, Microsoft Visual Studio, Atom, Sublime, and many more. Still, a Python Notebook is the preferred choice for AI, ML, and data scientists. It is an interactive IDE fit for exploring, coding, and deploying AI projects.

Fun fact

The easiest learning method is reading this book, running the code, and hacking it. This book cannot cover all scenarios; therefore, you must be comfortable with hacking the code so that it matches your real-world dataset. The Python Notebook is designed for interactivity. It gives us the freedom to play, explore, and make mistakes.

Python Notebook is the development tool of choice, and in particular, we will review the following:

Google Colab

Python Notebook options

Installing Python Notebook

Let’s begin with Google Colab.

Google Colab

Google Colab Jupyter Notebook with Python is one of the popular options for developing AI and ML projects. All you need is a Gmail account.

Colab can be found at https://colab.research.google.com/. The free Colab

version is sufficient for the code in this book; the Pro+ version enables more CPU and GPU RAM.

After logging in to Colab, you can retrieve this book’s Python Notebooks from the following GitHub URL: https://github.com/PacktPublishing/data-augmentation-with-python.

You can start using Colab by using one of the following options: The first method of opening a Python Notebook is copying it from GitHub. From Colab, go to the File menu, choose Open Notebook, and then click on the GitHub tab. In the Repository field, enter the GitHub URL specified previously; refer to Figure 1.2. Lastly, select the chapter and Python Notebook (.ipynb) file:

[image: Image 5]

[image: Image 6]

Figure 1.2 – Loading a Python Notebook from GitHub

The second method of opening a Python Notebook is auto-loading it from GitHub. Go to the GitHub link mentioned previously and click on the Python Notebook (ipynb) file. Click the blue-colored Open in Colab button, as shown in Figure 1.3; it should be on the first line of the Python Notebook. It will launch Colab and load in the Python Notebook automatically:

Figure 1.3 – Loading a Python Notebook from Colab

Ensure you save a copy of the Python Notebook to your local Google Drive by clicking on the File menu and selecting the Save a copy in Drive option. Afterward, close the original and use the copy version.

The third method of opening a Python Notebook is by downloading a copy from GitHub. Upload the Python Notebook to Colab by clicking on the File menu, choosing Open Notebook, then clicking on the Upload tab, as shown in Figure 1.4:

[image: Image 7]

Figure 1.4 – Loading a Python Notebook by uploading it to Colab Fun fact

For a quick overview of Colab’s features, go to

https://colab.research.google.com/notebooks/basic_features_overview.ipyn

b. For a tutorial on how to use a Python Notebook, go to

https://colab.research.google.com/github/cs231n/cs231n.github.io/blob/mas

ter/jupyter-notebook-tutorial.ipynb.

Choosing Colab follows the same rationale as selecting an IDE: it is based mainly on your preferences. The following section describes additional Python Notebook options.

Additional Python Notebook options

Python notebooks are available in free and paid versions from many online companies, such as Microsoft, Amazon, Kaggle, Paperspace, and others.

Using more than one vendor is typical because a Python Notebook behaves the same way across multiple vendors. However, it is similar to choosing an IDE – once selected, we tend to stay in the same environment.

You can use the following feature criteria to select a Python Notebook: Easy to set up. Can you load and run a Python Notebook in 15

minutes?

A free version where you can run the Python Notebooks in this book.

Free CPU and GPU.

Free permanent storage for the Python Notebooks and versioning.

Easy access to GitHub.

Easy to upload and download the Python Notebooks to and from the local disk drive.

Option to upgrade to a paid version for faster and additional RAM in terms of CPU and GPU.

The choice of Python Notebook is based on your needs, preferences, or familiarity. You don’t have to use Google Colab for the lessons in this book.

This book’s Python Notebooks will run on, but are not limited to, the following vendors:

Google Colab

Kaggle Notebooks

Deepnote

Amazon SageMaker Studio Lab

Paperspace Gradient

DataCrunch

Microsoft Notebooks in Visual Studio Code

The cloud-based options depend on having fast internet access at all times, so if internet access is a problem, you might want to install the Python Notebook locally on your laptop/computer. The installation process is straightforward.

Installing Python Notebook

Python Notebook can be installed on a local desktop or laptop for Windows, Mac, and Linux. The advantages of the online version are as follows:

Fully customizable

No limit on runtime – that is, no timeout on the Python Notebook during long training sessions

No rules or arbitrary limitations

The disadvantage is that you have to set up and maintain the environment.

For example, you must do the following:

Install Python and Jupyter Notebook

Install and configure the NVIDIA graphic card (optional for data augmentation)

Maintain and update dozens of dependency Python libraries

Upgrade the disk drive, CPU, and GPU RAM

Installing Python Notebook is easy, requiring just one console or terminal command, but first, check the Python version. Type the following command in the terminal or console application:

>python3 --version

You should have version 3.7.0 or later. If you don’t have Python 3 or have an older version, install Python from https://www.python.org/downloads/.

Install JupyterLab using pip, which contains Python Notebook. On a Windows, Mac, or Linux laptop, use the following command for all three OSs:

>pip install jupyterlab

If you don’t like pip, use conda:

>conda install -c conda-forge jupyterlab

Other than pip and conda, you can use mamba:

>mamba install -c conda-forge jupyterlab

Start JupyterLab or Python Notebook with the following command:

>jupyter lab

The result of installing Python Notebook on a Mac is as follows:

[image: Image 8]

Figure 1.5 – Jupyter Notebook on a local MacBook

The next step is cloning this book’s Python Notebook from the respective GitHub link. You can use the GitHub desktop app, the GitHub command on the terminal command line, or the Python Notebook using the magic character exclamation point (!) and standard GitHub command, as follows: url = 'https://github.com/PacktPublishing/Data-Augmentation-with-Python'

!git clone {url}

Regardless of whether you choose the cloud-based options, such as Google Colab or Kaggle, or work offline, the Python Notebook code will work the same. The following section will dive into the Python Notebook programming style and introduce you to Pluto.

Programming styles

The coding style is the standard, tried-and-true method of object-oriented programing and is the variable naming convention for functions and variables.

Fun fact

The majority of Python code you find on blogs and websites is snippets.

Therefore, they are not very helpful in studying fundamental topics such as data augmentation. In addition, Python on a Notebook induces lazy practices because programmers think each Notebook’s code cell is a separate snippet from the whole. In reality, the entire Python Notebook is one program. Chief among the benefits of using best programming practices is that it’s easier to learn and retain knowledge. A programming style may include many standard best practices, but it is also unique to your programming style. Use it to your advantage by learning new concepts and techniques faster, such as how to write data augmentation code.

There are quite a few topics in this section. In particular, we will cover the following concepts:

Source control

The PackTDataAug class

Naming convention

Extend base class

Referencing library

Exporting Python code

Pluto

Let’s begin with source control.

Source control

The first rule of programming is to manage the source code version. It will help you answer questions such as, What did you code last week? , What was fixed yesterday? , What new feature was added today? , and How do I share my code with my team?

The Git process manages the source code for one person or a team. Among many of Git's virtues is the freedom to make mistakes. In other words, Git

[image: Image 9]

allows you to try something new or break the code because you can always roll back to a previous version.

For source control, GitHub is a popular website, and Bitbucket comes in second place. You can use the Git process from a command-line terminal or Git applications, such as GitHub Desktop.

Google Colab has a built-in Git feature. You have seen how easy it is to load a Python Notebook on Google Colab, and saving it is just as easy. In Git, you must commit and push. The steps are as follows:

1. From the Colab menu, click on File.

2. Select Save a copy in GitHub.

3. Enter your GitHub URL in the Repository field and select the code branch.

4. Enter the commit message.

5. Click OK:

Figure 1.6 – Google Colab – saving to GitHub

 Figure 1.6 shows the interface between Google Colab Python Notebook and GitHub. Next, we’ll look at the base class, PacktDataAug.

The PacktDataAug class

The code for the base class is neither original nor unique to this book. It is standard Python code for constructing an object-oriented class. The name of the object is different for every project. For this book, the name of the class is PacktDataAug.

Every chapter begins with this base class, and we will add new methods to the object using a Python decorator as we learn new concepts and techniques for augmenting data.

This exercise's Python code is in the Python Notebooks and on this book’s GitHub repository. Thus, I will not copy or display the complete code in this book. I will show relevant code lines, explain their significance, and rely on you to study the entire code in the Python Notebooks.

The definition of the base class is as follows:

class definition

class PacktDataAug(object):

def __init__(self,

name="Pluto",

is_verbose=True,

args, **kwargs):

PacktDataAug is inherent from the based Object class, and the definition has two optional parameters:

The name parameter is a string, and it is the name of your object. It has no essential function other than labeling your object.

is_verbose is a Boolean that tells the object to print the object information during instantiation.

The next topic we will cover is the code naming convention.

Naming convention

The code naming convention is as follows:

The function’s name will begin with an action verb, such as print_, fetch_, or say_.

A function that returns a Boolean value begins with is_ or has_.

Variable names begin with a noun, not an action verb.

There is a heated discussion in the Python community on whether to use camelCase – for example, fetchKaggleData() – or use lowercase with underscores – for example, fetch_kaggle_data(). This book uses lowercase with underscores.

Functions or variables that begin with underscores are temporary variables or helper functions – for example, _image_auto_id, _drop_images(), and _append_full_path().

Variable or function abbreviations are sparingly used because the descriptive name is easier to understand. In addition, Colab has auto-complete functionality. Thus, it makes using long, descriptive names easier to type with fewer typos.

The code for instantiating a base class is standard Python code. I used pluto as the object name, but you can choose any name:

Instantiate Pluto

pluto = PackTDataAug("Pluto")

The output is as follows:

--------------------------- : ---------------------------

Hello from class : <class '__main__.PacktDataAug

'> Class: PacktDataAug

Code name : Pluto

Author is : Duc Haba

---------------------------- : ---------------------------

The base class comes with two simple helper methods. They are both for printing pretty – that is, making the printing of status or output messages

neatly centered.

The self._ph() method prints the header line with an equal number of dashes on both sides of the colon character, while the self._pp() function takes two parameters, one for the left-hand side and the other for the right-hand side.

You have already seen the result of instantiating pluto with the default parameter of is_verbose=True. As standard practice, I will not print the complete code in this book. I am relying on you to view and run the code in the Python Notebook, but I will make an exception for this chapter and show you the snippet of code for the is_verbose option. This demonstrates how easy it is to read Python code in the Python Notebook. The snippet is as follows:

code snippet for verbose option

if (is_verbose):

self._ph()

self._pp(f"Hello from class {self.__class__} Class:

{self.__class__.__name__}")

self._pp("Code name", self.name)

self._pp("Author is", self.author)

self._ph()

Fun fact

This book’s primary goal is to help you write clean and easy-to-understand code and not write compact code that may lead to obfuscation.

Another powerful programming technique is using a Python decorator to extend the base class.

Extend base class

This book has been designed as an interactive journey where you learn and discover new data augmentation concepts and techniques sequentially, from image, text, and audio data to tabular data. The object, pluto, will acquire new methods as the journey progresses. Thus, having a technique to extend

the class with new functions is essential. In contrast, providing the fully built class at the beginning of this book would not allow you to embark on the learning journey. Learning by exploration helps you retain knowledge longer compared to learning by memorization.

The @add_method() decorator function extends any class with a new function.

Here is an excellent example of extending the base class. The root cause of Python’s most common and frustrating error is having a different library version from the class homework or code snippet copy from the Python community. Python data scientists seldom write code from scratch and rely heavily on existing libraries. Thus, printing the Python library versions on a local or cloud-based server would save hours of aggravating debugging sessions.

To resolve this issue, we can extend the PacktDataAug class or use the journey metaphor of teaching Pluto a new trick. The new method, say_sys_info(), prints this book’s expected system library version on the left-hand side and the actual library version on your local or remote servers on the right-hand side. The decorator’s definition for extending the Pluto class is as follows:

using decorator to add new method

@add_method(PackTDataAug)

def say_sys_info(self):

After running the aforementioned code cell, you can ask Pluto to print the library version using the following command:

check Python and libraries version

pluto.say_sys_info()

The results are as follows:

---------------------------- : ---------------------------

System time : 2022/07/23 06:36

Platform : linux

 Pluto Version (Chapter) : 1.0

Python (3.7.10) : actual: 3.7.12 (default, Apr

24 2022, 17:11:25) [GCC 7.5.0]

PyTorch (1.11.0) : actual: 1.12.1+cu113

Pandas (1.3.5) : actual: 1.3.5

PIL (9.0.0) : actual: 7.1.2

Matplotlib (3.2.2) : actual: 3.2.2

CPU count : 2

CPU speed : NOT available

---------------------------- : ---------------------------

If your result contains libraries that are older versions than this book’s expected value, you might run into bugs while working through the lessons.

For example, the Pillow (PIL) library version is 7.1.2, which is lower than the book’s expected version of 9.0.0.

To correct this issue, run the following code line in the Notebook to install the 9.0.0 version:

upgrade to Pillow library version 9.0.0

!pip install Pillow==9.0.0

Rerunning pluto.say_sys_info() should now show the PIL version as 9.0.0.

Fun challenge

Extend Pluto with a new function to display the system’s GPU total RAM

and available free RAM. The function name can be

fetch_system_gpu_ram(). A hint is to use the torch library and the torch.to cuda.memory_allocated() and

torch.cuda.memory_reserved() functions. You can use this technique to extend any Python library class. For example, to add a new function to the numpy library, you can use the @add_method(numpy) decorator.

There are a few more programming-style topics. Next, you’ll discover how best to reference a library.

Referencing a library

Python is a flexible language when it comes to importing libraries. There are aliases and direct imports. Here are a few examples of importing the same function – that is, plot():

display many options to import a function

from matplotlib.pyplot import plot

import matplotlib.pyplot

import matplotlib.pyplot as plt # most popular

more exotics importing examples

from matplotlib.pyplot import plot as paint

import matplotlib.pyplot as canvas

from matplotlib import pyplot as plotter

The salient point is that all these examples are valid, and that is both good and bad. It enables flexibility, but at the same time, sharing code snippets online or maintaining code can lead to frustration when they break. Python often gives an unintelligible error message when the system cannot locate the function. To fix this bug, you need to know which library to upgrade.

The problem is compounded when many libraries use the same function name, such as the imread() method, which appears in at least four libraries.

By adhering to this book’s programming style, when the imread() method fails, you know which library needs to be upgraded or, in rare conditions, downgraded. The code is as follows:

example of use full method name

import matplotlib

matplotlib.pyplot.imread()

matplotlib might need to be upgraded, or equally, you might be using the wrong imread() method. It could be from OpenCV version 4.7.0.72. Thus, the call should be cv2.imread().

The next concept is exporting. It may not strictly belong to the programming style, but it is necessary if you wish to reuse and add extra functions to this chapter’s code.

Exporting Python code

This book ensures that every chapter has its own Python Notebook. The advanced image, text, and audio chapters need the previous chapter's code.

Thus, it is necessary to export the selected Python code cells from the Python Notebook.

The Python Notebook has both markup and code cells, and not all code cells must be exported. You only need to export code cells that define new functions. For the code cells that you want to export to a Python file, use the Python Notebook %%writefile file_name.py magic command at the beginning of the code cells and %%writefile -a file_name.py to append additional code to the file. file_name is the name of the Python file – for example, pluto_chapter_1.py.

The last and best part of the programming style is introducing Pluto as your coding companion.

Pluto

Pluto uses a whimsical idea of teaching by including dialogs with an imaginary digital character. We can give Pluto tasks to complete. It has a friendly tone, and sometimes the author addresses you directly. It moves away from the direct lecturing format. There are scholarly papers that explain how lecturing in monologue is not the optimal method for learning new concepts, such as the article Why Students Learn More From Dialogue-Than Monologue-Videos: Analyses of Peer Interactions by Michelene T. H.

Chi, Seokmin Kang, and David L. Yaghmourian that was published by the Journal of the Learning Sciences in 2016.

You are most likely reading this book alone rather than engaging in a group, learning how to write augmentation code together. Thus, creating an imaginary companion as the instantiated object might infuse imagination. It makes writing and reading more accessible – for example, the pluto.fetch_kaggle_data() function is self-explanatory, and little additional documentation is needed. It simplifies Python code to a common subject and action-verb-sentence format.

Fun challenge

Change the object name from Pluto to your favorite canine name, such as Biggy, Sunny, or Hanna. It will make the learning process more personal.

For example, change pluto = PackTDataAug("Pluto") to hanna =

PackTDataAug("Hanna").

Fair warning: Do not choose your beloved cat as the object’s name because felines will not listen to any commands. Imagine asking your cat to play fetch.

Summary

In this chapter, you learned that data augmentation is essential for achieving higher accuracy prediction in DL and generative AI. Data augmentation is an economical option for extending a dataset without the difficulty of purchasing and labeling new data.

The four input data types are image, text, audio, and tabular. Each data type faces different challenges, techniques, and limitations. Furthermore, the dataset dictates which functions and parameters are suitable. For example, people’s faces and aerial photographs are image datasets, but you can’t expand the data by vertically flipping people’s images; however, you can vertically flip aerial photos.

In the second part of this chapter, you used Python notebooks to reinforce your learning of these augmentation concepts. This involved selecting a Python Notebook as the default IDE to access a cloud-based platform, such as Google Colab or Kaggle, or installing the Python Notebook locally on your laptop.

The Programming styles section lay the foundation for the Python Notebook’s structure. It touched on GitHub as a form of source control, using base classes, extending base classes, long library function names, exporting to Python, and introducing Pluto.

This chapter laid the foundation with Pluto as the main object. Pluto does not start with complete data augmentation functions – he begins with a

minimum structure, and as he learns new data augmentation concepts and techniques from chapter to chapter, he will add new methods to his arsenal.

By the end of this book, Pluto and you will learn techniques regarding how to augment image, text, audio, and tabular data. In other words, you will learn how to write a powerful image, text, audio, and tabular augmentation class from scratch using real-world data, which you can reuse in future data augmentation projects.

Throughout this chapter, there were fun facts and fun challenges. Pluto hopes you will take advantage of what’s been provided and expand your experience beyond the scope of this chapter.

In Chapter 2, Biases in Data Augmentation, Pluto and you will explore how data augmentation can increase biases. Using data biases as a guiding principle to data augmentation is an often-overlooked technique.

Biases in Data Augmentation

As artificial intelligence (AI) becomes embedded in our society, biases in AI systems will adversely affect your quality of life. These AI systems, particularly in deep learning (DL) and generative AI, depend on the input data you are using to extend data augmentation.

AI systems rely heavily on data to make decisions, and if the data used to train the system is biased, then the AI system will make unfair decisions. It will lead to the unjust treatment of individuals or groups and perpetuate systemic inequalities. AI plays a decisive role in life-changing decisions, such as how much your monthly mortgage insurance rate is, whether you can be approved for a car loan, your application qualification for a job, who will receive government assistance, how much you pay for milk, what you read on social media newsfeeds, and how much oil your country will import or export, to name a few.

By learning data biases before diving deep into learning data augmentation, you will be able to help develop ethical and fair AI systems that benefit society. It will help you make informed decisions about the data they use and prevent the perpetuation of existing biases and inequalities.

Additionally, understanding data bias will help you make informed decisions about the data collection process and ensure it’s representative and unbiased.

Data biases may be problematic for data scientists and college students because they are seldom discussed or unavailable in college courses. There is no ready-made fairness matrix to follow programmatically for data augmentation. Maybe by using the latest generative AI, the biases may even originate from computer systems and not be so heavily due to humans.

There are many strategies to provide protected and safe software products and services, but AI systems require new processes and perspectives.

Trustworthy and responsible AI is about fairness, ethical design, and minimizing biases. Achieving trustworthy AI starts with transparency, datasets, test, evaluation, validation, and verification (TEVV), as defined

by the Standard for Identifying and Managing Bias in Artificial Intelligence, National Institute of Standards and Technology (NIST) special publication 1270.

Fun fact

In 2016, Twitter corrupted the Microsoft AI chatbot Tay in 1 day. Microsoft created Tay for online casual and playful conversation. Tay was designed to learn and take input from raw, uncurated data and comments from the web.

The Twitter community thought it would be fun to teach Tay with misogynistic, racist, and violent tweets. To this day, Tay is a poster child for lessons learned in data bias input for AI. As one blogger put it, “Flaming garbage pile in, flaming garbage pile out.”

This chapter will provide a crash course on recognizing the differences in computation, human, and systemic biases. We will learn about bias but not practice how to compute bias programmatically. The fairness and confusion matrixes are used to gauge AI’s prediction in terms of true-positive, false-positive, true-negative, and false-negative. However, the fairness and confusion matrixes are used for building AI systems, not data augmentation. While looking at real-world text datasets, we will attempt to write Python code for a fairness matrix with word counts and misspelled words, but for the most part, we will rely on Pluto and your observations to name the biases in image and text data.

The Python code in this chapter will focus on helping you learn how to download real-world datasets from the Kaggle website. The later chapters will reuse the helper and wrapper functions shown in this chapter.

By the end of this chapter, you will have a deeper appreciation for a balanced dataset. In particular, we will cover the following topics: Computational biases

Human biases

Systemic biases

Python Notebook

Image biases

Text biases

Pluto will begin with the easier of the three biases – computational biases.

Computational biases

Before we start, a fair warning is that you will not be learning how to write Python code to calculate a numeric score for computational bias in datasets.

The primary focus of this chapter is to help you learn how to fetch real-world datasets from the Kaggle website and use observation to spot biases in data. There will be some coding to calculate the fairness or balance in the datasets.

For example, we will compute the word counts per record and the misspelled words in the text datasets.

You may think all biases are the same, but it helps to break them into three distinct categories. The bias categories’ differences can be subtle when first reading about data biases. One method to help distinguish the differences is to think about how you could remove or reduce the error in AI forecasting.

For example, computational biases can be resolved by changing the datasets, while systemic biases can be fixed by changing the deployment and access strategy of the AI system.

Computational biases originate from the unevenness in the dataset for the general population. In other words, it favors or underrepresents one group or data category. The prejudices could be unintentional or deep-seated. The data is skewed higher than the usual randomness. As a result, the algorithm will be plagued with higher false-positive and false-negative predictions.

Dataset representation (DR) and machine learning algorithms (MLAs) are two types of computation biases. DR is easier to understand and more closely related to augmenting data. Many of the examples in this section are from DR biases. MLA is specific to a project and can’t be generalized.

Here are a few examples of computational biases: Kodak’s Shirley Cards Set Photography’s Skin-Tone Standard from the mid-1970s is one of the more famous examples of technology biases.

The Shirley card from Kodak is used to calibrate the image, such as skin tone and shadow, before printing people’s pictures. It is a part of the setting up process and is frequently used at the printing facility.

Shirley is the name of an employee at Kodak. Because of this innocent and unintentional discrimination, for three decades, photos printed in the USA did not show the true skin tone of anyone who did not have a white skin tone.

 Google Open AI DALL-E 2, from 2022, is an AI model that generates pictures from texts. For example, you can type the input as a hippo eating broccoli wearing a pink polka dot swimsuit, and DALL-E 2 will generate the picture. Even with this highly touted technology breakthrough, there are prejudices, as reported by the NBC Tech news written by Jake Traylor in the article No quick fix: How OpenAI’s DALL-E 2 illustrated the challenges of bias in AI. For example, in DALL-E, a builder produced images featuring only men, while the caption of a flight attendant generated only images of women. DALL-E

2 additionally inherits various biases from its training data, and its outputs sometimes reinforce societal stereotypes.

The United Kingdom’s Information Commissioner’s Office (ICO) disclosed on July 2022 that AI automation’s potential discrimination could have grave consequences for society. For example, it could result in unfair or biased job rejection, bank loans, or university acceptance. In addition, coinciding with the ICO is the Guardian newspaper article UK

 data watchdog investigates whether AI systems show racial bias, by Dan Milmo. The ICO’s goal is to create a fair and ethical AI system guideline.

Fun fact

Using generative AI and Stable Diffusion on GitHub, forked by Duc Haba on Python Notebook, Pluto wrote, “A cute adorable baby hippo made of crystal ball with low poly eye surrounded by glowing aura highly detailed

[image: Image 10]

 intricated concept art trending art station 8k eating broccoli in the city wearing pink polka dots. ” After running repeatedly with slightly altering wordings, his favorite generated images were created. These are the original images:

Figure 2.1 – Generative AI, Stable Diffusion forked

 Figure 2.1 displays a hippo eating broccoli. On that fun note, we have concluded this section on computational biases. Pluto is a digital dog but can speak about human biases, which he’ll do in the next section.

Human biases

Human biases are even harder to calculate using Python code. There is no Python or other language library for computing a numeric score for human bias in a dataset. We rely on observation to spot such human biases. It is time-consuming to manually study a particular dataset before deriving

possible human biases. We could argue that it is not a programmer’s or data scientist’s job because there is no programable method to follow.

Human biases reflect systematic errors in human thought. In other words, when you develop an AI system, you are limited by the algorithm and data chosen by you. Thus, the prediction of a limited outcome could be biased by your selections. These prejudices are implicit in individuals, groups, institutions, businesses, education, and government.

There is a wide variety of human biases. Cognitive and perceptual biases show themselves in all domains and are not unique to human interactions with AI. There is an entire field of study centered around biases and heuristics in thinking, decision-making, and behavioral economics, such as anchoring bias and confirmation bias.

As data scientists that are augmenting data, by simply being aware of the inherent human prejudices, we can call out the flaws in the data before developing and training the model.

Here are a few examples of human biases in real-world AI systems: The People’s Republic of China (PRC) implemented facial recognition AI in the province of Xinjiang to monitor ethnic minorities such as the Uyghurs. It is the first known example of a government using AI specifically for racial profiling. The system is flawed with discrimination as it identifies the poor and the old as ethnic minorities in false-positive predictions. Compounding the problem is when Myanmar bought the PRC system to crack down on political dissidents, as the Council on Foreign Relations reported in their The Importance of International Norms in Artificial Intelligence Ethics article in 2022.

To stop advertisers from abusing the AI Facebook newsfeed, Meta limited the target algorithm from using health, race, ethnicity, political affiliation, religion, and sexual orientation. NPR reported in the article that Facebook had scrapped advertised targeting based on politics, race, and other “sensitive” topics. The changes took effect on January 10

across Meta’s apps, including Facebook, Instagram, Messenger, and the Audience Network. It is reported that advertisers microtargeted people

with tailored messages. In other words, the advertisers excluded people based on protected characteristics and targeted advertisements using anti-Semitic phrases.

The article Racial Bias Found in a Major Health Care Risk Algorithm, published by Scientific American on October 4, 2019, found many biases in the healthcare system. Black patients would pay more for interventions and emergency visits. In addition to incurring higher costs, black patients would receive lesser-quality care. AI scientists used race and wealth in historical data to train the healthcare system. Thus, the system displayed prejudice toward minority groups and affected 200

million Americans.

Fun challenge

This challenge is a thought experiment. How could you build an AI without biases, given a substantial budget and ample time? Hint: think about when we had world peace or no crime in our city. It can’t be an absolute answer.

It has to be a level of acceptance.

It may be challenging to see the differences between human and computational biases. Some biases are not one or the other. In other words, they are not mutually exclusive – you can have both human and computational biases in one AI system.

Human biases are difficult to identify because they shape our perception of the world. However, systemic biases may be easier to address in theory, but may be challenging to put into practice.

Systemic biases

If we cannot conceive a method to calculate computational and human biases, then it is impossible to devise an algorithm to compute systemic biases programmatically. We must rely on human judgment to spot the systemic bias in the dataset. Furthermore, it has to be specific to a particular dataset with a distinct AI prediction goal. There are no generalization rules and no fairness matrix to follow.

Systemic biases in AI are the most notorious of all AI biases. Simply put, systemic discrimination is when a business, institution, or government limits access to AI benefits to a group and excludes other underserved groups. It is insidious because it hides behind society’s existing rules and norms. Institutional racism and sexism are the most common examples.

Another AI accessibility issue in everyday occurrences is limiting or excluding admission to people with disabilities, such as the sight and hearing impaired.

The poor and the underserved have no representation in the process of developing the AI system, but they are forced to accept the AI’s prediction or forecast. These AIs make significant life decisions, including those for the poor and underserved, such as how much to pay for a car or health insurance, options for housing or a business bank loan, or whether they are eligible for medical treatments.

Here are a few real-world examples of AI systemic biases:

The article Researchers use AI to predict crime, biased policing in major U.S. cities like L.A. , published by The Los Angeles Times on July 4, 2022, found AI biases in policing crimes. The University of Chicago’s AI crime prediction system does not address law enforcement systemic biases. The forecast for possible crime locations, or hot spots, is based on flawed input and environmental factors associated with poor neighborhoods, rather than the actual locations where crimes are committed. The AI reflects the systemic bias in law enforcement practices and procedures. Thus, it forecasts a higher crime rate in poor neighborhoods because of the police’s prior systemic biases.

The US Department of Justice reviewed the Prisoner Assessment Tool Targeting Estimated Risk and Needs (PATTERN) and found systemic bias in who can access PATTERN. This was discussed in Addressing an Algorithmic PATTERN of Bias, published by the Regulatory Review on May 10, 2020. The report reinforces the Justice Department’s biased view that low-risk criminals should be the only ones eligible for early release. PATTERN classifies inmates as low, medium, or high risk, which forecasts if those individuals would engage

in crime after release. Since PATTERN is limited to a particular group, it precludes other inmates from early release.

The article The Potential For Bias In Machine Learning And Opportunities For Health Insurers To Address It reports growing concerns about how ML can reflect and perpetuate past and present systemic inequities and biases. This was published by Health Affairs in February 2022 published the article. Limited access to the likelihood of hospitalization, admission to pharmacies, and missing or incomplete data are a few systemic biases for racism and underrepresented populations. Thus, the AI predictions may reflect those systemic biases, and the policy decisions based on the forecast risk reinforcing and exacerbating existing inequities.

Fun challenge

This challenge is a thought experiment. Which category of biases is easier to spot? Hint: think about company profit.

Computation, human, and systemic biases have similarities and are not mutually exclusive. There is no algorithm or libraries to guide you in coding. It relies on your observation from studying the datasets. At this point, Pluto is ready to learn about fetching real-world datasets from the Kaggle website. Optionally, he will ask you to spot the biases in the datasets.

Python Notebook

This chapter’s coding lessons primarily focus on downloading real-world datasets from the Kaggle website. The later chapters rely on or reuse these fetching functions.

In the previous chapter, you learned about this book’s general rules for development on the Python Notebook. The object-oriented class named Pluto contains the methods and attributes, and you add new methods to

Pluto as you learn new concepts and techniques. Review Chapter 1 if you

are uncertain about the development philosophy.

In this book, the term Python Notebook is used synonymously for Jupyter Notebook, JupyterLab, and Google Colab Notebook.

Fun challenge

Pluto challenges you to change the object’s name from Pluto to any other name. If you do change the name, then substitute that name where you see Pluto in your text and code. For example, if you change the object name to Sandy, then pluto.draw_batch_image() becomes

sandy.draw_batch_image().

Starting with this chapter, the setup process for using the Python Notebook will be the same for every chapter. The goal of this chapter is to help you gain a deeper understanding of the datasets and not to write Python code for calculating the bias value for each dataset. The setup steps are as follows: 1. Load Python Notebook.

2. Clone GitHub.

3. Instantiate Pluto.

4. Verify Pluto.

5. Create Kaggle ID.

6. Download real-world datasets.

Let’s start with loading the Python Notebook.

Python Notebook

The first step is to locate the

data_augmentation_with_python_chapter_2.ipynb file. It is in this

book’s GitHub repository at https://github.com/PacktPublishing/Data-

Augmentation-with-Python. Refer to Chapter 1 if you forgot how to load

the Python Notebook.

The next step is to clone the GitHub repository.

GitHub

The second step is locating the ~/Data-Augmentation-with-

Python/pluto/pluto_chapter_1.py file. It’s in the main GitHub repository for this book, under the pluto folder.

Pluto is using the Python Notebook on Google Colab. It starts with a new session every time – that is, no permanent storage is saved from the previous session. Thus, the faster and easier method to load all the required files is to clone the GitHub repository. It could be this book’s GitGub or the GitHub repository that you forked.

From this point onward, all commands, code, and references are from the data_augmentation_with_python_chapter_2.ipynb Python Notebook.

Pluto uses the!git clone {url} command to clone a GitHub repository, where {url} is the link for the GitHub repository. The code snippet is as follows:

load from official GitHub repo.

!git clone https://github.com/PacktPublishing/Data-

Augmentation-with-Python

optional step, sustitute duchaba with your GitHub space

!git clone https://github.com/duchaba/Data-Augmentation-with-Python

In the Python Notebook, any code cell that begins with an exclamation point (!) will tell the system to run as a system shell command line. For Google Colab, it is a bsh shell. In addition, all code that begins with a percent sign (%) are special commands. They are called magic keywords or magic commands.

Fun fact

Jupyter Notebook’s built-in magic commands provide convenience functions to the underlying operating system (OS) kernel. The magic commands begin with the percent sign character (%). For example, %ldir is for listing the current directory files, %cp is for copying files in your local

directory, %debug is for debugging, and so on. The helpful %lsmagic command is for listing all the available magic commands supported by your current Python Notebook environment. The exclamation character (!) is for running the underlying OS command-line function. For example, in a Linux system, !ls -la is for listing the files in the current directory, while !pip is for installing Python libraries.

Now that you have downloaded the Pluto Python code, the next step is to instantiate Pluto.

Pluto

The Python Notebook’s magic command for instantiating Pluto is as follows:

instantiate pluto

pluto_file='Data-Augmentation-with-

Python/pluto/pluto_chapter_1.py'

%run {pluto_file}

The output is as follows:

---------------------------- : ---------------------------

Hello from class : <class

'__main__.PackTDataAug'> Class: PackTDataAug

Code name : Pluto

Author is : Duc Haba

---------------------------- : ---------------------------

The next-to-last step in the setup process is to verify that Pluto is running with the correct version.

Verifying Pluto

For double-checking, Pluto runs the following function:

Are you ready to play?

pluto.say_sys_info()

The results should be similar to the following output:

---------------------------- : ----------------------------

System time : 2022/08/16 06:26

Platform : linux

Python version (3.7+) : 3.7.13 (default, Apr 24 2022,

01:04:09) [GCC 7.5.0]

Pluto Version (Chapter) : 1.0

PyTorch (1.11.0) : actual: 1.12.1+cu113

Pandas (1.3.5) : actual: 1.3.5

PIL (9.0.0) : actual: 7.1.2

Matplotlib (3.2.2) : actual: 3.2.2

CPU count : 2

CPU speed : NOT available

---------------------------- : ----------------------------

Since this code is from Chapter 1, the Pluto version is 1.0. Before Pluto can download the dataset from the Kaggle website, he needs Kaggle’s key and access token.

Kaggle ID

Pluto uses Kaggle datasets because he wants to learn how to retrieve real-world data for learning data augmentation. It is more impactful than using a small set of dummy data. Thus, the first two steps are installing the library to aid in downloading the Kaggle data and signing up with Kaggle.com.

The code for installing and importing can be found in the open source opendatasets library by Jovian. The function code is in the Python Notebook; here is a code snippet from it:

install opendatasets library

!pip install opendatasets --upgrade

import opendatasets

[image: Image 11]

After you create an account on Kaggle.com, you will have a Kaggle username and receive a Kaggle key. Next, go to the Account page, scroll down to the API section, and click on the Create New API Token button to generate the Kaggle key:

Figure 2.2 – Kaggle Account page – new token

Once you have a Kaggle username and key, as shown in Figure 2.2, use Pluto’s remember_kaggle_access_key() wrapper method to store the attributes inside the object. The code uses the Python self keyword to store this information – for example, self.kaggle_username. The method’s definition is as follows:

method definition

def remember_kaggle_access_keys(self,username,key):

Other methods will use these attributes automatically. Pluto runs the following method to remember your Kaggle username and key:

save Kaggle username and key

pluto.remember_kaggle_access_keys("your_username_here",

"your_key_here")

The _write_kaggle_credit() method writes your Kaggle username and key in two locations – ~/.kaggle/kaggle.json and ./kaggle.json. It also changes the file attribute to 0o600. This function begins with an underscore; hence, it is a helper function used primarily by other methods.

There are two methods for Pluto to fetch data from Kaggle:

fetch_kaggle_comp_data(competition_name), where competition_name is the title of the contest, and fetch_kaggle_dataset(url), where url is the link to the dataset.

In the fetch_kaggle_comp_data() wrapper method, the primary code line that does most of the work is as follows:

code snippet for fetcing competition data

kaggle.api.competition_download_cli(str(path))

In the fetch_kaggle_dataset() method, the primary code line that does most of the work is as follows:

fetching real-world dataset for the Kaggle website

opendatasets.download(url,data_dir=dest)

Fun fact

As of 2022, there are over 2,500 past and current competitions on the Kaggle website and more than 150,000 datasets. These datasets are diverse, from medical and financial to other industry-specific datasets.

Image biases

Pluto has access to thousands of datasets, and downloading these datasets is as simple as replacing the URL. In particular, he will download the following datasets:

The State Farm distracted drivers detection (SFDDD) dataset The Nike shoes dataset

The Grapevine leaves dataset

Let’s start with the SFDDD dataset.

State Farm distracted drivers

detection

To start, Pluto will slow down and explain every step in downloading the real-world datasets, even though he will use a wrapper function, which seems deceptively simple. Pluto will not write any Python code for programmatically computing the bias fairness matrix values. He relies on your observation to spot the biases in the dataset.

Give Pluto a command to fetch, and he will download and unzip or untar the data to your local disk space. For example, in retrieving data from a competition, ask Pluto to fetch it with the following command:

fetch real-world data

pluto.fetch_kaggle_comp_data(

"state-farm-distracted-driver-detection")

Since this data is from a competition, you must join the State Farm competition before downloading the dataset. You should go to the State Farm Distracted Driver Detection competition and click the Join button.

The description for the competition from the Kaggle website is as follows:

“State Farm hopes to improve these alarming statistics and better insure their customers by testing whether dashboard cameras can automatically detect drivers engaging in distracting behaviors. Given a dataset of 2D

dashboard camera images, State Farm is challenging Kagglers to classify each driver’s behavior.”

 State Farm provided the dataset, announced in 2016. The rules and usage

licenses can be found at https://www.kaggle.com/competitions/state-farm-

distracted-driver-detection/rules.

Fun fact

You have to join a Kaggle competition to download competition data, but you don’t need to enter a competition to download a Kaggle dataset.

Not all the methods are in the Python Notebook’s global space but in the Pluto object. Hence, you can’t access a wrapper function directly. You have to prefix it with pluto. For example, you can’t do the following:

example of wrong syntax

fetch_kaggle_dataset(url)

However, using the pluto prefix is correct, as shown here:

example of correct syntax

pluto.fetch_kaggle_dataset(url)

Before Pluto displays the image in batches, he must write a few simple code lines to check if the downloads are correct:

read the image file

f = 'state-farm-distracted-driver-

detection/imgs/train/c0/img_100026.jpg'

img = PIL.Image.open(f)

display image using Python Notebook build-in command

display(img)

The output is as follows:

[image: Image 12]

Figure 2.3 – State Farm Distracted driver

The SFDDD dataset consists of 22,423 images, and viewing one photo at a time, as shown in Figure 2.3, will not help Pluto to see the biases. Pluto loves putting lists and tabular data into the Python pandas library. Luckily, the State Farm competition comes with a comma-separated values (CSV) file. It will make writing the fetch_df(self, csv) method easier. The relevant line of code is as follows:

code snippet to import into Pandas

df = pandas.read_csv(csv)

Pluto uses the fetch_df(self, csv) wrapper function to download the data, and he uses Pandas to display the last three rows. The code is as follows:

[image: Image 13]

fetch data

pluto.df_sf_data = pluto.fetch_df('state-farm-distracted-

driver-detection/driver_imgs_list.csv')

display last three records

pluto.df_sf_data.tail(3)

The result is as follows:

Figure 2.4 – State Farm data – last three rows

Pluto likes the data in the original CSV file, shown in Figure 2.4, but it does not have a column with a full path to an image file. Pandas makes creating a new column containing the full image path super easy. There are no complicated for loops or if else statements. There are only two lines of code for the wrapper function, build_sf_fname(self, df), where df is the original DataFrame. The code snippet is as follows:

code snippet to create full image path

root = 'state-farm-distracted-driver-detection/imgs/train/'

df["fname"] = f'{root}/{df.classname}/{df.img}

The full function code can be found in the Python Notebook. Pluto adds the full path name column and displays the first three rows with the following code:

#create new fname column

pluto.build_sf_fname(pluto.df_sf_data)

[image: Image 14]

pluto.df_sf_data.head(3)

The result is as follows:

Figure 2.5 – State Farm data – full path image name

For double-checking, Pluto writes a few lines of simple code to display an image from the pandas fname column, as shown in Figure 2.5, using the PIL library. The code is as follows:

display the image

img = PIL.Image.open(pluto.df_sf_data.fname[0])

display(img)

The resulting image is as follows:

[image: Image 15]

Figure 2.6 – State Farm data – the fname column

 Figure 2.6 shows a driver. Using the fname column, drawing a batch or collection of images is relatively easy. The draw_batch() wrapper function’s definition is as follows:

function definition

def draw_batch(self, df_filenames,

disp_max=10,

is_shuffle=False,

figsize=(16,8)):

= df_filenames is the list of file =names, and it is in a pandas DataFrame.

disp_max defaults to 10, which is an increment of 5, as in five photos per row. is_shuffle defaults to False. If you can set it to True, each batch is randomly selected. Lastly, figsize is the size of the output from the Matplotlib library, where the first number is the width and the second number is the height. The default is (16,8).

[image: Image 16]

Using the draw_batch() wrapper method, Pluto can draw any photo collection. For example, Pluto can draw 10 random images from the SFDDD competition with the following code:

display image batch

x = pluto.draw_batch(pluto.df_sf_data["fname"],

is_shuffle=True)

The result is as follows:

Figure 2.7 – State Farm data – draw_patch()

Pluto runs the code repeatedly to see different images in the dataset, as shown in Figure 2.7. For example, he can draw 20 random images at a time using the following code:

display image batch

x = pluto.draw_batch(pluto.df_sf_data["fname"],

is_shuffle=True,

disp_max=20,

figsize=(18,14))

The output is as follows:

[image: Image 17]

Figure 2.8 – State Farm data – 20 randomly selected images

 Figure 2.8 displays 20 photos of drivers. Using the fetch_kaggle_comp_data(), fetch_df(), and draw_batch() wrapper functions, Pluto can retrieve any of the thousand real-world datasets from Kaggle.

Fun challenge

This challenge is a thought experiment. Before reading Pluto’s answer, what biases do you see in the images? It is optional, and there is no algorithm or library that you can use to compute the bias fairness value. It relies on your observation.

Pluto read the SFDDD’s goal and thought about computational, human, and systemic biases. The following bullet points are not errors to be fixed, but they could be biases. These biases are observations from Figure 2.7 of

underrepresented groups. Pluto assumes the long-term goal of the SFDDD

is for it to be deployed across the United States:

Pluto does not see any older adults as drivers in the dataset.

The driver demographic distribution is limited. There are about a dozen drivers represented in the dataset, and the long-term goal is to deploy this AI system in the United States. Therefore, the AI system will be trained on a limited number of drivers.

There are few vehicle types represented in the dataset. They are primary sedans, compacts, or SUVs. A sports car or truck interior is different, which might affect the prediction of false positives or false negatives.

There are other distracting activities while driving that are not represented, such as eating ice cream, watching an event unfolding outside of the car, head or hair grooming, and so on.

All drivers in the dataset wear urban-style clothing. More elaborate or ethnic-centric clothing styles might cause the AI to predict false positives or false negatives.

The goal is to save lives. Thus, a systemic bias could be affordable access to everyone, not just the tech-savvy urban elites.

Fun challenge

This challenge is a thought experiment. Can you find other biases? There are no absolute right or wrong answers. The biases listed here can’t be spotted programmatically.

That was a detailed discussion of the SFDDD dataset. Pluto will fetch another dataset from the Kaggle website, the Nike shoes dataset.

Nike shoes

The Nike shoes dataset was chosen because it will show different biases.

Like the State Farm photos, there is no algorithm or library to compute the

fairness matrix. We rely on Pluto and your observations.

The Nike, Adidas, and Converse Shoes Images (Nike) dataset contains images in folders; there is no CSV file. The Nike dataset’s description on the Kaggle website is as follows:

“This dataset is ideal for performing multiclass classification with deep neural networks such as CNNs or simpler machine learning classification models. You can use TensorFlow, its high-level API Keras, sklearn, PyTorch, or other deep/machine learning libraries. ”

The author is Iron486, and the license is CC0: Public Domain:

https://creativecommons.org/publicdomain/zero/1.0/.

Since there is no CSV file for Pluto to import into pandas, Pluto has written the build_df_fname(self, start_path) method, where start_path is the directory where the data is stored.

The key code line is the os.walk() function:

code snippet for generating meta data

for root, dirs, files in os.walk(start_path, topdown=False): for name in files:

Pluto will perform the three familiar steps for reviewing the Nike dataset.

They are as follows:

1. fetch data

fname='https://www.kaggle.com/datasets/die9origephit/nike-

adidas-and-converse-imaged'

pluto.fetch_kaggle_dataset(fname)

2. import meta data to Pandas

pluto.df_shoe_data = pluto.build_shoe_fname(

'kaggle/nike-adidas-and-converse-imaged/train')

3. display image batch

x = pluto.draw_batch(pluto.df_shoe_data["fname"], is_shuffle=True,

disp_max=20,

figsize=(18,14))

[image: Image 18]

The output is as follows:

Figure 2.9 – Nike data – 20 randomly selected images

The following is Pluto’s list of data biases observations from Figure 2.9: The shoes are too clean. Where are the muddy or dirty shoes?

The photos are professionally taken. Thus, when the AI-powered app is deployed, people might find their app giving a wrong prediction because their pictures are taken haphazardly.

There is a lack of shoe images in urban, farming, or hiking settings.

Let’s ask Pluto to grab one more image dataset before switching gears and digging into the text dataset.

Grapevine leaves

The Grapevine leaves dataset is the third and last example of a real-world image dataset Pluto will fetch from the Kaggle website. The primary goal is for you to practice downloading datasets and importing the metadata into pandas. Incidentally, Pluto will use the Grapevine leaves dataset to name other types of data biases through observation. He does not rely on defining a fairness matrix through coding because it not yet feasible. Maybe the next level of generative AI will be able to process all the photos in a dataset and deduce the biases.

Here is an excerpt from the Grapevine leaves dataset:

“The main product of grapevines is grapes that are consumed fresh or processed. In addition, grapevine leaves are harvested once a year as a by-product. The species of grapevine leaves are important in terms of price and taste.”

The authors are Koklu M., Unlersen M. F., Ozkan I. A., Aslan M. F., and Sabanci K. , and the license is CC0: Public Domain:

https://creativecommons.org/publicdomain/zero/1.0/.

The filenames in the Grapevine dataset contains a space character in the filename, which may confuse many Python libraries. Thus, Pluto runs a few simple Linux scripts to convert the space into an underscore. The code snippet is as follows:

remove white space from file and directory name

f2 = 'kaggle/grapevine-leaves-image-

dataset/Grapevine_Leaves_Image_Dataset'

!find {f2} -name "* *" -type f | rename 's/ /_/g'

After cleaning up the filenames, Pluto will perform the three familiar steps for fetching, importing, and displaying the Grapevine dataset. The images are in the same folder structure as the Nike photos. Thus, Pluto reuses the same pluto.fetch_df() method:

[image: Image 19]

fetch data

fname='

https://www.kaggle.com/datasets/muratkokludataset/grapevine-leaves-image-dataset'

pluto.fetch_kaggle_dataset(fname)

import to Pandas

pluto.df_grapevine_data=pluto.fetch_df("kaggle/grapevine-leaves-image-dataset/Grapevine_Leaves_Image_Dataset")

display image batch

x = pluto.draw_batch(pluto.df_grapevine_data["fname"], is_shuffle=True,

disp_max=20,

figsize=(18,14))

The output is as follows:

Figure 2.10 – Grapevine data – 20 randomly selected images

The following is Pluto’s list of data biases from Figure 2.10: The photos are too perfect, and undoubtedly, they are uncomplicated to augment and train, but how does the general public use the AI system?

If the winemakers access the AI system through an iPhone, the grapevine leaf pictures they take are nothing like the flawless photos in the dataset. The resulting predictions could be false positives.

Similar to the perfect photo bias, the leaf is flat, and the background is white, which is not common in real-world usage. The training cycle will achieve high accuracy, but it is unsuitable for real-world use.

If the model is trained as-is and deployed, then the resulting AI will have a systemic bias, only being available for lab technicians and not farmers.

Fun challenge

There are thousands of image datasets on the Kaggle website. Pluto challenges you to select, download, display, and list the biases for three different image datasets.

Other than Distracted Drivers, Nike shoes, and Grapevine Leaves, there are more examples in the Python Notebook. However, next, Pluto will move on from biases to text augmentation.

Text biases

By now, you should recognize the patterns for fetching real-world image datasets and importing metadata into pandas. It is the same pattern for text datasets. Pluto will guide you through two sessions and use his power of observation to name the biases. He could employ the latest in generative AI such as OpenAI GPT3 or GPT4 to list the biases in the text. Maybe he will do that later, but for now, he will use his noggin. Nevertheless, Pluto will attempt to write Python code to gain insight into the texts' structures, such as the word count and misspelled words. It is not the fairness matrix but a step in the right direction.

Pluto searches the Kaggle website for the Natural Language Processing (NLP) dataset, and the result consists of over 2,000 datasets. He chooses the Netflix Shows and the Amazon Reviews datasets. Retrieving and viewing the NLP dataset follows the same fetching, importing, and printing steps outlined in the image dataset.

Let’s start with the Netflix data.

Netflix

Pluto reuses the wrapper function to download the data. The command is as follows:

fectch real-world dataset

fname='https://www.kaggle.com/datasets/infamouscoder/dataset-Netflix-shows'

pluto.fetch_kaggle_dataset(fname)

The Netflix dataset’s description from the Kaggle website is as follows:

“The raw data is web scrapped through Selenium. It contains unlabelled text data of around 9,000 Netflix shows and movies, along with full details such as cast, release year, rating, description, and so on.”

The author is InFamousCoder, and the license is CC0: Public Domain:

https://creativecommons.org/publicdomain/zero/1.0/.

The second step is to import the data into a pandas DataFrame. The Netflix data comes with a CSV file; therefore, Pluto reuses the fetch_df() method to import the Netflix reviews into the DataFrame and displays the first three rows, as follows:

import metadata into Pandas

pluto.df_netflix_data = pluto.fetch_df(

'kaggle/dataset-Netflix-shows/Netflix_titles.csv')

pluto.df_netflix_data[['show_id',

'type', 'title', 'director', 'cast']].head(3)

[image: Image 20]

The result is as follows:

Figure 2.11 – Netflix data, left columns

 Figure 2.11 displays the Netflix metadata. The first two steps do not require Pluto to write new code, but Pluto has to write code for the third step, which is to display the movie’s title and description. The goal is for Pluto to find any biases in the movie description.

Pandas made writing the display_batch_text() wrapper method effortless. The method has no loops, index counter, shuffle algorithm, or if-else statements. There are just three lines of code, so Pluto displays the code in its entirety here:

define wrapper function

def print_batch_text(self, df_orig,

disp_max=10,

[image: Image 21]

cols= ["title", "description"]):

df = df_orig[cols]

with pandas.option_context("display.max_colwidth", None): display(df.sample(disp_max))

return

Pluto displays the Netflix movies’ titles and descriptions in batch using the following code:

print text batch

pluto.print_batch_text(pluto.df_netflix_data)

The result is as follows:

Figure 2.12 – Netflix movie title and description

Fun fact

Every time Pluto runs the print_batch_text() wrapper function, movie titles and descriptions are displayed. It would be best to run the wrapper function repeatedly to gain more insight into the data.

 Figure 2.12 displays a text batch. Pluto has read hundreds of movie descriptions and found no apparent bias. It is a job for a linguist. In general, the English language can have the following biases:

Religious bias

Gender bias

Ethnicity bias

Racial bias

Age bias

Mental health bias

Former felon bias

Elitism bias

LGBTQ bias

Disability bias

Pluto is not a linguist, but there are other data attributes could contribute to language biases, such as word count and misspelled words. In other words, are the Netflix movie descriptions all relatively the same length? And are there many misspelled words?

This is an attempt to code a small fraction of the fairness matrix. When using a pandas DataFrame, the count_words() method has one line of code. It is as follows:

attempt at fairness matrix, count words

def count_word(self, df, col_dest="description"): df['wordc'] = df[col_dest].apply(lambda x: len(x.split()))

return

[image: Image 22]

Pluto counted the number of words in the Netflix movie and double-checked the result by using the following code:

count words and dislay result

pluto.count_word(pluto.df_netflix_data)

pluto.print_batch_text(pluto.df_netflix_data,

cols=['description','wordc'])

The result is as follows:

Figure 2.13 – Movie description word count

 Figure 2.13 displays the word count for each record. The next step is to plot the word count using the BoxPlot and Histogram graphs. When using a pandas DataFrame, drawing graphs is relatively easy. The two key code lines in the draw_word_count() function are as follows:

code snippet for draw word count

df.boxplot(ax=pic[0],

 column=[wc],

vert=False,

color="black")

df[wc].hist(ax=pic[1],

color="cornflowerblue",

alpha=0.9)

The full function code can be found in the Python Notebook. Pluto draws the BoxPlot and Histogram graphs with the following code:

draw word count

pluto.draw_word_count(pluto.df_netflix_data)

The result is as follows:

[image: Image 23]

Figure 2.14 – Netflix movie description word count

As shown in Figure 2.14, the BoxPlot and Histogram plots show that the distribution is even. There are a few outliers, the mean is 23.88, and the

bulk of the Netflix movie descriptions are between 22 and 25 words. Thus, there is no bias here. Pluto investigates the misspelled words next.

Pluto uses the pip command to install the pyspellchecker library and import the spellchecker class. The check_spelling() method takes the pandas DataFrame and the designated column as parameters. The function key code lines are as follows:

code snippet for check spelling

df["misspelled"] = df[col_dest].apply(

lambda x: spell.unknown(self._strip_punc(x).split()))

df["misspelled_count"] = df["misspelled"].apply(

lambda x: len(x))

Pluto checks the Netflix movie descriptions' spelling and uses the print_batch_text() function to display the result. The code is as follows:

check spelling

pluto.check_spelling(pluto.df_netflix_data)

print batch text withh correct spelling

pluto.print_batch_text(pluto.df_netflix_data,

cols=['description', 'misspelled'])

The result is as follows:

[image: Image 24]

Figure 2.15 – Netflix misspelled words

 Figure 2.15 displays the misspelled words. Pluto displays this data in graphs by reusing the same draw_word_count() function, as follows:

draw word count

pluto.draw_word_count(pluto.df_netflix_data,

wc='misspelled_count')

The result is as follows:

[image: Image 25]

Figure 2.16 – Netflix misspelled words graph

The misspelled words are mostly person or product names, as shown in Figure 2.16. The average is 0.92 per Netflix movie description and there are

only a handful of outliners. Without a linguist’s help, Pluto can’t find any biases in the Netflix movie description. Let’s move on to the Amazon reviews and see if we can find any biases.

Amazon reviews

The Amazon reviews dataset is the last real-world text dataset to download for this chapter. Pluto follows the same pattern, and you should now be comfortable with the code and ready to download any real-world datasets from the Kaggle website. In addition, as with the Netflix data, Pluto will use his powerful insight, as a digital dog, to find the biases in the text. He will use the same techniques and library to programmatically find the word count and misspelled words.

Pluto will not explain how the code is written for the Amazon reviews because he re-used the same functions in the Netflix data. The complete code can be found in the Python Notebook. The bare code snippet is as follows:

fetch data

pluto.fetch_kaggle_dataset(

'https://www.kaggle.com/datasets/tarkkaanko/amazon')

import to Pandas

pluto.df_amazon_data = pluto.fetch_df(

'kaggle/amazon/amazon_reviews.csv')

count words and misspell

pluto.count_word(pluto.df_amazon_data,

col_dest='reviewText')

pluto.check_spelling(pluto.df_amazon_data,

col_dest='reviewText')

The data description of the Amazon reviews dataset on Kaggle is as follows:

“One of the most important problems in eCommerce is the correct calculation of the points given to after-sales products. The solution to this problem is to provide greater customer satisfaction for the eCommerce site, product prominence for sellers, and a seamless shopping experience for buyers. Another problem is the correct ordering of the comments given to

the products. The prominence of misleading comments will cause both financial losses and customer losses.”

The author is Tarık kaan Koç, and the license is CC BY-NC-SA 4.0:

https://creativecommons.org/licenses/by-nc-sa/4.0/.

Pluto prints the batch using the following code:

display misspelled words

pluto.print_batch_text(pluto.df_amazon_data,

cols=['reviewText','misspelled'])

The result is as follows:

[image: Image 26]

Figure 2.17 – Amazon reviews misspelled words

Pluto has chosen to display two data columns in the print_batch function, as shown in Figure 2.17, but there are 12 data columns in the dataset. They are as follows:

reviewerName

overall

reviewText

reviewTime

day_diff

helpful_yes

helpful_no

total_vote

score_pos_neg_diff

score_average_rating

wilson_lower_bound

Pluto draws the word counts and the misspelled words using the following code:

display word count

pluto.draw_word_count(pluto.df_amazon_data)

draw misspelled words

pluto.draw_word_count(pluto.df_amazon_data,

wc='misspelled_count')

The result for the word counts is as follows:

[image: Image 27]

Figure 2.18 – Amazon reviews word count

Here is the graph for the misspelled words:

[image: Image 28]

Figure 2.19 – Amazon reviews misspelled words graph

Pluto notices that the biases in the Amazon reviews, as shown in Figures 2.17, 2.18, and 2.19, are as follows:

There are more grammatical errors in the Amazon reviews than in the Netflix movie description. Thus, there could be bias against well-written reviews.

There are many more technical product names and jargon in the reviews. Therefore, there could be bias against non-technical reviewers.

There are many outlines. The mean is 50.46 words per review, with the bulk feedback between 20 and 180 words. It is worth digging deeper using other columns, such as helpful_yes, total_vote, and

score_pos_neg_diff, to see if there is bias in the review length per category.

The Amazon reviews have more misspelled words than the Netflix movie description, reinforcing the well-written reviewer’s bias.

Before jumping into the summary, here is a fun fact.

Fun fact

Cathy O’Neil’s book, Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy, published in 2016, describes many biases in algorithms and AI, and it is a must-read for data scientists and college students. The two prominent examples are an accomplished teacher fired by a computer algorithm and a qualified college student rejected by the candidate screening software.

Summary

This chapter was not a typical one in this book because we discussed more theory than practical data augmentation techniques. At first, the link between data biases and data augmentation seems tenuous. Still, as you begin to learn about computational, human, and systemic biases, you see the strong connection because they all share the same goal of ensuring successful ethical AI system usage and acceptance.

In other words, data augmentation increases the AI’s prediction accuracy while reducing the data biases in augmenting, ensuring the AI forecast has

fewer false-negative and true-negative outcomes.

The computational, human, and systemic biases are similar but are not mutually exclusive. However, providing plenty of examples of real-world biases and observing three real-world image datasets and two real-world text datasets made these biases easier to understand.

The nature of data bias in augmenting makes it challenging to compute biases programmatically. However, you learned to write Python code for the fairness matrix in the text dataset using word counts and misspelled word techniques. You could use generative AI, such as Stable Diffusion or DALL-E, to automatically spot the biases in the photo and use OpenAI GPT3, GPT4, or Google Bard to compute the biases in text data.

Unfortunately, generative AI is outside the scope of this book.

Initially, Pluto tended to go slow with step-by-step explanations, but as you learned, he shortened the justification and showed only the bare minimum code. The complete code can be found in the Python Notebook.

Most of the Python code is devoted to teaching you how to download real-world datasets from the Kaggle website and importing the metadata into pandas. The later chapters will reuse these helper and wrapper functions.

Throughout this chapter, there were fun facts and fun challenges. Pluto hopes you will take advantage of these and expand your experience beyond the scope of this chapter.

Pluto looks forward to Chapter 3, where he will play with image

augmentation in Python.

Part 2: Image Augmentation

This part includes the following chapters:

 Chapter 3, Image Augmentation for Classification

 Chapter 4, Image Augmentation for Segmentation

Image Augmentation for

Classification

Image augmentation in machine learning (ML) is a stable diet for increasing prediction accuracy, especially for the image classification domain. The causality logic is linear, meaning the more robust the data input, the higher the forecast accuracy.

Deep learning (DL) is a subset of ML that uses artificial neural networks to learn patterns and forecast based on the input data. Unlike traditional ML

algorithms, which depend on programmer coding and rules to analyze data, DL algorithms automatically learn, solve, and categorize the relationship between data and labels. Thus, expanding the datasets directly impacts DL

predictions on new insights that the model has not seen in the training data.

DL algorithms are designed to mimic the human brain, with layers of neurons that process information and pass it on to the next layer. Each layer of neurons learns to extract increasingly complex features from the input data, allowing the network to identify patterns and make predictions with increasing accuracy.

DL for image classification has proven highly effective in various industries, ranging from healthcare, finance, transportation, and consumer products to social media. Some examples include identifying 120 dog breeds, detecting cervical spine fractures, cataloging landmarks, classifying Nike shoes, spotting celebrity faces, and separating paper and plastic for recycling.

There is no standard formula to estimate how many images you need to achieve a designer prediction accuracy for image classification. Acquiring additional photos may not be a viable option because of cost and time. On the other hand, image data augmentation is a cost-effective technique that increases the number of photos for image classification training.

This chapter consists of two parts. First, you will learn the concepts and techniques of augmentation for image classification, followed by hands-on Python coding and a detailed explanation of the image augmentation techniques.

Fun fact

The image dataset is typically broken into 75% training, 20% validation, and 5% testing in the image classification model. Typically, the images allotted for training are augmented but outside the validation and testing set.

The two primary approaches for image augmentation are pre-processing and dynamic. They share the same techniques but differ when augmentation is done. The pre-processing method creates and saves the augmented photos in disk storage before training, while the dynamic method expands the input images during the training cycle.

In Chapter 2, you learned about data biases, and it is worth remembering

that image augmentation will increase the DL model’s accuracy and may also increase the biases.

In addition to biases, the other noteworthy concept is safety. It refers to the distortion magnitude that does not alter the original image label post-transformation. Different photo domains have different safety levels. For example, horizontally flipping a person’s portrait photo is an acceptable augmentation technique, but reversing the hand gesture images in sign language is unsafe.

By the end of this chapter, you will have learned the concepts and hands-on techniques in Python coding for classification image augmentation using real-world datasets. In addition, you will have examined several Python open source libraries for image augmentation. In particular, this chapter covers the following topics:

Geometric transformations

Photometric transformations

Random erasing

Combining

Reinforcing your learning through Python code

Geometric transformations are the primary image augmentation technique used commonly across multiple image datasets. Thus, this is a good place to begin discussing image augmentation.

Geometric transformations

Geometric transformation alters the photo’s geometry, which is done by flipping along the X-axis or Y-axis, cropping, padding, rotating, warping, and translation. Complex augmentation uses these base photo-altering techniques. While working with geometric transformations, the distortion magnitude has to be kept to a safe level, depending on the image topic.

Thus, no general formula governing geometric transformation applies to all photos. In the second half of this chapter, the Python coding section, you and Pluto will download real-world image datasets to define the safe level for each image set.

The following techniques are not mutually exclusive. You can combine horizontal flipping with cropping, resizing, padding, rotating, or any combination thereof. The one constraint is the safe level for distortion.

In particular, you will learn the following techniques:

Flipping

Cropping

Resizing

Padding

Rotating

Translation

Noise injection

Let’s start with flipping.

Flipping

The two flipping types are the horizontal Y-axis and the vertical X-axis.

Turning the photos along the Y-axis is like looking in a mirror. Therefore, it can be used for most types of pictures except for directional images such as street signs. There are many cases where rotating along the X-axis is not safe, such as landscape or cityscape images where the sky should be at the top of the picture.

It is not an either-or proposition, and the image can use horizontal and vertical flips, such as aerial photos from a plane. Therefore, flipping is generally safe to use. However, some pictures are not safe for either transformation, such as street signs, where any rotation changes the integrity of the original label post-translation.

Later in this chapter, you will learn how to flip images using Python code with an image augmentation library, but for now, here is a teaser demonstration. The function’s name is pluto.draw_image_teaser_flip(); the explanation will come later.

The image output is as follows:

[image: Image 29]

Figure 3.1 – Image vertical flip

Flipping keeps all the image content intact. However, the following technique, known as cropping, loses information.

Cropping

Cropping an image involves removing the edges of the picture. Most convolutional neural networks (CNNs) use a square image as input.

Therefore, photos in portrait or landscape mode are regularly chopped to a square image. In most cases, the removal of the edges is based on the center of the picture, but there is no rule implying it has to be the center of the image.

The photo’s center point is 50% of the width and 50% of the height.

However, in image augmentation, you can choose to move the cropping center to 45% of the width and 60% of the height. The cropping center can vary, depending on the photo’s subject. Once you have identified the safe range for moving the cropping center, you can try dynamically cropping the

[image: Image 30]

images per training epoch. Thus, every training epoch has a different set of photos. The effect is that the ML model will likely not overfit and gives higher accuracy from having more images.

The pluto.draw_image_teaser_crop() function is another teaser demonstration. Moving forward, I will only display the teaser images for some augmentation methods since you will learn about all of them in more depth by using Python code later in this chapter.

The output image for center cropping is as follows:

Figure 3.2 – Image center crop

Cropping is not the same as resizing an image, which we will discuss next.

Resizing

Resizing can be done by keeping the aspect ratio the same or not: Zooming is the same as enlarging, cropping, and maintaining the same aspect ratio.

[image: Image 31]

Squishing is the same as enlarging or shrinking and changing the original aspect ratio. The safe level for zooming, squishing, or other resizing techniques depends on the image category.

The pluto.draw_image_teaser_resize() function is a fun demonstration of resizing an image using the squishing mode. The output is as follows: Figure 3.3 – Image resizing with squishing mode

When resizing a photo and not keeping the original aspect ratio, you need to pad the new image. There are different methods for padding.

Padding

Padding involves filling the outer edge of the canvas that is not an image.

There are three popular methods for padding:

Zero padding refers to padding the image with black, white, gray, or Gaussian noise

Reflection padding mirrors the padding area with the original image

[image: Image 32]

Border padding involves repeating the borderline in the padding section

Padding is used in combination with cropping, resizing, translation, and rotating. Therefore, the safe proportion depends on cropping, resizing, and rotating.

Rotating

Rotating an image involves turning the picture clockwise or counterclockwise. The measurement of turning is by a degree and clockwise direction. Therefore, turning 180 degrees is the same as flipping vertically, while rotating 360 degrees returns the photo to its original position.

General rotating operates on the X-Y plane, whereas turning in the Z plane is known as tilting. Skewing or shearing involves rotating on all three planes – that is, X, Y, and Z. As with most geometric transformations, rotating is a safe operation with a set limit for some image datasets and not for others.

The pluto.draw_image_teaser_rotate() function is a fun demonstration of rotating an image with reflection padding mode. The output is as follows:

Figure 3.4 – Image rotating and reflection padding mode

Similar to rotating is shifting the images, which leads to the next technique, known as translation.

Translation

The translation method shifts the image left or right along the X-axis or up or down along the Y-axis. It uses padding to backfill the negative space left by shifting the photo. Translation is beneficial for reducing center image biases, such as when people’s portraits are centered in the picture. The photo’s subject will dictate the safe parameters for how much to move the images.

The next geometric transformation is different from the ones we’ve talked about so far because noise injection reduces the photo’s clarity.

Noise injection

Noise injection adds random black, white, or color pixels to a picture. It creates a grainy effect on the original image. Gaussian noise is a de facto standard for generating natural noises in a photo. It is based on the Gaussian distribution algorithm developed by mathematician Carl Friedrich Gauss in the 1830s.

The pluto.draw_image_teaser_noise() function is a fun demonstration of noise injection using Gaussian mode. The output is as follows:

[image: Image 33]

Figure 3.5 – Image noise injection using Gaussian mode

Fun challenge

Here is a thought experiment: can you think of other geometric image transformations? Hint: use the Z-axis, not just the X-axis and the Y-axis.

In the second part of this chapter, Pluto and you will discover how to code geometric transformations, such as flipping, cropping, resizing, padding, rotation, and noise injection, but there are a few more image augmentations techniques to learn first. The next category is photometric transformations.

Photometric transformations

Photometric transformations are also known as lighting transformations.

An image is represented in a three-dimensional array or a rank 3 tensor, and the first two dimensions are the picture’s width and height coordinates for each pixel position. The third dimension is a red, blue, and green (RGB) value ranging from zero to 255 or #0 to #FF in hexadecimal. The equivalent of RGB in printing is cyan, magenta, yellow, and key (CMYK). The other

popular format is hue, saturation, and value (HSV). The salient point is that a photo is a matrix of an integer or float when normalized.

Visualizing the image as a matrix of numbers makes it easy to transform it.

For example, in HSV format, changing the saturation value to zero in the matrix will convert an image from color into grayscale.

Dozens of filters alter the color space characteristics, from the basics to exotic ones. The basic methods are darkened, lightened, sharpened, blurring, contrast, and color casting. Aside from the basics, there are too many filter categories to list here, such as retro, groovy, steampunk, and many others. Furthermore, photo software, such as Adobe Photoshop, and online image editors create new image filters frequently.

In particular, this section will cover the following topics: Basic and classic

Advanced and exotic

Let’s begin with basic and classic.

Basic and classic

Photometric transformations in image augmentation are a proven technique for increasing AI model accuracy. Most scholarly papers, such as A comprehensive survey of recent trends in deep learning for digital images augmentation, by Nour Eldeen Khalifa, Mohamed Loey, and Seyedali Mirjalili, published by Artificial Intelligence Review on September 4, 2021, use the classic filters exclusively because code execution is fast. There are many open source Python libraries for the classic filters, which Pluto and you will explore later in this chapter.

In particular, you will learn the following classic techniques: Darken and lighten

[image: Image 34]

Color saturation

Hue shifting

Color casting

Contrast

Let’s begin with the most common technique: the darken and lighten filter.

Darken and lighten

Lightening an image means increasing the brightness level, while lowering the brightness value means darkening an image. In Python code, a photo is an integer or float values matrix, and once converted into HSV format, raising or lowering the value (V) in the HSV matrix increases or decreases the picture’s brightness level.

When it is time for you to write the functions for lightening or darkening the image for the Pluto object, you will use a Python image library to do the heavy lifting, but it is not hard to write the code from scratch. The safe range for the brightness value depends on the image subject and label target.

The pluto.draw_image_teaser_brightness() function is a fun

demonstration of darkening an image. The output is as follows: Figure 3.6 – Image brightness, darken mode

Similarly, color saturation is also easy to code in Python.

Color saturation

Color saturation involves increasing or decreasing the intensity of the color in a photo. By reducing the saturation values close to zero, the image becomes a grayscale image. Inversely, the picture will show a more intense or vibrant color when raising the saturation value.

Similar to the brightness level coding, manipulating the picture’s saturation (S) value in the HSV matrix gives the desired effects. The safe range for color saturation depends on the image subject and label target.

So far, we’ve looked at the S and the V in HSV, but what does the H value do? It is for hue shifting.

Hue shifting

Shifting the hue (H) value in the Python image matrix in HSV format alternates the photo’s color. Typically, a circle represents the hue values.

Thus, the value starts at zero and ends at 360 degrees. Red is at the top of the rotation, beginning with zero, followed by yellow, green, cyan, blue, and magenta. Each color is separated by 60 degrees. Therefore, the last color, magenta, starts at 310 and ends at 360 degrees.

Hue shifting is an excellent image editing filter, but for AI image augmentation, it is not helpful because it distorts the image beyond the intended label. For example, suppose you are developing an AI model to classify different species of chameleons. In that case, the hue-switching technique is sufficient for image augmentation. Still, if your project is to differentiate cats and fluffy furball toys, it might lead to false positives because you would get fluorescent pink cats.

The pluto.draw_image_teaser_hue() function is a fun demonstration of hue shifting. The output is as follows:

[image: Image 35]

Figure 3.7 – Image hue shifting

Similar to hue shifting is color casting.

Color casting

Color casting is also known as color tinting. It is when the white color is not balanced or is inaccurate. The tint colors are commonly red, green, or blue (RGB). In Python, tinting a photo is as easy as altering the RGB value in the image matrix. There is the same concern for the safe range as in the hue-shifting filter. In other words, color casting has limited use in AI image augmentation.

There is no formal definition of which filters are basic or classic and which are advanced and exotic. Hence, we have chosen to look at the contrast filter for our final example of classic photometric transformations.

Contrast

Contrast is the difference in luminance or color that distinguishes objects in a picture from one another. For example, most photographers want a high contrast between a person in the foreground concerning the background.

Usually, the foreground object is brighter and in sharper focus than the background. The safe range for the contrast value depends on the image subject and label target.

Pluto and you will explore the contrast filter and all other classic photometric transformations using Python code in the second half of this chapter. The following section will cover advanced and exotic filters.

Advanced and exotic

The advanced or exotic techniques have no Python library for implementing these filters in data augmentation. Online photo editing websites and desktop software frequently create new exotic filters monthly.

If you review the filters section of Adobe Photoshop or many online photo

editing websites, such as www.fotor.com, you will find dozens or hundreds

of filter options. Specialized filters for image subjects include people portraits, landscapes, cityscapes, still life, and many others. Filters are also categorized by styles, such as retro, vintage, steampunk, trendy, mellow, groovy, and many others.

The exotic filters are not featured in scholarly papers partly due to the lack of available Python libraries and the high CPU or GPU resource time to perform these operations during the training cycle. Nevertheless, in theory, exotic filters are excellent techniques for image augmentation.

Fun challenge

Let’s do a thought experiment. Can generative AI, like stable diffusion or DALL-E, create new images for augmentation? Generative AI can create hundreds or thousands of images from input text. For example, let’s say you’ve been tasked with developing an AI for identifying a unicorn, pegasus, or minotaur; is it more difficult to find images of those mythical creatures in print or real life? Generative AI can do this, but is it a practical technique? Hint: think about static versus dynamic augmentation disk space and time.

Photometric and geometric transformations manipulate photos, but random erasing adds new elements to a picture.

Random erasing

Random erasing selects a rectangle region in an image and replaces or overlays it with a gray, black, white, or Gaussian noise pixels rectangle. It is counterintuitive to why this technique increases the AI model’s forecasting accuracy.

The strength of any ML model, especially CNN, is in predicting or forecasting data that has not been seen in the training or validating stage.

Thus, dropout, where randomly selected neurons are ignored during training, is a well-proven method to reduce overfitting and increase accuracy. Therefore, random erasing has the same effect as increasing the dropout rate.

A paper called Random Erasing Data Augmentation, which was published on November 16, 2017, by arXiv, shows how random erasing increases accuracy and reduces overfitting in a CNN-based model. The paper’s authors are Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang from the Cognitive Science Department, at Xiamen University, China, and the University of Technology Sydney, Australia.

Typically, the random erasing rectangle region, also known as the cutout, is filled with random pixels using Gaussian randomization. The safe range for random erasing depends on the image subject and label target.

Fun fact

There is one creative example of using random erasing in image augmentation that reduces biases. In a self-driving automobile system, one of the image classification models is to identify and classify street signs.

The AI model was trained with clear and pristine street sign photos, so the AI model was biased against the real-world pictures of street signs in poor neighborhoods in the USA, where street signs are defaced with graffiti and abused. Randomly adding cutouts of graffiti, paint, dirt, and bullet holes increased the model’s accuracy and reduced overfitting and biases against poor neighborhood street signs.

Depending on the image dataset subject, random erasing, photometric, and geometric transformations can be mixed and matched. Let’s discuss this in detail.

Combining

The techniques or filters in geometric transformations can be readily combined with most image topics. For example, you can mix horizontal flip, cropping, resizing, padding, rotation, translation, and noise injection for many domains, such as people, landscapes, cityscapes, and others.

In addition, taking landscape as a topic, you can combine many filters in photometric transformations, such as darkening, lightening, color saturation, and contrast. Hue shifting and color casting may not apply to landscape photos. However, advanced photographic transformation filters, such as adding rain or snow to landscape images, are acceptable.

There’s more: you can add random erasing to landscape images. As a result, 1,000 landscape images may increase to 200,000 photos for training. That is the power of image augmentation.

Fun challenge

Here is a thought experiment: should you augment the entire image dataset or only a segment?

Data augmentation can generate hundreds of thousands of new images for training, increasing AI prediction accuracy by decreasing the overfitting problem. But what if you also augmented the validation and testing dataset?

Hint: think about real-world applications, DL generalization, and false negatives and false positives.

So far, we have discussed various image augmentation filters and techniques. The next step is for you and Pluto to write Python code to reinforce your understanding of these concepts.

Reinforcing your learning through

Python code

We will pursue the same approach as in Chapter 2. Start by loading the

data_augmentation_with_python_chapter_3.ipynb file in Google Colab or your chosen Jupyter Notebook or JupyterLab environment. From this point onward, the code snippets will be from the Python Notebook, which contains all the functions.

This chapter’s coding lessons topics are as follows:

Pluto and the Python Notebook

Real-world image dataset

Image augmentation library

Geometric transformations

Photometric transformations

Random erasing

Combining

The next step is to download, set up, and verify that Pluto and the Python Notebook are working adequately.

Pluto and the Python Notebook

Before loading Pluto from Chapter 2, we must retrieve him by cloning this

book’s GitHub repository. Using the Python Notebook’s %run magic command, we can invoke Pluto. If you improved or hacked Pluto, load that file. You should review Chapter 2 if these steps are not familiar to you.

Fun fact

The startup process for coding is the same for every chapter. Pluto only displays the essential code snippets in this book, and he relies on you to review the complete code in the Python Notebook.

Use the following code to clone the Python Notebook and invoke Pluto:

clone the book repo.

f = 'https://github.com/PacktPublishing/Data-Augmentation-

with-Python'

!git clone {f}

invoke Pluto

%run 'Data-Augmentation-with-Python/pluto/pluto_chapter_2.py'

The output will be similar to the following:

---------------------------- : ---------------------------

Hello from class : <class

'__main__.PacktDataAug'> Class: PacktDataAug

Code name : Pluto

Author is : Duc Haba

---------------------------- : ---------------------------

Double-check that Pluto has loaded correctly by running the following code in the Python Notebook:

display system and libraries version

pluto.say_sys_info()

The output will be as follows or something similar, depending on your system:

---------------------------- : ---------------------------

System time : 2022/09/18 06:07

Platform : linux

Pluto Version (Chapter) : 2.0

Python version (3.7+) : 3.7.13 (default, Apr 24 2022,

01:04:09) [GCC 7.5.0]

PyTorch (1.11.0) : actual: 1.12.1+cu113

Pandas (1.3.5) : actual: 1.3.5

PIL (9.0.0) : actual: 7.1.2

Matplotlib (3.2.2) : actual: 3.2.2

 CPU count : 2

CPU speed : NOT available

---------------------------- : ---------------------------

Pluto has verified that the Python Notebook is working correctly, so the next step is downloading real-world image datasets from the Kaggle website.

Real-world image datasets

In Chapter 2, Pluto learned how to download thousands of real-world datasets from the Kaggle website. For this chapter, he has selected six image datasets to illustrate different image augmentation techniques. Still, you can substitute or add new Kaggle image datasets by passing the new URLs to the code in the Python Notebook.

Fun challenge

Download two additional real-world datasets from the Kaggle website.

Pluto likes to play fetch, so it is no problem for it to fetch new datasets.

Hint: go to https://www.kaggle.com/datasets and search for image classification. Downloading additional real-world data will further reinforce your understanding of image augmentation concepts.

Pluto has chosen six image datasets based on the challenges each topic brings to bear on augmentation techniques. In other words, one concept may be acceptable for one subject but not for another. In particular, the six image datasets are as follows:

Covid-19 image dataset

Indian people

Edible and poisonous fungi

Sea animals

Vietnamese food

Mall crowd

[image: Image 36]

Fun fact

The code for downloading these six real-world datasets from the Kaggle website looks repetitive. It is easy by design because Pluto worked hard to

create reusable methods in Chapter 2. He wants it to be easy so that you can

download any real-world dataset from the Kaggle website.

Let’s start with the Covid-19 data.

Covid-19 image dataset

Medical is a popular category for AI image predictive models. Therefore, Pluto selected the Covid-19 Image Dataset. He fetched the pictures and

made the necessary pandas DataFrame using the methods shown in Chapter

 2. Note that the complete code is in the Python Notebook.

The following commands fetch and load the data into pandas:

fetch image data

pluto.fetch_kaggle_dataset('https://www.kaggle.com/datasets/p ranavraikokte/covid19-image-dataset')

import to Pandas data frame

f = 'kaggle/covid19-image-dataset/Covid19-dataset/train'

pluto.df_covid19 = pluto.make_dir_dataframe(f)

The first three records of the pandas DataFrame are as follows:

Figure 3.8 – The first three rows of the pandas DataFrame On the Kaggle website, the data’s context is as follows:

“Helping Deep Learning and AI Enthusiasts like me to contribute to improving Covid-19 detection using just Chest X-rays. It contains around 137 cleaned images of Covid-19 and 317 containing Viral Pneumonia and Normal Chest X-Rays structured into the test and train directories. ”

This citation is from the University of Montreal, and the collaborator listed is Pranav Raikote (owner), license: CC BY-SA 4.0:

https://choosealicense.com/licenses/cc-by-sa-4.0.

Now that Pluto has downloaded the Covid-19 data, it will start working on the People dataset.

Indian People

The second typical category in image prediction or classification is people.

Pluto has chosen the Indian People dataset. The following code snippet from the Python Notebook fetches and loads the data into pandas:

fetch image data

pluto.fetch_kaggle_dataset('https://www.kaggle.com/datasets/s inhayush29/indian-people')

import to Pandas DataFrame

f = 'kaggle/indian-people/Indian_Train_Set'

pluto.df_people = pluto.make_dir_dataframe(f)

On the Kaggle website, there is no description of the dataset. It’s not uncommon to get a dataset without an explanation or goals and be asked to augment it. The collaborator listed is Ayush Sinha (owner), license: None, Visible to the public.

The typical usage for people data is to identify or classify age, sex, ethnicity, emotional sentiment, facial recognition, and many more.

Fun fact

There are controversial image classification AI systems, such as those for predicting people as criminals or not criminals, forecasting worthiness to society, identifying sexual orientation, and selecting immigrants or citizens.

However, other creative uses include identifying a potential new whale – a super high casino spender from a casino installing cameras in the lobby and feeding them to an AI.

Now, let’s look at the fungi data.

Edible and poisonous fungi

The third most often used topic for image classification is safety, such as distracted drivers, poisonous snakes, or cancerous tumors. Pluto found the real-word Edible and Poisonous Fungi dataset on the Kaggle website. The following code snippet from the Python Notebook fetches and loads the data into pandas:

fetch image data

pluto.fetch_kaggle_dataset('https://www.kaggle.com/datasets/m arcosvolpato/edible-and-poisonous-fungi')

import into Pandas data frame

f = 'kaggle/edible-and-poisonous-fungi'

pluto.df_fungi = pluto.make_dir_dataframe(f)

On the Kaggle website, the description is as follows:

“We created this dataset as part of our school’s research project. As we didn’t find something similar when we started, we decided to publish it here so that future research with mushrooms and AI can benefit from it. ”

The collaborator listed is Marcos Volpato (owner), license: Open Data Commons Open Database License (ODbL):

https://opendatacommons.org/licenses/odbl/1-0/.

Now, let’s look at the sea animals data.

Sea animals

The fourth theme is nature. Pluto selected the Sea Animals Image Dataset.

The following commands fetch and load the data into pandas:

fetch image data

pluto.fetch_kaggle_dataset('https://www.kaggle.com/datasets/v encerlanz09/sea-animals-image-dataste')

import to Pandas data frame

f = 'kaggle/sea-animals-image-dataste'

pluto.df_sea_animal = pluto.make_dir_dataframe(f)

The Kaggle website’s description for this dataset is as follows:

“Most life forms began their evolution in aquatic environments. The oceans provide about 90% of the world’s living space in terms of volume. Fish, which are only found in water, are the first known vertebrates. Some of these transformed into amphibians, which dwell on land and water for parts of the day. ”

The collaborators listed are Vince Vence (owner), license: Other—

Educational purposes and Free for Commercial Use (FFCU):

https://www.flickr.com/people/free_for_commercial_use/.

Next, we’ll look at food data.

Vietnamese food

The fifth widespread subject for image classification is food. Pluto found the 30VNFoods – A Dataset for Vietnamese Food Images Recognition dataset. The following commands fetch and load the data into pandas:

fetch image data

pluto.fetch_kaggle_dataset('https://www.kaggle.com/datasets/q uandang/vietnamese-foods')

import to Pandas DataFrame

f = 'kaggle/vietnamese-foods/Images/Train'

pluto.df_food = pluto.make_dir_dataframe(f)

The Kaggle website’s description is as follows:

“This paper introduces a large dataset of 25,136 images of 30 popular Vietnamese foods. Several machine learning and deep learning image classification techniques have been applied to test the dataset, and the results were compared and reported. ”

The collaborators listed are Quan Dang (owner), Anh Nguyen Duc Duy (editor), Hoang-Nhan Nguyen (viewer), Phuoc Pham Phu (viewer), and Tri Nguyen (viewer), license: CC BY-SA 4.0:

https://choosealicense.com/licenses/cc-by-sa-4.0.

Now, let’s move on to mall crowd data.

Mall crowd

Pluto chose the sixth and last dataset for the creative use of AI image classification – the Mall - Crowd Estimation dataset. The following code snippet from the Python Notebook fetches and loads the data into pandas:

fetch image data

pluto.fetch_kaggle_dataset('https://www.kaggle.com/datasets/f erasoughali/mall-crowd-estimation')

import to Pandas DataFrame

f = 'kaggle/mall-crowd-estimation/mall_dataset/frames'

pluto.df_crowd = pluto.make_dir_dataframe(f)

The Kaggle website’s description is as follows:

“The mall dataset was collected from a publicly accessible webcam for crowd counting and profiling research.”

The collaborator listed is Feras (owner), license: None, Visible to the public.

Fun challenge

Refactor the code provided and write one function that downloads all six datasets. Hint: put the six Kaggle data URLs into an array. Pluto does not write the uber-big method because he focuses on making the augmentation

[image: Image 37]

techniques easier to understand rather than writing compact code that might obfuscate the meaning.

After downloading all six datasets, Pluto must draw an image batch.

Drawing an image batch

Let’s look at the pictures in the six datasets. Pluto will take samples from the pandas DataFrame and use the draw_batch() function defined in

 Chapter 2.

The output for two Covid-19, two people, two fungi, two sea animals, one food, and one mall crowd picture are as follows:

Figure 3.9 – Six image datasets

Pluto has downloaded plenty of real-world pictures, so the next step is selecting an image augmentation library.

Image augmentation library

There are many open source Python image augmentation and processing libraries. Most libraries have filters for geometric and photometric

transformations. In addition, a few libraries have specialized functions for particular image topics.

Pluto will cover only some of these libraries. The most popular libraries are Albumentations, Fast.ai, Pillow (PIL), OpenCV, scikit-learn, Mahotas, and pgmagick:

Albumentations is a fast and highly customizable image augmentation Python library. It has become the de facto standard for research areas related to computer vision and DL. Albumentations efficiently implements over 70 varieties of image transform operations optimized for performance. Albumentations’ substantial benefit is broad integration with many DL frameworks. It was introduced in 2019. It can

be found on GitHub at https://github.com/albumentations-

team/albumentations.

Fast.ai is a best-of-class for DL and AI library and framework. It was founded in 2016 by Jeremy Howard and Rachel Thomas to democratize DL. Fast.ai has extensive built-in functions for image augmentation.

Furthermore, its image augmentation operations use GPU, so it is possible to perform dynamic image augmentation during the training cycle. In other words, because of the GPU, it is the best performance image augmentation library in the market. It can be found on GitHub at

https://github.com/fastai.

Pillow is a friendly modern fork of the Python Imaging Library (PIL) repository. PIL is a popular open source library for image processing and augmentation because it was first released in 1995.

Many open source Python image processing, displaying, and

augmenting libraries are built on top of PIL. It can be found on GitHub at https://github.com/python-pillow/Pillow.

AugLy is an open source Python project by Meta (Facebook) for data augmentation. The library provides over 100 audio, video, image, and text data augmentation methods. It can be found on GitHub at

https://github.com/facebookresearch/AugLy.

OpenCV was developed by Intel in 2000 as an open source library.

ML primarily uses OpenCV in computer vision tasks such as object

classification and detection, face recognition, and image segmentation.

In addition, OpenCV contains essential methods for ML. It can be found on GitHub at https://github.com/opencv/opencv.

scikit-learn was one of the early open source libraries in 2009 for image augmentation. Part of scikit-learn is written in Cython, a programming language that is a superset of Python. One of its crucial benefits is high-performance speed, where a NumPy array is used as the image’s structure. It can be found on GitHub at

https://github.com/scikit-image/scikit-image.

Mahotas is an image processing and augmentation library specialized in bioimage informatics. Mahotas uses NumPy arrays and is written C++ with a Python interface. It was released in 2016. It can be found on GitHub at https://github.com/luispedro/mahotas.

pgmagick: pgmagick is a GraphicsMagick binding for Python.

GraphicsMagick is best known for supporting large images in a gigapixel-size range. It was initially derived from ImageMagick in 2002. It can be found on GitHub at https://github.com/hhatto/pgmagick.

No library is better than another, and you can choose to use multiple libraries in a project. However, Pluto recommends picking two or three libraries and becoming proficient, maybe even an expert, in them.

Pluto will hide the library or libraries and create a wrapper function, such as draw_image_flip(), that uses other libraries to perform the transformation.

The other reason for writing wrapper functions is to switch out the libraries and minimize the code changes. Pluto has chosen the Albumentations, Fast.ai, and PIL libraries for this chapter as the under-the-hood engine.

You have two options: creating image augmentation dynamically per batch or statically. When doing this statically, also known as pre-processing, you create and save the augmented pictures in your local or cloud drive.

For this chapter, Pluto has chosen to augment the image dynamically because, depending on the combinations of filters, you can generate over a million acceptable altered pictures. The only difference between the two

methods is that the pre-processing method saves the augmented photos in local or cloud drives while the dynamic method does not.

Fun challenge

Here is a thought experiment: should you select an augmentation library with more augmented methods over a library that runs on GPU? Hint: think about the goal of your project and its disk and time resources.

Let’s begin writing code for the geometric transformation filters.

Geometric transformation filters

Pluto can write Python code for many geometric transformation filters, and he will select two or three image datasets to illustrate each concept. In addition, by using multiple image subjects, he can discover the safe level.

The range for the safe level is subjective, and you may need to consult a domain subject expert to know how far to distort the photo. When convenient, Pluto will write the same method using different libraries.

Let’s get started with flipping images.

Flipping

Pluto will begin with the simplest filter: the horizontal flip. It mirrors the image, or in other words, it flips the photo along the Y-axis. The wrapper function is called draw_image_flip(). All image augmentation methods are prefixed with draw_image_ as this makes it easy for Pluto to remember them. In addition, he can use the Python Notebook auto-complete typing feature. By typing pluto.draw_im, a popup menu containing all the filter functions will be displayed.

In the draw_image_flip_pil() function, when using the PIL library, the relevant code line is as follows:

use PIL to flip horizontal

mirror_img = PIL.ImageOps.mirror(img)

Thus, Pluto selects an image from the People dataset and flips it using the following code:

Select an image from Pandas and show the original and flip pluto.draw_image_flip_pil(pluto.df_people.fname[100])

The result is as follows, with the original image at the top and the flip image at the bottom:

[image: Image 38]

Figure 3.10 – Horizontal flip using the PIL library

Rather than viewing one image at a time, it is more advantageous to examine the entire dataset one batch at a time. This is because a filter may be applicable, or the safe range is acceptable for one image but not for another in the same dataset. The Fast.ai library has the data-batch class that supports many ML functions, including accepting a transformation method and displaying a random collection of pictures, also known as displaying a batch.

Pluto will write two new methods: _make_data_loader(), which is a helper function for creating the Fast.ai data-loader object, and the draw_image_flip() function, which encodes the transformation for horizontal flip and displays the image batch using the data-loader show_batch() method.

show_batch() will select a random set of pictures to display, where max_n sets the number of images in a bunch. The Fast.ai transformation, by default, performs the modification at 75% probability. In other words, three out of four images in the dataset will be transformed.

The horizontal flip filter has no safe level, regardless of whether it applies to the image set. Pluto will use the draw_image_flip() method with the Fast.ai transformation. The coding for all wrapper functions is very similar.

Only the augmentation function, the aug value, is different. The entirety of the flip wrapper code is as follows:

use fast.ai to flip image in wrapper function

def draw_image_flip(self,df,bsize=15):

aug = [fastai.vision.augment.Flip(p=0.75)]

item_fms = fastai.vision.augment.Resize(480)

dsl_org = self._make_data_loader(df, aug,item_fms)

dsl_org.show_batch(max_n=bsize)

return dsl_org

The definition of the aug variable differs from one wrapper function to another. Pluto needs to run a function on the Python Notebook for the People dataset with the following code:

Show random flip-image batch 15 in Pandas, wraper function pluto.dls_people = pluto.draw_image_flip(pluto.df_people)

[image: Image 39]

The result is as follows:

Figure 3.11 – Horizontal flip on the People dataset

Fun fact

The complete fully functional object-oriented code can be found in the Python Notebook. You can hack it to show flip, rotate, tilt, and dozens of other augmentation techniques.

To ensure the horizontal flip is acceptable, you can repeatedly run the draw_image_flip() function in the Python Notebook to see a collection of varying image batches. Horizontal flip is a safe filter for fungi, sea animals, food, and mall crowd pictures. Common sense dictates that you wouldn’t expect otherwise. Here is the command for the Fungi dataset:

use flip wrapper function on Fungi data

pluto.dls_fungi = pluto.draw_image_flip(pluto.df_fungi)

The result is as follows:

[image: Image 40]

Figure 3.12 – Horizontal flip on the Fungi dataset

For medical images, such as the Covid-19 photos, you need a domain expert to confirm that flipping horizontally does not change the image’s integrity. It does not make any difference to the layman, but it can be deceptively wrong and might create a false-positive or false-negative prediction. Here is the command for it:

use flip wrapper function on covid data

pluto.dls_covid19 = pluto.draw_image_flip(pluto.df_covid19) The result is as follows:

[image: Image 41]

Figure 3.13 – Horizontal flip on the Covid-19 dataset

Notice that the Fast.ai transformation cropped the images center square.

Therefore, in some pictures, content is lost – for example, a picture of a woman with most of her face missing. This is because Fast.ai is for ML, so the images need to be square. The default behavior is a center square crop.

Before Pluto can start cropping and padding, he must complete the flipping filter by combining horizontal flipping with vertical flipping. The people, Covid-19, fungi, and mall crowd pictures cannot be flipped vertically, but the sea animals and food pictures can.

For this, Pluto needs to create the draw_image_flip_both() method, with the transformation set to the following:

using fast.ai for fliping

aug = fastai.vision.augment.Dihedral(p=0.8,pad_mode=pad_mode) Now, Pluto must run the function on the People dataset with the following code:

[image: Image 42]

use wrapper function on both flip on people images

pluto.dls_people = pluto.draw_image_flip_both(

pluto.df_people)

The result is as follows:

Figure 3.14 – Unsafe horizontal and vertical flips on the People dataset He can apply the same function to the food pictures, as follows:

use flip wrapper function on food photos

pluto.dls_food = pluto.draw_image_flip_both(pluto.df_food)

The result is as follows:

[image: Image 43]

Figure 3.15 – Safe horizontal and vertical flips on the food dataset Fun fact

Pluto loves to play the same game over and over again. You know, because he is a dog. :-) Thus, you can ask Pluto to run any wrapper functions repeatedly on the Python Notebook to see a different set of image batches from the data stored in pandas. Each real-world image dataset contains thousands of photos, and each batch displays 15 images; therefore, you must run the wrapper functions repeatedly to have a good mental picture of the dataset.

The next filters we will look at are for cropping and padding.

Cropping and padding

Reusing the same process as when writing the flipping filter, Pluto can write the draw_image_crop() method. The one new code line uses a different item transformation:

use fast.ai to crop image in wrapper function item_tfms=fastai.vision.augment.CropPad(480,

pad_mode="zeros")

The padding mode can be zeros, which means the padding color is black, border, which means the padding repeats the border pixel, or reflection, which means padding is mirrored from the picture.

After much trial and error on the Python Notebook, Pluto found the safe range for cropping and padding for each of the six datasets. Before moving on, Pluto encourages you to use the Python Notebook to find the best safe parameter.

Pluto found that the safe setting for the people data is using a cropped image size of 640 and pad mode on the border:

use wrapper function to crop and pad people photo

pluto.dls_people = pluto.draw_image_crop(pluto.df_people,

pad_mode="border",

isize=640)

The result is as follows:

[image: Image 44]

Figure 3.16 – Horizontal and vertical flip on the People dataset In terms of the next dataset, Pluto found that the safe setting for the fungi images is a cropped image size of 240 and a pad mode of zeros:

use wrapper function to crop and pad Fungi image

pluto.dls_fungi = pluto.draw_image_crop(pluto.df_fungi,

pad_mode="zeros",

isize=240)

The result is as follows:

[image: Image 45]

Figure 3.17 – Horizontal and vertical flip on the fungi dataset For the food pictures, Pluto discovered that the safe parameters are a cropped image size of 640 and a pad mode of reflection:

use wrapper function to crop and pad food image

pluto.dls_food = pluto.draw_image_crop(pluto.df_food,

pad_mode="reflection",

isize=640)

The result is as follows:

[image: Image 46]

Figure 3.18 – Horizontal and vertical flip on the food dataset Fun challenge

Find the safe cropping parameters for all six image datasets. You will get bonus points for applying these new functions to the set of images from your project or downloading them from the Kaggle website.

For the other image datasets, the results are in the Python Notebook. The safe parameter is 340 pixels with reflection padding for the sea animals pictures and 512 pixels with border padding for the mall crowd pictures. A cropping filter is not an option for the Covid-19 pictures.

Next, Pluto will rotate images, which is similar to flipping.

Rotating

Rotation specifies how many degrees to turn the image clockwise or counter-clockwise. Since Pluto sets the max rotation value, the actual rotation is a random number between the minimum and the maximum

value. The minimum default value is zero. Therefore, a higher maximum value will generate more augmentation images because every time the system fetches a new data batch, a different rotation value is chosen. In addition, randomness is the reason for selecting the dynamic augmentation option over saving the images to a local disk drive, as in the static option.

For this, Pluto has written the draw_image_rotate() method using the max_rotate = max_rotate transformation parameter, where the second max_rotate is the passed-in value. The key code line in the wrapper function is as follows:

use fast.ai for rotating

aug = [fastai.vision.augment.Rotate(max_rotate,

p=0.75,

pad_mode=pad_mode)]

Once again, Pluto has arrived at the following safe parameter for rotating after much trial and error on the Python Notebook, but don’t take Pluto’s word for it. Pluto challenges you to find better safe parameters by experimenting with the Python Notebook.

For the sea animals data, Pluto has arrived at a safe parameter of 180.0 for the maximum rotation and reflection for padding. The command in the Python Notebook is as follows:

use wrapper function to rotate sea animal photo

pluto.dls_sea_animal = pluto.draw_image_rotate(

pluto.df_sea_animal,

max_rotate=180.0,

pad_mode='reflection')

The result is as follows:

[image: Image 47]

Figure 3.19 – Rotation on the sea animals dataset

For the people pictures, Pluto has arrived at a safe parameter of 25.0 for the maximum rotation and border for padding. The command in the Python Notebook is as follows:

user wrapper function to rotate people photo

pluto.dls_people = pluto.draw_image_rotate(pluto.df_people, max_rotate=25.0,

pad_mode='border')

The result is as follows:

[image: Image 48]

Figure 3.20 – Rotation on the People dataset

For the other image datasets, the results are in the Notebook. The safe parameters are 16.0 maximum rotation with border padding for the mall crowd photos, 45.0 maximum rotation with border padding for the fungi pictures, 90.0 maximum rotation with reflection padding for the food images, and 12.0 maximum rotation with border zeros for the Covid-19

data. I encourage you to extend beyond Pluto’s safe range on the Notebook and see what happens to the pictures for yourself.

Now, let’s continue with the shifting image theme. The next filter we’ll look at is the translation filter.

Translation

The translation filter shifts the image to the left, right, up, or down. It is not one of the commonly used filters. Pluto uses the ImageChops.offset() method in the PIL library to write the draw_image_shift() function. A negative horizontal shift value moves the image to the left, a positive value

moves the image to the right, and the vertical shift parameter moves the image up or down. The relevant code line in the wrapper function is as follows:

using PIL for shifting image

shift_img = PIL.ImageChops.offset(img,x_axis,y_axis)

To test the function, Pluto selects a picture and shifts it left by 150 pixels and up by 50 pixels. The command is as follows:

select an image in Pandas

f = pluto.df_people.fname[30]

user wrapper function to shift the image

pluto.draw_image_shift_pil(f, -150, -50)

The output is as follows:

[image: Image 49]

Figure 3.21 – Translation using the PIL library; the top image is the original The translation filter is seldom used because it is easy to find the safe level for one picture but not for the entire dataset.

So far, Pluto has shown you the flipping, cropping, padding, resizing, rotating, and translation filters. However, there are many more geometric transformation filters, such as for warping, zooming, tilting, and scaling.

Unfortunately, there are too many to cover, but the coding process is the same.

Fun challenge

Implement two more geometric transformation techniques, such as warping and tilting. Hint: copy and paste from Pluto’s wrapper functions and change the aug and item_tfms variables.

Moving from geometric to photometric transformations follows the same coding process. First, Pluto writes the wrapper functions using the Albumentations library, then uses the real-world image dataset to test them.

Photographic transformations

Pluto chose the Albumentations library to power the photometric transformations. The primary reasons are that the Albumentations library has over 70 filters, and you can integrate it into the Fast.ai framework.

Fast.ai has most of the basic photometric filters, such as hue shifting, contrast, and lighting, but only Albumentations has more exotic filters, such as those for adding rain, motion blur, and FancyPCA. Be careful when using fancy filters. Even though they are easy to implement, you should research AI scholarly published papers to see if the filter is beneficial for achieving a higher accuracy rate.

As with the geometric transformations coding process, Pluto creates the base method and writes the wrapper function for each photometric transformation. The _draw_image_album() method is used to select a sample set of images from the data, convert it into a numpy array, do the transformation, and display them in batch mode. The pertinent code for the _draw_image_album() function is as follows:

select random images

samp = df.sample(int(ncol * nrow))

convert to an array

img_numpy = numpy.array(PIL.Image.open(samp.fname[i]))

perform the transformation using albumentations

img = aug_album(image=img_numpy)['image']

display the image in batch modde

ax.imshow(img)

The wrapper function code is straightforward. For example, the code for the brightness filter is as follows:

def draw_image_brightness(self,df,

brightness=0.2,

bsize=5):

aug_album = albumentations.ColorJitter(

brightness = brightness,

contrast=0.0,

saturation=0.0,

hue=0.0,

always_apply=True,

p=1.0)

self._draw_image_album(df,aug_album,bsize)

Return

Fun fact

For any of the Albumentations functions, you can append a question mark (?) and run the code cell to see the documentation in the Python Notebook; for example, albumentations.ColorJitter?. Append two question marks (??) to see the function’s Python source code; for example, albumentations.ColorJitter??. A bonus fun fact is that Albumentations types are followed by a dot – for example, albumentations. – in the Python Notebook and wait for a second. A list of all the available functions appears in a drop-down list, where you can choose one. In other words, the Python Notebook has auto-complete typing.

The definition of the aug_albm variable differs from one wrapper function to another. Let’s test out the brightness filter.

Brightness

[image: Image 50]

It isn’t easy to view most of the photometric transformations in grayscale because you are reading them in a book. That is more reason for joining Pluto with coding in the Notebook as you can see color. Rather than showing you all optimal safe parameters for each filter, Pluto will show you the unsafe range for one dataset and a safe parameter for the other dataset.

The key code line for brightness in the wrapper function is as follows:

use the Albumentations library function for brightness aug_album = albumentations.ColorJitter(brightness=brightness, contrast=0.0,

saturation=0.0,

hue=0.0,

always_apply=True,

p=1.0)

You can see the mistake in this book by exaggerating the brightness – for example, if it’s too bright or too dark. Once again, you should look at the Notebook to see the brightness effects in color. For the people photos, the unsafe value is a brightness equal to 1.7. Pluto runs the following command on the Python Notebook:

use the brightness wrapper function for people photo

pluto.draw_image_brightness(pluto.df_people, brightness=1.7) The output is as follows:

Figure 3.22 – Unsafe brightness level for the People dataset

[image: Image 51]

The People dataset does not have any objective. Therefore, it is challenging to find safe parameters. If the goal is as simple as classifying people’s ages, the brightness level can be relatively high, but without knowing the intended use of the dataset, you don’t know how much to distort the pictures.

Pluto found that the safe brightness value for the food dataset is 0.3, but it may not be easy to see the effects in this book. Here is the command that he used on the Python Notebook:

use the brightness wrapper function for food image

pluto.draw_image_brightness(pluto.df_food, brightness=0.3)

The output is as follows:

Figure 3.23 – Safe brightness level for the food dataset

The brightness level for the other four datasets is similar. Pluto has left it up to you to experiment and find the safe level in the Python Notebook. The Covid-19 images are in grayscale, and the intent is to predict Covid-19

patients from their chest X-ray photos. A decrease or increase in the brightness level may result in a false-positive or false-negative prediction.

You should consult with the domain experts to confirm the safe parameters for Covid-19 images.

The grayscale filter wasn’t discussed in the first half of this chapter, but it is similar to the brightness filter.

Grayscale

[image: Image 52]

A few scholarly papers describe the benefit of grayscale, such as Data Augmentation Methods Applying Grayscale Images for Convolutional Neural Networks in Machine Vision, by Jinyeong Wang and Sanghwan Lee in 2021 from the Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, Korea. The paper explains the effective data augmentation method for grayscale images in CNN-based machine vision with mono cameras.

In the draw_image_grayscale() method, Pluto uses the Albumentations library function as follows:

use albumentations for grayscale

aug_album = albumentations.ToGray(p=1.0)

The fungi dataset aims to classify whether a mushroom is edible or poisonous, and the mushroom’s color significantly affects the classification.

Therefore, converting into grayscale is not advisable. Nevertheless, Pluto illustrates the grayscale filter with the following command:

use the grayscale wrapper function for fungi image

pluto.draw_image_grayscale(pluto.df_fungi)

The output is as follows:

Figure 3.24 – Unsafe use of grayscale on the fungi dataset

The mall crowd dataset’s goal is to estimate the crowd size in a shopping mall. Thus, converting the photos into grayscale should not affect the prediction. Pluto runs the following command:

[image: Image 53]

use the grayscale wrapper function for crowd photo

pluto.draw_image_grayscale(pluto.df_crowd)

The results are as follows:

Figure 3.25 – Safe use of grayscale on the mall crowd dataset Pluto left the other four datasets for you to experiment with to determine whether it is safe to use the grayscale filter. After you use the Python Notebook to explore these datasets, come back here, where we will examine the contrast, saturation, and hue-shifting filters.

Contrast, saturation, and hue shifting

The contrast, saturation, and hue-shifting filters are beneficial. They are proven to aid in training AI models to achieve a higher accuracy rate, such as in the Improving Deep Learning using Generic Data Augmentation scholarly paper by Luke Taylor and Geoff Nitschke, published in 2017 by the Arxiv website.

The code for the contrast, saturation, and hue-shifting wrapper functions is straightforward with the Albumentations library. Let’s take a look:

for contrast

aug_album = albumentations.ColorJitter(brightness=0.0,

contrast=contrast, saturation=0.0,

hue=0.0, always_apply=True, p=1.0)

for saturation

aug_album = albumentations.ColorJitter(brightness=0.0,

contrast=0.0, saturation=saturation,

hue=0.0, always_apply=True, p=1.0)

for hue shifting

aug_album = albumentations.ColorJitter(brightness=0.0,

[image: Image 54]

contrast=0.0, saturation=0.0,

hue=hue, always_apply=True, p=1.0)

Pluto has exaggerated the unsafe value so that you can see the results in this book. The unsafe parameter for contrast in the sea animals dataset is as follows:

use the contrast wrapper function on sea animal image

pluto.draw_image_contrast(pluto.df_sea_animal,

contrast=8.5,

bsize=2)

The output is as follows:

Figure 3.26 – Unsafe use of contrast on the sea animals dataset The unsafe parameter for saturation in the food dataset is as follows:

use the contrast wrapper function on food image

pluto.draw_image_saturation(pluto.df_food,

saturation=10.5)

The output is as follows:

[image: Image 55]

[image: Image 56]

Figure 3.27 – Unsafe use of saturation on the food dataset

The unsafe parameter for hue shifting in the People dataset is as follows:

use the contrast wrapper function on people photo

pluto.draw_image_hue(pluto.df_people,hue=0.5)

The output is as follows:

Figure 3.28 – Unsafe use of hue shifting on the People dataset Contrast, saturation, and hue shifting apply to five of the image datasets, and the key is to find the safe range for each dataset. The exception is the medical images – the Covid-19 photos. You need to consult a domain expert to see how much you can distort the images and retain their integrity.

Fun challenge

Here is a thought experiment: can you think of an image category that would safely use hue shifting? In other words, in what photo subject can you shift the hue value and not compromise the image’s integrity? Hint: think of an animal that hunts by sonar or heat source.

The next filter we’ll cover is the noise injection filter, which can be easily recognized in this book’s grayscale photos.

Noise injection

Noise injection is a strange filter because it is counterintuitive. Image augmentation distorts the original pictures within a safe limit, but injecting noise into a photo causes the images to degrade deliberately.

The scholarly paper Data Augmentation in Training CNNs: Injecting Noise to Images, by Murtaza Eren Akbiyik, published in 2019, and reviewed at the ICLR 2020 Conference, analyzes the effects of adding or applying different noise models of varying magnitudes to CNN architectures. It shows that noise injection provides a better understanding of optimal learning procedures for image classification.

For the draw_image_noise() wrapper method, Pluto uses the

Albumentation’s Gaussian noise method, as follows:

use Albumentations for noise injection

aug_album = albumentations.GaussNoise(var_limit=var_limit,

always_apply=True,

p=1.0)

Pluto bumps the noise level to the extreme for the exaggerated unsafe case.

The command in the Python Notebook is as follows:

use noise wrapper function on fungi photo

pluto.draw_image_noise(pluto.df_fungi,

var_limit=(10000.0, 20000.0), bsize=2)

The output is as follows:

[image: Image 57]

Figure 3.29 – Unsafe use of noise injection on the fungi dataset Since the goal of the mall crowd dataset is to estimate the crowd size, adding some noise to the image is acceptable. Pluto found that the safe noise level is from about 200 to 400. The command is as follows:

use noise wrapper function on crowd image

pluto.draw_image_noise(pluto.df_crowd,

var_limit=(200.0, 400.0),

bsize=2)

The result is as follows:

[image: Image 58]

Figure 3.30 – Safe use of noise injection on the mall crowd dataset Fun challenge

Here is both a thought and a hands-on experiment. Can you define a set of ranges for each image augmentation that applies to a specific image topic, such as landscape, birds, or house appliances? If you think that is possible, can you write a Python function that uses Pluto’s wrapper functions?

This is when Pluto begins experimenting with more exotic filters, but he limits his choices to the image augmentation methods studied in published scholarly papers. The next two filters we will look at are the rain and sun flare filters.

Rain and sun flare

In image augmentation, rain and sun flare effects are not widely used in AI.

However, it is an acceptable option if the image domain is landscape or cityscape. The rain and sun flare implementations are simplistic because they are optimized for speed over a realistic depiction of rain or sun flare.

If you require a natural rain effect, then you can refer to a paper that presents a new approach to synthesizing realistic rainy scenes using a generative adversarial network (GAN): Synthesized Rain Images for Deraining Algorithms, by Jaewoong Choi, Dae Ha Kim, Sanghyuk Lee,

Sang Hyuk Lee, and Byung Cheol Song, published in 2022 in Neurocomputing Volume 492.

The realistic rendering will take some time. Therefore, you should use the pre-processing augmentation method, which generates the images and saves them to local or cloud disk storage, before training the AI model.

Pluto does not have access to the GAN method, so he uses the Albumentations library for dynamically generating the effects. The key code inside the draw_image_rain(), and draw_image_sunflare() wrapper functions is as follows:

for rain

aug_album = albumentations.RandomRain(

drop_length = drop_length,

drop_width=drop_width,

blur_value=blur_value,

always_apply=True,

p=1.0)

for sun flare

aug_album = albumentations.RandomSunFlare(

flare_roi = flare_roi,

src_radius=src_radius,

always_apply=True, p=1.0)

Pluto exaggerates the effects of the sun flare filter to an unsafe level. The command is as follows:

use sunflare wrapper function with people photo

pluto.draw_image_sunflare(pluto.df_people,

flare_roi=(0, 0, 1, 0.5),

src_radius=400,

bsize=2)

The output is as follows:

[image: Image 59]

[image: Image 60]

Figure 3.31 – Unsafe use of the sun flare filter on the People dataset Pluto discovered that the safe level for the fungi dataset is a radius of 120, with a flare-roi of (0, 0, 1). The command is as follows:

use the sunflare wrapper function on fungi image

pluto.draw_image_sunflare(pluto.df_fungi, src_radius=120)

The output is as follows:

Figure 3.32 – Safe use of the sun flare filter on the fungi dataset For the People dataset, Pluto found that the safe parameter is a drop_length equal to 20, a drop_width equal to 1, and a blur_value equal to 1:

[image: Image 61]

use the rain wrapper function on people photo

pluto.draw_image_rain(pluto.df_people, drop_length=20,

drop_width=1, blur_value=1)

The result is as follows:

Figure 3.33 – Safe use of the rain filter on the People dataset Many more photometric transformations are available; for example, Albumentations has over 70 image filters. However, for now, Pluto will present two more effects: the Sepia and FancyPCA filters.

Sepia and FancyPCA

Sepia involves altering the color tone to a brownish color. This brown is the color of cuttlefish ink, and the result gives the effect of old or aged pictures.

Fancy Principal Components Analysis (FancyPCA) color augmentation alters the RGB channels’ intensities along the images’ natural variations.

A scholarly research paper used the FancyPCA filter to improve DL

prediction of rock properties in reservoir formations: Predicting mineralogy using a deep neural network and fancy PCA by Dokyeong Kim, Junhwan Choi, Dowan Kim, and Joongmoo Byun, in 2022, presented at the SEG

 International Exposition and Annual Meeting.

[image: Image 62]

For the draw_image_sepia() and draw_image_fancyPCA() wrapper functions, Pluto uses the Albumentations library:

for sepia use albumentations library

aug_album = albumentations.ToSepia(always_apply=True, p=1.0)

for FancyPCA use albumentations library

aug_album = albumentations.FancyPCA(alpha=alpha,

always_apply=True,

p=1.0)

You can see the results in the Python Notebook’s color output images. Pluto has chosen the People dataset to experiment with the sepia and FancyPCA filters because it has no objective. Assuming the target is to classify people’s age ranges, both filters are applicable. For the sepia filter, the command is as follows:

use the sepia wrapper function on people photo

pluto.draw_image_sepia(pluto.df_people)

The output is as follows:

Figure 3.34 – Safe use of sepia on the People dataset

Pluto overstates the FancyPCA filter to an unsafe level by setting the alpha value to 5.0. The command is as follows:

use fancyPCA wrapper function on people photo

pluto.draw_image_fancyPCA(pluto.df_people,alpha=5.0,bsize=2) The result is as follows:

[image: Image 63]

Figure 3.35 – Unsafe use of FancyPCA on the People dataset

So far, you and Pluto have covered and written many wrapper functions for photometric transformations, such as lighting, grayscale, contrast, saturation, hue shifting, noise injection, rain, sun flare, sepia, and FancyPCA. Still, there are far more image filters in the Albumentations library. Pluto follows the golden image augmentation rule for selecting a filter that improves prediction accuracy, as a published scholarly paper describes, such as The Effectiveness of Data Augmentation in Image Classification using Deep Learning paper by Luis Perez, Jason Wang, published by the Cornell University Arxiv in December 2017.

Fun challenge

Here is a thought experiment: there are too many image augmentation techniques to count. So, how do you know which augmentation function is suitable to use? For example, is the Cinematic Anamorphic photo filter an effective image augmentation technique? Hint: think about the subject domain and the processing speed.

Moving away from photographic transformations, next, Pluto will dig into the random erasing filter.

Random erasing

Random erasing adds a block of noise, while noise injection adds one pixel at a time.

Two recently published papers show that random erasing filters and extended random erasing increase the prediction accuracy of the DL model.

The first paper is called Random Erasing Data Augmentation, by Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang, in 2020, and was presented at the AAAI Conference on Artificial Intelligence. The second paper is called Perlin Random Erasing for Data Augmentation, by Murat Saran, Fatih Nar, and Ayşe Nurdan Saran, in 2021, and was presented at the 29th Signal Processing and Communications Applications Conference (SIU).

Pluto uses the Fast.ai library in the draw_image_erasing() wrapper function. The pertinent code is as follows:

use fastai library for random erasing

aug = [fastai.vision.augment.RandomErasing(p=1.0,

max_count=max_count)]

itfms = fastai.vision.augment.Resize(480)

It is challenging to find a safe level for random erasing. It depends on the image subject, DL base model, and target label. Generally, Pluto selects a random erasing safe parameter and trains the AI model. If the DL model is overfitting, then he increases the random erasing effects, and if the model’s prediction accuracy is diverging, he decreases the random erasing parameters. Here is a safe starting point for the food dataset:

use random erasing wrapper function on food image

pluto.dls_food = pluto.draw_image_erasing(

pluto.df_food,

bsize=6,

max_count=4)

The output is as follows:

[image: Image 64]

Figure 3.36 – Unsafe use of FancyPCA on the food dataset

So far, Pluto uses one filter at a time. Next, he will combine multiple geographic and photographic transformations with random erasing.

Combining

The power of image augmentation is that Pluto can combine multiple image filters in one dataset. This increases the number of images for training by a multiplication factor.

Fun fact

The horizontal flip filter’s default is set to 50% probability. The result is that the image size increases by half – that is, total_flip = image_size +

(0.5 * image_size). The image size will increase by a multiplication factor when the random cropping and padding are added together with a padding mode of 3 – that is, total_2_combine = total_fip + (3 *

(image_size + (0.5 * image_size)) + (image_size *

random_croping_factor)), where random_croping_factor is between zero and the safe cropping value, which is less than 1.0.

In this chapter, Pluto covered 15 image augmentation methods. Therefore, combining most or all of the filters into one dataset will increase its size substantially. Increasing the total number of images for training in DL is a proven method to reduce or eliminate the overfitting problem.

There are general rules for the applicable filters and safe parameters that should work with most image datasets. However, Pluto follows the golden rule of image augmentation. This golden rule selects which image filter to use and sets the safe parameters based on the photo subject and the predictive model’s goal. In other words, each project will have different image augmentation filters and safe parameters.

Before unveiling the table representing the safe parameters for each filter per six real-world image datasets, Pluto must review the image datasets’

topics and goals:

The Covid-19 dataset consists of people’s chest X-ray images. The goal is to predict between Covid-19, viral pneumonia, and normal.

The People dataset consists of pictures of everyday people. No goal is stated, but Pluto assumes the usage could classify age, sex, ethnicity, emotional sentiment, and facial recognition.

The Fungi dataset consists of photos of fungi in a natural environment.

The goal is to predict if the fungi are edible or poisonous.

The Sea Animal dataset consists of images of sea animals, mainly underwater. The goal is to classify the 19 sea animals provided.

The Food dataset consists of images of commonly served Vietnamese dishes. The goal is to classify the 31 types of dishes.

The Mall Crowd dataset consists of images of people in a typical shopping mall. The goal is to predict the size of the crowd.

[image: Image 65]

To generate the filters and safe parameters table for each image dataset, Pluto has written a quick function, print_safe_parameters(), using pandas, because he thinks coding is fun. For readability, there are two parts to the table, as follows:

Figure 3.37 – Safe parameter for each image dataset – part 1

 Figure 3.37 shows the first half of the big table, and Figure 3.38 displays the second half.

[image: Image 66]

Figure 3.38 – Safe parameter for each image dataset – part 2

The safe parameters are from Pluto’s exploration of the Python Notebook, but you may find more suitable values than Pluto. There are no rigid or fixed rules regarding image augmentation. Therefore, you should use the Python Notebook to explore the possibilities. If you read a scholarly paper about a new image augmentation technique, implement it using the Albumentations or other image libraries.

Pluto has written six wrapper functions for reinforcing learning through coding, one for each image dataset.

Fun fact

You can run the wrapper function repeatedly because it generates a different image set every time. In addition, it will randomly select other base images from the real-world dataset. Therefore, you can run it a thousand times and only see the same output once.

Each wrapper function defines a set of Fast.ai image augmentation filters; for example:

use fastai library for brightness and contrast

aug = [

fastai.vision.augment.Brightness(max_lighting=0.3,p=0.5),

fastai.vision.augment.Contrast(max_lighting=0.4, p=0.5)]

use albumentation library

albumentations.Compose([

albumentations.GaussNoise(var_limit=(100.0, 300.0),

p=0.5)])

In addition, the wrapper function uses a helper method to fetch the Albumentations filters – for example, _fetch_album_covid19().

Pluto reviews the image augmentation for the Covid-19 dataset by using the following command in the Python Notebook:

use covid 19 wrapper function

pluto.draw_augment_covid19(pluto.df_covid19)

The output is as follows:

[image: Image 67]

Figure 3.39 – Image augmentation for the Covid-19 dataset

The relevant code lines for the combination filters for the People dataset are as follows:

use both fastai and albumentation library

aug = [

fastai.vision.augment.Brightness(max_lighting=0.3,p=0.5),

fastai.vision.augment.Contrast(max_lighting=0.4, p=0.5),

AlbumentationsTransform(self._fetch_album_covid19())]

use alpbumentation library in the _fetch_albm_covid()

albumentations.Compose([

albumentations.ColorJitter(brightness=0.3,

contrast=0.4, saturation=3.5,hue=0.0, p=0.5),

albumentations.ToSepia(p=0.5),

albumentations.FancyPCA(alpha=0.5, p=0.5),

albumentations.GaussNoise(var_limit=(300.0, 500.0), p=0.5)

])

Pluto reviews the image augmentation for the People dataset by using the following command in the Python Notebook:

[image: Image 68]

use people wrapper function

pluto.draw_augment_people(pluto.df_people)

The output is as follows:

Figure 3.40 – Image augmentation for the People dataset

The relevant code lines for the fungi combination filters are as follows:

use both fastai and albumentations libraries

aug = [

fastai.vision.augment.Flip(p=0.5),

fastai.vision.augment.Rotate(25.0,p=0.5,pad_mode='border'), fastai.vision.augment.Warp(magnitude=0.3,

pad_mode='border',p=0.5),

fastai.vision.augment.RandomErasing(p=0.5,max_count=2),

AlbumentationsTransform(self._fetch_album_fungi())]

use albumentation inside the _fetch_album_fungi()

albumentations.Compose([

albumentations.ColorJitter(brightness=0.3,

contrast=0.4, saturation=2.0,hue=0.0, p=0.5),

albumentations.FancyPCA(alpha=0.5, p=0.5),

[image: Image 69]

albumentations.RandomSunFlare(flare_roi=(0, 0, 1, 0.5),

src_radius=200, always_apply=True, p=0.5),

albumentations.RandomRain(drop_length=20,

drop_width=1.1,blur_value=1.1,always_apply=True, p=0.5),

albumentations.GaussNoise(var_limit=(200.0, 400.0), p=0.5)

])

Pluto reviews the image augmentation for the fungi dataset by using the following command:

use fungi wrapper function

pluto.draw_augment_fungi(pluto.df_fungi)

The output is as follows:

Figure 3.41 – Image augmentation for the fungi dataset

The relevant code lines for the sea animal combination filters are as follows:

use both fastai and albumentations library

aug = [

fastai.vision.augment.Dihedral(p=0.5,

[image: Image 70]

pad_mode='reflection'),

fastai.vision.augment.Rotate(180.0,

p=0.5,pad_mode='reflection'),

fastai.vision.augment.Warp(magnitude=0.3,

pad_mode='reflection',p=0.5),

fastai.vision.augment.RandomErasing(p=0.5,max_count=2),

AlbumentationsTransform(self._fetch_album_sea_animal())]

use albumentations for _fetch_album_sea_animal()

albumentations.Compose([

albumentations.ColorJitter(brightness=0.4,

contrast=0.4, saturation=2.0,hue=1.5, p=0.5),

albumentations.FancyPCA(alpha=0.5, p=0.5),

albumentations.GaussNoise(var_limit=(200.0, 400.0),

p=0.5)])

Pluto reviews the image augmentation for the sea animal dataset by using the following command in the Python Notebook:

use the sea animal wrapper function

pluto.draw_augment_sea_animal(pluto.df_sea_animal)

The output is as follows:

Figure 3.42 – Image augmentation for the sea animals dataset The relevant code lines for the food combination filters are as follows:

use both fastai and albumentations libraries

aug = [

fastai.vision.augment.Dihedral(p=0.5,

pad_mode='reflection'),

fastai.vision.augment.Rotate(180.0,

p=0.5,pad_mode='reflection'),

fastai.vision.augment.Warp(magnitude=0.3,

pad_mode='reflection',p=0.5),

fastai.vision.augment.RandomErasing(p=0.5,max_count=2),

AlbumentationsTransform(self._fetch_album_food())]

use albumentation library for _fetch_album_food()

albumentations.Compose([

albumentations.ColorJitter(brightness=0.4,

contrast=0.4, saturation=2.0,hue=1.5, p=0.5),

albumentations.FancyPCA(alpha=0.5, p=0.5),

albumentations.GaussNoise(var_limit=(200.0, 400.0),

p=0.5)])

Pluto reviews the image augmentation for the food dataset by using the following command:

use food wrapper function

pluto.draw_augment_food(pluto.df_food)

The output is as follows:

[image: Image 71]

Figure 3.43 – Image augmentation for the food dataset

The relevant code lines for the mall crowd combination filters are as follows:

use both fastai and albumentations libraries

aug = [

fastai.vision.augment.Flip(p=0.5),

fastai.vision.augment.Rotate(25.0,

p=0.5,pad_mode='zeros'),

fastai.vision.augment.Warp(magnitude=0.3,

pad_mode='zeros',p=0.5),

fastai.vision.augment.RandomErasing(p=0.5,max_count=2),

AlbumentationsTransform(self._fetch_album_crowd())]

use albumentation library for _fetch_album_crowd()

albumentations.Compose([

albumentations.ColorJitter(brightness=0.3,

contrast=0.4, saturation=3.5,hue=0.0, p=0.5),

albumentations.ToSepia(p=0.5),

albumentations.FancyPCA(alpha=0.5, p=0.5),

albumentations.GaussNoise(var_limit=(300.0, 500.0),

p=0.5)])

[image: Image 72]

Pluto reviews the image augmentation for the mall crowd dataset by using the following command:

use the crowd wrapper function

pluto.draw_augment_crowd(pluto.df_crowd)

The output is as follows:

Figure 3.44 – Image augmentation for the mall crowd dataset Every time Pluto runs any of the draw augmentation methods, there is an equal chance that one of the filters will be selected and that 50% of the filter will be applied per image in the batch. Pluto can override the default batch size of 15 using the bsize parameter. Since Pluto employs the safe range on all filters, you may not notice the difference. However, that is expected because the goal is to distort the images without compromising the target label before pre-processing.

Fun challenge

Write a new combination wrapper function for a real-world dataset. If you have not downloaded or imported a new real-world image dataset, do so now and write a combined wrapper function as Pluto did.

This was a challenging chapter. Together, you and Pluto learned about image augmentation and how to use Python code to gain a deeper insight.

Now, let’s summarize this chapter.

Summary

In the first part of this chapter, you and Pluto learn about the image augmentation concepts for classification. Pluto grouped the filters into geometric transformations, photometric transformations, and random erasing to make the image filters more manageable.

When it came to geometric transformations, Pluto covered horizontal and vertical flipping, cropping and padding, rotating, warping, and translation.

These filters are suitable for most image datasets, and there are other geometric transformations, such as tilting or skewing. Still, Pluto followed the golden image augmentation rule for selecting a filter that improves prediction accuracy described in a published scholarly paper.

This golden rule is more suitable for photometric transformations because there are about 70 image filters in the Albumentations library and hundreds more available in other image augmentation libraries. This chapter covered the most commonly used photometric transformations cited in published scholarly papers: lighting, grayscale, contrast, saturation, hue shifting, noise injection, rain, sepia, and FancyPCA. You are encouraged to explore more filters from the Albumations library in the Python Notebook provided.

The second part of this chapter consisted of Python code to reinforce your understanding of various image augmentation techniques. Pluto led you through the process of downloading the six real-world image datasets from the Kaggle website. Pluto wrote the fetching data code in Chapter 2. He

reused the fetch functions to retrieve the Covid-19, people, fungi, sea animals, food, and mall crowd real-world image datasets.

Before digging into the code, Pluto reviewed seven popular image augmentation libraries: Albumentations, Fast.ai, PIL, OpenCV, scikit-learn, Mahotas, and GraphicsMagick. Pluto used the Albumentations, Fast.ai, and PIL libraries to code the wrapper functions.

The goal of these wrapper functions was to explain each image filter clearly. In all cases, the functions use the library augmentation methods under the hood. Many photometric transformations are more visible in the Python Notebook’s color output. Pluto showed the safe and unsafe parameters for each filter applied to the six image datasets. You are encouraged to run and even hack the Python Notebook’s code because there are no absolute right or wrong safe levels.

A lot of Python code was provided, but it consisted of simple wrapper functions that followed good OOP standards and there were no other methods. The goal was to give you insight into each image filter and make it easy for you to explore and hack the code provided.

At the end of this chapter, Pluto pulled together to create an image filter combination table customized for each of the six image datasets. He then wrote six combined augmentation methods for each image dataset.

Throughout this chapter, there were fun facts and fun challenges. Pluto hopes you will take advantage of these and expand your experience beyond the scope of this chapter.

In the next chapter, we will cover image segmentation, which reuses many of the image classification functions that were covered in this chapter.

Image Augmentation for

Segmentation

Image segmentation, like image classification, is the cornerstone in the computer vision domain. Image segmentation involves grouping parts of an image that belong to the same object, also known as pixel-level classification. Unlike image classification, which identifies and predicts the subject or label of a photo, image segmentation determines whether a pixel belongs to a list of objects – for example, an urban photograph has streets, street signs, cars, trucks, bicycles, buildings, trees, and pedestrians. Image segmentation’s job is to decide whether this image pixel belongs to a car, tree, or other objects.

Deep learning (DL), an artificial neural network (ANN) algorithm, has made a tremendous breakthrough in image segmentation. For example, image segmentation in DL makes it possible for autonomous vehicles and Advanced Driver Assistance Systems (ADASes) to detect navigable surfaces or pedestrians. Many medical applications use segmentation for tumor boundary drawing or measuring tissue volumes, for example.

The image augmentation methods for segmentation or classification are the same, except segmentation comes with an additional mask image or ground-truth image. Therefore, most of what we learned about augmenting images for classification in Chapter 3 applies to augmenting segmentation.

This chapter aims to provide continuing geometric and photometric transformations for image segmentation. In particular, you will learn about the following topics:

Geometric and photometric transformations

Real-world segmentation datasets

Reinforcing your learning through Python code

[image: Image 73]

Fun fact

Image segmentation or semantic segmentation is used in many self-driving car AI controllers. It is used to identify objects and people on a street.

Worldwide competition wins or losses primarily due to image segmentation augmentation techniques, such as the Udacity and Lyft Perception Challenge winner of the Kaggle competition, use random resized crop, horizontal flip, and random color jitter in brightness, contrast, and saturation.

Let’s begin with the geometric and photometric transformations for segmentation.

Geometric and photometric

transformations

As discussed in Chapter 3, geometric transformations alter a picture’s geometry, such as by flipping, cropping, padding, rotating, or resizing it.

For segmentation, when horizontally flipping an image, the same must be done for the mask. Pluto will show you how to flip an original and accompanying mask image; here is a sneak peek:

Figure 4.1 – Image segmentation horizontal flip

Many of the safe values discussed in Chapter 3 stay mostly the same. For

example, if the picture’s subject is people or an urban cityscape, the classification augmentation can’t flip vertically because the prediction of people’s age or the city’s name relies on the picture not being upside down.

However, segmentation aims to group or draw an outline of the people or cars. Thus, vertical flipping is acceptable.

The safe range needs further investigation for many real-world applications.

For example, for self-driving automobiles, what if you are in a car accident and your vehicle is upside down? Does the AI still need to classify its surroundings correctly?

Photometric transformations, such as brightness, saturation, contrast, hue shifting, and FancyPCA, are more problematic to apply to segmentation because the original image is distorted but not the mask image. The big question is, would augmenting the original but not the mask image increase the prediction’s accuracy?

Noise injection, random erasing, snow, and rain transformations are not applicable to segmentation because they introduce new pixels. The mask image can’t compensate for the replacement pixels. Similarly, blurring or embossing filters are not suitable for segmentation. In the Albumentations library, 37 transformations are defined as safe for distorting both original and mask images.

Technically, you can use photometric transformations for segmentation with Python code, but it is wise to research published scholarly papers for

confirmation. The golden augmentation rule that we discussed in Chapter 3

is applied here as well – you select a filter that improves the prediction accuracy described in a published academic paper.

Learning by using Python code is another angle you can use to understand image segmentation. However, before we do that, let’s ask Pluto to download a few real-world segmentation datasets from Kaggle.

Real-world segmentation datasets

The Kaggle website is an online community platform for data scientists and ML devotees. It contains thousands of real-world datasets, as mentioned in Chapters 1, 2, and 3.

When searching for image segmentation datasets, Pluto found about 500

useable real-world segmentation datasets. The topics range from self-driving automobiles and medicine to micro-fossils. Pluto picked two segmentation datasets from popular market segments.

The other consideration is that the image type must be easy to work with in the Albumentations library. Pluto uses the PIL and NumPy libraries to read and convert the photos into a three-dimensional array. The original image’s shape is (width, height, and depth), where depth is usually equal to three.

The mask image’s shape is (width, height), where the value is 0, 1, 2, and so on up to the number of labels.

Fun fact

The PIL library can read image formats such as .jpg, .gif, .tiff, .png, and about 50 other image formats. Still, sometimes, the real-world segmentation datasets come with an image format that PIL can’t read. In those cases, Pluto relies on the Python ImageIO library, which can read over 100 image types.

The two selected segmentation datasets are as follows:

The Cambridge-Driving Labeled Video (CamVid) database is the first real-world segmentation dataset. The context on the Kaggle website is as follows:

“The Cambridge-Driving Labeled Video Database (CamVid) provides ground truth labels that associate each pixel with one of 32 semantic classes. This dataset is often used in (real-time) semantic segmentation research. ”

It was published in 2020 by the University of Cambridge, and the license is CC BY-NC-SA 4.0: https://creativecommons.org/licenses/by-nc-sa/4.0/.

The second real-world dataset is called Semantic segmentation of aerial imagery. The description from the Kaggle website is as follows:

“The dataset consists of aerial imagery of Dubai obtained by MBRSC

 satellites and annotated with pixel-wise semantic segmentation in 6 classes.

 The total volume of the dataset is 72 images grouped into 6 larger tiles. ”

It was published in 2020 by the Roia Foundation in Syria, and the license is CC0: Public Domain:

https://creativecommons.org/publicdomain/zero/1.0/.

After selecting the two segmentation datasets, the following four steps should be familiar to you by now. Review Chapters 2 and 3 if you need clarification. The steps are as follows:

1. Retrieve the Python Notebook and Pluto.

2. Download real-world data.

3. Load the data into pandas.

4. View the data images.

Fun challenge

Find and download two additional image segmentation datasets from the Kaggle website or other sources. Kaggle competitions and data consist of hundreds of image segmentation datasets. Thus, finding image segmentation datasets that are meaningful to you or your job shouldn’t be challenging. Hint: use Pluto’s fetch_kaggle_dataset() or

fetch_kaggle_comp_data() function.

Let’s start with Pluto.

Python Notebook and Pluto

Start by loading the data_augmentation_with_python_chapter_4.ipynb file into Google Colab or your chosen Jupyter Notebook or JupyterLab environment. From this point onward, the code snippets will be from the Python Notebook, which contains the complete functions.

Next, you must clone the repository and use the %run command to start Pluto:

clone the github

!git clone 'https://github.com/PacktPublishing/Data-

Augmentation-with-Python'

instantiate Pluto

%run 'Data-Augmentation-with-Python/pluto/pluto_chapter_3.py'

The output will be as follows or similar:

---------------------------- : ---------------------------

Hello from class : <class

'__main__.PacktDataAug'> Class: PacktDataAug

Code name : Pluto

Author is : Duc Haba

---------------------------- : ---------------------------

fastai 2.6.3 : actual 2.7.9

---------------------------- : ---------------------------

albumentations 1.2.1 : actual 1.2.1

---------------------------- : ---------------------------

Double-check that Pluto has loaded correctly:

display Python and libraries version number

pluto.say_sys_info()

The output will be as follows or something similar, depending on your system:

---------------------------- : ---------------------------

System time : 2022/10/21 15:46

Platform : linux

Pluto Version (Chapter) : 3.0

Python version (3.7+) : 3.7.13 (default, Apr 24 2022,

01:04:09) [GCC 7.5.0]

PyTorch (1.11.0) : actual: 1.12.1+cu113

Pandas (1.3.5) : actual: 1.3.5

PIL (9.0.0) : actual: 7.1.2

Matplotlib (3.2.2) : actual: 3.2.2

CPU count : 2

CPU speed : NOT available

---------------------------- : ---------------------------

Pluto has verified that the Python Notebook is working correctly. The next step is downloading real-world image datasets from Kaggle.

Real-world data

The following download function is from Chapter 2. Pluto has reused this here:

Fetch Camvid photo

url = 'https://www.kaggle.com/datasets/carlolepelaars/camvid'

pluto.fetch_kaggle_dataset(url)

Fetch Aerial image

url =

'https://www.kaggle.com/datasets/humansintheloop/semantic-

segmentation-of-aerial-imagery'

pluto.fetch_kaggle_dataset(url)

Before viewing the downloaded photos, Pluto needs to load the information into a pandas DataFrame.

Pandas

A few cleanup tasks need to be done here, such as replacing a space character with an underscore character in the directories or filenames and separating original and mask images. After the cleanup, Pluto reuses the

[image: Image 74]

make_dir_dataframe() function to read the original image data into a pandas DataFrame. The command for the CamVid data is as follows:

import data to Pandas

f = 'kaggle/camvid/CamVid/train'

pluto.df_camvid = pluto.make_dir_dataframe(f)

The output of the first three records is as follows:

Figure 4.2 – CamVid pandas DataFrame, first three rows

The mask images are in a different folder, and the mask image’s name has _L appended to the filename.

The primary reason for Pluto using pandas is that adding a new column for the matching mask and original filename is a trivial task. There are only two key code lines. The first is in the helper function to generate the correct mask image path, while the second is to create a new column for applying the helper function. The code for this is as follows:

define helper function

@add_method(PacktDataAug)

def _make_df_mask_name(self,fname):

p = pathlib.Path(fname)

return (str(p.parent.parent) +

'/' + str(p.parent.name) + '_labels/' +

str(p.stem) + '_L' + str(p.suffix))

method definition

@add_method(PacktDataAug)

def make_df_mask_name(self,df):

[image: Image 75]

df['mask_name'] = df.fname.apply(self._make_df_mask_name)

return

The command to complete the CamVid DataFrame is as follows:

create mask file name

pluto.make_df_mask_name(pluto.df_camvid)

The output is as follows:

Figure 4.3 – Complete CamVid DataFrame, first three rows

Once Pluto has gathered all the information squared away in the DataFrame, the next step is to display the original and mask images.

Viewing data images

Pluto could reuse the draw_batch() function from Chapter 2 to display the original and mask images in separate batches, but the result does not reinforce the combination of original and mask images. Therefore, Pluto will hack the draw_batch() method and create a new

draw_batch_segmentation() and a helper function called

_draw_batch_segmentation().

The result shows the original image, then the mask image, and repeats this process. The command for displaying the CamVid segmentation photos is as follows:

use new batch display method for segmentation

pluto.draw_batch_segmentation(pluto.df_camvid,

is_shuffle=True)

[image: Image 76]

The output is as follows:

Figure 4.4 – CamVid’s original and mask image batch

The segmentation batch looks correct, so Pluto repeats the same process for the aerial segmentation data.

Download the data with the following command:

fetch real-world data

url =

'https://www.kaggle.com/datasets/humansintheloop/semantic-

segmentation-of-aerial-imagery'

pluto.fetch_kaggle_dataset(url)

Clean the directory and filenames, then import them into pandas with the following command:

import to Pandas

f = 'kaggle/semantic-segmentation-of-aerial-imagery'

pluto.df_aerial = pluto.make_dir_dataframe(f)

The output for the first five records is as follows:

[image: Image 77]

[image: Image 78]

Figure 4.5 – Aerial pandas DataFrame, first three rows

Add the mask’s filename using the new help function, as follows:

create mask filename

pluto.make_df_mask_name_aerial(pluto.df_aerial)

The output for the first three records is as follows:

Figure 4.6 – Complete aerial DataFrame, first three rows

Display the segmentation image batch with the following command:

draw batch image

pluto.draw_batch_segmentation(pluto.df_aerial,

is_shuffle=True)

The output is as follows:

[image: Image 79]

Figure 4.7 – Aerial pandas DataFrame, first five rows

Fun challenge

Here is a thought experiment: given an image dataset, how do you create the mask for the photos? Hint: you could use fancy image software to auto-trace the objects or outlines, then label them. The other options are Mechanical Turk or crowd-sourced. You should think about cost versus time.

Pluto has successfully downloaded and displayed the CamVid and aerial segmentation photos. Now, let’s do some image augmentation with Python.

Reinforcing your learning

The same concepts for classification image transformations apply to segmentation image transformations. Here, Pluto reuses or slightly hacks the wrapper functions in Chapter 3. In particular, Pluto hacks the following methods for segmentation:

Horizontal flip

Vertical flip

Rotating

Random resizing and cropping

Transpose

Lighting

FancyPCA

Fun fact

You can’t complete or understand this chapter unless you have read Chapter

 3. This is because Pluto reuses or slightly modifies the existing image

augmentation wrapper functions.

Pluto chose these filters because the Albumentations library marked them as safe for segmentation. So, let’s start with horizontal flip.

Horizontal flip

Pluto demonstrated horizontal flip using the PIL library in Chapter 3

because the code is easy to understand. Thus, he will hack

draw_image_flip_pil() into the draw_image_flip_pil_segmen() function. The transformation code is the same – that is,

PIL.ImageOps.mirror(img). The change is to display the images next to each other.

The command for flipping an image in the CamVid dataset in the Python Notebook is as follows:

use wrapper function to flip image

pluto.draw_image_flip_pil_segmen(pluto.df_camvid.fname[0])

The output is as follows:

[image: Image 80]

[image: Image 81]

Figure 4.8 – Flipping an image using the PIL library

Pluto uses the same function for the mask image and passes the mask_image column into the pandas DataFrame. It is that easy. Pluto has to transform the original and mask images with the same filter.

The command for flipping the mask image is as follows:

use wrapper function to flip image mask

pluto.draw_image_flip_pil_segmen(pluto.df_camvid.mask_name[0]

The output is as follows:

Figure 4.9 – Flipping the mask using the PIL library

Fun fact

Pluto only shows relevant code snippets in this book, but the fully functional object-oriented methods can be found in the Python Notebook.

The code for this chapter looks remarkably similar to the code for Chapter

 3. Pluto designed the software architecture using the principle layout

provided in Chapter 1. Thus, the code looks clean but contains high

complexity under the hood.

Under the hood, a color image is a three-dimensional array or a Rank 3

tensor. The image’s shape is (width, height, and depth), where depth is usually equal to three, while the mask image’s shape is (width, height), where the value is 0, 1, 2, and so on up to the number of labels. Therefore, mirroring a Rank 3 tensor follows the same operation as mirroring a Rank 1 tensor.

For the Albumentations library, the wrapper function for segmentation is as simple as the one provided in Chapter 3. The code for the draw_image_flip_segmen() method is as follows:

method definition

@add_method(PacktDataAug)

def draw_image_flip_segmen(self,df):

aug_album = albumentations.HorizontalFlip(p=1.0)

self._draw_image_album_segmentation(df,aug_album,

'Horizontal Flip')

return

It is the same as the draw_image_flip() function that we provided in

 Chapter 3. The difference is that a different helper function is used. Instead of using the _draw_image_album() helper function, it uses the _draw_image_album_segmentation() method.

The command for performing a horizontal flip on the CamVid segmentation data in the Python Notebook is as follows:

use wrapper function to flip both image and image mask pluto.draw_image_flip_segmen(pluto.df_camvid)

[image: Image 82]

[image: Image 83]

The output is as follows:

Figure 4.10 – Horizontal flip on the CamVid dataset

The command for performing a horizontal flip on the aerial segmentation data is as follows:

use the same flip segmentation wrapper function on arial pluto.draw_image_flip_segmen(pluto.df_aerial)

The output is as follows:

Figure 4.11 – Horizontal flip on the aerial dataset Like in Chapter 3, the wrapper functions in this chapter randomly select a new image batch every time.

Fun challenge

Here is a thought experiment: how can you use image segmentation to support environmental organizations such as a wildlife conservation group?

Hint: consider how customs agents can spot people selling parts of an endangered species, such as elephant ivory or saga horn, in an open market using their iPhones or Close-Circuit Television (CCTV) monitoring system.

Pluto completes the flipping transformation with the vertical flip filter.

Vertical flip

The vertical flip wrapper function is almost the same as the horizontal flip method. Pluto could write one uber function instead of each wrapper method individually. Still, the goal is to explain each transformation, not refactor it into more compact or efficient code. The key code line for the wrapper function is as follows:

use albumentations library function

aug_album = albumentations.Flip(p=1.0)

The command for performing a vertical flip on the CamVid segmentation data in the Python Notebook is as follows:

use flip wrapper function for camvid data

pluto.draw_image_flip_both_segmen(pluto.df_camvid)

The output is as follows:

[image: Image 84]

[image: Image 85]

Figure 4.12 – Vertical flip on the CamVid dataset

The command for performing a vertical flip on the aerial segmentation data is as follows:

use flip wrapper function for aerial image

pluto.draw_image_flip_both_segmen(pluto.df_aerial)

The output is as follows:

Figure 4.13 – Vertical flip on the aerial dataset

[image: Image 86]

That concludes flipping. Now, let’s look at rotating.

Rotating

The rotating safe parameter can go 45 degrees clockwise or counterclockwise in direction. The Albumentations method is as follows:

use albumentation library function for rotating

aug_album = albumentations.Rotate(limit=45, p=1.0)

The command for rotating the CamVid segmentation data in the Python Notebook is as follows:

use rotate wrapper function for camvid image

pluto.draw_image_rotate_segmen(pluto.df_camvid)

The output is as follows:

Figure 4.14 – Rotating the CamVid dataset

The command for rotating the aerial segmentation data is as follows:

use rotate wrapper function for aerial image

pluto.draw_image_rotate_segmen(pluto.df_aerial)

[image: Image 87]

The output is as follows:

Figure 4.15 – Rotating the aerial dataset

The next filter is resizing and cropping.

Resizing and cropping

The classification model aims to identify the subject, while the segmentation model groups object per pixel. Hence, cropping and resizing are acceptable transformations at relatively higher safe parameters. The key code line for the wrapper function is as follows:

use albumentations function for resizing and cropping

aug_album = albumentations.RandomSizedCrop(

min_max_height=(500, 600),

height=500,

width=500,

p=1.0)

The command for randomly resizing and cropping the CamVid

segmentation data in the Python Notebook is as follows:

use resize and crop wrapper functiion for camvid photo pluto.draw_image_resize_segmen(pluto.df_camvid)

[image: Image 88]

The output is as follows:

Figure 4.16 – Resizing and cropping the CamVid dataset

The command for randomly resizing and cropping the aerial segmentation data is as follows:

use resize and crop wrapper functiion for aerialphoto

pluto.draw_image_resize_segmen(pluto.df_aerial)

The output is as follows:

[image: Image 89]

Figure 4.17 – Resizing and cropping the aerial dataset

Next, we’ll cover the transpose filter.

Transpose

Pluto didn’t use a transpose filter in Chapter 3 for classification, but it is permissible for segmentation. Transposing involves switching the x axis with the y axis. The key code line for the wrapper function is as follows:

use albumentations library for transpose

aug_album = albumentations.Transpose(p=1.0)

The command for transposing the CamVid segmentation data is as follows:

use transpose wrapper function for camvid data

pluto.draw_image_transpose_segmen(pluto.df_camvid)

The output is as follows:

[image: Image 90]

[image: Image 91]

Figure 4.18 – Transposing the CamVid dataset

The command for transposing the aerial segmentation data is as follows:

use transpose wrapper function for aerial data

pluto.draw_image_transpose_segmen(pluto.df_aerial)

The output is as follows:

Figure 4.19 – Transposing the aerial dataset Fun challenge

Implement optical distortion in the Python Notebook. Hint: use a similar Pluto wrapper function to the Albumentations library function’s albumentations.OpticalDistortion() method.

Transpose is the last example Pluto uses for geometric transformations.

Lighting, also known as brightness, belongs to the photometric transformations class.

Lighting

Lighting or brightness is acceptable for segmentation in the Albumentations library, but it belongs to the photometric transformations class. The original image changes to a random brightness level up to a safe level, but the mask image will not change. For both datasets, the safe parameter is a brightness of 0.5. The key code line in the wrapper function is as follows:

use albumentations library for brightness

aug_album = albumentations.ColorJitter(

brightness=brightness,

contrast=0.0,

saturation=0.0,

hue=0.0,

always_apply=True,

p=1.0)

The command for using lighting on the CamVid segmentation data is as follows:

use the brightmess wrapper function for camvid image

pluto.draw_image_brightness_segmen(pluto.df_camvid)

The output is as follows:

[image: Image 92]

[image: Image 93]

Figure 4.20 – Using lighting on the CamVid dataset

The command for using lighting on the aerial segmentation data is as follows:

use the brightmess wrapper function for aerial image

pluto.draw_image_brightness_segmen(pluto.df_aerial)

The output is as follows:

Figure 4.21 – Using lightning on the aerial dataset

[image: Image 94]

Similar to the lighting filter, FancyPCA belongs to the photometric transformations class.

FancyPCA

FancyPCA is the last example Pluto demonstrates for photometric transformations. For both datasets, the safe parameter is an alpha value of 0.3. Once again, FancyPCA will not alter the mask image. The key code line in the wrapper function is as follows:

use albumentations library for fancyPCA

aug_album = albumentations.FancyPCA(

alpha=alpha,

always_apply=True,

p=1.0)

The command for using FancyPCA on the CamVid segmentation data is as follows:

use the fancyPCA wrapper function for camvid image

pluto.draw_image_fancyPCA_segmen(pluto.df_camvid)

The output is as follows:

Figure 4.22 – Using FancyPCA on the CamVid dataset

[image: Image 95]

The command for using FancyPCA on the aerial segmentation data is as follows:

use the fancyPCA wrapper function for aerial image

pluto.draw_image_fancyPCA_segmen(pluto.df_aerial)

The output is as follows:

Figure 4.23 – Using FancyPCA on the aerial dataset

Fun challenge

Here is a thought experiment or maybe a practice one too: what can you do that appears acceptable in image augmentation but has a high probability of a false-positive or false-negative prediction in real-world deployment?

Sorry, no hint.

Pluto finds that segmentation augmentation is not that different from classification augmentation. The wrapper functions are virtually the same, and only the helper methods display the images differently. Pluto has demonstrated segmentation for the flipping, resizing, cropping, rotating,

transposing, lighting, and FancyPCA transformations. Similarly to Chapter

 3, next, Pluto will combine individual filters into an uber function.

[image: Image 96]

Combining

Before coding the uber combination methods in Python, Pluto needs to use pandas to summarize the filters in this chapter. Many more transformations are applicable for segmentation, so if you experiment with other filters in the Python Notebook, expand the pandas table with your new filters.

Pluto displays the summary table using the following command:

use Pandas to display the combination filters

pluto.print_safe_parameters_segmen()

The output is as follows:

Figure 4.24 – Summary segmentation filters

Using the summary table, Pluto writes the wrapper function. The key code line is as follows:

use albumentations library

aug_album = albumentations.Compose([

albumentations.ColorJitter(brightness=0.5,

[image: Image 97]

contrast=0.0,

saturation=0.0,

hue=0.0,p=0.5),

albumentations.HorizontalFlip(p=0.5),

albumentations.Flip(p=0.5),

albumentations.Rotate(limit=45, p=0.5),

albumentations.RandomSizedCrop(

min_max_height=(500, 600),

height=500,

width=500,

p=0.5),

albumentations.Transpose(p=0.5),

albumentations.FancyPCA(alpha=0.2, p=0.5)])

Pluto displays the combination segmentation transformations for the CamVid dataset as follows:

use combination wrapper function for camvid photo

pluto.draw_uber_segmen(pluto.df_camvid)

The output is as follows:

Figure 4.25 – Combining the filters for the CamVid dataset

The command for the aerial dataset in the Python Notebook is as follows:

[image: Image 98]

use combination wrapper function for aerial photo

pluto.draw_uber_segmen(pluto.df_aerial)

The output is as follows:

Figure 4.26 – Combining filters for the aerial dataset

Fun challenge

Pluto challenges you to refactor the Pluto class to make it faster and more compact. You are encouraged to create and upload your library to GitHub and PyPI.org. Furthermore, you don’t have to name the class PacktDataAug, but it would give Pluto and his human companion a great big smile if you cited or mentioned this book. The code goals were for ease of understanding, reusable patterns, and teaching on the –Python Notebook. Thus, refactoring the code as a Python library would be relatively painless and fun.

With that, you’ve learned how to combine segmentation transformations.

Next, we’ll summarize what was covered in this chapter.

Summary

Image segmentation consists of the original image and an accompanying mask image. The goal is to determine whether a pixel belongs to a list of objects. For example, an urban photograph consists of streets, street signs, cars, trucks, bicycles, buildings, trees, and pedestrians. Image segmentation’s job is to decide whether this pixel belongs to a car, tree, or other objects.

Image segmentation and image classification share the same

transformations. In other words, most geometric transformations, such as flipping, rotating, resizing, cropping, and transposing, work with the original image and mask image in image segmentation. Photometric transformations, such as brightness, contrast, and FancyPCA, can technically be done with Python, but the filter does not alter the mask image. On the other hand, filters such as noise injection and random erasing are unsuitable for segmentation because they add or replace pixels in the original image.

Throughout this chapter, there have been fun facts and fun challenges. Pluto hopes you will take advantage of these and expand your experience beyond the scope of this chapter.

Switching gear, the next chapter will cover text augmentation. Pluto can’t use any image augmentation functions, but he can reuse the wrapper functions for downloading datasets from the Kaggle website.

Part 3: Text Augmentation

This part includes the following chapters:

 Chapter 5, Text Augmentation

 Chapter 6, Text Augmentation with Machine Learning

Text Augmentation

Text augmentation is a technique that is used in Natural Language Processing (NLP) to generate additional data by modifying or creating new text from existing text data. Text augmentation involves techniques such as character swapping, noise injection, synonym replacement, word deletion, word insertion, and word swapping. Image and text augmentation have the same goal. They strive to increase the size of the training dataset and improve AI prediction accuracy.

Text augmentation is relatively more challenging to evaluate because it is not as intuitive as image augmentation. The intent of an image augmentation technique is clear, such as flipping a photo, but a character-swapping technique will be disorienting to the reader. Therefore, readers might perceive the benefits as subjective.

The effectiveness of text augmentation depends on the quality of the generated data and the specific NLP task being performed. It can be challenging to determine the appropriate safe level of text augmentation that is required for a given dataset, and it often requires experimentation and testing to achieve the desired results.

Customer feedback or social media chatter is fair game for text augmentation because the writing is messy and, predominantly, contains grammatical errors. Conversely, legal documents or written medical communications, such as doctor’s prescriptions or reports, are off-limits because the message is precise. In other words, error injections, synonyms, or even AI-generated text might change the legal or medical meaning beyond the safe level.

The biases in text augmentation are equally difficult to discern. For example, adding noise by purposely misspelling words using the Keyboard augmentation method might introduce bias against real-world tweets, which typically contain misspelled words. There are no generalized rules to follow, and the answer only becomes evident after thoroughly studying the data and reviewing the AI forecasting objective.

Fun fact

As generative AI becomes more widely available, you can use OpenAI’s GPT-3, Google Bard, or Facebook’s Roberta system to generate original articles for text augmentation. For example, you can ask generative AI to create positive or negative reviews about a company product, then use the AI-written articles to train predictive AI on sentiment analysis.

In Chapter 5, you will learn about text augmentation and how to code the

methods in Python notebooks. In particular, we will cover the following topics:

Character augmenting

Word augmenting

Sentence and flow augmenting

Text augmentation libraries

Real-world text datasets

Reinforcing learning through Python Notebook

Let’s get started with the simplest topic, character augmentation.

Character augmenting

Character augmentation substitutes or injects characters into the text. In other words, it creates typing errors. Therefore, the method seems counterintuitive. Still, just like noise injection in image augmentation, scholarly published papers illustrate the benefit of character augmentation in improving AI forecasting accuracy, such as Effective Character-Augmented Word Embedding for Machine Reading Comprehension by Zhuosheng Zhang, Yafang Huang, Pengfei Zhu, and Hai Zhao, from the 2018 CCF International Conference on Natural Language Processing.

The three standard methods for character augmentation are listed as follows:

The Optical Character Recognition (OCR) augmenting function substitutes frequent errors in OCR by converting images into text, such as the letter o into the number 0 or the capital letter I into the number 1.

The Keyboard augmenting method replaces a character with other characters that are adjacent to it. For example, a typical typing error for character b is hitting key v or key n instead.

The Random character function randomly swaps, inserts, or deletes characters within the piece of text.

Fun fact

Computer encoding text was very different from 1963 to 1970; for example, a computer would encode the letter A as an integer 64 or Hexidecimal 41.

This originated from the American National Standards Institute (ANSI) in 1964, and the International Organization for Standardization (ISO) adopted the standard around 1970. In 1980, the Unification Code (Unicode) subsumed the ISO standard for all international languages.

However, if you come across computer text from around 1964, it could be encoded in Extended Binary Coded Decimal Interchange Code (EBCDIC), which encodes the letter A as 193 or Hexidecimal C1. As a programmer, you might have to answer this question: does your website or mobile app support Unicode?

After character augmenting, the next category is word augmenting.

Word augmenting

Word augmentations carry the same bias and safe level warning as character augmentations. Over half of these augmentation methods inject errors into the text, but other functions generate new text using synonyms or a pretrained AI model. The standard word augmentation functions are listed as follows:

The Misspell augmentation function uses a predefined dictionary to simulate spelling mistakes. It is based on the scholarly paper Text Data

 Augmentation Made Simple By Leveraging NLP Cloud APIs by Claude Coulombe, which was published in 2018.

The Split augmentation function splits words into two tokens randomly.

The Random word augmentation method applies random behavior to the text with four parameters: substitute, swap, delete, and crop. It is based on two scholarly papers: Synthetic and Natural Noise Both Break Neural Machine Translation by Yonatan Belinkov and Yonatan Bisk, published in 2018, and Data Augmentation via Dependency Tree Morphing for Low-Resource Languages by Gozde Gul Sahin and Mark Steedman.

The Synonym augmentation function substitutes words with synonyms from a predefined database. The first option is to use WordNet. WordNet is an extensive lexical database of English from Princeton University. The database groups nouns, verbs, adjectives, and adverbs into sets of cognitive synonyms. The second option is to use a Paraphrase Database (PPDB). A PPDB is an automatically extracted database containing millions of paraphrases in 16 languages. A PPDB

aims to improve language processing by making systems more robust to language variability and unseen words. The entire PPDB resource is freely available under the United States Creative Commons Attribution 3.0 license.

The Antonym augmentation function replaces words with antonyms.

It is based on the scholarly paper, Adversarial Over-Sensitivity and Over-Stability Strategies for Dialogue Models, by Tong Niu and Mohit Bansal, which was published in 2018.

The Reserved Word augmentation method swaps target words where you define a word list. It is the same as synonyms, except the terms are created manually.

Fun challenge

Here is a thought experiment: can you think of a new character or word augmentation technique? A hint is to think about how a dyslexic person reads.

Next, we will look at sentence augmentation.

Sentence augmentation

Sentence augmenting uses generative AI to create new texts. Examples of AI models are BERT, Roberta, GPT-2, and others.

The three sentence augmentation methods are listed as follows: Contextual Word Embeddings uses GPT-2, Distilled-GPT-2, and XLNet.

Abstractive Summarization uses Facebook Robertaand T5-Large.

Top-n Similar Word uses LAMBADA.

Before Pluto explains the code in the Python Notebook, let’s review the text augmentation libraries.

Text augmentation libraries

There are many more Python open source image augmentation libraries than text augmentation libraries. Some libraries are more adaptable to a particular category than others, but in general, it is a good idea to pick one or two and become proficient in them.

The well-known libraries are Nlpaug, Natural Language Toolkit (NLTK), Generate Similar (Gensim), TextBlob, TextAugment, and AugLy: Nlpaug is a library used for textual augmentation for DL. The goal is to improve DL model performance by generating textual data. The GitHub link is https://github.com/makcedward/nlpaug.

NLTK is a platform used for building Python programs to work with human language data. It provides interfaces to over 50 corpora and lexical resources, such as WordNet. NLTK contains text-processing

libraries for classification, tokenization, stemming, tagging, parsing, and semantic reasoning. The GitHub link is https://github.com/nltk/nltk.

Gensim is a popular open source NLP library used for unsupervised topic modeling. It uses academic models and modern statistical machine learning to perform word vectors, corpora, topic identification, document comparison, and analyzing plain-text documents. The GitHub link is https://github.com/RaRe-Technologies/gensim.

TextBlob is a library that is used for processing textual data. It provides a simple API for diving into typical NLP tasks such as part-of-speech tagging, noun phrase extraction, sentiment analysis, classification, and translation. The GitHub link is

https://github.com/sloria/TextBlob.

TextAugment is a library that is used for augmenting text in NLP

applications. It uses and combines the NLTK, Gensim, and TextBlob libraries. The GitHub link is https://github.com/dsfsi/textaugment.

AugLy is a data augmentation library from Facebook that supports audio, image, text, and video modules and over 100 augmentations. The augmentation of each modality is categorized into sub-libraries. The GitHub link is https://github.com/facebookresearch/AugLy

Similarly to image augmentation wrapper functions, Pluto will write wrapper functions that use the library under the hood. You can pick more than one library for a project, but Pluto will use the Nlpaug library to power the wrapper functions.

Let’s start by downloading the real-world text datasets from the Kaggle website.

Real-world text datasets

The Kaggle website is an online community platform for data scientists and machine learning enthusiasts. The Kaggle website has thousands of real-world datasets; Pluto found a little over 2,900 NLP datasets and has selected two NLP datasets for this chapter.

In Chapter 2, Pluto uses the Netflix and Amazon datasets as examples with which to understand biases. Pluto keeps the Netflix NLP dataset because the movie reviews are curated . There are a few syntactical errors, but overall, the input texts are of high quality.

The second NLP dataset is Twitter Sentiment Analysis (TSA). The 29,530

real-world tweets contain many grammatical errors and misspelled words.

The challenge is to classify the tweets into two categories: (1) normal or (2) racist and sexist.

The dataset was published in 2021 by Mayur Dalvi, and the license is CC0: Public Domain,

https://creativecommons.org/publicdomain/zero/1.0/.

After selecting the two NLP datasets, you can use the same four steps to begin the process of practical learning through a Python Notebook. If you need clarification, review Chapters 2 and 3. The steps are listed as follows: 1. Retrieve Python Notebook and Pluto.

2. Download real-world data.

3. Import into pandas.

4. View data.

Let’s start with Pluto.

The Python Notebook and Pluto

Start by loading the data_augmentation_with_python_chapter_5.ipynb file into Google Colab or your chosen Jupyter notebook or JupyterLab environment. From this point onward, the code snippets are from the Python Notebook, which contains the complete code.

The next step is to clone the repository. Pluto will reuse the code from

 Chapter 2 because it has the downloading Kaggle data methods and not the image augmentation functions. The !git and %run statements are used to start up Pluto. The command is as follows:

clone GitHub repo

!git clone 'https://github.com/PacktPublishing/Data-

Augmentation-with-Python'

instantiate Pluto

%run 'Data-Augmentation-with-Python/pluto/pluto_chapter_2.py'

The output is as follows:

---------------------------- : ---------------------------

Hello from class : <class

'__main__.PacktDataAug'> Class: PacktDataAug

Code name : Pluto

Author is : Duc Haba

---------------------------- : ---------------------------

We need one more check to ensure Pluto has been loaded satisfactorily. The following command asks Pluto to say his status:

pluto.say_sys_info()

The output should be as follows or similar, depending on your system:

---------------------------- : ---------------------------

System time : 2022/10/30 06:52

Platform : linux

Pluto Version (Chapter) : 2.0

 Python (3.7.10) : actual: 3.7.15 (default, Oct 12 2022, 19:14:55) [GCC 7.5.0]

PyTorch (1.11.0) : actual: 1.12.1+cu113

Pandas (1.3.5) : actual: 1.3.5

PIL (9.0.0) : actual: 7.1.2

Matplotlib (3.2.2) : actual: 3.2.2

CPU count : 2

*CPU speed : NOT available

---------------------------- : ---------------------------

Here, Pluto reported that he is from Chapter 2, which is also known as version 2.0. This is what we wanted because we don’t need any image augmentation functions from Chapters 3 and 4. The next step is to download the real-world Netflix and Twitter NLP datasets.

Real-world NLP datasets

There has yet to be any new code written for this chapter. Pluto reuses the fetch_kaggle_dataset() method to download the Netflix dataset, as follows:

fetch data

url = 'https://www.kaggle.com/datasets/infamouscoder/dataset-netflix-shows'

pluto.fetch_kaggle_dataset(url)

The dataset-netflix-shows.zip file is 1.34 MB, and the function automatically unzips in the kaggle directory.

The method for fetching the Twitter dataset is as follows:

fetch data

url = 'https://www.kaggle.com/datasets/mayurdalvi/twitter-

sentiments-analysis-nlp'

pluto.fetch_kaggle_dataset(url)

The twitter-sentiments-analysis-nlp.zip file is 1.23 MB, and the function automatically unzips in the kaggle directory.

Fun challenge

The challenge is to search and download two additional real-world NLP

datasets from the Kaggle website. Hint: use the

pluto.fetch_kaggle_dataset() method. Pluto is an imaginary digital Siberian Husky. Therefore, he will happily fetch data until your disk space is full.

The next step is to load the data into pandas.

Pandas

Pandas is the de facto standard for data scientists to manage and manipulate tabular data. It is fast, flexible, easy to use, and powerful.

Therefore, Pluto uses pandas to import the Comma-Separated Values (CSV) file, and he reuses the fetch_df() method. Note that df is a typical shorthand for the pandas DataFrame class.

For the Netflix data, Pluto uses the following two commands for importing to pandas and printing out the data batch:

import into Panda

f = 'kaggle/dataset-netflix-shows/netflix_titles.csv'

pluto.df_netflix_data = pluto.fetch_df(f)

display data batch

pluto.print_batch_text(pluto.df_netflix_data,

cols=['title', 'description'])

The output is as follows:

[image: Image 99]

Figure 5.1 – Netflix movie descriptions

Fun fact

The fetch_df() method randomly selects several records to display in the data batch. The number of records, or batch size, is the bsize parameter.

The default is 10 records.

The Netflix movie-reviewed data is curated; therefore, it is clean. Pluto doesn’t have to scrub the data. However, the Twitter data is another story.

[image: Image 100]

The commands for cleaning, importing, and batch-displaying the Twitter data to pandas are as follows:

clean space-char

f = 'kaggle/twitter-sentiments-analysis-nlp'

!find {f} -name "* *" -type f | rename 's/ /_/g'

import into Pandas

f = 'kaggle/twitter-sentiments-analysis-

nlp/Twitter_Sentiments.csv'

pluto.df_twitter_data = pluto.fetch_df(f)

display data batch

pluto.print_batch_text(pluto.df_twitter_data,cols=['label',

'tweet'])

The output is as follows:

Figure 5.2 – Twitter tweets

Since the real-world tweets from Twitter have been written by the public, they contain misspelled words, bad words, and all sorts of shenanigans.

The goal is to predict regular versus racist or sexist tweets. Pluto focuses on learning text argumentation; therefore, he prefers to have tweets with printable characters, no HTML tags, and no words of profanity.

Pluto writes two simple helper methods to clean the text and remove the words of profanity. The _clean_text() function uses the regex library, and the one line of code is as follows:

return (re.sub('[^A-Za-z0-9 .,!?#@]+', '', str(x)))

The _clean_bad_word() helper function uses the filter-profanity library, and the one line of code is as follows:

return (profanity.censor_profanity(x, ''))

The clean_text() method uses the two helper functions with pandas’

powerful apply function. Using pandas’ built-in functions, Pluto writes the clean_text() function with two code lines instead of a dozen lines using standard if-else and for-loop construct. The code is as follows:

clean text

df['clean_tweet'] = df.tweet.apply(self._clean_text)

remove profanity words

df['clean_tweet'] = df['clean_tweet'].apply(

self._clean_bad_word)

The commands for the clean tweets and showing the data batch are as follows:

clean tweets

pluto.clean_text(pluto.df_twitter_data)

display data batch

pluto.print_batch_text(pluto.df_twitter_data,

cols=['label', 'clean_tweet'])

[image: Image 101]

The output is as follows:

Figure 5.3 – Clean Twitter tweets

Fun fact

Who would have known that a dog and a panda could work together well?

The next Kung Fu Panda movie is about Po and Pluto teaming up to defend and augment the city wall against the storm of the century, which has been caused by global warming.

Let’s use pandas and some other libraries to visualize the NLP dataset.

Visualizing NLP data

 Chapter 2 uses the draw_word_count() method to display the average word per record and the shortest and longest movie reviews. The right-hand side

of the graph shows the histogram of the movie review word counts. The pandas library generates beautiful word count charts. Pluto reuses the function to display the Netflix NLP data, as follows:

draw word count

pluto.draw_word_count(pluto.df_netflix_data)

The output is as follows:

[image: Image 102]

Figure 5.4 – Netflix word counts

The Netflix movie description mean is 23.88 words, with a minimum of 10

words and a maximum of 48 words. Pluto does the same for the Twitter NLP data, as follows:

draw word count

pluto.draw_word_count(pluto.df_twitter_data)

The output is as follows:

[image: Image 103]

Figure 5.5 – Twitter word counts

[image: Image 104]

The average word count of the Twitter tweets is 12.78 words, with a minimum of 1 word and a maximum of 33 words.

Pluto writes the draw_text_null_data() method to check whether there is any missing data, also known as a null value. The missing data shows up as a white line. The Missingno library generates the graph with the following key line of code:

missingno.matrix(df,color=color,ax=pic)

Pluto draws the null data graph for the Netflix data, as follows:

draw missing data/null value

pluto.draw_text_null_data(pluto.df_netflix_data)

The output is as follows:

Figure 5.6 – Netflix missing data

[image: Image 105]

There is missing data in the director, cast, and country categories for the Netflix data, but the description category, also known as the movie review, has no missing data.

Pluto does the same for the Twitter data, as follows:

draw missing data/null value

pluto.draw_text_null_data(pluto.df_twitter_data)

The output is as follows:

Figure 5.7 – Twitter missing data

There is no missing data in the Twitter data.

Fun fact

Many multimillion-dollar AI systems have failed primarily because of a lack of control over the input data. For example, the Amazon Recruiting system in 2020 failed because there was no diversity in the dataset, and the most egregious debacle was Microsoft’s Chatbot Tay in 2016. It was corrupted by Twitter users inputting sexist and racist tweets.

The next chart is the word cloud infographic diagram. This is an extraordinary method for visualizing the NLP text. The most commonly used words are displayed in a large font, while the least used terms are displayed in a smaller font. The WordCloud library generates the infographic chart, and the essential code snippet is as follows:

generate word cloud

img = wordcloud.WordCloud(width = 1600,

height = 800,

background_color ='white',

stopwords = xignore_words,

min_font_size = 10).generate(words_str)

covert Pandas to word string input

orig = df_1column.str.cat()

word_clean = re.sub('[^A-Za-z0-9]+', '', orig)

Pluto uses the _draw_text_wordcloud() helper function and the draw_text_wordcloud() method to display the infographic chart for real-world Netflix data, as follows:

draw word cloud

pluto.draw_text_wordcloud(pluto.df_netflix_data.description, xignore_words=wordcloud.STOPWORDS,

title='Word Cloud: Netflix Movie Review')

The output is as follows:

[image: Image 106]

Figure 5.8 – Netflix word cloud, with approximately 246,819 words Pluto does the same for the real-world Twitter data, as follows:

draw word cloud

pluto.draw_text_wordcloud(pluto.df_twitter_data.clean_tweet, xignore_words=wordcloud.STOPWORDS,

title='Clean Tweets Word Cloud')

The output is as follows:

[image: Image 107]

Figure 5.9 – Twitter word cloud, with approximately 464,992 words Fun fact

Here is a fun fact about the history of word cloud graphs. The word cloud, also known as a tag cloud, Wordle, or weighted list, was first used in print by Douglas Coupland in the book Microserfs. It was published in 1995, but not until 2004 did the word clouds exist in digital format on the Flickr website. Today, word cloud infographics are widespread on the web and in academic papers.

So far, Pluto has discussed character, word, and sentence augmentation theories, chosen the Nlpaug text augmentation library, and downloaded the real-world Netflix and Twitter NLP datasets. It is time for Pluto to reinforce his learning by performing text augmentation with Python code.

Reinforcing learning through

Python Notebook

Pluto uses the Python Notebook to reinforce our understanding of text augmentation. He uses the batch function to display text in batches. This works similarly to the batch functions for images. In other words, it randomly selects new records and transforms them using the augmentation methods.

Fun fact

Pluto recommends running the batch functions repeatedly to gain a deeper insight into the text augmentation methods. There are thousands of text records in the Twitter and Amazon datasets. Each time you run the batch functions, it displays different records from the dataset.

As with the image augmentation implementation, the wrapper functions use the Nlpaug library under the hood. The wrapper function allows you to focus on the text transformation concepts and not be distracted by the library implementation. You can use another text augmentation library, and the wrapper function input and output will remain the same.

Pluto could write one complex function that contains all the text transformation techniques, and it may be more efficient, but that is not the goal of this book. After reading this book, you can choose to rewrite or hack the Python Notebook to suit your style with confidence.

In this chapter, Pluto uses an opening line from the book A Tale of Two Cities by Charles Dickens as the control text. Pluto paraphrases the text by substituting the commas between the phrases with periods because this makes it easier for the text augmentation process. The control text is as follows:

 “It was the best of times. It was the worst of times. It was the age of wisdom. It was the age of foolishness. It was the epoch of belief. It was the epoch of incredulity.”

The Python Notebook covers the following topics:

Character augmentation

Word augmentation

Let’s start with the three character augmentation techniques.

Character augmentation

Character augmentation involves injecting errors into the text. The process is counterintuitive because it purposely adds errors to the data. In other words, it makes the text harder for humans to understand. In contrast, computers use deep learning algorithms to predict the outcome, particularly the Convolutional Neural Network (CNN) and the Recurrent Neural Network (RNN) algorithms. For example, sentiment classification for tweets does not affect by misspelled words.

In particular, Pluto will explain the following three methods: OCR augmenting

Keyboard augmenting

Random augmenting

Let’s start with OCR.

OCR augmenting

The OCR process converts an image into a piece of text, with frequent errors such as mixing 0 and o during the conversion.

Pluto writes the _print_aug_batch() helper function to randomly select sample records from the NLP data, apply the text augmenting method, and print it using pandas. The input or method definition is as follows:

method definition

def _print_aug_batch(self, df,

aug_func,

col_dest="description",

 bsize=3,

aug_name='Augmented'):

Here, df is the pandas DataFrame, aug_function is the augmentation method from the wrapper function, col_dest is the chosen column destination, bsize is the number of samples in the batch with a default of three, and title is the optional title for the chart.

The OCR wrapper function is elementary. The two lines of code are the Nlpaug library text augmentation method (aug_func) and the helper function. The entire code is as follows:

method definiton

@add_method(PacktDataAug)

def print_aug_ocr(self, df,

col_dest="description",

bsize=3,

aug_name='Augmented'):

aug_func = nlpaug.augmenter.char.OcrAug()

self._print_aug_batch(df,

aug_func,

col_dest=col_dest,

bsize=bsize,

aug_name=aug_name)

return

Pluto uses the print_aug_ocr() method with the Netflix data, as follows:

use OCR method

pluto.print_aug_ocr(pluto.df_netflix_data,

col_dest='description',

aug_name='OCR Augment')

The output is as follows:

[image: Image 108]

Figure 5.10 – Netflix OCR augmenting

In Figure 5.10, the first line is Dickens’ control text, with the augmented text on the left-hand side and the original text on the right-hand side. The following three rows are randomly sampled from the Netflix NLP data.

Pluto recommends that you read the left-hand augmented text first. Stop and try to decipher the meaning before reading the original text.

Fun fact

Pluto recommends repeatedly running the print_aug_ocr() method to see other movie descriptions. You can increase bsize to see more than two

[image: Image 109]

records at a time.

Pluto does the same for the Twitter NLP data, as follows:

print the batch

pluto.print_aug_ocr(pluto.df_twitter_data,

col_dest='clean_tweet',

aug_name='OCR Augment')

The output is as follows:

Figure 5.11 – Twitter OCR augmenting

Next, Pluto moves on from the OCR method to the keyboard technique.

Keyboard augmenting

The keyboard augmenting method replaces a character with a close-distance key on a keyboard. For example, a typical typing error for character b is using key v or key n. The augmentation variable defines as follows:

define augmentation function variable definition

aug_func = nlpaug.augmenter.char.KeyboardAug()

Pluto uses the print_aug_keyboard() wrapper function with the Netflix NLP data, as follows:

use keyboard augmentation technique

pluto.print_aug_keyboard(pluto.df_netflix_data,

col_dest='description',

aug_name='Keyboard Augment')

The output is as follows:

[image: Image 110]

Figure 5.12 – Netflix keyboard augmenting

Pluto does the same for the Twitter NLP data, as follows:

use keyboard augmentation technique

pluto.print_aug_keyboard(pluto.df_twitter_data,

col_dest='clean_tweet',

aug_name='Keyboard Augment')

The output is as follows:

[image: Image 111]

Figure 5.13 – Twitter keyboard augmenting

The last of the three text augmentation methods is the random technique.

Random augmenting

The random character function randomly swaps, inserts, or deletes characters in the text. The four modes for the random process are inserting, deleting, substituting, and swapping. The augmentation variable defines as follows:

define augmentation function variable definition

aug_func = nlpaug.augmenter.char.RandomCharAug(action=action)

[image: Image 112]

Pluto uses the print_aug_random() wrapper function with action set to insert in the Netflix NLP data, as follows:

use random insert augmentation technique

pluto.print_aug_char_random(pluto.df_netflix_data,

action='insert',

col_dest='description',

aug_name='Random Insert Augment')

The output is as follows:

[image: Image 113]

Figure 5.14 – Netflix random insert augmenting

Pluto does the same for the Twitter NLP data, as follows:

use random insert augmentation technique

pluto.print_aug_char_random(pluto.df_twitter_data,

action='insert',

col_dest='clean_tweet',

aug_name='Random Insert Augment')

The output is as follows:

Figure 5.15 – Twitter random insert augmenting

Pluto uses the print_aug_random() wrapper function with action set to delete for the Netflix NLP data, as follows:

use random delete augmentation technique

pluto.print_aug_char_random(pluto.df_netflix_data,

action='delete',

col_dest='description',

aug_name='Random Delete Augment')

[image: Image 114]

The output is as follows:

Figure 5.16 – Netflix random delete augmenting

Pluto does the same for the Twitter NLP data, as follows:

use random delete augmentation technique

pluto.print_aug_char_random(pluto.df_twitter_data,

action='delete', col_dest='clean_tweet',

aug_name='Random Delete Augment')

The output is as follows:

[image: Image 115]

Figure 5.17 – Twitter random delete augmenting

Pluto uses the print_aug_random() wrapper function with action set to substitute for the Netflix NLP data, as follows:

use random substitute augmentation technique

pluto.print_aug_char_random(pluto.df_netflix_data,

action='substitute',

col_dest='description',

aug_name='Random Substitute Augment')

The output is as follows:

[image: Image 116]

Figure 5.18 – Netflix random substitute augmenting

Pluto does the same for the Twitter NLP data, as follows:

use random substitude augmentation technique

pluto.print_aug_char_random(pluto.df_twitter_data,

action='substitute',

col_dest='clean_tweet',

aug_name='Random Substitute Augment')

The output is as follows:

[image: Image 117]

Figure 5.19 – Twitter random substitute augmenting

Pluto uses the print_aug_random() wrapper function with action set to swap for the Netflix NLP data, as follows:

use random swap augmentation technique

pluto.print_aug_char_random(pluto.df_netflix_data,

action='swap',

col_dest='description',

aug_name='Random Swap Augment')

The output is as follows:

[image: Image 118]

Figure 5.20 – Netflix random swap augmenting

Pluto does the same for the Twitter NLP data, as follows:

use random swap augmentation technique

pluto.print_aug_char_random(pluto.df_twitter_data,

action='swap',

col_dest='clean_tweet',

aug_name='Random Swap Augment')

The output is as follows:

[image: Image 119]

Figure 5.21 – Twitter random swap augmenting

Fun challenge

Here is a thought experiment: if the input text contains misspelled words and bad grammar, such as tweets, could correcting the spelling and grammar be a valid augmentation method?

Pluto has covered the OCR, Keyboard, and four modes of Random character augmentation techniques. The next step is augmenting words.

Word augmenting

At this point in the book, Pluto might think text augmentation is effortless, and it is true. We built a solid foundation layer in Chapter 1 with an object-

oriented class and learned how to extend the object as we learned about new augmentation techniques. In Chapter 2, Pluto added the functions for downloading any Kaggle real-world dataset, and Chapters 3 and 4 gave us the wrapper function pattern. Therefore, at this point, Pluto reuses the

methods and patterns to make the Python code concise and easy to understand.

The word augmentation process is similar to character augmentation. Pluto uses the same Nlpaug library to write the wrapper functions, which will invoke the _print_aug_batch() helper method. In particular, Pluto will cover the Misspell, Split, Random, Synonyms, Antonyms, and Reserved word augmenting techniques.

Let’s start with the misspell augmentation technique.

Misspell augmenting

The misspell augmentation function uses a predefined dictionary to simulate spelling mistakes. The augmentation variable defines this as follows:

define augmentation function variable definition

aug_func = nlpaug.augmenter.word.SpellingAug()

Pluto uses the print_aug_word_misspell() wrapper function on the Netflix NLP data, as follows:

use word missplell augmentation

pluto.print_aug_word_misspell(pluto.df_netflix_data,

col_dest='description',

aug_name='Word Spelling Augment')

The output is as follows:

[image: Image 120]

Figure 5.22 – Netflix misspell word augmenting

Pluto does the same for the Twitter NLP data, as follows:

use word missplell augmentation

pluto.print_aug_word_misspell(pluto.df_twitter_data,

col_dest='clean_tweet',

aug_name='Word Spelling Augment')

The output is as follows:

[image: Image 121]

Figure 5.23 – Twitter misspell word augmenting

Similar to Misspell is the Split word augmentation technique.

Split augmenting

The split augmentation function randomly splits words into two tokens. The augmentation variable defines this as follows:

define augmentation function variable definition

aug_func = nlpaug.augmenter.word.SplitAug()

Pluto uses the print_aug_word_split() wrapper function on the Netflix NLP data, as follows:

use word split augmentation

pluto.print_aug_word_split(pluto.df_netflix_data,

col_dest='description',

aug_name='Word Split Augment')

[image: Image 122]

The output is as follows:

Figure 5.24 – Netflix split word augmenting

Pluto does the same for the Twitter NLP data, as follows:

use word split augmentation

pluto.print_aug_word_split(pluto.df_twitter_data,

col_dest='clean_tweet',

aug_name='Word Split Augment')

The output is as follows:

[image: Image 123]

Figure 5.25 – Twitter split word augmenting

After the split word method, Pluto presents the random word augmenting method.

Random augmenting

The random word augmentation method applies random behavior to the text with four parameters: Swap, Crop, Substitute, or Delete. The augmentation variable defines this as follows:

define augmentation function variable definition

aug_func = nlpaug.augmenter.word.RandomWordAug(action=action) Pluto uses the print_aug_word_random() wrapper function for swapping mode on the Netflix NLP data, as follows:

[image: Image 124]

use word random swap augmentation

pluto.print_aug_word_random(pluto.df_netflix_data,

action='swap',

col_dest='description',

aug_name='Word Random Swap Augment')

The output is as follows:

Figure 5.26 – Netflix random swap word augmenting

Pluto does the same for the Twitter NLP data, as follows:

[image: Image 125]

use word random swap augmentation

pluto.print_aug_word_random(pluto.df_twitter_data,

action='swap',

col_dest='clean_tweet',

aug_name='Word Random Swap Augment')

The output is as follows:

Figure 5.27 – Twitter random swap word augmenting

Pluto uses the print_aug_word_random() wrapper function for cropping mode on the Netflix NLP data, as follows:

use word random crop augmentation

pluto.print_aug_word_random(pluto.df_netflix_data,

action='crop',

[image: Image 126]

col_dest='description',

aug_name='Word Random Crop Augment')

The output is as follows:

Figure 5.28 – Netflix random crop word augmenting

Pluto does the same for the Twitter NLP data, as follows:

use word random swap augmentation

pluto.print_aug_word_random(pluto.df_twitter_data,

action='crop',

col_dest='clean_tweet',

aug_name='Word Random Crop Augment')

[image: Image 127]

The output is as follows:

Figure 5.29 – Twitter random crop word augmenting

So, Pluto has described the Swap and Crop word augmentation methods but not the Substitute and Delete ones. This is because they are similar to the character augmenting functions and are in the Python Notebook. Next on the block is synonym augmenting.

Synonym augmenting

The synonym augmentation function substitutes words with synonyms from a predefined database. WordNet and PPBD are two optional databases.

The augmentation variable defines this process as follows:

define augmentation function variable definition

aug_func = nlpaug.augmenter.word.SynonymAug(

[image: Image 128]

aug_src='wordnet')

Pluto uses the print_aug_word_synonym() wrapper function on the Netflix NLP data, as follows:

use word synonym augmentation

pluto.print_aug_word_synonym(pluto.df_netflix_data,

col_dest='description',

aug_name='Synonym WordNet Augment')

The output is as follows:

[image: Image 129]

Figure 5.30 – Netflix synonym word augmenting

It is interesting and funny that the synonym of It is Information Technology for the control text. Mr. Dickens, who wrote Tale of Two Cities in 1859, could never have known that IT is a popular acronym for information technology. Pluto does the same for the Twitter NLP data, as follows:

use word synonym augmentation

pluto.print_aug_word_synonym(pluto.df_twitter_data,

col_dest='clean_tweet',

aug_name='Synonym WordNet Augment')

The output is as follows:

Figure 5.31 – Twitter synonym word augmenting

When there are synonyms, you will also find antonyms.

Antonym augmenting

The antonym augmentation function randomly replaces words with antonyms. The augmentation variable defines this as follows:

define augmentation function variable definition

aug_func = nlpaug.augmenter.word.AntonymAug()

Pluto uses the print_aug_word_antonym() wrapper function on the Netflix NLP data, as follows:

use word antonym augmentation

pluto.print_aug_word_antonym(pluto.df_netflix_data,

col_dest='description',

aug_name='Antonym Augment')

The output is as follows:

[image: Image 130]

Figure 5.32 – Netflix antonym word augmenting

Pluto does the same for the Twitter NLP data, as follows:

use word antonym augmentation

pluto.print_aug_word_antonym(pluto.df_twitter_data,

col_dest='clean_tweet',

aug_name='Antonym Augment')

The output is as follows:

[image: Image 131]

Figure 5.33 – Twitter antonym word augmenting

After synonyms and antonyms, which are automated, reserved word augmentation requires a manual word list.

Reserved word augmenting

The reserved word augmentation method swaps target words where you define a word list. It is the same as synonyms, except the terms are created manually. Pluto uses the Netflix and Twitter word cloud diagrams, Figures 5.8 and 5.9, to select the top three reoccurring words in the NLP datasets.

The augmentation variable defines this process as follows:

define augmentation function

aug_func = nlpaug.augmenter.word.ReservedAug(

reserved_tokens=reserved_tokens)

define control sentence reserved words

pluto.reserved_control = [['wisdom', 'sagacity',

 'intelligence', 'prudence'],

['foolishness', 'folly', 'idiocy', 'stupidity']]

define Netflix reserved words

pluto.reserved_netflix = [['family','household', 'brood',

'unit', 'families'],

['life','existance', 'entity', 'creation'],

['love', 'warmth', 'endearment','tenderness']]

pluto.reserved_netflix = pluto.reserved_control +

pluto.reserved_netflix

define Twitter reserved words

pluto.reserved_twitter = [['user', 'users', 'customer',

'client','people','member','shopper'],

['happy', 'cheerful', 'joyful', 'carefree'],

['time','clock','hour']]

pluto.reserved_twitter = pluto.reserved_control +

pluto.reserved_twitter

Pluto uses the print_aug_word_reserved() wrapper function on the Netflix NLP data, as follows:

use word reserved augmentation

pluto.print_aug_word_reserved(pluto.df_netflix_data,

col_dest='description',

reserved_tokens=pluto.reserved_netflix)

The output is as follows:

[image: Image 132]

Figure 5.34 – Netflix reserved word augmenting

Notice the words wisdom and foolishness are substituted with Intelligence and idiocy, life with existance, and family with brood. Pluto does the same for the Twitter NLP data, as follows:

use word reserved augmentation

pluto.print_aug_word_reserved(pluto.df_twitter_data,

col_dest='clean_tweet',

reserved_tokens=pluto.reserved_twitter)

[image: Image 133]

The output is as follows:

Figure 5.35 – Twitter reserved word augmenting

Notice the words wisdom and foolishness are substituted with sagacity and idiocy, and user with people and customer.

Reserved Word augmenting is the last word augmentation method of this chapter. Pluto has covered Misspell, Split, Random, Synonym, Antonym, and Reserved Word augmentation, but these are only some of the possible word augmentation techniques you can use.

Fun challenge

The challenge is to use the Augly library or the NLTK, Gensim, or Textblob libraries to write a new wrapper function. It is relatively easy. The first step is to copy a wrapper function, such as the print_aug_keyboard() function.

The second and last step is to replace aug_func =

nlpaug.augmenter.char.KeyboardAug() with aug_func =

augly.text.functional.simulate_typos(). There are more parameters in the Augly function. A hint is to use the

augly.text.functional.simulate_typos? command to display the function documentation.

The Nlpaug library and other text augmentation libraries, such as NLTK, Gensim, Textblob, and Augly, have additional text augmentation methods.

In addition, newly published scholarly papers are an excellent source in which to discover new text augmentation techniques.

Let’s summarize this chapter.

Summary

At first glance, text augmentation seems counterintuitive and problematic because the techniques inject errors into the text. Still, DL based on CNNs or RNNs recognizes patterns regardless of a few misspellings or synonym replacements. Furthermore, many published scholarly papers have described the benefits of text augmentation to increase prediction or forecast accuracy.

In Chapter 5, you learned about three Character augmentation techniques, OCR, Keyboard, and Random. In addition, the six Word augmentation techniques are the Misspell, Split, Random, Synonyms, Antonyms, and Reserved words. There are more text augmentation methods in the Nlgaug, NLTK, Gensim, TextBlob, and Augly libraries.

Implementing the text augmentation methods using a Python Notebook is deceptively simple. This is because Pluto built a solid foundation layer in

 Chapter 1 with an object-oriented class and learned how to extend the object with decorator as he discovered new augmentation techniques. In

 Chapter 2, Pluto added the functions for downloading any Kaggle real-world dataset, and Chapters 3 and 4 gave us the wrapper function pattern.

Therefore, in this chapter, Pluto reused the methods and patterns to make the Python Notebook code concise and easy to understand.

Throughout the chapter, there are Fun facts and Fun challenges. Pluto hopes you will take advantage of them and expand your experience beyond the scope of this chapter.

The next chapter will delve deeper into text augmentation using machine learning methods. Ironically, the goal of text augmentation is to make machine learning and DL predict and forecast accurately, and we will use the same AI system to increase the efficiency of text augmentation. It is a circular logic or cyclical process.

Pluto is waiting for you in the next chapter, Text Augmentation with Machine Learning.

Text Augmentation with Machine

Learning

Text augmentation with machine learning (ML) is an advanced technique compared to the standard text augmenting methods we covered in the previous chapter. Ironically, text augmentation aims to improve ML model accuracy, but we used a pre-trained ML model to create additional training NLP data. It’s a circular process. ML coding is not in this book’s scope, but understanding the difference between using libraries and ML for text augmentation is beneficial.

Augmentation libraries, whether for image, text, or audio, follow the traditional programming methodologies with structure data, loops, and

conditional statements in the algorithm. For example, as shown in Chapter

 5, the pseudocode for implementing the _print_aug_reserved() method

could be as follows:

define synonym words, pseudo-code

reserved = [['happy', 'joyful', 'cheerful'],

['sad', 'sorrowful', 'regretful']]

substitute the word with its synonym, pseudo-code

for i, word in (input_text)

for set_word in (reserved)

for i, syn in set_word

if (syn == word)

input_text[i] = set_word[i+1]

The happy path code does not cover error checking, but the salient point is that the library’s function follows the standard sequential coding method.

On the other hand, ML is based on one of the 13 known ML algorithms, including deep learning (DL) (or artificial neural networks), Bidirectional Encoder Representations from Transformers (BERT), linear regression, random forest, naive Bayes, and gradient boosting.

The key to ML is that the system learns and not programs. DL uses the Universal Approximation theory, gradient descent, transfer learning, and

[image: Image 134]

hundreds of other techniques. ANNs have millions to billions of neural nodes – for example, OpenAI GPT3 has 96 layers and 175 billion nodes.

The central point is that ML has no familiarity with the

_print_aug_reserved() pseudocode algorithm.

The following is a representation of a DL architecture for image classification. It illustrates the difference between a procedural approach and the Neural Network algorithm. This figure was created from Latex and the Overleaf cloud system. The output is as follows: Figure 6.1 – Representation of a DL model

The Overleaf project and its code are from Mr. Duc Haba’s public repository, and the URL is

https://www.overleaf.com/project/6369a1eaba583e7cd423171b. You can clone and hack the code to display other AI models.

This chapter will cover text augmentation with ML, and in particular, the following topics:

Machine learning models

Word augmenting

Sentence augmenting

Real-world NLP datasets

Reinforcing your learning through the Python Notebook

Let’s briefly describe the ML models used in the Python wrapper function code.

Machine learning models

In this chapter, the text augmentation wrapper functions use ML to generate new text for training the ML model. Understanding how these models are built is not in scope, but a brief description of these ML models and their algorithms is necessary. The Python wrapper functions will use the following ML models under the hood:

Tomáš Mikolov published the NLP algorithm using a neural network named Word2Vec in 2013. The model can propose synonym words from the input text.

The Global Vectors for Word Representation (GloVe) algorithm was created by Jeffrey Pennington, Richard Socher, and Christopher D.

Manning in 2014. It is an unsupervised learning NLP algorithm for representing words in vector format. The results are a linear algorithm that groups the closest neighboring words.

Wiki-news-300d-1M is a pre-trained ML model that uses the fastText open source library. It was trained on 1 million words from Wikipedia 2017 articles, the UMBC WebBase corpus, which consists of over 3

billion words, and the Statmt.org news dataset, which consists of over 16 billion tokens. T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, and A. Joulin introduced Wiki-news-300d-1M in their Advances in PreTraining Distributed Word Representations paper. The license is the Creative Commons Attribution-Share-Alike License 3.0.

GoogleNews-vectors-negative300 is a pre-trained Word2Vec model that uses the Google News dataset, which contains about 100 billion words and 300 dimensions.

Google introduced the transformer neural network algorithm in 2017.

Recent cutting-edge breakthroughs in NLP and computer vision are from the transformer model.

The BERT model was introduced by Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova in 2018. It is specialized in language inference and prediction.

RoBERTa is an optimized algorithm for the self-supervised NLP

model. It is a model built on top of BERT. It excels in performance on many NLP inferences. Meta AI published RoBERTa in 2019.

Facebook’s wmt19-en-de and wmt19-de-en are pre-trained NLP

models from HuggingFace for translating from English to German (Deutsch) and back. It was made publicly available in 2021.

Facebook’s wmt19-en-ru and wmt19-ru-en are pre-trained NLP

models from HuggingFace for translating from English to Russian (Русский) and back. It was made publicly available in 2021.

XLNet is a transformer-XL pre-trained model that was made publicly available by Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R. Salakhutdinov, and Quoc V. Le on HuggingFace in 2021. It was published in the scholarly paper XLNet: Generalized Autoregressive Pretraining for Language Understanding.

The Generative Pre-trained Transformer 2 (GPT-2) algorithm is an open source AI that was published by OpenAI in 2019. The model excels in writing feedback questions and answers and generating text summarization of an article. It is at the level of actual human writing.

The T5 and T5X models use the text-to-text transformer algorithm.

They were trained on a massive corpus. Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu introduced T5 in their paper Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer in 2020.

Fun fact

Generative AI, when using a transformer model, such as OpenAI’s GPT-3, GPT-4, or Google Bard, can write as well or better than a human writer.

Now that we know about some of the ML models, let’s see which augmenting function uses which ML models.

Word augmenting

In this chapter, the word augmenting techniques are similar to the methods from Chapter 5, which used the Nlpaug library. The difference is that rather than Python libraries, the wrapper functions use powerful ML models to achieve remarkable results. Sometimes, the output or rewritten text is akin to human writers.

In particular, you will learn four new techniques and two variants each.

Let’s start with Word2Vec:

The Word2Vec method uses the neural network NLP Word2Vec algorithm and the GoogleNews-vectors-negative300 pre-trained model.

Google trained it using a large corpus containing about 100 billion words and 300 dimensions. Substitute and insert are the two mode variants.

The BERT method uses Google’s transformer algorithm and BERT

pre-trained model. Substitute and insert are the two mode variants.

The RoBERTa method is a variation of the BERT model. Substitute and insert are the two mode variants.

The last word augmenting technique that we’ll look at in this chapter is back translation using Facebook’s (Meta’s) pre-trained translation model. It translates the input English text into a different language and back to English. The two variants we’ll look at involve translating from English into German (Deutsch) and back to English using the facebook/wmt19-en-de and facebook/wmt19-de-en models, and from English to Russian (Русский) and back to English using the

facebook/wmt19-en-ru and facebook/wmt19-ru-en models.

It will be easier to understand this by reading the output from the word wrapper functions, but before we do, let’s describe sentence augmenting.

Sentence augmenting

Augmenting at the sentence level is a powerful concept. It was not possible 5 years ago. You had to be working in an ML research company or a billionaire before accessing these acclaimed pre-trained models. Some transformer and large language models (LLMs) became available in 2019

and 2020 as open source, but they are generally for research. Convenient access to online AI servers via a GPU was not widely available at that time.

The LLM and pre-trained models have recently become publicly accessible for incorporating them into your projects, such as the HuggingFace website.

The salient point is that for independent researchers or students, LLM and pre-trained models only became accessible in mid-2021.

The sentence and word augmenting methods that use ML can’t be done dynamically as with methods using the Nlpaug library. In other words, you have to write and save the augmented text to your local or cloud disk space.

The primary reason is that the augmentation step takes too long per training cycle. The upside is that you can increase the original text by 20 to 100

times its size.

In particular, we will cover the following techniques:

Summarizing text using the T5 NLP algorithm.

Sequence and Sometimes are two sentence flow methods. The flow methods use a combination of the GloVe and BERT NLP algorithms.

For the sentence augmentation techniques, they are easier to understand by reading the output of the wrapper functions using real-world NLP datasets as input text. Thus, the following section is about writing wrapper functions with Python code to gain insight into sentence augmenting, but first, let’s download the real-world NLP datasets.

Real-world NLP datasets

This chapter will use the same Netflix and Twitter real-world NLP datasets from Chapter 5. In addition, both datasets have been vetted, cleaned, and stored in the pluto_data directory in this book’s GitHub repository. The startup sequence is similar to the previous chapters. It is as follows: 1. Clone the Python Notebook and Pluto.

2. Verify Pluto.

3. Locate the NLP data.

4. Load the data into pandas.

5. View the data.

Let’s start with the Python Notebook and Pluto.

Python Notebook and Pluto

Start by loading the data_augmentation_with_python_chapter_6.ipynb file into Google Colab or your chosen Jupyter Notebook or JupyterLab environment. From this point onward, we will only display code snippets.

The complete Python code can be found in the Python Notebook.

The next step is to clone the repository. We will reuse the code from

 Chapter 5. The !git and %run statements are used to instantiate Pluto:

clone Packt GitHub repo.

!git clone 'https://github.com/PacktPublishing/Data-

Augmentation-with-Python'

Instantiate Pluto

%run 'Data-Augmentation-with-Python/pluto/pluto_chapter_5.py'

The output is as follows:

---------------------------- : ----------------------------

Hello from class : <class

'__main__.PacktDataAug'> Class: PacktDataAug

Code name : Pluto

Author is : Duc Haba

---------------------------- : ----------------------------

The following setup step is checking if Pluto loaded correctly.

Verify

The following command asks Pluto to display his status:

Am I alive?

pluto.say_sys_info()

The output will be as follows or similar, depending on your system:

---------------------------- : ----------------------------

System time : 2022/11/09 05:31

Platform : linux

Pluto Version (Chapter) : 5.0

Python (3.7.10) : actual: 3.7.15 (default, Oct

12 2022, 19:14:55) [GCC 7.5.0]

PyTorch (1.11.0) : actual: 1.12.1+cu113

Pandas (1.3.5) : actual: 1.3.5

PIL (9.0.0) : actual: 7.1.2

Matplotlib (3.2.2) : actual: 3.2.2

CPU count : 12

CPU speed : NOT available

---------------------------- : ----------------------------

Pluto showed that he is from Chapter 5 (version 5.0), which is correct. In

addition, the cleaned NLP Twitter and Netflix datasets are in the ~/Data-Augmentation-with-Python/pluto_data directory.

Real-world NLP data

Pluto is using the clean versions of the data without profanity from Chapter

 5. They are the Netflix and Twitter NLP datasets from the Kaggle website.

The clean datasets were saved in this book’s GitHub repository. Thus, Pluto does not need to download them again. Still, you can download them or other real-world datasets by using the fetch_kaggle_dataset() function.

Pluto locates the cleaned NLP datasets with the following commands:

check to see the files are there

f = 'Data-Augmentation-with-Python/pluto_data'

!ls -la {f}

The output is as follows:

drwxr-xr-x 2 root root 4096 Nov 13 06:07 .

drwxr-xr-x 6 root root 4096 Nov 13 06:07 ..

-rw-r--r-- 1 root root 3423079 Nov 13 06:07 netflix_data.csv

-rw-r--r-- 1 root root 6072376 Nov 13 06:07 twitter_data.csv Fun fact

Pluto gets lazy, and instead of using a Python library and coding it in Python, he cheats by dropping down to the Linux Bash command-line code.

The exclamation character (!) allows the Python Notebook to backdoor the kernel, such as via !ls -la on Linux or!dir on Windows. You can use any OS command-line code. Still, it is not portable code because the commands for Windows, iOS, Linux, Android, and other OSs that support web browsers such as Safari, Chrome, Edge, and Firefox are different.

The next step is to load the data into Pluto’s buddy, pandas.

Pandas

Pluto reuses the fetch_df() method from Chapter 2 to load the data into pandas. The following commands import the real-world Netflix data into pandas:

import to Pandas

f = 'Data-Augmentation-with-

Python/pluto_data/netflix_data.csv'

pluto.df_netflix_data = pluto.fetch_df(f,sep='~')

Similarly, the commands for loading the real-world Twitter data are as follows:

import to Pandas

f = 'Data-Augmentation-with-

Python/pluto_data/twitter_data.csv'

pluto.df_twitter_data = pluto.fetch_df(f,sep='~')

Fun challenge

Pluto challenges you to find and download two additional NLP data from the Kaggle website. Hint: use Pluto’s fetch_kaggle_dataset() function.

Import it into pandas using the fetch_df() function.

Now that Pluto has located and imported the data into pandas, the last step in loading the data sequence is to view and verify the data.

[image: Image 135]

Viewing the text

The draw_word_count() and draw_null_data() methods help us

understand the NLP data, and Pluto recommends revisiting Chapter 5 to

view those Netflix and Twitter graphs. A more colorful and fun method is to use the draw_word_cloud() function.

Pluto draws the Netflix word cloud infographic graph with the following command:

draw infographic plot

pluto.draw_text_wordcloud(pluto.df_netflix_data.description, xignore_words=wordcloud.STOPWORDS,

title='Word Cloud: Netflix Movie Review')

The output is as follows:

Figure 6.2– Netflix word cloud

[image: Image 136]

Similarly, Pluto displays the Twitter word cloud using the following commands:

draw infographic plot

pluto.draw_text_wordcloud(pluto.df_twitter_data.clean_tweet, xignore_words=wordcloud.STOPWORDS,

title='Word Cloud: Twitter Tweets')

The output is as follows:

Figure 6.3 – Twitter word cloud

Along with the real-world NLP data, Pluto uses the first few lines of the Tale of Two Cities, by Charles Dickens, as the control text. In this chapter, Pluto will extend the control text to the first page of Mr. Dickens’ book, the Moby Dick book, by Melville, and the Alice in Wonderland book, by Carroll. These books are in public domain, as defined in Project Gutenberg.

The varibles are pluto.orig_text, pluto.orig_dickens_page,

pluto.orig_melville_page, and pluto.orig_carroll_page, respectively.

Fun fact

ML is good at altering text in typical human writing but modifying the masterworks is borderline criminal. Pluto seeks only to illustrate the augmentation concepts and never to bastardize the classics. It is in the name of science.

You have loaded the Python Notebook, instantiated Pluto, accessed the cleaned NLP real-world data, and verified it with the word cloud infographic. Now, it is time to write and hack Python code to gain a deeper insight into word and sentence augmentation with ML.

Reinforcing your learning through

the Python Notebook

Even though NLP ML is highly complex, the implementation for the wrapper code is deceptively simple. This is because of Pluto’s structured

object-oriented approach. First, we created a base class for Pluto in Chapter

 1 and used the decorator to add a new method as we learned new

augmentation concepts. In Chapter 2, Pluto learned to download any of the

thousands of real-world datasets from the Kaggle website. Chapters 3 and 4

introduced the wrapper functions process using powerful open source libraries under the hood. Finally, Chapter 5 put forward the text augmentation concepts and methods when using the Nlpaug library.

Therefore, building upon our previous knowledge, the wrapper functions in this chapter use the powerful NLP ML pre-trained model to perform the augmentations.

In particular, this chapter will present wrapper functions and the augmenting results for the Netflix and Twitter real-world datasets using the following techniques:

Word2Vec word augmenting

BERT and Transformer word augmenting

RoBERTa augmenting

Back translation

T5 augmenting

Sequential and Sometime augmenting

Let’s start with Word2Vec.

Word2Vec word augmenting

The print_aug_ai_word2vec() wrapper function’s key parameters are as follows:

code snippet for print_aug_ai_word2vec()

model_type = 'word2vec',

model_path = 'GoogleNews-vectors-negative300.bin'

action = 'insert' # or 'substitute'

nlpaug.augmenter.word.WordEmbsAug(model_type,

model_path,

action)

The full functions can be found in the Python Notebook. Pluto uses the real-world NLP Netflix data to test the function, as follows:

augment using word2vec

pluto.print_aug_ai_word2vec(pluto.df_netflix_data,

col_dest='description',

action='insert',

aug_name='Word2Vec-GoogleNews Word Embedding Augment')

Fun fact

When you run a wrapper function, new data is randomly selected and processed. Thus, it would be best if you run the wrapper function repeatedly to see different movie reviews from the Netflix dataset or tweets from the Twitter dataset.

The output is as follows:

[image: Image 137]

Figure 6.4 – Word2Vec using insert mode on the Netflix data In Figure 6.3, the first row is the control input. It is a quote from the book A Tale of Two Cities. You will find that the augmented effects are easier to spot by comparing the control text with the text in the datasets. In addition, the control text is needed to compare the differences between augmentation techniques.

Pluto found the injection of names on row #1, such as Punta (a believable Spanish writer name) and Poydras, as actual names and plausible additions

to this celebrity movie review context. It was not factual in the movie, but it is acceptable for text augmentation for movie sentiment prediction.

On row #2, the words blending, dangerous, and original 1960s add flare to the movie description without altering the intent of the spy movie’s description.

On row #3, the addition of names, such as Kent of Cabus (Kent from a village in English named Cabus), Rangjung (a village in Bhutan, served as a possible hero name), and Elizabeth (as the villain) in the comic Green Arrow movie description is 100% plausible plot for our superhero.

Overall, Pluto is flabbergasted by the Word2Vec ML model. The word and name injections are contexts that are appropriate as if a human writer were creating them. However, the control text from Dickens is funny to read, and it is not ML’s fault. The system does not know that the book was written in the 1800s and has only the first few lines of the text to go off. The movie review is a complete thought, while the control text is a tiny fragment of the whole.

Pluto runs a similar command on the real-world Twitter data, as follows:

augment using word2vec

pluto.print_aug_ai_word2vec(pluto.df_twitter_data,

col_dest='clean_tweet',

action='insert',

aug_name='Word2Vec-GoogleNews Word Embedding Augment')

The output is as follows:

[image: Image 138]

Figure 6.5 – Word2Vec using insert mode on the Twitter data Since tweets are like random thoughts written without forethoughts or editing, in Figure 6.4, the Word2Vec injections are like a bored high school student doing homework while playing a computer game. Pluto can’t judge if the altered text is plausible or not. Would it increase or decrease the AI prediction accuracy for sentiment analysis?

For Dickens’ control text, Pluto flinched. It was dreadful, but he promised the AI would be better in the later model when using transformers and generative AI.

Now that we’ve looked at insert mode, let’s see how the Word2Vec model performs in substitute mode.

Substitute

Substitute mode replaces words and then adds words to the sentence. Pluto applies the Word2Vec model using substitute mode to the Netflix data like so:

augmenting using word2vec

pluto.print_aug_ai_word2vec(pluto.df_netflix_data,

col_dest='description',

action='substitute',

aug_name='Word2Vec-GoogleNews Word Embedding Augment')

The output is as follows:

[image: Image 139]

Figure 6.6 – Word2Vec using substitute mode on the Netflix data In Figure 6.5, row #0 is the control text, and on row #1, zany adventure is suitable for a kid adventure movie, but liquid viagra is definitely off the mark.

On row #2, replacing police with troopers, job with plum assignment, wrest with must take, figure with hand, and offenders with criminals are

suitable in the police movie. Thus, the Word2Vec model did a proper augmentation job.

On row #3, replacing cinematic distillation with Scorcese decaffeination is an intriguing choice worthy of a human writer. Changing electrifying to sparkling is clever because electricity can spark. Substituting shadowy with clandestine is a good choice, but switching seven with five is unnecessary.

Once again, the Word2Vec model could have done better for the control text.

Pluto does the same to the Twitter data with the following command:

augmenting using word2vec

pluto.print_aug_ai_word2vec(pluto.df_twitter_data,

col_dest='clean_tweet',

action='substitute',

aug_name='Word2Vec-GoogleNews Word Embedding Augment')

The output is as follows:

[image: Image 140]

Figure 6.7 – Word2Vec using substitute mode on the Twitter data In Figure 6.6, the tweets are chaotic, and many are incomplete thoughts.

The Word2Vec model does its best, and Pluto doesn’t think a human can do better.

The next technique we’ll look at is BERT, which uses the transformer model and generative AI.

BERT

BERT is a Google transformer model trained on a massive corpus. The result is a near-perfect human-quality output. BERT and many other transformer models were made available and easily accessible on HuggingFace to the public starting around mid-August 2022.

The key code lines for the print_aug_ai_bert() function are as follows:

code snippet for print_aug_id_bert()

model_path='bert-base-uncased'

aug_func = nlpaug.augmenter.word.ContextualWordEmbsAug(

action=action,

model_path=model_path)

The full function can be found in the Python Notebook. Pluto feeds in the NLP Netflix data using insert mode with the following command:

Augmenting using BERT

pluto.print_aug_ai_bert(pluto.df_netflix_data,

col_dest='description',

action='insert',

aug_name='BERT Embedding Insert Augment')

The result is as follows:

[image: Image 141]

Figure 6.8 – BERT using insert mode on the Netflix data

In Figure 6.7, Pluto immediately recognizes the improvement over the Word2Vec model. In the control text, row #0, the injection of words is acceptable. It lacks the elegance of the prose, but if you must add words to the text, it could pass as a human writer.

In row #1, the added phrases are spot on, such as afterward, financial dubious, knee surgery, and to play a national film stage.

In row #2, the augmented phrases are at human writer quality, such as whilst in hiding, deeply suspect, unknown maid, perhaps his only, outside Russian world, and maybe hiding quite something.

In row #3, Pluto is impressed with the results, such as arriving in February, little Indian lad, despite sparse funding, funding mathematics and physics, and first functioning airplane.

Fun fact

Are you as amazed as Pluto regarding the BERT model’s output? It is like BERT is a real person, not an ANN.

Please rerun the wrapper function to see BERT’s augmentation on other movie reviews. The more you read, the more you will appreciate the advanced breakthrough in using the transformer model. It is the foundation of generative AI.

Next, Pluto feeds the Twitter data into the BERT model with insert mode with the following command:

augmenting using BERT

pluto.print_aug_ai_bert(pluto.df_twitter_data,

col_dest='clean_tweet',

action='insert',

aug_name='BERT Embedding Insert Augment')

The result is as follows:

[image: Image 142]

Figure 6.9 – BERT using insert mode on the Twitter data

Fun fact

In Figure 6.8, the BERT model gives another version of Dicken’s control text. There is a new rendition every time Pluto runs the wrapper function.

The possibilities are endless. Pluto must have run the wrapper functions over 50 times. Not once did he notice the same result.

Pluto discovered that there is better NLP data to study than tweets, but they represent the real world, so it is worth continuing to use them. As Pluto repeatedly rerun the wrapper function, he preferred the BERT augmented version over the original tweets because inserting text made it easier to read.

When switching to substitute mode, the output from BERT is better than average human writers.

Substitute

Next, Pluto feeds the Netflix data to BERT in substitute mode using the following command:

augmenting using BERT

pluto.print_aug_ai_bert(pluto.df_netflix_data,

col_dest='description',

action='substitute',

aug_name='BERT Embedding Substitute Augment')

The result is as follows:

[image: Image 143]

Figure 6.10 – BERT using substitute mode on the Netflix data In Figure 6.9, for the control text, row #0, BERT replaced it was the age of foolishness with death was the age of love.

Fun fact

Full stop. Pluto’s mind is being blown. Even Pluto’s human companion is speechless. Pluto expects a transformer model such as BERT to be good, but philosophical thoughts or poetry are on another level. Now, are you impressed with BERT?

The rest of the movie review augmentation, shown are rows #1, #2, and #3, is flawless. The augmented words match the movie genre and context. It is like BERT understands the movie’s meaning, but this isn’t true. The BERT

model is no more sentient than a toaster. However, BERT can mimic a human writer well.

One interesting note is that in row #1, in the movie description about a couple’s relationship, BERT uses the word gay, which was discussed in the previous chapter about data biases. This is because gay is a perfectly nice word for lighthearted and carefree, but in a modern context, gay is associated with a person’s homosexual orientation, especially of a man.

Once again, Pluto encourages you to rerun the wrapper function repeatedly on the Python Notebook. You will appreciate it beyond the technical achievement and think that BERT has a personality.

Pluto does the same for the Twitter data with the following command:

augmenting using BERT

pluto.print_aug_ai_bert(pluto.df_twitter_data,

col_dest='clean_tweet',

action='substitute',

aug_name='BERT Embedding Substitute Augment')

The result is as follows:

[image: Image 144]

Figure 6.11 – BERT using substitute mode on the Twitter data As Pluto repeatedly ran the wrapper function on the Python Notebook, in Figure 6.10, he found that the augmented tweets were more accessible to read than the original text.

For the control text, row #0, Pluto found that having the augmented text it was the age of youth, replace the original text of it was the epoch of belief profoundly appropriate. It fits into the context and style of Mr. Dickens’s book.

Fun challenge

This challenge is a thought experiment. BERT is built on an ANN

algorithm. It does not contain grammar rules, such as nouns and verbs for constructing sentences. With no grammar rules, how does it write English so well? Hint: think about patterns. BERT is trained on a massive corpus.

The number of words and sentences is so large that it was impossible to conceive 5 years ago. A few, if any, know how neural network algorithms learn. It is not complex math. It is gradient descent and matrix multiplication nudging billions of nodes (or neurons), but how does that collection of nodes write English convincingly?

Pluto can spend days talking about BERT, but let’s move forward with RoBERTa (Roberta). It sounds like a female version of BERT.

RoBERTa

RoBERTa is an optimized algorithm for self-supervising BERT. While Google created BERT, Meta AI (or Facebook) developed RoBERTa.

Pluto feeds the Netflix data to RoBERTa in insert mode with the following command:

augmenting using Roberta

pluto.print_aug_ai_bert(pluto.df_netflix_data,

col_dest='description',

model_path='roberta-base',

action='insert',

aug_name='Roberta Embedding Insert Augment')

The result is as follows:

[image: Image 145]

Figure 6.12 – RoBERTa using insert mode on the Netflix data The output in Figure 6.11 is similar to the output from BERT, which is impressive. The words are not randomly inserted in the sentence. They expressed a possible interpretation and gave the impression that RoBERTa understood the meaning of the words. This level of technical achievement was not feasible 1 year ago, and RoBERTa was only made available a few months ago.

[image: Image 146]

Pluto ran the wrapper function repeatedly and never tired of reading the result. He does the same for the Twitter data with the following command:

augmenting using Roberta

pluto.print_aug_ai_bert(pluto.df_twitter_data,

col_dest='clean_tweet',

model_path='roberta-base',

action='insert',

aug_name='Roberta Embedding Insert Augment')

The result is as follows:

Figure 6.13 – RoBERTa using insert mode on the Twitter data Pluto can’t turn lead into gold, and RoBERTa can’t turn tweets, as shown in Figure 6.12, that contain misspellings and incomplete thoughts into coherent sentences. Nevertheless, RoBERTa is one of the best choices for augmenting real-world tweets.

Next, Pluto will try RoBERTa with substitute mode.

Substitute

In substitute mode, RoBERTa will replace words or phrases with uncanny accuracy matching the context and writing style.

Pluto drops the Netflix data into the RoBERTa model in substitute mode using the following command:

augmenting using Roberta

pluto.print_aug_ai_bert(pluto.df_netflix_data,

col_dest='description',

model_path='roberta-base',

action='substitute',

aug_name='Roberta Embedding Substitute Augment')

The output is as follows:

[image: Image 147]

Figure 6.14 – RoBERTa using substitute mode on the Netflix data No matter how often Pluto executes the wrapper function, he continues to be astonished by the output RoBERTa provides in Figure 6.13. For example, in row #1, she changed the phrase Alex discovers he has little in common with the local to Alex discovers Flix had special romantic chemistry with the local. RoBERTa has quite the imagination. Is that what humans do when we write?

Pluto does the same with the Twitter data using the following command:

[image: Image 148]

pluto.print_aug_ai_bert(pluto.df_twitter_data,

col_dest='clean_tweet',

model_path='roberta-base',

action='substitute',

aug_name='Roberta Embedding Substitute Augment')

The result is as follows:

Figure 6.15 – RoBERTa using substitute mode on the Twitter data As shown in Figure 6.14, text augmentation does not have to be boring or clinical. Using transformer models such as BERT and RoBERTa, augmentations are fun and full of wonders. For example, in the control text, on row #0, RoBERTa wrote, It preached a curse at arrogance, replacing It was an epoch of belief.

Fun fact

Pluto’s human companion has to ponder a long time to conclude that the augmented text does mean the same as the original text in Figure 6.14, the control text. It is easy to be fooled that RoBERTa has a conscience. We pair intelligence with consciousness, meaning if you have intelligence, you must be self-aware or vice versa, but we know that is not true. For example, a career politician is self-aware. He talks about himself all the time, but is he intelligent?

Continuing to use the latest powerful ML models, Pluto will take a different path to text augmentation by using the back translation technique.

Back translation

Back translation is a new concept in text augmentation because it was not possible 2 years ago. ML NLP existed earlier, with Google Translate leading the charge. Still, only a few data scientists could access the large language model using a transformer and the powerful servers required for language translation.

The technique for text augmentation is to translate into another language and back to the original language. In doing so, the result will be an augmented version of the original. No language translation is perfect.

Hence, the extended version will be slightly different from the original text.

For example, the original text is in English. Using a powerful NLP model, we translated it into German and back to English again. The translated English text will be different from the original English text.

Compared to Word2Vec, BERT, and RoBERTa, the back translation method could be more robust. This is because translating back to the original text gives the same result the second or third time. In other words, other methods’ output results in thousands of variations, while back translations have two or three augmented versions.

Pluto found two NLP pre-trained translation models from Facebook, or Meta AI, that were made available on the HuggingFace site. They are for English to German (Deutsch) and English to Russian (Русский). There are

dozens more, but two are sufficient to demonstrate the technique. Let’s start with German.

German (Deutsch)

The print_aug_ai_back_translation() method follows the same structure as any other wrapper function. It looks deceptively simple with five lines of code, but it has truly complex theories and coding techniques.

It reminds Pluto of a famous quote by Sir Isaac Newton: “If I have seen further, it is by standing on the shoulders of giants. ”

The key code lines are as follows:

code snippet for back translation

from_model_name='facebook/wmt19-en-de'

to_model_name='facebook/wmt19-de-en'

aug_func = nlpaug.augmenter.word.BackTranslationAug(

from_model_name=from_model_name,

to_model_name=to_model_name)

The full function can be found in the Python Notebook. Pluto feeds in the Netflix data using the following command:

augmenting using back translation

pluto.print_aug_ai_back_translation(pluto.df_netflix_data,

col_dest='description',

from_model_name='facebook/wmt19-en-de',

to_model_name='facebook/wmt19-de-en',

aug_name='FaceBook Back Translation: English <-> German Augment')

The result is as follows:

[image: Image 149]

Figure 6.16 – Back translation, German on Netflix data

Fun fact

The output in Figure 6.15 is anticlimactic because it reads similarly to the original text, but the technical achievement is mind-blowing. First, you need an expert to translate from English to German. It is a challenging task for a human to learn. Second, you must translate back to English with no errors. The difference in choosing similar words is expressing the phrase.

Maybe 5% of the world’s population can do this task. For a machine to do it

[image: Image 150]

24 hours a day, 7 days a week, and maintain the same accuracy level is miraculous. No human can match this level.

The output in Figure 6.15 gives an almost perfect English to German and back translation. Pluto does the same with the Twitter data using the following command:

augmenting using back translation

pluto.print_aug_ai_back_translation(pluto.df_twitter_data,

col_dest='clean_tweet',

from_model_name='facebook/wmt19-en-de',

to_model_name='facebook/wmt19-de-en',

aug_name='FaceBook Back Translation: English <-> German Augment')

The output is as follows:

Figure 6.17 – Back translation, German on Twitter data

In Figure 6.16, translating nonsensible tweets into German and back is harder for humans because our minds get tired more quickly and give up.

Only a machine can do this work around the clock. The control text translations into German and back are acceptable.

Translation to Russian and back would yield similar results. Let’s take a look.

Russian (Русский)

Pluto chose to repeat the same back translation technique with English to Russian and back because he is curious to see if choosing a non-Romance family language would affect the augmentation results differently.

Using the same print_aug_ai_back_translation() function, Pluto defines the Russian translation Facebook model as follows:

code snippet for back translation to Russian

from_model_name='facebook/wmt19-en-ru'

to_model_name='facebook/wmt19-ru-en'

The full function code can be found in the Python Notebook. Pluto feeds the Netflix data to the wrapper function as follows:

augmenting using back translation

pluto.print_aug_ai_back_translation(pluto.df_netflix_data,

col_dest='description',

from_model_name='facebook/wmt19-en-ru',

to_model_name='facebook/wmt19-ru-en',

aug_name='FaceBook Back Translation: English <-> Russian Augment')

The result is as follows:

[image: Image 151]

Figure 6.18 – Back translation, Russian on Netflix data

Remarkably, in Figure 6.17, the NLP T5 model translates a Romance family language (English) into an East Slavic language (Russian) and back with almost perfect accuracy. The grammar rules, sentence structures, alphabets, histories, cultures, and languages are different, yet a machine can do the task without awareness.

Tweets are not perfect for testing, but not all projects are logical. Pluto had worked on real-world NLP projects that were ill-conceived. The command for feeding Twitter data to the wrapper function is as follows:

[image: Image 152]

augmenting using back translation

pluto.print_aug_ai_back_translation(pluto.df_twitter_data,

col_dest='clean_tweet',

from_model_name='facebook/wmt19-en-ru',

to_model_name='facebook/wmt19-ru-en',

aug_name='FaceBook Back Translation: English <-> Russian Augment')

The result is as follows:

Figure 6.19 – Back translation, Russian on Twitter data

If Russians don’t understand tweets, then who else can? Reading the control text in Figure 6.18, Pluto can tell the translations are correct. Since some tweets are short, the translations to Russian and back are perfect.

Fun challenge

This challenge is a thought experiment. Can you use the same techniques to augment the German language? Or can you string several back translations together – for example, from English to German to Russian and back to English?

The back translation, RoBERTa, BERT, and Word2Vec NLP ML models are the state of the art for text augmentation. The next level is sentence augmentation using summarization and the Sequential and Sometimes techniques.

Sentence augmentation

The sentence flow level uses a combination of word augmentation methods.

But before that, Pluto will use the T5 NLP model to generate a text summary. The summarization technique is one of the novel concepts made possible recently. It takes a page, an article, or even a book and generates a summary to be used in the NLP text augmentation model.

Summary technique

For text augmentation, the summary technique may bring a few different versions for training. However, suppose Pluto combines the flow and summary techniques, such as by feeding the synopsis text, instead of the original text, to the flow technique. In that case, it will yield many new original texts for training.

Fun fact

Pluto pioneered the summary-to-flow concept for text augmentation. He had done a preliminary search on the web and scholarly publications, but he needs help finding a reference to the summary-to-flow technique. If none are found, then Pluto is the first to implement the summary-to-flow strategy.

Pluto will not use the Netflix movie description or Twitter tweets for the summary method. This is because they are too short to showcase the power

of the T5 NLP model. Instead, Pluto will use the first page of the following books mentioned in the Real-world NLP data section: Tale of Two Cities by Dickens

 Moby Dick by Melville

 Alice in Wonderland by Carroll

Once again, the books are in the public domain, as defined in Project Gutenberg.

In addition, Pluto will use the first page of this chapter because you have read this book, but you may not have read those three classic books.

The key code line for the print_aug_ai_t5() wrapper function is as follows:

aug_func = nlpaug.augmenter.sentence.AbstSummAug(

model_path='t5-base')

Pluto is playing a guessing game with you. First, he will list the four command lines to generate the four summaries, but he will shuffle the output. Thus, you have to guess which summary belongs to which book.

Once again, you will be amazed at the quality output of the T5 NLP model.

It is comparable to human writers.

The profound implication is that you or Pluto can auto-generate summaries of books, papers, documents, articles, and posts with a few lines of Python code. This task was deemed impossible a few years ago.

Fun challenge

Here is a thought experiment. Can you be an expert in German laws without speaking German? It was impossible a year ago because the ML

breakthrough wasn’t available, but today, you can use the code in the Python Notebook as the base to translate all German law books.

[image: Image 153]

[image: Image 154]

The four commands to get a summary of the first page of the four books we’ll be looking at are as follows:

Alice in Wonderland

pluto.df_t5_carroll = pluto.print_aug_ai_t5(

pluto.orig_carroll_page,

bsize=1)

Tale of Two Cities

pluto.df_t5_dickens = pluto.print_aug_ai_t5(

pluto.orig_dickens_page,

bsize=1)

Moby Dick

pluto.df_t5_melville = pluto.print_aug_ai_t5(

pluto.orig_melville_page,

bsize=1)

This chapter first page

pluto.df_t5_self = pluto.print_aug_ai_t5(

pluto.orig_self,

bsize=1)

The shuffled results are as follows:

Figure 6.20 – Summary T5 NLP engine – 1

The second output is as follows:

[image: Image 155]

[image: Image 156]

Figure 6.21 – Summary T5 NLP engine – 2

The third output is as follows:

Figure 6.22 – Summary T5 NLP engine – 3

The fourth output is as follows:

Figure 6.23 – Summary T5 NLP engine – 4

Fun challenge

Can you match the summarized output with the book? The T5 engine is not a generative AI engine like OpenAI GPT3, GPT4, or Google Bard. Still, the summary is very accurate.

The Tale of Two Cities book, shown in Figure 6.19, is a relatively hard book to read, and Pluto thinks that it is funny that David Rothkopf, a contemporary political commentator, is associated with Dickens’ book. The first page does talk about the congress of British subjects in America.

Thus, the Mr. Rothkopf association is a good guess. Maybe Pluto should feed the first 10 pages of the chapter into the T5 NLP engine and see the summary.

[image: Image 157]

The Moby Dick first-page summary is spot on, as shown in Figure 6.20. It could pass as a human writer, and the first word is Ishmael. Pluto wishes that the T5 NLP model was available during Pluto’s early days in school.

Pluto’s human companion is delighted to admit that the summary of this chapter’s first page is more precise and easier to read, as shown in Figure 6.21. Maybe the T5 NLP engine should co-write this book with Pluto so that his companion can enjoy chasing squirrels on a sunny afternoon.

The Alice in Wonderland first-page summary is perfect, as shown in Figure 6.22. The T5 NLP engine captures the assent of the opening page flawlessly. As a bonus, Pluto only inputted the first five sentences. The output is as follows:

Figure 6.24 – Summary T5 NLP Engine – the first five lines of Alice in Wonderland

In Figure 6.23, how does T5 know that the white rabbit is essential to the story? The rabbit only appears in the last sentence in the input text, and referring to Alice as the daisy-chain maker is delightful.

The next step in sentence augmentation is to feed these summaries to the flow methods.

Summary-to-flow technique

The Sequential method in the flow technique applies a list of augmentation in successive order. Pluto creates two text augmentation methods, as follows:

augment using uloVe

pluto.ai_aug_glove = nlpaug.augmenter.word.WordEmbsAug(

model_type='glove', model_path='glove.6B.300d.txt',

action="substitute")

augment using BERT

pluto.ai_aug_bert =

nlpaug.augmenter.word.ContextualWordEmbsAug(

model_path='bert-base-uncased',

action='substitute',

top_k=20)

The first uses the Word2Vec with the GloVe model, while the second employs the BERT NLP engine. The print_aug_ai_sequential() wrapper function uses the augmentation list with the key code lines, as follows:

augment using sequential

aug_func = nlpaug.flow.Sequential(

[self.ai_aug_bert, self.ai_aug_glove])

Pluto feeds the four summaries to the flow method, as follows:

Alice in Wonderland

pluto.print_aug_ai_sequential(pluto.df_t5_carroll)

Tale of Two Cities

pluto.print_aug_ai_sequential(pluto.df_t5_dickens)

Moby Dick

pluto.print_aug_ai_sequential(pluto.df_t5_melville)

This chapter

pluto.print_aug_ai_sequential(pluto.df_t5_self)

Let’s take a look at the results.

The Alice in Wonderland augmented summary output is as follows:

[image: Image 158]

Figure 6.25 – Summary-to-flow method, Alice in Wonderland

The Tale of Two Cities augmented summary output is as follows:

[image: Image 159]

Figure 6.26 – Summary-to-flow method, Tale of Two Cities

The Moby Dick augmented summary output is as follows:

[image: Image 160]

Figure 6.27 – Summary-to-flow method, Moby Dick

This chapter’s augmented summary output is as follows:

[image: Image 161]

Figure 6.28 – Summary-to-flow method, this chapter

Pluto enjoyed reading the augmented summaries. Some are clever, and some are exaggerated, but for augmentation text, they are sufficient.

The next flow method is the Sometimes method. It works the same as the Sequential method, except it randomly applies an augmentation method or not. Pluto wrote the print_aug_ai_sometime() wrapper function on the Python Notebook, but he does not think explaining the results in this chapter would add more insight. You can run the wrapper function in the Python Notebook and view the results.

Fun challenge

Pluto challenges you to refactor the Pluto class to make it faster and more compact. You should also include all the image wrapper and helper functions from previous chapters. Pluto encourages you to create and upload your library to GitHub and PyPI.org. Furthermore, you don’t have to name the class PacktDataAug, but it would give Pluto and his human companion a great big smile if you cited or mentioned this book. The code

goals were for ease of understanding, reusable patterns, and teaching on the Python Notebook. Thus, refactoring the code as a Python library would be relatively painless and fun.

The summary-to-flow technique is the last method that will be covered in the chapter. Now, let’s summarize this chapter.

Summary

Text augmentation with machine learning (ML) is an advanced technique.

We used a pre-trained ML model to create additional training NLP data.

After inputting the first three paragraphs, the T5 NLP ML engine wrote the preceding summary for this chapter. It is perfect and illustrates the spirit of this chapter. Thus, Pluto has kept it as-is.

In addition, we discussed 14 NLP ML models and four word augmentation methods. They were Word2Vec, BERT, RoBERTa, and back translation.

Pluto demonstrated that BERT and RoBERTa are as good as human writers.

The augmented text is not just merely appropriate but inspirational, such as replacing it was the age of foolishness with death was the age of love or it was the epoch of belief with it was the age of youth.

For the back translation method, Pluto used the Facebook or Meta AI NLP

model to translate to German and Russian and back to English.

For sentence augmentation, Pluto dazzled with the accuracy of the T5 NLP

ML engine to summarize the first page of three classic books. Furthermore, he pioneered the summary-to-flow concept for text augmentation. Pluto might be the first to implement the summary-to-flow strategy.

Throughout this chapter, there were fun facts and fun challenges. Pluto hopes you will take advantage of these and expand your experience beyond the scope of this chapter.

The next chapter is about audio augmentation, which will pose different challenges, but Pluto is ready for them.

Part 4: Audio Data Augmentation

This part includes the following chapters:

 Chapter 7, Audio Data Augmentation

 Chapter 8, Audio Data Augmentation with Spectogram

Audio Data Augmentation

Similar to image and text augmentation, the objective of audio data augmentation is to extend the dataset to gain a higher accuracy forecast or prediction in a generative AI system. Audio augmentation is cost-effective and is a viable option when acquiring additional audio files is expensive or time-consuming.

Writing about audio augmentation methods poses unique challenges. The first is that audio is not visual like images or text. If the format is audiobooks, web pages, or mobile apps, then we play the sound, but the medium is paper. Thus, we must transform the audio signal into a visual representation. The Waveform graph, also known as the time series graph, is a standard method for representing an audio signal. You can listen to the audio in the accompanying Python Notebook.

In this chapter, you will learn how to write Python code to read an audio file and draw a Waveform graph from scratch. Pluto has provided a preview here so that we can discuss the components of the Waveform graph. The function is as follows:

sneak peek at a waveform plot

pluto.draw_audio(pluto.df_audio_control_data)

The following is a Waveform graph of piano scales in D major:

[image: Image 162]

Figure 7.1 – Piano scales in D major

In Figure 7.1, Pluto drew the positive amplitude in blue and the negative amplitude in yellow in the Waveform graph. This makes the chart easier to read and prettier. The amplitude is the value of the Y-axis. It measures the vibration or compression and decompression of the air molecules. The higher the amplitude, the greater the air displacement. In other words, the zero amplitude value is silent, and the greater the absolute distance from zero, the louder the sound.

The frequency, also known as the sampling rate, is the value of the X-axis.

The sampling rate measures how many times you recorded the amplitude value in a second. The unit for sound frequency or the sampling rate is hertz (Hz). For example, a sampling rate of 1,000 Hz or 1 kilohertz (kHz) means you record a thousand amplitude values in 1 second. In other words, you register an amplitude value for every millisecond. Thus, the higher the frequency, the more accurate the sound, and therefore, a larger sound file size. This is because there is a higher recorded amplitude value. 1 kHz is equal to 1,000 Hz.

Fun fact

A human’s range of hearing is between 20 Hz and 20 kHz. Younger children can hear sounds higher than 20 kHz, while older adults can’t listen to sounds greater than 17 kHz. Deep and low music bass sound is between 20 Hz and 120 Hz, while everyday human speech ranges from 600 Hz to 5

kHz. In contrast, a canine’s hearing frequency is approximately 40 Hz to 60

kHz, which is better than a human’s hearing frequency. That is why you can’t hear an above 20 kHz dog whistle.

Pitch is the same as frequency but from a human point of view. It refers to the loudness of the sound and is measured in decibels (dB). Thus, high pitch means high frequency.

dB is the unit for the degree of loudness. A rocket sound is about 165 dB, busy traffic noise is about 85 dB, human speech is about 65 dB, rainfall is about 45 dB, and zero dB means silence.

The standard sampling rate for MP3 and other audio formats is 22.05 kHz.

The frequency of high-quality sound, also known as Compact Disk (CD) sound, is 44.1 kHz.

When storing an audio file on a computer, bit depth is the accuracy of the amplitude value. 16 bits has 65,536 levels of detail, while 24 bits has 16,777,216 levels of information. The higher the bit depth, the closer the digital recording is to the analog sound and the larger the audio file size.

The bit rate is similar to the sampling rate, where the bit rate measures the number of bits per second. In audio processing, the playback function uses the bit rate, while the record function uses the sampling rate.

Mono sound has one channel (1-channel), while stereo sound has two channels (2-channel). Stereo sound has one channel for the right ear and another channel for the left ear.

The bottom graph in Figure 7.1 shows a zoom-in Waveform chart. It shows only 100 sampling rate points, starting at the midpoint of the top Waveform graph. Upon closer inspection, the Waveform is a simple time series plot.

Many data types, such as text and images, can be represented as a time

[image: Image 163]

series chart because Python can represent the data as a one-dimensional array, regardless of the data type.

Fun fact

Pitch correction involves tuning a vocal’s performance in a recording so that the singer sings on key. You can use software such as Antares Auto-Tune Pro or Waves Tune Real Time to correct the highness or lowness in singing pitch. It saves time and money in terms of re-recording. Pitch correction was relatively uncommon before 1977 when Antares Audio Technology’s Auto-Tune Pitch Correcting Plug-In was released. Today, about 90% of radio, television, website, or app songs have pitch correction.

Autotune is used for vocal effects, while pitch correction is for fixing vocals.

Since most data can be used for Waveform graphs, Pluto can draw a time series graph for the phrase “Mary had a little lamb, whose fleece was white as snow. And everywhere that Mary went, the lamb was sure to go. ” Pluto uses the following function:

fun use of waveform graph

pluto.draw_time_series_text(pluto.text_marry_lamb)

The output is as follows:

Figure 7.2 – Text as a time series graph

In Figure 7.2, blue is for alphanumeric characters, while yellow is for punctuation. The Y-axis consists of the ASCII value of the character.

The conversion is straightforward because each letter is encoded as an ASCII value, such as “A” as 65, “B” as 66, and so on. Similarly, an image composed of a three-dimensional array (width, height, and depth) has an RGB value. The result of collapsing the depth dimension by multiplying the RGB value is between zero and 16,581,375. Flatten the remaining two-dimensional array into a one-dimensional array and plot it as a time series graph.

This chapter will cover audio augmentation using Waveform transformation, and in particular, the following topics:

Standard audio augmentation techniques

Filters

Audio augmentation libraries

Real-world audio datasets

Reinforcing your learning

Let’s begin by discussing common audio augmentation methods.

Standard audio augmentation

techniques

Similar to image augmentation in Chapter 3, various audio libraries provide

many more functions than are necessary for augmentation. Therefore, we will only cover some of the methods available in the chosen audio library.

In image augmentation, the term safe level is defined as not altering or distorting the original image beyond an acceptable level. There is no standard terminology for deforming the original audio signal beyond a

permissible point. Thus, the term safe or true will be used interchangeably to denote a limit point for the audio signal.

Fun challenge

Here is a thought experiment: all audio files are represented as numbers in time series format. Thus, can you create a statistically valid augmentation method that does not consider human hearing perception? In other words, use math to manipulate a statistically valid number array, but never listen to the before and after effects. After all, audio augmentation aims to have more data for enhancing the AI prediction, which does not comprehend human speech or good music from bad music.

The following functions are commonly used for audio augmentation: Time stretching

Time shifting

Pitch scaling

Noise injection

Polarity inversion

Let’s start with time stretching.

Time stretching

Time stretching involves lengthening or shortening the duration of an audio signal. It is done without changing the pitch level. For example, in human speech, you would slow down and drag out your words or speed up and talk like a chipmunk cartoon character.

What is the safe level for time stretching? It depends on the type of audio and the goal of AI prediction. In general, you can speed up or slow down human speech and it can still be understood. But if the goal is to predict the speaker’s name, then there is a small time stretching range you can apply to the speech and stay true to the speaker’s talking style.

Music, on the other hand, is generally considered unsafe for time stretching. Changing the tempo beat of a music segment alters the music beyond the true musician’s intention.

Environmental or nature sounds are generally safe for time stretching within an acceptable safe range.

This augmentation technique, and all other methods, are covered in the Python Notebook; hence, it is easier to grasp the effect by listening to the original and the augmented sound.

Similar to time stretching is time shifting.

Time shifting

Time shifting involves moving an audio segment forward or backward. For example, if you want a more dramatic pause between a speaker’s announcement and the audience’s applause, you can timeshift the applauses a few seconds forward.

Timeshift with rollover means the last sound will be added back to the beginning. Without rollover, the audio will have silence for the beginning or end, depending on whether you’re shifting forward or backward.

For example, suppose the goal of the AI prediction is to identify gunshots in a city to alert the police. In that case, timeshift with rollover is an acceptable safe augmentation technique. Another example of good use of timeshift with rollover is looped background music.

Human speech or music is typically unsafe for time shifting. This is because the sequential order is essential for it to stay true to the original audio.

Moving away from time, pitch shifting or pitch scaling is another augmented parameter.

Pitch shifting

Pitch shifting or pitch scaling changes the frequency of sound without affecting the speed or time shift. For example, a man has a lower voice pitch than a woman. Increasing the pitch level in a voice recording might make a man sound like a woman.

Pitch shifting should be used cautiously when augmenting human speech, music, environment, and nature audio files. The safe level can change drastically for the same dataset, depending on the AI prediction’s objective.

For example, the recordings of daily meadow sounds can be used to count how many birds visit the meadow a day, or an AI can predict what kinds of birds dwell in the field. The pitch-shifting safe range for counting birds is higher than for identifying birds. Applying pitch shifting to bird songs may inadvertently make one bird sound like other birds.

Another pitch alternation method is polarity inversion.

Polarity inversion

Polarity inversion involves switching the amplitude value from positive to negative and vice versa. Mathematically, it multiplies the amplitude by a negative value. Graphically, it alters the color blue and makes it yellow and vice versa in Figure 7.1.

To most humans, the playback after polarity inversion sounds the same as the original audio. It is most beneficial for ML when used with the phase-awareness model. There is no safe range because it is either used or not used.

The following augmentation is about adding noise to an audio file.

Noise injection

Noise injection adds signal noise to an audio file. The effect of adding noise is that the augmented sound appears as though it consists of pops and crackles. The five types of noise typically used in audio augmentation are

background noise, Gaussian, random, signal-to-noise ratio (SNR), and short burst noise.

How much noise or the safe level depends on the AI project’s objective and the recording. Sometimes, you might have to employ a domain expert to attain a safe level.

Many more techniques could be classified as commonly used audio augmentations, such as clip, gain transition, normalize, padding, or reverse, but let’s move on and look at filters and masking.

Filters

Audio filters help eliminate unwanted interference or noise from an audio recording. The result is to improve the tone and playback of human speech, music, nature, and environmental recordings.

The audio filter changes frequency by increasing, boosting, or amplifying a range of frequencies. A filter could also decrease, delete, cut, attenuate, or pass a frequency range. For example, using a low-pass filter, you could remove the traffic noise from a recording of two people talking in a city.

In particular, we will cover the following filters:

Low-pass filter

High-pass filter

Band-pass filter

Low-shelf filter

High-shelf filter

Band-stop filter

Peak filter

Let’s start with the low pass filter.

Low-pass filter

The low-pass filter cuts or deletes low-frequency sounds, such as traffic noise, machine engine rumbles, or elephant calls.

Typically, the minimum cut-off frequency is 150 Hz, the maximum cut-off is 7.5 kHz, the minimum roll-off is 12 dB, and the maximum roll-off is 24

dB.

Here is a fun fact: elephant calls are lower than 20 Hz or into the infrasound range. The next filter we’ll cover is the high pass filter.

High-pass filter

Similar to the low-pass filter, the high-pass filter cuts high-frequency sound, such as whistling, babies crying, nail scratching, or bell ringing.

Typically, the minimum and maximum cut-off frequencies are 20 Hz and 2.4 kHz, and the minimum and maximum roll-offs are 12 dB and 24 dB, respectively.

Fun fact: a human can whistle around 3 to 4 kHz. There is one more pass filter we need to look at: the ban pass filter.

Band-pass filter

The band-pass filter limits the sound wave to a range of frequencies. In other words, it combines the low and high-band filters. For example, a band-pass filter can make it clearer to listen to a recording of two friends’

conversations in a busy Paris outdoor restaurant. Similarly, it can be used to isolate bird song recordings in a noisy Amazon jungle.

Typically, the minimum and maximum center frequencies are 200 Hz and 4

kHz, the minimum and maximum bandwidth fractions are 0.5 and 1.99, and the minimum and maximum roll-offs are 12 dB and 24 dB, respectively.

Now, let’s move on from pass filters to shelf filters.

Low-shelf filter

Shelf filtering is also known as shelf equalization. In particular, the low-shelf filter boosts or cuts the frequencies at the lower end of the spectrum.

For example, you can use a low-shelf filter to reduce the bass in a heavy metal song.

Usually, the minimum and maximum center frequencies are 50 Hz and 4

kHz, and the minimum and maximum gain are -18 dB to 18 dB,

respectively.

The next technique is the high-shelf filter.

High-shelf filter

Similarly, a high-shelf filter increases or decreases the frequencies’

amplitude at the higher end of the spectrum. For example, you can use a high-shelf filter to brighten a music recording.

Commonly, the minimum and maximum center frequencies are 300 Hz and 7.5 kHz, and the minimum and maximum gains are -18 dB and 18 dB, respectively.

The band-stop filter is the next technique we’ll cover.

Band-stop filter

The band-stop filter is also known as a ban-reject filter or notch filter. It deletes frequencies between two cut-off points or on either side of the range. In addition, it uses low and high-pass filters under the hood. For example, a band-stop filter can remove unwanted spikes and noises from a backyard music session jam.

Typically, the minimum and maximum center frequencies are 200 Hz and 4

kHz, the minimum and maximum bandwidth fractions are 0.5 and 1.99, and the minimum and maximum roll-offs are 12 dB and 24 dB, respectively.

The peak filter is the last audio augmentation technique that will be covered in this chapter.

Peak filter

The peak or bell filter is the opposite of the band-stop filter. In other words, it boosts shelf filters with a narrow band and higher gain signal or allows a boost or cut around a center frequency.

Typically, the minimum and maximum center frequencies are 50 Hz and 7.5

kHz, and the minimum and maximum gains are -24 dB and 24 dB, respectively.

Many methods are available in audio augmentation libraries. Thus, the next step is to select one or two audio augmentation libraries for Pluto’s wrapper functions.

Audio augmentation libraries

There are many commercial and open source audio data augmentation libraries. In this chapter, we will focus on open source libraries available on GitHub. Some libraries are more robust than others, and some focus on a particular subject, such as human speech. Pluto will write wrapper functions using the libraries provided to do the heavy lifting; thus, you can select more than one library in your project. If a library is implemented in the CPU, it may not be suitable for dynamic data augmenting during the ML

training cycle because it will slow down the process. Instead, choose a library that can run on the GPU. Choose a robust and easy-to-implement library to learn new audio augmentation techniques or output the augmented data on local or cloud disk space.

The well-known open source libraries for audio augmentation are as follows:

Librosa is an open source Python library for music and audio analysis.

It was made available in 2015 and has long been a popular choice.

Many other audio processing and augmentation libraries use Librosa’s functions as building blocks. It can be found on GitHub at

https://github.com/librosa/librosa.

Audiomentations is a Python library specifically for audio data augmentation. Its key benefit is its robustness and easy project integration. It is cited in many Kaggle competition winners. It can be found on GitHub at https://github.com/iver56/audiomentations.

Facebook or Meta research published Augly as an open source Python library for image and audio augmentation. The goal is to provide specific data augmentations for real-life projects. It can be found on GitHub at

https://github.com/facebookresearch/AugLy/tree/main/augly/audio.

Keras is a Python library for audio and music signal preprocessing. It implements frequency conversions and data augmentation using GPU

preprocessing. It can be found on GitHub at

https://github.com/keunwoochoi/kapre.

Nlpaug is a Python library that’s versatile for both language and audio data augmentation. Chapter 5 used Nlpaug for text augmentation, but in this chapter, we will use the audio library. It can be found on GitHub at

https://github.com/makcedward/nlpaug.

Spotify’s Audio Intelligence Lab published the Pedalboard Python library. The goal is to enable studio-quality audio effects for ML. It can be found on GitHub at https://github.com/spotify/pedalboard.

Pydiogment is a Python library that aims to simplify audio augmentation. It is easy to use but less robust than other audio augmentation libraries. It can be found on GitHub at

https://github.com/SuperKogito/pydiogment.

Torch-augmentations is an implementation of the Audiomentations library for GPU processing. It can be found on GitHub at

https://github.com/asteroid-team/torch-audiomentations.

Fun fact

Audiomentations library version 0.28.0 consists of 36 augmentation functions, Librosa library version 0.9.2 consists of over 400 methods, and the Pydiogment library’s latest update (July 2020) consists of 14

augmentation methods.

Pluto will primarily use the Audiomentations and Librosa libraries to demonstrate the concepts we’ve mentioned in Python code. But first, we will download Pluto and use him to download real-world audio datasets from the Kaggle website.

Real-world audio datasets

By now, you should be familiar with downloading Pluto and real-world datasets from the Kaggle website. We chose to download Pluto from

 Chapter 2 because the image augmentation functions shown in Chapters 3

and 4, and the text augmentation techniques shown in Chapters 5 and 6, are not beneficial for audio augmentation.

The three real-world audio datasets we will use are as follows: The Musical Emotions Classification (MEC) real-world audio dataset from Kaggle contains 2,126 songs separated into train and test folders.

They are instrumental music, and the goal is to predict happy or sad music. Each piece is about 9 to 10 minutes in length and is in *.wav format. It was published in 2020 and is available to the public. Its license is Attribution-ShareAlike 4.0 International (CC BY-SA 4.0):

https://creativecommons.org/licenses/by-sa/4.0/.

The Crowd Sourced Emotional Multimodal Actors Dataset (CREMAD) real-world audio dataset from Kaggle contains 7,442 original clips from 91 actors. The actors are 48 males and 43 females between 20 to 74 years old, and their ethnicities are African American, Asian, Caucasian, Hispanic, and Unspecified. In addition, the spoken phrases

represent six different emotions. They are anger, disgust, fear, happy, neutral, and sad. There is no set goal for the datasets, but you can use them to predict age, sex, ethnicity, or emotions. It was published in 2019 and is available to the public. Its license is Open Data Commons Attribution License (ODC-By) v1.0:

https://opendatacommons.org/licenses/by/1-0/index.html.

The urban_sound_8k (US8K) real-world dataset from Kaggle contains 8,732 labeled sound excerpts from an urban setting. Each clip is between 2 to 4 seconds, and the classification is Air conditioner, Car horn, Children playing, Dogs barking, Drilling, Engine idling, Gunshots, Jackhammers, Sirens, and Street music. It was published in 2021 and is available to the public. Its license is CC0 1.0 Universal (CC0 1.0) Public Domain Dedication:

https://creativecommons.org/publicdomain/zero/1.0/.

The three audio datasets – music, human speech, and environmental sound

– represent the typical sounds you hear daily.

The following four steps are the same in every chapter. Review Chapters 2

and 3 if you need clarification. The steps are as follows: 1. Retrieve the Python Notebook and Pluto.

2. Download real-world data.

3. Load the data into pandas.

4. Listen to and view the audio.

Let’s begin by downloading Pluto in the Python Notebook.

Python Notebook and Pluto

Start by loading the data_augmentation_with_python_chapter_7.ipynb file into Google Colab or your chosen Jupyter Notebook or JupyterLab environment. From this point onward, the code snippets will be from the Python Notebook, which contains the complete functions.

The next step is to clone the repository. We will reuse the code from

 Chapter 2. The !git and %run statements are used to start up Pluto:

clone the GitHub repo.

f='https://github.com/PacktPublishing/Data-Augmentation-with-Python'

!git clone {f}

instantiate Pluto

%run 'Data-Augmentation-with-Python/pluto/pluto_chapter_2.py'

The output will be as follows or similar:

---------------------------- : ----------------------------

Hello from class : <class

'__main__.PacktDataAug'> Class: PacktDataAug

Code name : Pluto

Author is : Duc Haba

---------------------------- : ----------------------------

We need to do one more check to ensure Pluto is loaded satisfactorily. The following command asks Pluto to state his status:

How are you doing Pluto?

pluto.say_sys_info()

The output will be as follows or similar, depending on your system:

---------------------------- : ----------------------------

System time : 2022/12/30 19:17

Platform : linux

Pluto Version (Chapter) : 2.0

 Python (3.7.10) : actual: 3.8.16 (default, Dec 7 2022, 01:12:13) [GCC 7.5.0]

PyTorch (1.11.0) : actual: 1.13.0+cu116

Pandas (1.3.5) : actual: 1.3.5

PIL (9.0.0) : actual: 7.1.2

Matplotlib (3.2.2) : actual: 3.2.2

CPU count : 2

CPU speed : NOT available

---------------------------- : ----------------------------

Next, Pluto will download the audio dataset.

Real-world data and pandas

Pluto has downloaded the real-world music dataset, the MEC, using the fetch_kaggle_dataset(url) function from Chapter 2. He found that the

dataset consists of a comma-separated variable (CSV) header file. Thus, he used the fetch_df(fname) function to import it into pandas:

download from Kaggle

url = 'https://www.kaggle.com/datasets/kingofarmy/musical-

emotions-classification'

pluto.fetch_kaggle_dataset(url)

import to Pandas

f = 'kaggle/musical-emotions-classification/Train.csv'

pluto.df_music_data = pluto.fetch_df(f)

out a few header record

Pluto.df_music_data.head(3)

The result is as follows:

[image: Image 164]

[image: Image 165]

Figure 7.3 – Music (MEC) top 3 records

The ImageID in Figure 7.3 is not a full path name, so Pluto writes two quick Python functions to append the full path name. These methods are the _append_music_full_path() and fetch_music_full_path() helper functions. The key code lines are as follows:

helper function snippet

y = re.findall('([a-zA-Z]*)\d*.*', x)[0]

return (f'kaggle/musical-emotions-

classification/Audio_Files/Audio_Files/Train/{y}/{x}')

main function snippet

df['fname'] = df.ImageID.apply(self._append_music_full_path) The function’s code can be found in the Python Notebook. The result is as follows:

Figure 7.4 – Music (MEC) top 3 records revised

The next real-world dataset from Kaggle is for human speech (CREMAD). Pluto must download and import it into pandas using the following

[image: Image 166]

commands:

download the dataset

url = 'https://www.kaggle.com/datasets/ejlok1/cremad'

pluto.fetch_kaggle_dataset(url)

import to Pandas and print out header record

f = 'kaggle/cremad/AudioWAV'

pluto.df_voice_data = pluto.make_dir_dataframe(f)

pluto.df_voice_data.head(3)

The output is as follows:

Figure 7.5 – Voice (CREMA-D) top 3 records revised

The third audio dataset from Kaggle is for urban sound (US8K).

Incidentally, Kaggle consists of about 1,114 real-world audio datasets as of December 2022. Pluto must download and import it into pandas using the following commands:

download dataset from Kaggle website

url='https://www.kaggle.com/datasets/rupakroy/urban-sound-8k'

pluto.fetch_kaggle_dataset(url)

import to Pandas and print header records

f = 'kaggle/urban-sound-8k/UrbanSound8K/UrbanSound8K/audio'

pluto.df_sound_data = pluto.make_dir_dataframe(f)

pluto.df_sound_data.head(3)

The output is as follows:

[image: Image 167]

Figure 7.6 – Urban sound (US8K) top 3 records revised

Lastly, the audio control clip is a piano scale in D-Major. Pluto created it using a MIDI keyboard program. It plays from D, E, F#, G, A, B, C#, and scales down to C#, B, A, G, F#, E, D. When Pluto is not sure if the audio augmentation is working on the music, voice, or urban sound, he will use the control clip to verify the effect. The file can be found in the pluto_data directory; he stored the control clip in the pluto.audio_control_dmajor variable.

Fun challenge

Pluto challenges you to search for and download an additional audio dataset from the Kaggle website or your project. It is more meaningful if you work with the data that matters to you. So long as you download and import it into pandas, all the augmentation wrapper functions will work the same for your audio files. Hint: use Pluto’s fetch_kaggle_dataset() and fetch_df() functions.

With that, Pluto has downloaded the three real-world audio datasets. The next step is to play the audio and view the audio Waveform graph.

Listening and viewing

Pluto has written three new functions to play the audio and display the Waveform graph. The first is the _draw_area_with_neg() helper method, which displays the area graph for positive and negative numbers in the

same dataset. Incidentally, the pandas and Matplotlib area graphs can only show positive values. The essential code line for this function is as follows:

draw area code snippet fill top/positive/blue section

pic.fill_between(

i, xzero, ndata, where=(ndata >= xzero),

interpolate=True, color=tcolor, alpha=alpha,

label="Positive"

)

fill bottom/negative/yellow section

pic.fill_between(

i, xzero, ndata, where=(ndata < xzero),

interpolate=True, color=bcolor, alpha=alpha,

label="Negative"

)

The full function code can be found in the Python Notebook. The next helper function is _draw_audio(). Its main objectives are loading or reading the audio file using the Librosa library, drawing the two Waveform graphs, and displaying the play audio button. Pandas has the same filename that it had when fetching the audio datasets. The key code lines for the function are as follows:

code snippet, load/read and import to Pandas DataFrame data_amp, sam_rate = librosa.load(samp.fname[0], mono=True)

draw the Waveform graphs

self._draw_area_with_neg(data_amp,pic[0])

draw the zoom in Waveform plot

self._draw_area_with_neg(data_amp[mid:end],pic[1])

display the play-audio button

display(IPython.display.Audio(data_amp, rate=sam_rate))

The entirety of this function can be found in the Python Notebook. The draw_audio() method invokes the two helper functions. Additionally, it selects a random audio file from the pandas DataFrame. Thus, Pluto runs the command repeatedly to listen to and view a different audio file from the real-world dataset.

Pluto can display a music clip from the MEC dataset using the following command:

[image: Image 168]

[image: Image 169]

display the play button the waveform plot

pluto.draw_audio(pluto.df_music_data)

The audio play button is as follows:

Figure 7.7 – Audio play button

The Waveform graphs are as follows:

Figure 7.8 – Music waveform graph (Happy36521)

The audio play button in Figures 7.7 and 7.8 (Happy36521.wav) will play the instrumental music with the flute, drum, and guitar.

Fun fact

[image: Image 170]

Pluto names the function draw_audio() and not play_audio() because this book needs a Waveform graph, and to listen to the audio, you have to go to the Python Notebook and click on the play button shown in Figure 7.7.

Like all wrapper functions, you can repeatedly run the draw_audio() method to see and listen to different audio files from the datasets.

Pluto displays a human speech clip from the CREMA-D dataset using the following command:

display the play button the waveform plot

pluto.draw_audio(pluto.df_voice_data)

The audio play button’s output is not displayed here because it looks the same as in Figure 7.7. The result of the Waveform graph is as follows: Figure 7.9 – Human speech waveform graph (1078_TIE_HAP_XX)

The audio of Figure 7.9 (1078_TIE_HAP_XX.wav) is a woman speaking the phrase: that is exactly what happens. She sounds happy and middle-aged.

Pluto displays an urban sound clip from the US8K dataset using the following command:

[image: Image 171]

display the play button the waveform plot

pluto.draw_audio(pluto.df_sound_data)

The result of the Waveform graph is as follows:

Figure 7.10 – Urban sound waveform graph (119455-5-0-7)

The audio for Figure 7.10 (119455-5-0-7.wav) is the sound of jackhammers.

With that, we’ve discussed various audio augmentation concepts, selected audio libraries, downloaded Pluto, and asked him to fetch real-world datasets for music, human speech, and urban sounds. Pluto now also plays the audio and displays the Waveform graph for each file.

The next step is writing Python wrapper code from scratch to gain a deeper understanding of the audio augmentation techniques we’ve covered.

Reinforcing your learning

The key objectives of the _audio_transform() helper function are selecting a random clip, performing the augmentation using the Audiomentations library function, displaying the WaveForm graph using the _fetch_audio_data() and _draw_audio() helper functions, and showing the audio play button. The key code lines are as follows:

code snippet, use Pandas to select a random/sample record p = df.sample(dsize)

fetch the audio data

data_amp, sam_rate, fname = self._fetch_audio_data(lname)

do the transformation

xaug = xtransform(data_amp, sample_rate=sam_rate)

display the Waveform graphs and the audio play button

self._draw_audio(xaug, sam_rate, title + ' Augmented: ' +

fname)

display(IPython.display.Audio(xaug, rate=sam_rate))

The full function’s code can be found in the Python Notebook. Pluto will write the Python wrapper functions for audio augmentation in the same order as previously discussed. In particular, they are as follows: Time shifting

Time stretching

Pitch scaling

Noise injection

Polarity inversion

Let’s start with time shifting.

Time shifting

The definition and key code lines for the play_aug_time_shift() function are as follows:

function definition

def play_aug_time_shift(self, df,

[image: Image 172]

min_fraction=-0.2,

max_fraction=0.8,

rollover=True,

title='Time Shift'):

code snippet for time shift

xtransform = audiomentations.Shift(

min_fraction = min_fraction,

max_fraction = max_fraction,

rollover = rollover,

p=1.0)

The full function’s code can be found in the Python Notebook. Pluto tests the time shift wrapper function with the audio control file as follows:

augment using time shift

pluto.play_aug_time_shift(

pluto.audio_control_dmajor,

min_fraction=0.2)

The output for the time shift augmented audio clip is as follows: Figure 7.11 – Time shift (control-d-major.mp3)

[image: Image 173]

[image: Image 174]

The wrapper function displays the augmented audio clip, Figure 7.11, and the original audio clip, Figure 7.12, for comparison. Sometimes, you must look at the bottom, zoom-in waveform graph to see the augmented effects.

The other option to hear the augmented impact is to click the play button, as shown in Figure 7.13, to listen to the before and after audio files in the Python Notebook:

Figure 7.12 – Original time shift (control-d-major.mp3)

Pluto plays the audio by clicking on the audio play button in the Python Notebook:

[image: Image 175]

Figure 7.13 – Audio play buttons, before and after

Fun fact

Every time you run the wrapper function command, you will see and hear a new audio file with a random shift between the minimum and maximum range. It will select a different audio file from the real-world dataset.

The audio in Figure 7.11 shows that the piano scale in D major is shifted almost at the midpoint. Thus, it plays from C# scale down to D and then from D scale up to C#. Therefore, there were better options for music with time order dependency than the time shift technique.

Moving on to the first of three datasets, Pluto runs the time shift function using default parameters on the music clip from the MEC dataset, as follows:

augment audio using time shift

pluto.play_aug_time_shift(

pluto.df_music_data)

The output augmented file is as follows:

[image: Image 176]

Figure 7.14 – Time shift, music clip (Sad17422.wav)

The original file output for comparison is as follows:

Figure 7.15 – Original music clip for the time shift (Sad17422.wav) It is hard to see the effect between Figures 7.14 and 7.15 in the WaveForm graph, but if Pluto focuses on the lower zoom-in charts, he can see that it has shifted. When Pluto plays the audio, he cannot notice any difference between the before and after excerpts.

The music in Figure 7.14 sounds like an adventure cinematic orchestra clip for a Westen movie that is on a repeating loop, so shifting and looping back works perfectly. Pluto repeatedly ran the wrapper function to retrieve a different audio file and confirmed no adverse effects. Thus, it is safe to timeshift the music from the MEC dataset using the default parameters.

Moving on to the second real-world dataset, Pluto knows human speech is time sequence-dependent in the CREMA-D dataset. Thus, it is unsafe to timeshift. He has exaggerated the effects by increasing the minimum fraction to 0.5 so that you can see the damaging results. The command is as follows:

[image: Image 177]

augment audio using time shift

pluto.play_aug_time_shift(pluto.df_voice_data,

min_fraction=0.5)

The output for the augmented timeshift audio clip is as follows: Figure 7.16 – Time shift voice clip (1027_IEO_DIS_HI.wav)

The wrapper function also displays the original audio clip for comparison:

[image: Image 178]

Figure 7.17 – Original time shift voice clip (1027_IEO_DIS_HI.wav) In the audio for Figure 7.16, a man’s voice said, eleven o’clock [a pause] it is, while in the audio for Figure 7.17, it said, It is eleven o’clock. Once again, the timeshifting technique is not a safe option for the human speech (CREMA-D) dataset.

On the third dataset, Pluto repeated running the following command on the urban sound from the US8K database:

augment audio using time shift

pluto.play_aug_time_shift(pluto.df_sound_data,

min_fraction=0.5)

The output for the augmented timeshift audio clip is as follows:

[image: Image 179]

[image: Image 180]

Figure 7.18 – Time shift urban sound (135526-6-3-0.wav)

The wrapper function also displays the original audio clip for comparison: Figure 7.19 – Original time shift urban sound (135526-6-3-0.wav)

 Figures 7.17 and 7.18 are audio of a gunshot with a high level of urban noise. The time shift moved the gunshot a bit later. After running the command repeatedly, Pluto found the time shift with a minimum fraction of 0.5 acceptable for the US8K real-world dataset.

The next audio augmentation technique we’ll cover is time stretching.

Time stretching

The definition and key code lines for the play_aug_time_stretch() function are as follows:

function definition

def play_aug_time_stretch(self, df,

min_rate=0.2,

max_rate=6.8,

leave_length_unchanged=True,

title='Time Stretch'):

code snippet for time stretch

xtransform = audiomentations.TimeStretch(

min_rate = min_rate,

max_rate = max_rate,

leave_length_unchanged = leave_length_unchanged,

p=1.0)

The fill function’s code can be found in the Python Notebook. Pluto tests the time stretch wrapper function with the audio control file and a maximum rate of 5.4, as follows:

augment using time stretch

pluto.play_aug_time_stretch(pluto.audio_control_dmajor,

max_rate=5.4)

The output for the time stretch augmented audio clip is as follows:

[image: Image 181]

[image: Image 182]

Figure 7.20 – Time stretch (control-d-major.mp3)

The wrapper function also displays the original audio clip for comparison: Figure 7.21 – Original time stretch (control-d-major.mp3)

[image: Image 183]

Pluto runs the wrapper function repeatedly, and the scaled audio is recognizable every time. Figure 7.20 audio plays the D major clip about three times faster, but the scales are recognizable.

The wrapper function works well on the control audio files, so Pluto applies to the music (MEC) dataset with a maximum rate of 3.0, as follows:

augment using tim stretch

pluto.play_aug_time_stretch(pluto.df_music_data,

max_rate=3.0)

The output for the time stretch augmented audio clip is as follows: Figure 7.22 – Time stretch music (Sad44404.wav)

The wrapper function also displays the original audio clip for comparison:

[image: Image 184]

Figure 7.23 – Original time stretch music (Sad44404.wav)

The audio in Figures 7.22 and 7.23 is of an afternoon lunch in a garden with a strong lead guitar and cinematic orchestra clip. With the time stretch filter at a maximum rate of 3.0, the audio in Figure 7.22 plays a bit faster, but Pluto did not notice any degradation in the music’s mood. Pluto repeatedly ran the wrapper function on the MEC dataset and concluded that the time stretch technique is safe at a maximum rate of 3.0.

Fun challenge

Find a universal safe range for the time stretch technique for all types of music (MEC). You can use the Python Notebook to find a safe range for the MEC datasets and download other music datasets from the Kaggle website.

On the other hand, is this an impossible task? Does a universal safe range exist for pop, classical, folklore, country, and hip-hop music?

Pluto does the same for the human speech (CREMA-D) dataset. The command is as follows:

augment using time stretch

pluto.play_aug_time_stretch(pluto.df_voice_data,

max_rate=3.5)

[image: Image 185]

[image: Image 186]

The output for the time stretch augmented audio clip is as follows: Figure 7.24 – Time stretch voice clip (1073_WSI_SAD_XX.wav) The wrapper function also displays the original audio clip for comparison: Figure 7.25 – Original time stretch voice clip (1073_WSI_SAD_XX.wav)

[image: Image 187]

The audio in Figures 7.24 and 7.25 is of a woman’s voice saying, Let’s stop for a couple of minutes, while the audio in Figure 7.24 says it a bit faster but it’s recognizable. Pluto repeatedly runs the wrapper function on the CREMA-D dataset with a maximum rate of 3.5 and hears no deterioration in the recordings. Thus, he concluded that the CREMA-D dataset is safe for use with the time stretch technique set to a maximum rate of 3.5.

Pluto does the same for the urban sound (US8K) dataset. The command is as follows:

augment using time stretch

pluto.play_aug_time_stretch(pluto.df_sound_data,

max_rate=2.4)

The output for the time stretch augmented audio clip is as follows: Figure 7.26 – Time stretch urban sound (76266-2-0-50.wav)

The wrapper function also displays the original audio clip for comparison:

[image: Image 188]

Figure 7.27 – Original time stretch urban sound (76266-2-0-50.wav) The audio in Figures 7.26 and 7.27 is of an urban clip of adults and children talking in a playground with high traffic or wind noises in the recording.

The audio in Figure 7.26 plays a bit faster. Pluto repeatedly runs the wrapper function on the US8K dataset with a maximum rate of 2.4, and he concluded that the US8K dataset is safe for the time stretching technique.

The next technique we’ll look at is pitch scaling.

Pitch scaling

The definition and key code lines for the play_aug_pitch_scaling() function are as follows:

function definition

def play_aug_pitch_scaling(self, df,

min_semitones = -6.0,

max_semitones = 6.0,

title='Pitch Scaling'):

code snippet for pitch shift

xtransform = audiomentations.PitchShift(

[image: Image 189]

min_semitones = min_semitones,

max_semitones = max_semitones,

p=1.0)

Pluto tests the pitch scaling wrapper function with the audio control file using the default parameters, as follows:

augment using pitch scaling

pluto.play_aug_pitch_scaling(pluto.audio_control_dmajor)

The output augmented audio clip is as follows:

Figure 7.28 – Pitch scaling (control-d-major.mp3)

The wrapper function also displays the original audio clip for comparison:

[image: Image 190]

Figure 7.29 – Original pitch scaling (control-d-major.mp3)

Pluto can’t tell the difference from looking at the complete Waveform graphs in Figures 7.28 and 7.29, but if he focuses on the zoom-in chart, he can see the differences. Listening to the audio file is the best method. To do that, you must go to the Python Notebook and click on the audio play button. The audio in Figure 2.28 plays more like a harpsichord than the original piano scale in D major.

Next, Pluto applies the pitch scaling wrapper function to the music (MEC) dataset, as follows:

augment using pitch scaling

pluto.play_aug_pitch_scaling(pluto.df_music_data,

min_semitones=-11.0,

max_semitones=-9.0)

The output for the augmented audio clip is as follows:

[image: Image 191]

[image: Image 192]

Figure 7.30 – Pitch scaling music (Sad11601.wav)

The wrapper function also displays the original audio clip for comparison: Figure 7.31 – Original pitch scaling music (Sad11601.wav)

[image: Image 193]

The audio in Figure 7.30 plays warmer, is melodic, and accentuates the moodiness of a dramatic cinematic clip. It’s like a calm evening before a dramatic turn. Pluto purposefully exaggerated the pitch effects by setting the minimum semitones to -11.0 and the maximum semitones to -9.0.

The audio in Figure 7.31 plays the original clip. Using the default parameter value, Pluto found minimal pitch scaling effects on the MEC

dataset. Thus, it is a safe technique.

Using the default parameter values, Pluto does the same for the voice (CREMA-D) dataset. The command is as follows:

augment using pitch scaling

pluto.play_aug_pitch_scaling(pluto.df_voice_data)

The output for the augmented audio clip is as follows:

Figure 7.32 – Pitch scaling voice (1031_IEO_ANG_LO.wav)

The wrapper function also displays the original audio clip for comparison:

[image: Image 194]

Figure 7.33 - Original pitch scaling voice (1031_IEO_ANG_LO.wav) Pluto compares the zoom-in graphs in Figures 7.32 and 7.33 to see the effects. When listening to the audio files, he heard the augmented version, from Figure 7.32, of a high-pitched kid saying, It is eleven o’clock. The original version is an adult man’s voice. After repeatedly running the wrapper command with safe minimum and maximum semitones set to

-2.4 and 2.4, Pluto found it minimized the effects for the CREMA-D

dataset.

The urban sound (US8K) dataset has a diverse frequency range. Machine noises are repetitive low-frequency sounds, while sirens are high-frequency sounds. Pluto could not find a safe range unless he limited the semitones’

scope to -1.2 and 1.0. For fun, Pluto has moved the semitones range to 4.0

and 14.0. The command is as follows:

augment using pitch scaling

pluto.play_aug_pitch_scaling(pluto.df_sound_data,

min_semitones=4.0,

max_semitones=11.0)

The output for the augmented audio clip is as follows:

[image: Image 195]

[image: Image 196]

Figure 7.34 – Pitch scaling urban sound (93567-8-3-0.wav)

The wrapper function also displays the original audio clip for comparison: Figure 7.35 – Original pitch scaling urban sound (93567-8-3-0.wav)

The audio in Figures 7.34 and 7.35 play an urban clip of sirens in a busy urban street. The audio in Figure 7.34 has the sirens sound clearer and with a bit less interference from the traffic noise.

Fun challenge

This challenge is a thought experiment. Can you define rules for which audio augmentation methods are suitable for an audio category, such as human speech, music, bird songs, and so on? For example, can human speech be safely augmented using pitch shifting in a small range?

The next technique we’ll look at is noise injection.

Noise injection

The definition and key code lines for the play_aug_noise_injection() function are as follows:

function definition

def play_aug_noise_injection(self, df,

min_amplitude = 0.002,

max_amplitude = 0.2,

title='Gaussian noise injection'):

code snippet for noise injection

xtransform = audiomentations.AddGaussianNoise(

min_amplitude = min_amplitude,

max_amplitude = max_amplitude,

p=1.0)

The full function’s code can be found in the Python Notebook. Pluto will not explain the result here because they are similar to the previous three audio augmentation techniques. You should try them out on the Python Notebook to see and hear the results.

For the background noise injection method, the code snippet is as follows:

code snippet for adding background noise

xtransform = audiomentations.AddBackgroundNoise(

sounds_path="~/background_sound_files",

 min_snr_in_db=3.0,

max_snr_in_db=30.0,

noise_transform=PolarityInversion(),

p=1.0)

For the short noise injection method, the code snippet is as follows:

code snippet for adding short noise

xtransform = audiomentations.AddShortNoises(

sounds_path="~/background_sound_files",

min_snr_in_db=3.0,

max_snr_in_db=30.0,

noise_rms="relative_to_whole_input",

min_time_between_sounds=2.0,

max_time_between_sounds=8.0,

noise_transform=audiomentations.PolarityInversion(),

p=1.0)

The full function code can be found in the Python Notebook. The next technique we’ll look at is polarity inversion.

Polarity inversion

The definition and key code lines for the play_aug_polar_inverse() function are as follows:

function definition

def play_aug_polar_inverse(self, df,

title='Polarity inversion'):

code snippet for polarity inversion

xtransform = audiomentations.PolarityInversion(

p=1.0)

Once again, Pluto will not explain the result here because they have similar outputs to what you saw previously. Try them out on the Python Notebook to see and hear the results. Pluto has written the Python code for you.

Fun fact

[image: Image 197]

There is one fun fact about the polarity inversion technique: you will not hear any difference between the augmented and original recordings. You couldn’t even see the difference in the WaveForm graph, but you could see it in the zoom-in chart. The blue/positive and yellow/negative are flipped.

For example, Pluto applies the wrapper function to the voice (CREMA-D) dataset as follows:

augment using polar inverse

pluto.play_aug_polar_inverse(pluto.df_voice_data)

The output for the augmented audio clip is as follows:

Figure 7.36 – Polar inversion voice (1081_WSI_HAP_XX.wav)

The wrapper function also displays the original audio clip for comparison:

[image: Image 198]

Figure 7.37 – Original polar inversion voice (1081_WSI_HAP_XX.wav) Another fun fact is that polar inversion is as simple as multiplying the amplitude array with a negative one, like so:

implement using numpy

xaug = numpy.array(data_amp) * -1

Fun challenge

Here is a thought experiment: why does polarity inversion not affect the sound? After all, it is a drastic change in the data, as evidenced in the Waveform graph. Hint: think about the technical complexities of molecules’

vibration from compression and expansion relating to absolute measurement.

The next few techniques we’ll look at use filters.

Low-pass filter

Before Pluto digs in and explains the filter’s audio techniques, he will only partially present all the filters in this book. This is because the process is repetitive, and you can gain much more insight from running the code in the Python Notebook. Pluto will thoroughly explain the code and the Waveform graph for the low-pass and band-pass filters; for the other filters, he will explain the code but not the output Waveform graphs.

The definition and key code lines for the play_aug_low_pass_filter() function are as follows:

function definition

def play_aug_low_pass_filter(self, df,

min_cutoff_freq=150, max_cutoff_freq=7500,

min_rolloff=12, max_rolloff=24,

title='Low pass filter'):

code snippet for low pass filter

xtransform = audiomentations.LowPassFilter(

min_cutoff_freq = min_cutoff_freq,

max_cutoff_freq = max_cutoff_freq,

min_rolloff = min_rolloff,

max_rolloff = max_rolloff,

p=1.0)

The full function’s code can be found in the Python Notebook. Pluto tests the low-pass filter wrapper function with the audio control file using default parameters, as follows:

augment using low pass filter

pluto.play_aug_low_pass_filter(pluto.audio_control_dmajor)

The output for the augmented audio clip is as follows:

[image: Image 199]

[image: Image 200]

Figure 7.38 – Low-pass filter control (control-d-major.mp3) The wrapper function also displays the original audio clip for comparison: Figure 7.39 – Original low-pass filter control (control-d-major.mp3)

[image: Image 201]

Pluto does not detect any difference in listening to the augmented and original recordings shown in Figures 7.38 and 7.39. At first glance at the WaveForm graphs, Pluto did not see any differences until he inspected the zoom-in charts. There is a slight decrease in the positive (blue color) amplitude values and, inversely, a tiny increase in the negative (yellow color) values. In other words, the absolute differences between the before and after are slightly lower amplitude values.

Next, Pluto applies the low-pass filter wrapper function to the music (MEC) dataset, as follows:

augment using low pass filter

pluto.play_aug_low_pass_filter(pluto.df_music_data)

The output for the augmented audio clip is as follows:

Figure 7.40 – Low-pass filter music (Sad21828.wav)

The wrapper function also displays the original audio clip for comparison:

[image: Image 202]

Figure 7.41 – Original low-pass filter music (Sad21828.wav) The audio in Figures 7.40 and 7.41 is of a cinematic orchestra music clip with a driving drum beat. It could be the background music from an Indiana Jones movie before the giant boulder bars down the cave. In particular, the augmented file sounds, shown in Figure 7.40, are smoother and the edges have been nipped off. Pluto repeatedly ran the wrapper function on the MEC dataset using the default parameter settings and found that the augmented audio file does not alter the happy or sad mood of the music.

Hence, it is a safe technique.

For the voice (CREMA-D) dataset, Pluto does the same:

augment using low pass filter

pluto.play_aug_low_pass_filter(pluto.df_voice_data)

The output for the augmented audio clip is as follows:

[image: Image 203]

[image: Image 204]

Figure 7.42 – Low-pass filter voice (1067_IEO_HAP_LO.wav)

The wrapper function also displays the original audio clip for comparison: Figure 7.43 – Original low-pass filter voice (1067_IEO_HAP_LO.wav)

[image: Image 205]

The audio in Figures 7.42 and 7.43 both said It is eleven o’clock.

Furthermore, the audio in Figure 7.42 has fewer snaps and crackles. Pluto has an unscientific thought that the zoom-in graph displays a smoother curve with fewer dips and dimples, which could translate to a cleaner voice in the augmented recording. After repeatedly applying the wrapper function to the CREMA-D dataset, Pluto thinks the low-pass filter is safe.

The last of the three real-world datasets is the urban sound (US8K) dataset.

Pluto applies the wrapper function as follows:

augment using low pass filter

pluto.play_aug_low_pass_filter(pluto.df_sound_data)

The output for the augmented audio clip is as follows:

Figure 7.44 – Low-pass filter urban sound (185373-9-0-6.wav) The wrapper function also displays the original audio clip for comparison:

[image: Image 206]

Figure 7.45 – Original low-pass filter urban sound (185373-9-0-6.wav) The audio in Figures 7.44 and 7.45 is of street music playing outdoors with traffic and urban noise. Repeatedly executing the wrapper functions gives mixed results for the US8K dataset. Pluto does not know which parameter values are safe. He needs to consult a domain expert – that is, a sound engineer.

The next technique we’ll look at is the band-pass filter.

Band-pass filter

The definition and key code lines for the play_aug_band_pass_filter() function are as follows:

function definition

def play_aug_band_pass_filter(self, df,

min_center_freq=200, max_center_freq=4000,

min_bandwidth_fraction=0.5, max_bandwidth_fraction=1.99,

min_rolloff=12, max_rolloff=24,

title='Band pass filter'):

code snippet for band pass filter

xtransform = audiomentations.BandPassFilter(

[image: Image 207]

min_center_freq = min_center_freq,

max_center_freq = max_center_freq,

min_bandwidth_fraction = min_bandwidth_fraction,

max_bandwidth_fraction = max_bandwidth_fraction,

min_rolloff = min_rolloff,

max_rolloff = max_rolloff,

p=1.0)

The full function’s code can be found in the Python Notebook. Pluto tests the band-pass filter wrapper function with the audio control file using default parameters, as follows:

augment using band pass filter

pluto.play_aug_band_pass_filter(pluto.audio_control_dmajor) The output for the augmented audio clip is as follows:

Figure 7.46 – Band-pass filter control (control-d-major.mp3) The wrapper function also displays the original audio clip for comparison:

[image: Image 208]

Figure 7.47 – Original band-pass filter control (control-d-major.mp3) From Figure 7.46, Pluto could guess that the sound has been slightly altered. When listening to the audio file, he confirms that the scale is the same, but it has a whom-whom sound to it.

Next, Pluto applies the band-pass filter function to the music (MEC) dataset. The command is as follows:

augment using band pass filter

pluto.play_aug_band_pass_filter(pluto.df_music_data)

The output for the augmented audio clip is as follows:

[image: Image 209]

[image: Image 210]

Figure 7.48 – Band-pass filter music (Happy15804.wav)

The wrapper function also displays the original audio clip for comparison: Figure 7.49 – Original band-pass filter music (Happy15804.wav)

[image: Image 211]

The sound for this clip is a happy-go-lucky cinematic tune with a sprinkle of a drum beat. The augmented sound, shown in Figure 7.48, is brighter, bunchier, and yet smoother. Pluto repeatedly executes the wrapper function against the MEC dataset, and it enhances the happier mood music and infuses a more substantial tone into the sadder clips. Thus, it is safe for the MEC dataset.

Pluto does the same for the voice (CREMA-D) dataset. The command is as follows:

augment using band pass filter

pluto.play_aug_band_pass_filter(pluto.df_voice_data)

The output for the augmented audio clip is as follows:

Figure 7.50 – Band-pass filter voice (1071_IWL_NEU_XX.wav)

The wrapper function also displays the original audio clip for comparison:

[image: Image 212]

Figure 7.51 – Original band-pass filter voice (1071_IWL_NEU_XX.wav) The audio for Figures 7.50 and 7.51 is of a woman saying, I would like a new alarm clock. The augmented audio file sounds cleaner with less noise interference than the original clip. The same results were found for most of the files in the CREMA-D dataset. Thus, the CREMA-D dataset is safe for use with the band-pass filter technique.

Pluto suspects the same improvement or at least a safe level for the urban sound (US8K) dataset. The command is as follows:

augment using band pass filter

pluto.play_aug_band_pass_filter(pluto.df_sound_data)

The output for the augmented audio clip is as follows:

[image: Image 213]

[image: Image 214]

Figure 7.52 – Band-pass filter urban sound (95404-3-0-0.wav) The wrapper function also displays the original audio clip for comparison: Figure 7.53 – Original band-pass filter urban sound (95404-3-0-0.wav)

The audio file for this is the sound of a windy backyard with birds singing and fading dogs barking from far away. The augmented audio file, Figure 7.52, sounds more distinct but with echoes in a tunnel effect. Pluto thinks the band-pass filter is safe for the US8K dataset.

Fun challenge

Pluto challenges you to implement the reversed audio technique. Can you think of a use case where reversed audio is a safe option? Hint: copy and rename the play_aug_time_shift() wrapper function. Change xtransform

= audiomentations.Shift() to xtransform =

audiomentations.Reverse().

The audio augmentation process becomes slightly repetitive, but the results are fascinating. Thus, Pluto has shared the code for the following audio filter techniques, but the resulting WaveForm graphs and audio play buttons are in the Python Notebook.

The next filter we’ll cover is the high-pass filter.

High-pass and other filters

The definition and key code lines for the play_aug_high_pass_filter() function are as follows:

function definition

def play_aug_high_pass_filter(self, df,

min_cutoff_freq=20, max_cutoff_freq=2400,

min_rolloff=12, max_rolloff=24,

title='High pass filter'):

code snippet for high pass filter

xtransform = audiomentations.HighPassFilter(

min_cutoff_freq = min_cutoff_freq,

max_cutoff_freq = max_cutoff_freq,

min_rolloff = min_rolloff,

max_rolloff = max_rolloff,

p=1.0)

The results can be found in the Python Notebook.

Fun challenge

Pluto challenges you to implement other audio filters in the Audiomentations library, such as audiomentations.HighPassFilter, audiomentations.LowShelfFilter, audiomentations.HighShelfFilter, audiomentations.BandStopFilter, and

audiomentations.PeakingFilter.

With that, we have covered the fundamentals of audio augmentations and practiced coding them. Next, we will summarize this chapter.

Summary

As we saw from the beginning, audio augmentation is a challenging topic without hearing the audio recording in question, but we can visualize the techniques’ effect using Waveform graphs and zoom-in charts. Still, there is no substitution for listening to the before and after augmentation recordings. You have access to the Python Notebook with the complete code and audio button to play the augmented and original recordings.

First, we discussed the theories and concepts of an audio file. The three fundamental components of an audio file are amplitude, frequency, and sampling rate. The measurements of unit for frequency are Hertz (Hz) and Kilohertz (kHz). Pitch is similar to frequency, but the unit of measurement is the decibel (dB). Similarly, bit rate and bit depth are other forms expressing the sampling rate.

Next, we explained the standard audio augmentation techniques. The three essentials are time stretching, time shifting, and pitch scaling. The others are noise injection and polarity inversion. Even more methods are available in the augmentation libraries, such as clip, gain, normalize, and hyperbolic tangent (tanh) distortion.

Before downloading the real-world audio datasets, we discussed the top eight open source audio augmentation libraries. There are many robust audio augmentation libraries available. Pluto picked the Librosa library –

after all, it’s the most established. Its second choice was the

Audiomentations library because it is powerful and easy to integrate with other libraries. Facebook’s Augly libraries are strong contenders, and Pluto used them in other projects. Ultimately, because Pluto uses the wrapper function concept, he can choose any library or combination of libraries.

As with image and text augmentation, Pluto downloaded three real-world audio datasets from the Kaggle website. Each dataset represents an audio category in everyday experiences: music, human speech, and urban sound.

Writing code in the Python Notebook helps us reinforce our understanding of each audio augmentation technique. Pluto explains the code and the output in detail.

The output is fantastic, but the coding process seems repetitive. It is easy because Pluto follows the established pattern of creating a reusable class, adding new methods, downloading real-world data from the Kaggle website, importing it into pandas, leveraging best-of-class augmentation libraries, and writing new wrapper functions.

Throughout this chapter, there were fun facts and fun challenges. Pluto hopes you will take advantage of these and expand your experience beyond the scope of this chapter.

In the next chapter, Pluto will demystify audio using spectograms.

Audio Data Augmentation with

Spectrogram

In the previous chapter, we visualized the sound using the Waveform graph.

An audio spectrogram is another visualizing method for seeing the audio components. The inputs to the Spectrogram are a one-dimensional array of amplitude values and the sampling rate. They are the same inputs as the Waveform graph.

An audio spectrogram is sometimes called a sonograph, sonogram, voiceprint, or voicegram. The Spectrogram is a more detailed representation of sound than the Waveform graph. It shows a correlation between frequency and amplitude (loudness) over time, which helps visualize the frequency content in a signal. Spectrograms make it easier to identify musical elements, detect melodic patterns, recognize frequency-based effects, and compare the results of different volume settings.

Additionally, the Spectrogram can be more helpful in identifying non-musical aspects of a signal, such as noise and interference from other frequencies.

The typical usage is for music, human speech, and sonar. A short standard definition is a spectrum of frequency maps with time duration. In other words, the y axis is the frequency in Hz or kHz, and the x axis is the time duration in seconds or milliseconds. Sometimes, the graph comes with a color index for the amplitude level.

Pluto will explain the code in the Python Notebook later in the chapter, but here is a sneak peek of an audio Spectrogram. The command for drawing the control piano scale in the D major audio file is as follows:

draw Spectrogram

pluto.draw_spectrogram(pluto.audio_control_dmajor)

The output is as follows:

[image: Image 215]

Figure 8.1 – An audio spectrogram of piano scale in D major Before Pluto demystifies the audio Spectrogram, you should review

 Chapter 7 if the audio concepts and keywords sound alien to you. This chapter relies heavily on the knowledge and practices from Chapter 7.

In Figure 8.1, Pluto uses the Matplotlib library to draw the audio spectrograph. The primary input is the amplitude array and the sampling rate. The library does all the heavy calculations, and other libraries, such as the Librosa or SciPy library, can perform the same task. In particular, Matplotlib can generate many types of audio spectrographs from the same input. Pluto will dig deeper into types of spectrographs a bit later, but first, let’s break down the steps of how the library constructs an audio spectrograph. The five high-level tasks are as follows:

1. Splitting the audio stream into overlapping segments, also known as windows.

2. Calculating the Short-Time Fourier Transform (STFT) value on each window.

3. Converting the windows’ value into decibels (dB).

4. Linking the windows together as in the original audio sequence.

5. Displaying the result in a graph with the y axis as Hz, the x axis as seconds, and dB as a color-coded value.

The math for the previous five steps is complex, and the chapter’s goal is to use a Spectrogram to visualize the sound and augment the audio file. Thus, we rely on audio libraries to perform the math calculation.

As mentioned, the underlying data representing the Spectrogram is the same as the Waveform format. Therefore, the audio augmentation techniques are the same. Consequently, the resulting augmented audio file will sound the same. The visual representation is the only difference between the Spectrogram and the Waveform graph.

The majority of this chapter will cover the audio Spectrogram standard format, a variation of a Spectrogram, Mel-spectrogram, and Chroma STFT. The augmentation techniques represent a shorter section because you have learned the method in the previous chapter. We will cover the following topics in this chapter:

Initializing and downloading

Audio Spectrogram

Various Spectrogram formats

Mel-spectrogram and Chroma STFT plots

Spectrogram augmentation

Spectrogram image

Fun fact

The Kay Electric Company introduced the first commercially available machine for audio spectrographic analysis in 1951. The black-and-white image was named a sonograph or sonogram for visualizing bird songs. In 1966, St. Martin’s Press used sonography for the book Golden Field Guide to Birds of North America. Spectrograms were favored over sonogram terminology around 1995 during the digital age. Spectrograms or sonograms were not limited to the study of birds in the early days. The US

military used Spectrogram for encryption in the early 1940s and continues forward, as evidenced by the publication Cryptologic Quarterly, volume 38, published by the Center for Cryptologic History in 2019.

This chapter reuses the audio augmentation functions and the real-world

audio datasets from Chapter 7. Thus, we will start by initializing Pluto and

downloading the real-world datasets.

Initializing and downloading

Start with loading the data_augmentation_with_python_chapter_8.ipynb file on Google Colab or your chosen Python Notebook or JupyterLab environment. From this point onward, the code snippets are from the Python Notebook, which contains the complete functions.

The following initializing and downloading steps should be familiar to you because we have done them six times. The following code snippet is the

same as from Chapter 7:

Clone GitHub repo.

url = 'https://github.com/PacktPublishing/Data-Augmentation-with-Python'

!git clone {url}

Intialize Pluto from Chapter 7

pluto_file = 'Data-Augmentation-with-

Python/pluto/pluto_chapter_7.py'

%run {pluto_file}

Verify Pluto

pluto.say_sys_info()

Fetch Musical emotions classification

url = 'https://www.kaggle.com/datasets/kingofarmy/musical-

emotions-classification'

pluto.fetch_kaggle_dataset(url)

f = 'kaggle/musical-emotions-classification/Train.csv'

pluto.df_music_data = pluto.fetch_df(f)

Fetch human speaking

url = 'https://www.kaggle.com/datasets/ejlok1/cremad'

pluto.fetch_kaggle_dataset(url)

f = 'kaggle/cremad/AudioWAV'

pluto.df_voice_data = pluto.make_dir_dataframe(f)

Fetch urban sound

url='https://www.kaggle.com/datasets/rupakroy/urban-sound-8k'

pluto.fetch_kaggle_dataset(url)

f = 'kaggle/urban-sound-8k/UrbanSound8K/UrbanSound8K/audio'

pluto.df_sound_data = pluto.make_dir_dataframe(f)

Fun challenge

Pluto challenges you to search for and download an additional real-world audio dataset from the Kaggle website or your project. A hint is to use Pluto’s fetch_kaggle_data() and fetch_df() methods, and any of the audio augmentation wrapper functions.

A few under-the-hood methods make the process so easy to use. Pluto

highly recommends that you review Chapter 7 before continuing with the spectrogram.

Audio Spectrogram

Before dissecting the Spectrogram, let’s review the fundamental differences between a Spectrogram and a Waveform plot. The Spectrogram graphs show the frequency components of a sound signal over time, focusing on frequency and intensity. In contrast, the Waveforms concentrate on the timing and amplitude of sounds. The difference is in the visual representation of the sound wave. The underlying data representation and the transformation methods are the same.

An audio Spectrogram is another visual representation of a sound wave, and you saw the Waveform graph in Chapter 7. The _draw_spectrogram() helper method uses the Librosa library to import the audio file and convert it into an amplitude data one-dimensional array and a sampling rate in Hz.

The next step is to use the Matplotlib library to draw the Spectrogram plot.

Likewise, Pluto takes the output from the Librosa library function and uses the Matplotlib function to draw the fancy blue and yellow Waveform graph

in Chapter 7. The relevant code snippet is as follows:

read audio file

data_amp, sam_rate = librosa.load(lname, mono=True)

draw the spectrogram plot

spectrum, freq, ts, ax = pic.specgram(data_amp, Fs=sam_rate) Here, the returned values are as follows:

spectrum is a numpy.array type with shape(n,m). For example, the result of plotting the Spectrogram of the c ontrol piano scale in a D

 major audio file shape() is equal to (129, 1057). It represents the m-column of periodograms for each segment or window.

freq is a numpy.array type with shape(n,). Using the same example, freq shape is (129,). It represents the frequencies corresponding to the elements (rows) in the spectrum array.

ts is a numpy.array type with shape(n,). Using the same example as previously, ts shape is (1057,). It represents the times corresponding to midpoints of spectrum's n-column.

ax is a matplotlib.image.AxesImage type. It is the image from the Matplotlib library.

Pluto draws the Spectrogram for the control piano scale in D major audio file using the following command:

plot the Spectrogram

pluto.draw_spectrogram(pluto.audio_control_dmajor)

The output is as follows:

[image: Image 216]

[image: Image 217]

Figure 8.2 – An audio Spectrogram of piano scale in D-major Pluto displays the audio-play button in the Python Notebook, where you can listen to the audio. The button image looks like the following: Figure 8.3 – The audio play button

For comparison, the following is the Waveform graph from Chapter 7 using

the helper function:

plot the Waveform

pluto._draw_audio(data_amp, sam_rate, 'Original: ' + fname) The output is as follows:

[image: Image 218]

Figure 8.4 – Audio waveform of piano scale in D major

The music sounds the same. Only the visual displays are different.

Sound engineers are trained to read Spectrogram plots to identify and remove unwanted noises, such as the following:

Hum: This is usually the result of electrical noise in the recording. Its range is typically between 50 Hz and 60 Hz.

Buzz: This is the opposite of hum. It is the electrical noise of higher frequencies. Familiar sources are fluorescent light fixtures, on-camera microphones, and high-pitched motors.

Hiss: This is a broadband noise, which is different from hum and buzz.

It is typically concentrated at specific frequencies in both upper and lower spectrums. The usual suspects are heating, ventilation, and air conditioning (HVAC) systems or motor fans.

Intermittent noises: These are commonly introduced by urban sounds such as thunders, birds, wind gusts, sirens, car horns, footsteps, knocking, coughs, or ringing cell phones.

Digital clipping: This is when the audio is too loud to be recorded. It is the loss of the audio signal’s peaks.

Gaps: Gaps or dropouts are silences due to missing cut-outs in the audio recording.

Clicks and pops: These are noises in the recording caused by vinyl and other grooved media recording devices.

Pluto uses the Matplotlib library function, which has many parameters governing the display of the Spectrogram plots. Let’s use the three real-world audio datasets to illustrate other visual representations of Spectrogram plots.

Various Spectrogram formats

There are many parameters Pluto can pass to the underlying specgram() method from the Matplotlib library. He will highlight only a few parameters.

Fun fact

You can print any function documentation by adding a question mark (?) at the end of the function in the Python Notebook.

For example, printing the documentation for the specgram() function is the following command: matplotlib.pyplot.specgram? The partial output is as follows:

[image: Image 219]

[image: Image 220]

Figure 8.5 – Partial print definition of specgram()

You can view the complete output of Figure 8.5 in the Python Notebook.

Another example is printing Pluto’s draw_spectrogram() function documentation as follows: pluto.draw_spectrogram?.

The output is as follows:

Figure 8.6 – The print definition of draw_spectrogram()

[image: Image 221]

From Figure 8.5, the simple one is changing the color map (cmap) variable.

There are more than 60 color maps in the Matplotlib library. Thus, Pluto will choose a different cmap color for each audio dataset. Sound engineers may use different color maps to highlight specific frequency properties for spotting patterns or noises. Changing the visual representation does not affect the sound quality or the data. Thus, selecting the color map based solely on your preferences is acceptable. If vivid pink and blue are your favorite, choose the cool cmap value.

The Spectrogram code for the music dataset is as follows:

plot the spectrogram in different color map

pluto.draw_spectrogram(pluto.df_music_data, cmap='plasma')

The output is as follows:

Figure 8.7 – Spectrogram of a music file (Sad39910)

Every time Pluto runs the draw_spectrogram() wrapper function, a random audio file is selected from the dataset. Figure 8.7 is the audio of cinematic music with strong cello leads, and the plasma color map is a bright yellow transit to orange and deep blue-purple.

Likewise, for the human speech dataset, the command is as follows:

[image: Image 222]

plot the Spectrogram in different color map

pluto.draw_spectrogram(pluto.df_voice_data, cmap='cool')

The output is as follows:

Figure 8.8 – A spectrogram of human speech (1076_TAI_FEA_XX) Figure 8.8 is the audio of a woman saying “The airplane is almost full”.

The cool color map is a fuchsia pink transit to baby blue.

Next, Pluto does the same for the urban sound dataset using the following command:

plot the Spectrogram with different color map

pluto.draw_spectrogram(pluto.df_sound_data, cmap='brg')

The output is as follows:

[image: Image 223]

Figure 8.9 – A spectrogram of urban sound (24347-8-0-88)

 Figure 8.9 sounds like a passing siren from an ambulance. The brg color map is blue, red, and green, making a striking and dramatic graph.

Fun challenge

The challenge is a thought experiment. Is a particular color map with a multicolor such as a rainbow cmap or two colors such as ocean cmap more advantageous for different types of audio such as urban sound or music? In other words, is displaying the Spectrogram for a human singing an audio clip better in pink and magenta shades or multicolor earth tones?

In audio engineering, a window_hanning parameter uses weighted cosine to diminish the audio spectrum. Window-hanning is a technique used to reduce artifacts in the frequency domain of an audio signal. It uses a window function to gently taper off the signal’s amplitude near its edges, minimizing the effect of spectral leakage and reducing unwanted noise in the signal. Window-hanning also improves the time-domain resolution of the signal, making it easier to identify onsets and offsets with greater precision.

Pluto’s draw_spectrogram() method uses it as the default value. What if Pluto wants to see the raw signal without window_hanning? He can use

[image: Image 224]

window_none on the control and voice dataset, as per the following command:

control audio file

pluto.draw_spectrogram(pluto.audio_control_dmajor,

window=matplotlib.mlab.window_none)

Human speech

pluto.draw_spectrogram(pluto.df_voice_data,

cmap='cool',

window=matplotlib.mlab.window_none)

The output for the control piano scale in D major audio file is as follows: Figure 8.10 – Spectrogram with window_none, piano scale (control-dmajor)

The output for the human speech dataset is as follows:

[image: Image 225]

Figure 8.11 – A spectrogram with window_none, voice

(1058_IEO_ANG_LO)

The other values for window parameters are numpy.blackman,

numpy.bartlett, scipy.signal, and scipy.signal.get_window, and the audio from Figure 8.11 is a woman saying “It is 11 o’clock. ”

Fun challenge

Here is a thought experiment. Given the Spectrogram graph as an image, can you reverse-engineer and play the audio from the picture? A hint is to research the inverse Apectrogram software and theories.

Pluto continues plotting various Spectrograms and color maps because audio engineers may need to exaggerate or highlight a particular frequency or audio property. In addition, the augmentation technique is similar to the previous chapter. Thus, spending more time expanding your insight into the Spectrogram is worthwhile.

Pluto can use parameters individually or combine multiple parameters to produce a different desired outcome, such as using the sides parameter on the real-world music dataset and combining sides with the mode parameters on the control piano scale data. The commands are as follows:

[image: Image 226]

the control piano scale in D major

pluto.draw_spectrogram(pluto.df_music_data,

cmap='plasma',

sides='twosided')

the music dataset

pluto.draw_spectrogram(pluto.audio_control_dmajor,

window=matplotlib.mlab.window_none,

sides='twosided',

mode='angle')

The output for the music with sides equal to twosided is as follows: Figure 8.12 – A spectrogram with twosided, music (Sad27307) The output for the control piano scale audio with sides equal to twosided and mode equal to angle is as follows:

[image: Image 227]

Figure 8.13 – Spectrogram with twosided and angle, music (control-dmajor)

Fun challenge

Pluto has additional parameter combinations in the Python Notebook. Thus, it would be best if you modified or hacked the code. It will be fun to experience how different Spectrograms can look for different real-world datasets.

Next are the Mel-spectrogram and Chroma STFT plots. They are similar to a Spectrogram.

Mel-spectrogram and Chroma

STFT plots

Pluto spends additional time plotting various Spectrograms because the augmentation technique is the same as in the Waveform graph in Chapter 7.

Pluto will write fewer new wrapper functions. He will reuse the methods from the previous chapter, but before that, let’s draw more Spectrograms.

The subjective unit of pitch, also known as the mel scale, is a pitch unit with equal distance between pitches. S. S. Stevens, John Volkmann, and E.

 B. Newmann proposed the mel scale in the scholarly paper titled, A scale for the measurement of the psychological magnitude of pitch, in 1937.

The math calculation for the mel scale is complex. Thus, Pluto relies on the melspectrogram() method from the Librosa library to perform the computation. The Pluto draw_melspectrogram() wrapper method uses the Librosa melspectrogram() function, and the code snippet is as follows:

code snippeet for the melspectrogram

mel = librosa.feature.melspectrogram(y=data_amp,

sr=sam_rate,

n_mels=128,

fmax=8000)

mel_db = librosa.power_to_db(mel, ref=numpy.max)

self._draw_melspectrogram(mel_db, sam_rate, data_amp,

cmap=cmap,

fname=tname)

The entire function code is in the Python Notebook. Pluto draws the Melspectrogram for the control piano scale and the human speech datasets are as follows:

Control piano scale

pluto.draw_melspectrogram(pluto.audio_control_dmajor)

Music dataset

pluto.draw_melspectrogram(pluto.df_voice_data, cmap='cool') The output of the Mel-spectrogram for the control piano scale is as follows:

[image: Image 228]

[image: Image 229]

Figure 8.14 – Mel-spectrogram control piano scale (control-d-major) The output of the Mel-spectrogram for the human speech dataset is as follows:

Figure 8.15 – Mel-spectrogram music (1016_MTI_FEA_XX)

 Figure 8.15 audio is a man saying “Maybe tomorrow, it will be cold. ” Every Mel-spectrogram has an audio-play button in the Python Notebook, where

you can listen to the audio file.

The Chroma STFT is a signal’s sinusoidal frequency and local section phase content as it changes over time. Dr. Dennis Gabor introduced STFT, also known as the Gabor transform, in the scholarly paper, Theory of Communication, in 1944 and revised it in 1945.

Chroma STFT is a method of analyzing musical audio signals by decomposing them into their constituent frequencies and amplitudes with respect to time. It is used to characterize the instrument used in a given piece of music and identify unique features in short pieces of music.

Chroma STFT is most often used to identify spectral characteristics of a music signal, allowing the components to be quantified and compared to other versions of the same piece.

Pluto adds slightly to the draw_melspectrogram() wrapper method to accommodate the Chroma STFT plot. The additional parameter is is_chroma, and the default value is False. The _draw_melspectrometer() helper function does not change. The code snippet is as follows:

code snippet for the chroma_stft

stft = librosa.feature.chroma_stft(data_amp,

sr=sam_rate)

self._draw_melspectrogram(stft, sam_rate, data_amp,

cmap=cmap,

fname=tname,

y_axis=yax,

y_label=ylab)

The entire function code is on the Python Notebook. Pluto draws the Chroma STFT graphs for the control piano scale, the music, and the urban sound datasets as follows:

Control piano scale

pluto.draw_melspectrogram(pluto.audio_control_dmajor,

is_chroma=True)

Music dataset

pluto.draw_melspectrogram(pluto.df_music_data,

is_chroma=True,

cmap='plasma')

[image: Image 230]

Urban sound dataset

pluto.draw_melspectrogram(pluto.df_sound_data,

is_chroma=True,

cmap='brg')

The output for the Chroma STFT plot for the control piano scale in D major is as follows:

Figure 8.16 – Chroma STFT, control piano scale (control-d-major) The output for the music dataset is as follows:

[image: Image 231]

[image: Image 232]

Figure 8.17 – Chroma STFT, music (Sad19513)

The output for the urban sound dataset is as follows:

Figure 8.18 – Chroma STFT, urban sound (192123-2-0-11)

 Figure 8.17's audio is cinematic music with a strong violin lead, and Figure 8.18 sounds like noisy kids playing in an outdoor playground.

Fun fact

When generating new images or plots, Pluto automatically writes or exports the image files to the ~/Data-Augmentation-with-Python/pluto_img directory. Thus, Pluto automatically saved the augmented images in

 Chapter 3 and Chapter 4 and the Waveform graph, audio Spectrogram, Mel-spectrogram, and Chroma STFT charts in Chapter 7 and Chapter 8.

The helper function name is _drop_image() with the pluto[id].jpg file format, where id is an auto-increment integer from the self.fname_id variable.

We have discussed in detail and written Python code for the audio Spectrogram, Mel-spectrogram, and Chroma STFT. Next, Pluto will describe how to perform audio augmentation with a Spectrogram.

Spectrogram augmentation

Pluto will reuse most of the wrapper functions from Chapter 7. You can reread the previous chapter if the following code seems challenging. Pluto will shorten his explanation of the wrapper functions because he assumes you are an expert at writing audio augmentation wrapper functions.

Audio Spectrogram, Mel-spectrogram, Chroma STFT, and Waveform charts take the returned amplitude data and sampling rate from the Librosa load() function reading an audio file. There is an additional transformation of the amplitude data, but they serve the same goal of visualizing the sound wave and frequencies.

After reviewing many scholarly published papers, Pluto concluded that the

audio augmentation techniques in Chapter 7 apply equally well to the audio

Spectrogram, Mel-spectrogram, and Chroma STFT. In particular, he referred to the scholarly paper, Audio Augmentation for Speech Recognition by Tom Ko, Vijayaditya Peddinti, Daniel Povey, and Sanjeev Khudanpur, published in 2015; Data augmentation approaches for improving animal audio classification by Loris Nannia, Gianluca Maguoloa, and Michelangelo Paci, published in 2020; and Deep Convolutional Neural

 Networks and Data Augmentation for Environmental Sound Classification by Justin Salamon and Juan Pablo Bello, published in 2017.

Intuitively, there shouldn’t be any difference from the technique in Chapter

 7 because the underlying amplitude data and sampling rate are the same. In

other words, you can use Chapter 7 audio augmentation functions for the

audio Spectrogram, Mel-spectrogram, and Chroma STFT, such as the following techniques:

Time-stretching

Time-shifting

Pitch-scaling

Noise injection

Polarity inversion

Low-pass filter

High-pass filter

Ban-pass filter

Low-shelf filter

High-shelf filter

Band-stop filter

Peak filter

There are others, such as Masking and Gaps. They are available from the audiomentation library. The safe level mentioned in the previous chapter applies equally to the audio Spectrogram, Mel-spectrogram, and Chroma STFT.

Fun fact

You can alter any Python functions by overriding them in the correct class.

Pluto functions belong to the PacktDataAug class. Thus, you can hack and

override any of Pluto’s methods by adding the

@add_method(PacktDataAug) code line before the function definition.

Pluto needs to hack the _audio_transform() helper function and includes the new is_waveform parameter setting the default to True so it will not affect methods in Chapter 7. The definition of the new method is as follows:

add is_waveform parameter

@add_method(PacktDataAug)

def _audio_transform(self, df, xtransform,

Title = '',

is_waveform = True):

The updated code snippet is as follows:

keep the default to be same for Chapter 7, Waveform graph if (is_waveform):

augmented waveform

self._draw_audio(xaug, sam_rate,

title + ' Augmented: ' + fname)

display(IPython.display.Audio(xaug, rate=sam_rate))

original waveform

self._draw_audio(data_amp, sam_rate, 'Original: ' + fname)

update to use spectrogram, me-spectrogram, and Chroma

else:

xdata = [xaug, sam_rate, lname, 'Pluto']

self.draw_spectrogram(xdata)

self.draw_melspectrogram(xdata)

self.draw_melspectrogram(xdata, is_chroma=True)

Thus, the is_waveform parameter is to use the Waveform graphs in Chapter

 7 or the audio Spectrogram, Mel-spectrogram, and Chroma STFT charts.

That’s it, and this is why we love coding with Pluto. He follows the best object-oriented coding practices, and his functions are in one class.

Pluto adds the new parameter to the play_aug_time_shift() wrapper function and tests it with the control data. The command is as follows:

augment the audio with time shift

pluto.play_aug_time_shift(pluto.audio_control_dmajor,

[image: Image 233]

[image: Image 234]

min_fraction=0.8,

is_waveform=False)

The output for the audio Spectrogram is as follows:

Figure 8.19 – Spectrogram, time shift, piano scale (control-d-major) The output for the Mel-spectrogram is as follows:

Figure 8.20 – Mel-spectrogram, time shift, piano scale (control-d-major)

[image: Image 235]

The output for the Chroma STFT is as follows:

Figure 8.21 – Chroma STFT, time shift, piano scale (control-d-major) Figure 8.19, Figure 8.20, and Figure 8.21 play the piano scale in D major shift to the left by about 2 seconds. In other words, the audio started with the G note, looped around, and finished on the F# note. Pluto recommends listening to the before and after effects of the Python Notebook as the easiest method to understand it.

Pluto does the same for the human speech dataset using the following command:

augment audio using time shift

pluto.play_aug_time_shift(pluto.df_voice_data,

min_fraction=0.8,

is_waveform=False)

The output for the audio Spectrogram is as follows:

[image: Image 236]

[image: Image 237]

Figure 8.22 – Spectrogram, time shift, human voice (1085_ITS_ANG_XX) The output for the Mel-spectrogram is as follows:

Figure 8.23 – Mel-spectrogram, time shift, human voice

(1085_ITS_ANG_XX)

The output for Chroma STFT is as follows:

[image: Image 238]

Figure 8.24 – Chroma STFT, time shift, human voice

(1085_ITS_ANG_XX)

 Figure 8.22, Figure 8.23, and Figure 8.24's original audio is a man’s voice saying “We will stop in a couple of minutes. ” The augmented version is shifted to “stop in a couple of minutes [silence] we will.” Pluto can hear the difference in the before-and-after augmentation effect in the Python Notebook. The goal of audio augmentation is the same for Spectrogram and Waveform graphs, which is to increase the AI accuracy prediction by increasing the input data.

The results for the music and urban sound dataset are shifted similarly.

Pluto has the time-shift code in the Python Notebook, where you can run it and see and hear the result. Furthermore, Pluto will skip describing the results for other audio augmentation functions in this chapter. It is because

the results are the same as in Chapter 7, and the wrapper functions code is in the Python Notebook. However, he will explain the

play_aug_noise_injection() function because this function can extend to specific topics discussing how sound engineers use Spectrograms.

Sound engineers use standard audio Spectrograms and various other Spectrograms to spot and remove unwanted noises, such as hums, buzz, hiss, clips, gaps, clicks, and pops. Audio augmentation goals are the

[image: Image 239]

opposite. We add unwanted noises to the recording within a safe range.

Thus, we increase the training datasets and improve the AI prediction accuracy.

Pluto adds white noise to the music dataset using the following command:

augment audio with noise injection

pluto.play_aug_noise_injection(pluto.df_music_data,

min_amplitude=0.008,

max_amplitude=0.05,

is_waveform=False)

The output for the audio Spectrogram is as follows:

Figure 8.25 – Spectrogram, noise injection, music (Happy41215) The output for the Mel-spectrogram is as follows:

[image: Image 240]

[image: Image 241]

Figure 8.26 – Mel-spectrogram, noise injection, music (Happy41215) The output for the Chroma STFT is as follows:

Figure 8.27 – Chroma STFT, noise injection, music (Happy41215) Figure 8.25, Figure 8.26, and Figure 8.27 play heavy drums, light electronic bells, and heavy electronic guitars with a medium level of white noise.

Fun challenge

Here is a thought experiment. You are part of a team developing a self-driving car system, and your goal is to recognize or identify car honking while driving. How would you augment the audio data? A hint is thinking about real-world driving conditions with traffic or urban noises.

If you have hums, buzz, or pops audio files, you can inject them into the recording by alternating the play_aug_noise_injection() wrapper function as follows:

Original use white noise, code snippet

xtransform = audiomentations.AddGaussianNoise(

min_amplitude=min_amplitude,

max_amplitude=max_amplitude,

p=1.0)

Update to using unwanted noise file

xtransform = audiomentations.AddShortNoises(

sounds_path="~/path_to_unwanted_noise_file",

min_snr_in_db=3.0,

max_snr_in_db=30.0,

noise_rms="relative_to_whole_input",

min_time_between_sounds=2.0,

max_time_between_sounds=8.0,

noise_transform=PolarityInversion(),

p=1.0)

The preceding code snippet and complete documentation can be found in the audiomentations library on GitHub.

The next topic is a novel idea using a Spectrogram as an image input for deep learning image classification.

Spectrogram images

Fundamentally, audio data is time-series data. Thus AI uses a time-series algorithm, such as the autoregressive integrated moving average (ARIMA) or exponential smoothing (ES) algorithm for audio classification. However, there is a better method. You use the Spectrogram

as an image representing the audio sound, not the time-series numerical array, for input. Using images as the input data, you can leverage the robust neural network algorithm to classify audio more accurately.

Strictly speaking, this topic does not directly pertain to new audio augmentation techniques. Still, it is an essential topic for data scientists to understand. However, Pluto will not write Python code for building a neural network model using Spectrograms as input.

Deep learning image classification, also known as the machine learning model that uses the artificial neural networks algorithm, achieved an unprecedented accuracy level that exceeds 98% accuracy recently. Many AI scientists apply deep learning techniques to audio datasets, such as Audio Spectrogram Representations for Processing with Convolutional Neural Networks by Lonce Wyse, published in 2017, and Deep Learning Audio Spectrograms Processing to the Early COVID-19 Detection by Ciro Rodriguez, Daniel Angeles, Renzo Chafloque, Freddy Kaseng, and Bishwajeet Pandey, published in 2020.

The technique takes an audio Spectrogram as the image input, not the audio amplitude, sampling rate, or Mel scale. For example, the music dataset (MEC) goal is to classify a piece of music clip as having a happy or sad mood. Pluto can generate all the audio files to audio Spectrograms and save them on the local drive. He will use the Fast.ai robust AI framework and libraries to create an image classification model. He can achieve 95%

accuracy or higher.

The big question is can you use the image augmentation methods discussed

in Chapter 3 and Chapter 4 to apply to Spectrogram?

It depends on the safe level and the objective of the AI model. For example, using the image augmentation technique, vertically flipping a spectogram involves flipping high to low frequencies and vice versa. Pluto wonders how that would affect the music’s mood. It could be an unsafe technique.

However, image noise injection methods with low noise values could be a safe technique with a Spectrogram. Pluto thinks it is more suitable to stay with the audio augmentation techniques in Chapter 7.

Similar deep learning methods can be applied to the human speech (CREMAD) dataset to classify the age, sex, or ethnicity of the speaker.

Fun challenge

This is a thought experiment. Can you use speech-to-text software to convert the voice into text and use text augmentation functions in Chapter 5

and Chapter 6? A hint is to think about the scope of the project. For example, it could work if the AI aims to infer sentiment analysis but not if the goal is to identify male or female voices.

For the urban sound (US8K) dataset, Pluto could use the deep learning multilabel classification to identify different types of sound in an urban sound clip, such as a jackhammer, wind, kids playing, rain, dogs barking, or gunshots.

Fun challenge

Pluto challenges you to refactor the Pluto class to make it faster and more compact. You should also include all the image and text wrapper and helper functions from previous chapters. Pluto encourages you to create and upload your library to GitHub and PyPI.org. Furthermore, you don’t have to name the class PacktDataAug, but it would give Pluto and his human companion a great big smile if you cited or mentioned the book. The code goals were ease of understanding, reusable patterns, and teaching you about the Python Notebook. Thus, refactoring the code as a Python library would be relatively painless and fun.

We have covered audio Spectrogram, Mel-spectrogram, and Chroma STFT

representation and augmentation, including the technique of using Spectrograms as image input to the deep learning image classification model. It is time for a summary.

Summary

Audio augmentation is challenging to explain in a book format. Still, we gain a deeper understanding of audio amplitude, frequency, and sampling

rate with additional visualization techniques, such as the audio Spectrogram, Mel-spectrogram, and Chroma STFT. Furthermore, in the Python Notebook, you can listen to the before-and-after effects of the audio augmentation.

Compared to the previous chapter, Waveform graphs show the amplitude of a signal over time, giving an understanding of its shape and structure.

Spectrogram graphs show a visual representation of the frequencies of a signal over time, providing a deeper insight into the harmonic content of the sound.

An Audio Spectrogram comes in many variations, whether color mapping, window filtering, spectrum sides, magnitude mode, or frequency scale, among many more in the underlying Matplotlib specgram() function. Pluto uses Python code in wrapper functions on a few Spectrogram types. The majority of Spectrogram variations are up to you to explore by expanding the Pluto object with additional wrapper functions. Using Pluto’s object-oriented best practices, the function wrapper concept, and the audiomentations library, it is easy to expand Pluto with additional wrapper functions.

For Spectrogram augmentation techniques, they are the same techniques as those from Chapter 7, such as time -shifting, time-stretching, pitch-scaling, noise injections, bandpass filters, and many others. Intuitively, there should be no difference because in the previous chapter, you choose to visualize the sound wave in Waveform graphs, and in this chapter, you drew them in the audio Spectrogram, Mel-spectrogram, and Chrom STFT plots. Thus, the underlying data is the same.

Pluto has to only modify the _audio_transform() helper method with an additional is_waveform parameter. The Python code becomes deceptively simple and repetitive afterward, but it hides the robust power of the audiomentations library and Pluto object-oriented best practices.

Throughout the chapter, there were fun facts and fun challenges. Pluto hopes you will take the advantages provided and expand the experience beyond the scope of this chapter.

The next chapter moves beyond the typical data types, such as image, text, and audio, to tubular data augmentation.

Part 5: Tabular Data

Augmentation

This part includes the following chapter:

 Chapter 9, Tabular Data Augmentation

Tabular Data Augmentation

Tabular augmentation supplements tabular data with additional information to make it more useful for predictive analytics. Database, spreadsheet, and table data are examples of tabular data. It involves transforming otherwise insufficient datasets into robust inputs for ML. Tabular augmentation can help turn unstructured data into structured data and can also assist in combining multiple data sources into a single dataset. It is an essential step in data pre-processing for increasing AI predictive accuracy.

The idea of tabular augmentation is to include additional information to a given dataset that can then be used to generate valuable insights. These datasets can come from various sources, such as customer feedback, social media posts, and IoT device logs. Tabular augmentation can add new information columns to the dataset by enriching the existing columns with more informative tags. It increases the completeness of the dataset and provides more accurate insights.

Tabular augmentation is an important method to consider when preprocessing and generating insights from data. It provides a way to work with incomplete and unstructured datasets by organizing and enriching them for improved accuracy and speed. By implementing tabular augmentation, you can better unlock the value of real-world datasets and make better-informed decisions.

Tabular augmentation is a young field for data scientists. It is contrary to using analytics for reporting, summarizing, or forecasting. In analytics, altering or adding data to skew the results to a preconceived desired outcome is unethical. In data augmentation, the purpose is to derive new data from an existing dataset. The two goals might be incongruent, but they are not. DL is an entirely different technique from traditional analytics. One is based on a neural network algorithm, while the other is based on statistical analysis and data relationships.

The salient point is that even though you might introduce synthetic data into the datasets, it is an acceptable practice. The Synthesizing Tabular Data

[image: Image 242]

 using Generative Adversarial Networks paper, by Lei Xu and Kalyan Veeramachaneni, published in the arXiv Forum in November 2018, supports this proposition.

This chapter focuses on describing concepts. It has a few practical coding examples using the Python Notebook. One main reason for this is that there are only a few tabular augmentation open source libraries available. You will spend most of the coding time plotting various graphs to inspire further insight from the datasets.

Before continuing, let’s take a sneak peek at a real-world tabular dataset.

Later, Pluto will explain in detail how to write Python code for the following:

print out the tabular data

pluto.df_bank_data[['fraud_bool',

'proposed_credit_limit',

'customer_age',

'payment_type']].sample(5)

The output is as follows:

Figure 9.1 – Bank Account Fraud Dataset Suite (NeurIPS 2022) One challenge in augmenting tabular data is that no fixed methods work universally, such as flipping images, injecting misspelled words, or time-stretching audio files. You will learn that the dataset dictates which augmentation techniques are safe or in a safe range. It is essential to thoroughly review the tabular dataset before augmenting it.

Fun fact

Deep neural networks (DNNs) excel at predicting future stock values and tabular data, based on the scholarly paper Deep learning networks for stock market analysis and prediction: Methodology, data representations, and case studies, by Eunsuk Chong, Chulwoo Han, and Frank C. Park. It was published by Elsevier, Expert Systems with Applications, Volume 83, on 15

October 2017.

Tabular augmentation is an approach to augmenting a tabular dataset with synthetic data. It involves adding new columns to a tabular dataset with features from the derived calculation. You will spend the majority of the time in Python code visualizing the real-world tabular dataset with exotics plots. In this chapter, we will cover the following topics: Tabular augmentation libraries

Augmentation categories

Real-world tabular datasets

Exploring and visualizing tabular data

Transformation augmentation

Extraction augmentation

Let’s start with augmentation libraries.

Tabular augmentation libraries

Tabular augmentations are not established as image, text, or audio augmentations. Typically, data scientists develop tabular augmentation techniques specific to a project. There are a few open source projects on the GitHub website. Still, DL and generative AI will continue to advance in forecasting for time series and tabular data predictions, and so will tabular augmentations. The following open source libraries can be found on the GitHub website:

DeltaPy is a tabular augmentation for generating and synthesizing data focusing on financial applications such as time series stock forecasting.

It fundamentally applies to a broad range of datasets. The GitHub

website link is https://github.com/firmai/deltapy. The published

scholarly paper is called DeltaPy: A Framework for Tabular Data Augmentation in Python, by Derek Snow, The Alan Turing Institute, in 2020.

The Synthetic Data Vault (SDV) is for augmenting tabular data by generating synthetic data from a single table, multi-table, and time series data. In 2020, Kalyan Veeramachaneni, Neha Patki, and Saman Amarsinghe developed a commercial version named Datacebo. The GitHub link is https://github.com/sdv-dev/SDV.

The tabular Generative Adversarial Network (GAN) uses the successfully generating realistic image algorithm and applies it to tabular augmentation. The scholarly paper is Tabular GANs for uneven distribution, by Insaf Ashrapov, published by Cornell University, Arxiv,

in 2020. The GitHub website link is https://github.com/Diyago/GAN-

for-tabular-data.

Pluto has chosen the DeltaPy library to use as the engine under the hood for his tabular augmenting wrapper functions, but first, let’s look at the augmentation categories.

Augmentation categories

It is advantageous to group tabular augmentation into categories. The following concepts are new and particular to the DeltaPy library. The augmentation functions are grouped into the following categories: Transforming techniques can be applied for cross-section and time series data. Transforming techniques in tabular augmentation are used to modify existing rows or columns to create new, synthetic data representative of the original data. These methods can include the following:

Scaling: Increasing or decreasing a column value to expand the diversity of values in a dataset

Binning: Combining two or more columns into a single bucket to create new features

Categorical encoding: Using a numerical representation of categorical data

Smoothing: Compensating for unusually high or low values in a dataset

Outlier detection and removal: Detecting and removing points farther from the norm

Correlation-based augmentation: Adding new features based on correlations between existing features

The interacting function is a cross-sectional or time series tabular augmentation that includes normalizing, discretizing, and

autoregression models. In tabular augmentation, these functions are used to specify interactions between two or more variables and help generate new features that represent combinations of the original variables. This type of augmentation is beneficial when modeling the relationships between multiple input features and the target variable, as it allows the model to consider interactions between the different components.

The mapping method, which uses eigendecomposition in tabular augmentation, is a method of unsupervised learning that uses data decomposition to transform data into lower-dimensional space using eigenvectors and eigenvalues. This type of feature transformation is useful for clustering, outlier detection, and dimensionality reduction. By projecting the data onto the eigenvectors, the data can be represented in a reduced space while still preserving the structure of the data.

The extraction method is a tabular augmentation technique that utilizes Natural Language Processing (NLP) to generate additional information from textual references in tabular datasets. It uses the TSflesh library, a collection of rules and heuristics, to extract additional data from text, such as names, dates, and locations. This approach is

beneficial in augmenting structured datasets, where the output of sentence split, tokenization, and part-of-speech tagging is used to create features that can be used for further processing.

Time series synthesis (TSS) is a method for tabular data augmentation where rows of data across multiple sources or temporal points in time are synthesized together. You can use it to increase a dataset’s size and create a more consistent set of features.

Cross-sectional synthesis (CSS) is a method for tabular data augmentation where columns of data from multiple sources are combined. You can use it to increase a dataset’s features and create a more complete and holistic data view.

The combining technique uses the mix-and-match process from the existing methods.

There are functions associated with each category in the DeltaPy library.

However, Pluto has to construct a neural network model, such as a convolutional neural network (CNN) or reoccurring neural network (RNN), to gauge the effectiveness of these methods. It is a complex process, and Pluto will not implement a CNN in this chapter. Nevertheless, Pluto will demonstrate the mechanics of using the DeltaPy library on the Python Notebook. He will not explain how they work.

Now, it is time to download the real-world datasets from the Kaggle website.

Real-world tabular datasets

There are thousands of real-world tabular datasets on the Kaggle website.

Pluto has chosen two tabular datasets for this process.

The Bank Account Fraud Dataset Suite (NeurIPS 2022) contains six synthetic bank account fraud tabular datasets. Each dataset contains 1

million records. They are based on real-world data for fraud detection. Each dataset focuses on a different type of bias. Sergio Jesus, Jose Pombal, and Pedro Saleiro published the dataset in 2022 under the Attribution-

NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

license. The Kaggle link is https://www.kaggle.com/datasets/sgpjesus/bank-

account-fraud-dataset-neurips-2022.

The World Series Baseball Television Ratings is a dataset for audiences watching the baseball World Series on television from 1969 to 2022. Matt OP published the dataset in 2022 under the CC0 1.0 Universal (CC0 1.0) Public Domain Dedication license. The Kaggle link is

https://www.kaggle.com/datasets/mattop/world-series-baseball-television-

ratings.

The steps for instantiating Pluto and downloading real-world datasets from the Kaggle website are the same. It starts with loading the data_augmentation_with_python_chapter_9.ipynb file into Google Colab or your chosen Jupyter Notebook or JupyterLab environment. From this point onward, the code snippets are from the Python Notebook, which contains the complete functions.

You will be using the code from Chapter 2 because you will need the

wrapper functions for downloading the Kaggle dataset, not the wrapper functions for image, text, and audio augmentations. You should review Chapters 2 and 3 if the steps are unfamiliar:

Clone GitHub repo.

url = 'https://github.com/PacktPublishing/Data-Augmentation-with-Python'

!git clone {url}

Initialize Pluto from Chapter 2

pluto_file = 'Data-Augmentation-with-

Python/pluto/pluto_chapter_2.py'

%run {pluto_file}

Verify Pluto

pluto.say_sys_info()

Fetch Bank Fraud dataset

url = 'https://www.kaggle.com/datasets/sgpjesus/bank-account-fraud-dataset-neurips-2022'

pluto.fetch_kaggle_dataset(url)

Import to Pandas

f = 'kaggle/bank-account-fraud-dataset-neurips-2022/Base.csv'

pluto.df_bank_data = pluto.fetch_df(f)

Fetch World Series Baseball dataset

url = 'https://www.kaggle.com/datasets/mattop/world-series-baseball-television-ratings'

pluto.fetch_kaggle_dataset(url)

Import to Pandas

f = 'kaggle/world-series-baseball-television-ratings/world-

series-ratings.csv'

pluto.df_world_data = pluto.make_dir_dataframe(f)

Fun challenge

At the end of Chapter 8, Pluto challenged you to refactor the Pluto code for

speed and compactness. The goal is to upload Pluto to Pypi.org. This

challenge extends that concept and asks you to combine the setup code into one uber wrapper function, such as pluto.just_do_it(). Pluto does not use uber methods because this book aims to make the concepts and functions easier to learn and demystify the process.

The output for gathering Pluto’s system information is as follows:

---------------------------- : ----------------------------

System time : 2023/01/31

07:03

Platform : linux

Pluto Version (Chapter) : 2.0

Python (3.7.10) : actual: 3.8.10

(default, Nov 14 2022, 12:59:47) [GCC 9.4.0]

PyTorch (1.11.0) : actual:

1.13.1+cu116

Pandas (1.3.5) : actual: 1.3.5

PIL (9.0.0) : actual: 7.1.2

Matplotlib (3.2.2) : actual: 3.2.2

CPU count : 2

CPU speed : NOT available

---------------------------- : ----------------------------

Fun challenge

Pluto challenges you to search for, download, and import two additional tabular datasets from the Kaggle website or your project into pandas.

With that, you have selected a tabular augmentation library, cloned the GitHub repository, instantiated Pluto, and downloaded the two real-world

tabular datasets from the Kaggle website. Now, it is time for Pluto to explore and visualize the data.

Exploring and visualizing tabular

data

Tabular augmentation is more challenging than image, text, and audio augmentation. The primary reason is that you need to build a CNN or RNN

model to see the effect of the synthetic data.

Pluto will spend more time explaining his journey to investigate the real-world Bank Fraud and World Series datasets than implementing the tabular augmentation functions using the DeltaPy library. Once you understand the data visualization process, you can apply it to other tabular datasets.

Fun fact

Typically, Pluto starts a chapter by writing code in the Python Notebook for that chapter. It consists of around 150 to 250 combined code and text cells.

They are unorganized collections of research notes and try-and-error Python code cells. Once Pluto proves that the concepts and techniques are working correctly through coding, he starts writing the chapter. As part of the writing progress, he cleans and refactors the Python Notebook with wrapper functions and deletes the dead-end code. The clean version of the Python Notebook contains 20% to 30% of the original code and text cells.

In particular, while exploring tabular data, we will cover the following topics:

Data structure

First graph view

Checksum

Specialized plots

Exploring the World Series baseball dataset

Let’s start with data structures.

Data structure

Pluto starts by inspecting the data structure using pandas’ built-in function.

He uses the following command:

display tabular data in Pandas

pluto.df_bank_data.info()

The result is as follows:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 1000000 entries, 0 to 999999

Data columns (total 32 columns):

Column

Non-Null Count Dtype

--- -----

- -----------

--- ----

0 fraud_bool 1

000000 non-null int64

1 income

1000000 non-null float64

2 name_email_similarity 1000000 non-null float64

3 prev_address_months_count 1000000 non-

null int64

4 current_address_months_count 1000000 non-

null int64

5 customer_age 100

0000 non-null int64

6 days_since_request 1000000

non-null float64

7 intended_balcon_amount 1000000 non-null float64

8 payment_type 100

0000 non-null object

9 zip_count_4w 100

0000 non-null int64

10 velocity_6h 100

0000 non-null float64

11 velocity_24h 100

0000 non-null float64

12 velocity_4w 100

0000 non-null float64

13 bank_branch_count_8w 1000000

non-null int64

14 date_of_birth_distinct_emails_4 1000000 non-

null int64

15 employment_status 1000000

non-null object

16 credit_risk_score 1000000

non-null int64

17 email_is_free 10000

00 non-null int64

18 housing_status 10000

00 non-null object

19 phone_home_valid 1000000

non-null int64

20 phone_mobile_valid 1000000

non-null int64

21 bank_months_count 1000000

non-null int64

22 has_other_cards 1000000

non-null int64

23 proposed_credit_limit 1000000 non-null float64

24 foreign_request 1000000

non-null int64

25 source

1000000 non-null object

26 session_length_in_minutes 1000000 non-

null float64

27 device_os 1

000000 non-null object

28 keep_alive_session 1000000

non-null int64

29 device_distinct_emails_8w 1000000 non-

null int64

30 device_fraud_count 1000000

non-null int64

31 month

1000000 non-null int64

dtypes: float64(9), int64(18), object(5)

memory usage: 244.1+ MB

The Bank Fraud dataset consists of 32 columns, 1 million records or rows, no null values, and five columns that are not numeric. Pluto wants to find out which columns are continuous or categorical. He does this by calculating the unique value in each column. He uses the following pandas function:

count uniqueness

pluto.df_bank_data.nunique()

The partial output is as follows:

fraud_bool

2

income

9

name_email_similarity 998861

prev_address_months_count 374

current_address_months_count 423

customer_age

9

The Python Notebook contains the complete result. There are 7 continuous columns and 25 categorical columns. Generally, continuous columns have many unique values, as in total records, while categorical columns have unique values between two and a few hundred.

Before using plots to display the data, Pluto will view sample data from the Bank Fraud dataset with the following command:

display the tabular data using Pandas

pluto.df_bank_data[['fraud_bool',

'proposed_credit_limit',

'customer_age',

'payment_type']].sample(5)

The output is as follows:

[image: Image 243]

Figure 9.2 – Sample Bank Fraud data

After repeatedly running the command and variation, Pluto finds no surprises in the data. It is clean. The Python Notebook contains additional inspecting functions, such as the pandas describe() method.

Fun fact

For a tabular dataset, you will write custom code for inspecting, visualizing, and augmenting the data. In other words, there will be more reusable concepts and processes than reusable code being carried over to the next project.

The Bank Fraud dataset has 32 million elements, which is the typical size of data that data scientists work with. However, your Python Notebook would crash if you tried to plot 32 million points using pandas and Matplotlib with the default settings. Pluto created a simple graph,

pluto.df_bank_data.plot(), and his Google Colab Pro-version Python Notebook crashed. It required additional RAM.

First graph view

The various plots are not directly aiding in the tabular augmentation process. The primary goal is for you to envision a sizeable tabular dataset.

Reading millions of data points is less effective than seeing them plotted on a graph. You may skip the sections about plotting and go directly to the tabular augmentation techniques using the DeltaPy library.

[image: Image 244]

For a large dataset, the solution is to select graphs with calculated or summarizing values. Hence, there will be fewer points to plot. For example, the histogram graph is a viable choice because it groups the frequency of ranges. Pluto uses a wrapper function to draw the histogram plot:

display histogram plot

pluto.draw_tabular_histogram(pluto.df_bank_data,

title='Bank Fraud data with 32 million points')

The key code line for the wrapper function is as follows:

code snippet, use Pandas histogram function

df.plot.hist()

The output is as follows:

Figure 9.3 – Bank Fraud histogram plot

 Figure 9.3 does not yield any beneficial insights. Thus, Pluto proceeds to summarize the data with a checksum concept.

Checksum

Pluto spends weeks playing with different types of graphs and graphing packages such as Matplotlib, Seaborn, Joypi, and PyWaffle. He has fun, but most do not enhance the visualization of the Bank Fraud and World Series datasets.

At this point, Pluto will get back to more plotting. In tabular data, displaying the string, non-numeric data is challenging. A clean solution is transforming the categorical string data into an integer token index. Pluto writes the _fetch_token_index() helper function to index value from a list. The key code snippet is as follows:

code snippet for token index

for i, x in enumerate(xarr):

if (val == x):

return i

The add_token_index() wrapped function uses the helper function and the pandas apply() function. The essential code snippet is as follows:

code snippet for tokenize

arrname = numpy.array(df[cname].unique())

df[tname] = df[cname].apply(

self._fetch_token_index,

args=(arrname,))

To put it all together, Pluto uses the following command to copy and create the tokenized columns for the Data Fraud dataset:

tokenize the data

pluto.df_bank_tokenize_data = pluto.df_bank_data.copy()

pluto.add_token_index(

pluto.df_bank_tokenize_data,

['payment_type', 'employment_status',

'housing_status', 'source', 'device_os'])

Pluto double-checked the tokenization by viewing sample values using the following commands:

[image: Image 245]

print out first 6 row of the tabular data

pluto.df_bank_tokenize_data[['payment_type',

'payment_type_tokenize']].head(6)

The output is as follows:

Figure 9.4 – Bank Fraud sample tokenized data

Pluto double-checked the other columns, and they are correct. You can view the code and the results by reading the Python Notebook.

For data analysis, it is practical to have a checksum column where a number represents each row. It could be a summation, average, or a complex formula of the elements’ relationship with weighted value. Pluto’s _fetch_checksum() helper function uses the pandas apply() method with lambda. The code snippet is as follows:

code snippet for calculate the checksum

df['checksum'] = df.apply(

lambda x: numpy.mean(tuple(x)), axis=1)

Pluto calculates the checksum for the Bank Fraud dataset using the following command:

compute the checksum

pluto._fetch_checksum(pluto.df_bank_tokenize_data)

It took 27 seconds to compute the checksum for 32 million data points.

Now, let’s explore a few specialized plots with the checksum concept.

Specialized plots

Pluto wants to remind you that the following graphs and exercises do not directly pertain to tabular augmentation. The goal is to sharpen your skills in understanding and visualizing sizeable real-world datasets – for example, the Bank Fraud dataset consists of 1 million records in preparation for data augmentation. You can skip the plotting exercises and jump directly to the tabular augmentation lessons if you wish.

Pluto creates self.df_bank_half_data with a limited number of columns for ease of display. He uses Seaborn’s heatmap() function to draw the correlogram plot. The command is as follows:

plot correlogram

pluto.draw_tabular_correlogram(pluto.df_bank_half_data,

title='Bank Fraud half Correlogram')

The output is as follows:

[image: Image 246]

Figure 9.5 – Bank Fraud half correlogram

 Figure 9.5 shows a high relationship between credit_risk_score and proposed_credit_limit with 61%. fraud_bool has a low correlation with all other parameters.

When Pluto draws the correlogram plot with the entire dataset, it exposes a high correlation between the checksum and velocity_6h, velocity_24h, and velocity_4w. The code and the output can be found in the Python Notebook.

The draw_tabular_heatmap() wrapper function looks like a heatmap. The command is as follows:

[image: Image 247]

plotting heatmap

pluto.draw_tabular_heatmap(

pluto.df_bank_tokenize_data,

x='checksum',

y='month')

The output is as follows:

Figure 9.6 – Bank Fraud checksum and month heatmap

 Figure 9.6 shows a pattern, but the relationship between the checksum and month is unclear.

Fun fact

Pluto is not an expert in reading Bank Fraud data, and it is natural for you not to be an expert in every domain. Pluto consults friends in banking and consumer protection agencies for background research. Here are a few charts that he uses in his work.

The fraud data, fraud_bool == 1, is 1% of the total. Thus, Pluto might want to augment more fraud data. He creates a pandas DataFrame using the following commands:

[image: Image 248]

tokenize the text or categorical columns

pluto.df_bank_fraud_data = pluto.df_bank_tokenize_data[

pluto.df_bank_tokenize_data.fraud_bool == 1]

pluto.df_bank_fraud_data.reset_index(

drop=True,

inplace=True)

The following two graphs suggested by Pluto’s banking expert friends are fun to create but may not benefit the Bank Fraud augmentation. The complete code is in the Python Notebook. Nevertheless, they are thought-provoking concepts over the standard line or bar charts:

Figure 9.7 – Bank Fraud Seaborn heatmap with mask

The next graph is the Swarmplot.

[image: Image 249]

[image: Image 250]

Figure 9.8 – Bank Fraud Seaborn swarm plot

Fun challenge

Can you make use of the tripcolor() 3D graph, shown in Figure 9.9, using the Bank Fraud dataset? The tripcolor() code is in the Python Notebook:

Figure 9.9 – Fun challenge – a tripcolor plot of random values

Exploring the World Series data

In this section, Pluto will spend much time plotting various graphs to understand and visualize the World Series data. He is not performing tabular augmentation. Even though comprehending the data is essential before deciding which augmentation functions are applicable, you can skip this exercise and directly go to the tabular augmentation wrapper functions.

Fun fact

Anecdotally, Pluto, an imaginary Sybirian Huskey, loves to rush ahead and start writing augmenting code without taking the time to sniff out the content of the datasets. Consequently, his AI model diverged 9 out of 10

times, resulting in high levels of false negatives and false positives. Thus, spending 40% to 70% of the time studying the datasets seems non-productive, but it is not. It is an acceptable fact when working with real-world datasets.

Pluto follows a similar process for the World Series dataset. He runs the first info() method, followed by nunique(), describe(), and then sample(). The World Series dataset consists of 14 columns and 54 rows, representing 756 data points. There are 11 numeric columns and three label categories. Other factors are eight continuous and six categorical columns.

The output of the pluto.df_world_data.info() command is as follows:

describe the tabular dataset

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 54 entries, 0 to 53

Data columns (total 14 columns):

Column Non-Null Count Dtype

--- ------ -------------- -----

0 year 54 non-null int64

1 network 54 non-null object

2 average_audience 54 non-null int64

3 game_1_audience 53 non-null float64

4 game_2_audience 52 non-null float64

5 game_3_audience 53 non-null float64

6 game_4_audience 53 non-null float64

7 game_5_audience 44 non-null float64

8 game_6_audience 31 non-null float64

[image: Image 251]

9 game_7_audience 18 non-null float64

10 total_games_played 54 non-null int64

11 winning_team 54 non-null object

12 losing_team 54 non-null object

13 losing_team_wins 54 non-null int64

dtypes: float64(7), int64(4), object(3)

memory usage: 6.0+ KB

Other results can be found in the Python Notebook. The histogram plot is the practical first data visualization technique for the World Series dataset.

The command is as follows:

plot histogram graph

pluto.draw_tabular_histogram(pluto.df_world_data,

title='World Series Baseball',

maxcolors=14)

The output is as follows:

Figure 9.10 – World Series histogram

The histogram plot shown in Figure 9.10 does not highlight the comparison between the audience in the seven games. Pluto uses the joyplot() method from the joypy library to display the relationship between the viewing audience and the TV networks. The command is as follows:

[image: Image 252]

plot joyplot graph

pluto.draw_tabular_joyplot(pluto.df_world_data,

x=['game_1_audience', 'game_2_audience', 'game_3_audience',

'game_4_audience', 'game_5_audience', 'game_6_audience',

'game_7_audience'],

y='network',

t='World series baseball audience')

The output is as follows:

Figure 9.11 – World Series audience and TV networks

 Figure 9.11 is a beautiful and insightful visualization plot. NBC television network has the highest number of game viewers for game #7 but also has the lowest number for game #5. Fox TV has the least number of viewers, and ABC TV has the highest total viewers but only a little more than NBC

TV. Game #3 has the lowest number of viewers, while game #7 has the highest.

Pluto prepares the World Series dataset for augmenting by converting the label categories into integer token indexes and calculates the checksum. The commands are as follows:

copy tokenize data

pluto.df_world_tokenize_data = pluto.df_world_data.copy()

eliminate the null value

pluto.df_world_tokenize_data=pluto.df_world_tokenize_data.fil lna(0)

tokenize the data

pluto.add_token_index(pluto.df_world_tokenize_data,

['network', 'winning_team', 'losing_team'])

pluto.df_world_tokenize_data =

pluto.df_world_tokenize_data.drop(

['network', 'winning_team', 'losing_team'],

axis=1)

calculate the checksum

pluto._fetch_checksum(pluto.df_world_tokenize_data)

The code for double-checking and printing the results for the tokenization and checksum can be found in the Python Notebook. Pluto made a quick correlogram plot with the following command:

draw the correlogram graph

pluto.draw_tabular_correlogram(pluto.df_world_tokenize_data, title='World Series Baseball Correlogram')

The result is as follows:

[image: Image 253]

Figure 9.12 – World Series correlogram plot

 Figure 9.12 exposes many intriguing relationships between the data. For example, there is a 100% correlation between losing_team_wins and total_game_played, and strong relationships between average_audience, game_1_audience, game_2_audience, game_3_audience, and game_4_audience.

Pluto uses the joyplot() method to compare the checksum with the average viewers grouped by the TV networks. The command is as follows:

draw the joyplot graph

pluto.draw_tabular_joyplot(pluto.df_world_tokenize_data,

[image: Image 254]

x=['checksum', 'average_audience'],

y='network_tokenize',

t='World series baseball, checksum and average auidence',

legloc='upper right')

The output is as follows:

Figure 9.13 – World Series checksum, average audience grouped by TV

networks

In Figure 9.13, Pluto uses the mean() function to calculate the checksum values. Thus, the comparison to the average viewers yields a similar shape.

Compared to Figure 9.11, the relationship between average audience size and each game’s total is not immediately apparent because CBS TV has the highest average but seems to have lower per-game viewers.

At this stage, Pluto wonders if plotting more graphs would help him understand the dataset better. There is a good chance that you are thinking the same thoughts.

The justification for exploring additional charts is twofold. The real-world tabular data is diverse. Thus, knowing various graphs makes you better prepared to tackle your next project. Second, no criteria or algorithm lets you know you have learned about the datasets sufficiently. Therefore, if you

[image: Image 255]

know the data, skip to the tabular augmentation functions section or follow along with Pluto as he learns new graphs.

Pluto uses the waffle graph to visualize the winning and losing team count.

The wrapper function draw_tabular_waffle() uses the Waffle class from the pywaffle library. The command for displaying the World Series winning teams is as follows:

plot the waffle graph

pluto.draw_tabular_waffle(pluto.df_world_data,

col='winning_team',

title='World Series Baseball Winning Team')

The output is as follows:

Figure 9.14 – World Series winning team

Pluto does the same for displaying the losing teams. The command is as follows:

draw the waffle graph

pluto.draw_tabular_waffle(pluto.df_world_data,

col='losing_team',

title='World Series Baseball Losing Team')

[image: Image 256]

The output is as follows:

Figure 9.15 – World Series losing team

 Figures 9.14 and 9.15 are beautifully colored waffle graphs. There is no dominant or underdog team. Pluto does the same for TV networks. The command is as follows:

draw the waffle graph

pluto.draw_tabular_waffle(pluto.df_world_data,

col='network',

title='World Series Baseball Network',

anchor=(0.5, -0.2))

The output is as follows:

[image: Image 257]

Figure 9.16 – World Series TV networks

 Figure 9.16 yields a surprising hidden fact in the data: Fox TV aired the most games, but from Figures 9.11 and 9.12, it does not seem like the network with the most viewers.

Fun challenge

Here is a thought experiment: can you visualize a four-dimensional (4D) graph? Hint: a 2D chart displays two measurements, such as the number of TV audiences per game, or one vector with an implied time series as the X-axis, such as the bank member’s income with the X-axis indicated as day or month. A 3D graph typically reveals the snow depth level on a mountain.

Time could be the fourth dimension.

Pluto has explored and explained the real-world Bank Fraud and World Series datasets. He uses pandas functions to display statistical information and provides numerous graphs to visualize them. Understanding and visualizing the data is the first and most essential step before augmenting tabular data.

Fun fact

Data augmentation is a secret for DL and generative AI to achieve unprecedented accuracy and success. Many scholarly papers reinforced data augmentation’s significance, such as Enhancing Performance of Deep Learning Models with Different Data Augmentation Techniques: A Survey,

by Cherry Khosla and Baljit Singh Saini, published by IEEE 2020

 Intelligent Engineering and Management (ICIEM), International Conference.

Transforming augmentation

Before digging into the tabular augmentation methods, Pluto will reiterate that he will not build a neural network model to test if the augmentation benefits the particular dataset. In addition, the pattern for writing the wrapper functions follows the previous practice: using the chosen library to do the critical augmentation step.

As the Python Notebook notes, the DeltaPy library’s dependency is the fbprofet and pystan libraries. The three libraries are in beta and may be unstable. Pluto has repeatedly tested the Python code. Once the libraries have been loaded, the code works flawlessly.

Tabular transformation is a collection of techniques that take one variable and generate a new dataset based on the transformation method. It applies to both cross-section and time series data. The DeltaPy library defines 14

functions for transformation.

These transformation techniques include the operations functions used in present information, the smoothing method used with past data, and the select filters procedure used with lagging and leading values.

In image augmentation, Pluto can run the functions and see what changes in the photo. Here, the effects are apparent, such as cropped, enlarged, or altered hue values. Tabular augmentation requires knowledge of DL and time series data. In other words, the output effects are not obvious; therefore, selecting augmentation functions for a particular dataset can be intimidating. Pluto will demonstrate how to write Python code for tabular augmentation, but he will not thoroughly explain when to use them.

Time series forecasting is a mature and highly researched branch of AI. It could take several college courses to understand a time series and how to forecast or predict future outcomes. A compact definition of a time series is

a data sequence that depends on time. Typical time series data is the market stock value. For example, Pluto uses the Microsoft stock data for the previous 10 years to predict the closing price of tomorrow, next week, or next month. Weather forecasting is another widespread use of time series algorithms.

The two key concepts in time series data are lag time and windows. The lag time is from the observer to a set point, while the window is the range of elements segmented. There are dozens of other key concepts in time series algorithms, from the earliest long short-term memory (LSTM) neural network to ARIMA, SARIMA, HWES, ResNet, InceptionTime, MiniRocket, and many others.

Most tabular data can be converted into time series data. The World Series data is a time series based on the year. The Bank Fraud data does not directly have a time vector. However, by adding time data, Pluto can predict at which hour of the day, be it early morning or late night, when most online bank fraud occurs, or he can forecast when most bank fraud happens seasonally, such as around Christmas or college Spring Break.

There are 14 transformation methods, and in particular, Pluto will cover the following three functions:

Robust scaler

Standard scaler

Capping

Let’s start with the robust scaler.

Robust scaler

The K-means and principal component analysis (PCA) time series algorithms use Euclidean distance. Thus, scaling applies to the World Series dataset. When you’re unsure of the data distribution, the robust scaler, also

known as normalization, is a viable technique. The algorithm forecasts future outcomes.

Pluto’s augment_tabular_robust_scaler() wrapped function uses the DeltaPy library function and the joy and waffle plots. The essential code snippet is as follows:

define robust scaler

def augment_tabular_robust_scaler(self, df):

return deltapy.transform.robust_scaler(df.copy(),

drop=["checksum"])

The full function code can be found in the Python Notebook. The command for the World Series data is as follows:

augment using robust scaler

df_out = pluto.augment_tabular_robust_scaler(

pluto.df_world_tokenize_data)

plot joy plot

pluto.draw_tabular_joyplot(df_out,

x=['game_1_audience', 'game_2_audience', 'game_3_audience',

'game_4_audience', 'game_5_audience', 'game_6_audience',

'game_7_audience'],

y='network_tokenize',

t='World series baseball audience')

The output is as follows:

[image: Image 258]

Figure 9.17 – World Series and robust scaler joy plot

 Figure 9.17 confirmed that Pluto successfully implemented the robust scaler augmenting technique. Whether it is practical in forecasting is another question entirely. It depends on the goal of the prediction and the base DL model or algorithm used.

The standard scaler is similar to the robust scaler.

Standard scaler

DL models that rely on Gaussian distributions or linear and logistic regressions will benefit from the standardization scaler augmentation method. Pluto’s augment_tabular_standard_scaler() wrapper function uses the DeltaPy library function and the joy and waffle plots. The essential code snippet is as follows:

define standard scaler

def augment_tabular_standard_scaler(self, df):

return deltapy.transform.standard_scaler(df.copy(),

drop=["checksum"])

[image: Image 259]

The full function code can be found in the Python Notebook. The command is as follows:

augment using standard scaler

df_out = pluto.augment_tabular_standard_scaler(

pluto.df_world_tokenize_data)

draw using joy plot

pluto.draw_tabular_joyplot(df_out,

x=['game_1_audience', 'game_2_audience', 'game_3_audience',

'game_4_audience', 'game_5_audience', 'game_6_audience',

'game_7_audience'],

y='network_tokenize',

t='World series baseball audience',

legloc='upper right')

The output is as follows:

Figure 9.18 – World Series and standard scaler joy plot

 Figure 9.18 demonstrated that Pluto did the augmentation correctly. He did not build and train a DL model using the augmented data to confirm that it increased the forecast accuracy. Many tabular augmentation methods require defining the goal for the DL project to verify if the augmentation is beneficial. For example, Pluto could build a DL model for predicting the audience size for the next World Series.

The next tabular transformation technique we’ll look at is capping.

Capping

The capping technique limits the distribution value, such as average, maximum, minimum, or arbitrary values. In particular, it restricts the values using statistical analysis and replaces the outliers with specific percentile values.

Pluto’s augment_tabular_capping() wrapper function uses the DeltaPy library function and correlogram plots. The essential code snippet is as follows:

define capping

def augment_tabular_capping(self, df):

x, y = deltapy.transform.outlier_detect(df, "checksum") return deltapy.transform.windsorization(df.copy(),

"checksum",

y,

strategy='both')

The command for the Bank Fraud data is as follows:

augment using capping

df_out = pluto.augment_tabular_capping(

pluto.df_bank_tokenize_data)

draw correlogram plot

pluto.draw_tabular_correlogram(df_out,

title='Bank Fraud Capping Transformation')

The output is as follows:

[image: Image 260]

Figure 9.19 – Bank Fraud capping correlogram plot, half data Figure 9.19 indicates that Pluto implemented the capping technique correctly. Compared to Figure 9.4, the original data, the values are similar, as expected.

The Python implementation of tabular transformation wrapper functions becomes repetitive. Thus, Pluto will provide a brief explanation of the other nine methods in the DeltaPy library. They are as follows:

Operations is a technique for using power, log, or square root functions to replace elements in the dataset

Smoothing is a technique that uses the triple exponential smoothing or Holt-Winters exponential smoothing function

Decomposing is a technique that uses the naive decomposition function for seasonal vectors in time series data

Filtering is a technique that uses the Baxter-King bandpass filter to smooth time series data

Spectral analysis is a technique that uses the periodogram function to estimate the spectral density

Waveforms is a technique that uses the continuous harmonic wave radar function to augment waveform data

Rolling is a technique that uses mean or standard deviation to calculate the rolling average over a fixed window size in time series data Lagging is a technique that calculates the lagged values in time series data

Forecast model is a technique that uses the prophet algorithm to forecast seasonal trends, such as weekly or yearly, in time series data Fun challenge

Pluto challenges you to implement three wrapper functions in the Python Notebook from the nine tabular transformation techniques mentioned.

Now that we’ve reviewed various tabular transformation techniques, let’s look at interaction techniques.

Interaction augmentation

Interaction techniques are used in ML and statistical modeling to capture the relationships between two or more features in a dataset for augmentation. The goal is to create new augmentation data that captures the interaction between existing components, which can help improve model performance and provide additional insights into the data. You can apply

these techniques to cross-sectional or time-specific data, including normalizing, discretizing, and autoregression models.

Pluto has selected two out of seven methods for a hands-on Python programming demonstration. As with the transformation augmentation methods, the coding is repetitive. Thus, Pluto will provide fun challenges for the other five interaction augmentation techniques.

Pluto will start with the regression method, then the operator method.

Regression augmentation

The regression method uses the lowess smoother function to smooth the curve of the data by locally weighting the observations near a given point. It is a useful tabular augmentation technique for exploring relationships in scatterplots where the relationship between the dependent and independent variables needs to be well-described by a linear function. This method can suffer from forward-looking bias. Thus, Pluto recommends caution in using it for predictive modeling.

Pluto’s augment_tabular_regression() wrapper function uses the DeltaPy library function, a joy plot, and a correlogram graph. The essential code snippet is as follows:

define regression

def augment_tabular_regression(self, df):

return deltapy.interact.lowess(

df.copy(),

["winning_team_tokenize","losing_team_tokenize"], pluto.df_world_tokenize_data["checksum"],

f=0.25, iter=3)

The command for the World Series data is as follows:

augment using tabular regression

df_out = pluto.augment_tabular_regression(

pluto.df_world_tokenize_data)

draw joy plot

pluto.draw_tabular_joyplot(df_out,

[image: Image 261]

x=['game_1_audience', 'game_2_audience', 'game_3_audience',

'game_4_audience', 'game_5_audience', 'game_6_audience',

'game_7_audience'],

y='network_tokenize',

t='World series baseball audience: Regression',

legloc='upper right')

The output is as follows:

Figure 9.20 – World Series regression augmentation, joy plot Figures 9.20 confirm that Pluto implemented the regression tabular augmentation correctly. The DeltaPy library does the actual calculation.

Thus, if Pluto made a mistake, the result would be an error, or the dataset would contain random numbers and not display correctly. Pluto can only claim the effectiveness of the regression technique to the World Series data.

The next tabular augmentation technique we’ll look at is the operator augmenting method.

Operator augmentation

The operator method is a simple multiplication or division function between two variables in tabular data.

Pluto’s augment_tabular_operator() wrapper function uses the DeltaPy library function and a correlogram graph. The essential code snippet is as follows:

define tabular operator

def augment_tabular_operator(self, df):

return deltapy.interact.muldiv(

df.copy(),

["credit_risk_score","proposed_credit_limit"]) Pluto runs the command for the Bank Fraud data, as follows:

augment using tabular operator

df_out = pluto.augment_tabular_operator(

pluto.df_bank_tokenize_data)

draw the correlogram plot

pluto.draw_tabular_correlogram(df_out,

title='Bank Fraud Operator Interaction')

The output is as follows:

[image: Image 262]

Figure 9.21 – Bank Fraud operator augmentation, correlogram plot Figure 9.21 shows a strong relationship between three new vectors: credit_risk_score_X_proposed_credit_limit (multiply),

proposed_credit_limit/credit_risk_score (divide), and

proposed_credit_limit_X_credit_risk_score (multiply). Pluto implements the operator function correctly but still determines the benefit of the DL prediction accuracy.

The other five interaction tabular augmentation techniques are as follows: Discretizing is a method that uses decision trees, equal width binding, equal frequency binding, and K-means clustering to

augment the tabular data. The discretization method depends on the AI model and the tabular data properties. Pluto recommends trying multiple approaches and evaluating their performance.

The quantile normalizing method makes the distributions of the datasets comparable by transforming them so that they have the same cumulative distribution value.

The haversine distance calculates the shortest distance between two angular points, such as the Earth’s surface. Tabular augmentation also uses the Euclidean, Mahalanobis, and Minkowski distance algorithms.

The technical indicator is one of the specialty methods in tabular augmentation. It uses technical analysis to help predict future price movements of securities or financial instruments. They are based on mathematical calculations of price, volume, and open interest.

The genetic method, or genetic tabular augmentation, is a type of ML

technique that uses evolutionary algorithms to optimize the AI model.

The concept is to create a population of candidate solutions, or chromosomes, for a problem, then evolve that population over time by applying genetic operations such as crossover, mutation, and selection.

The goal is to find the best solution to the problem through natural selection.

Fun challenge

Pluto challenges you to implement two more interaction augmentations in the Python Notebook.

The next tabular augmentation class is mapping augmentation. Pluto will describe the mapping functions but not implement them in the Python Notebook.

Mapping augmentation

The mapping method uses ML and data analysis to summarize and reduce the dimensionality of data for augmentation. It can be done via unsupervised or supervised learning. Some examples of mapping methods include eigendecomposition and PCA. PCA is a statistical procedure that transforms a set of correlated variables into uncorrelated variables called principal components.

In the DeltaPy library, there are seven mapping methods for tabular augmentation. Pluto has done a few implementations in the Python Notebook, but he will not explain the coding here. The Python wrapper function is repetitive and can easily be applied to any mapping method. The functions are as follows:

Eigendecomposition (ED) is a form of PCA for tabular augmentation.

In ED, the eigenvectors are the covariance matrix of the data, and the corresponding eigenvalues represent the amount of variance by each component. ED includes linear discriminant analysis (LDA), singular value decomposition (SVD), and Markov chains.

Cross-decomposition methods, including canonical correlation analysis (CCA), are used to uncover linear relationships between two pieces of multivariate tabular data. Various applications, such as dimensionality reduction, feature extraction, and feature selection, use the cross-decomposition method. The goal is to find a linear combination between tabular data variables.

Kernel approximation methods are used in ML algorithms such as SVMs to transform the tabular data into a higher dimensional space where a linear boundary can be found to separate the classes. The additive Chi2 kernel is a specific kernel approximation method that measures the independence between two sets of variables.

Autoencoders are used in various domains, such as image compression, anomaly detection, and for generating new data for tabular augmentation. We use autoencoders in the pre-training step for supervised learning tasks to improve the subsequent models’

performance.

Manifold learning is a class of techniques for non-linear dimensionality reduction, aiming to preserve the tabular data’s underlying non-linear structure. Locally linear embedding (LLE) is one method in which the idea is to approximate the local linear relationships between data points in the high-dimensional space. The goal is to find a lower-dimensional representation of high-dimensional data that still captures the essential patterns and relationships in the tabular data.

Clustering is a popular unsupervised ML technique for grouping similar tabular data points into clusters. Clustering methods help in identifying patterns and structure in tabular data.

Neighbouring is the nearest neighbor method for supervised ML

algorithms for classification and regression problems. It also is used in tabular augmentation. You can extend the nearest neighbor method to a more sophisticated version called k-nearest neighbor (k-NN) classification.

The next classification of tabular augmentation we’ll look at is extraction augmentation.

Extraction augmentation

The extraction method is a process in time series analysis where multiple constructed elements are used as input, and a singular value is extracted from each time series to create new augmented data. This method uses a package called TSfresh and includes default and custom features. The output of extraction methods differs from the output of transformation and interaction methods, as the latter outputs entirely new time series data. You can use this method when specific values need to be pulled from time series data.

The DeltaPy library contains 34 extraction methods. Writing the wrapper functions for extraction is similar to the wrapper transformation functions.

The difficulty is how to discern the forecasting’s effectiveness from tabular

augmentation. Furthermore, these methods are components and not complete functions for tabular augmentation.

Pluto will not explain each function, but here is a list of the extraction functions in the DeltaPy library: Amplitude, Averages, Autocorrelation, Count, Crossings, Density, Differencing, Derivative, Distance, Distribution, Energy, Entropy, Exponent, Fixed Points, Fluctuation, Fractals, Information, Linearity, Location, Model Coefficients, Non-linearity, Occurrence, Peaks, Percentile, Probability, Quantile, Range, Shape, Size, Spectral Analysis, Stochasticity, Streaks, Structural, and Volatility.

The extraction method is the last tabular augmentation category. Thus, it is time for a summary.

Summary

Tabular augmentation is a technique that can improve the accuracy of ML

models by increasing the amount of data used. It adds columns or rows to a dataset generated by existing features or data from other sources. It increases the available input data, allowing the model to make more accurate predictions. Tabular augmentation adds new information not currently included in the dataset, increasing the model’s utility. Tabular augmentation is beneficial when used with other ML techniques, such as DL, to improve the accuracy and performance of predictive models.

Pluto downloaded the real-world Bank Fraud and World Series datasets from the Kaggle website. He wrote most of the code in the Python Notebook for visualizing large datasets using various graphs, such as histograms, heatmaps, correlograms, and waffle and joy plots. He did this because understanding the datasets is essential before augmenting them.

However, he didn’t write a CNN or RNN model to verify the augmentation methods because building a CNN model is a complex process worthy of a separate book.

The DeltaPy open source library contains dozens of methods for tabular augmentation, but it is a beta version and can be unstable to load. Still,

Pluto demonstrated a few tabular augmentation techniques, such as the robust scaler, standard scaler, capping, regression, and operator methods.

Throughout this chapter, there were fun facts and fun challenges. Pluto hopes you will take advantage of these and expand your experience beyond this book’s scope.

This is the last chapter of the book. You and Pluto have covered augmentation techniques for image, text, audio, and tabular data. As AI and generative AI continue to expand and integrate into the fabric of our life, data will play an essential role. Data augmentation methods are the best practical option to extend your datasets without the high cost of gathering and purchasing additional data. Furthermore, generative AI transforms how we work and play, such as OpenAI's GPT3, GPT4, Google Bard, and Stability.ai's Stable Diffusion. What you discussed about AI in boardrooms or classrooms last month will be outdated, but the data augmentation concepts and techniques remain the same.

You and Pluto have learned to code the augmentation techniques using wrapper functions and download real-world datasets from the Kaggle website. As new, better, and faster augmentation libraries are available, you can add to your collection or switch the libraries under the hood. What you implement may change slightly, but what you have learned about data augmentation will remain true.

I hope you enjoyed reading the book and hacking the Python Notebook as much as I enjoyed writing it. Thank you.

Index

 As this ebook edition doesn't have fixed pagination, the page numbers below are hyperlinked for reference only, based on the printed edition of this book.

A

access token 31

additive Chi2 kernel 358

Albumentations 81

reference link 81

Amazon reviews dataset 53-57

American Multi-Cinema (AMC) 7

American National Standards Institute (ANSI) 153

amplitude 236

Antares Auto-Tune Pro 237

ARIMA 348

artificial neural network (ANN) algorithm 4

ASCII value 237

audio augmentation 235

libraries 243

audio control clip 248

audio definition 7

audio filters 240

Audiomentations 243, 244

reference link 243

audio Spectrogram 294-297

audio Waveform graph

listening 249-252

viewing 249-252

Augly 81, 155, 243

reference link 81

autoencoders 358

autoregressive integrated moving average (ARIMA) 317

Autotune 237

B

background noise 240

background noise injection method 273

back translation 198, 219

English to German (Deutsch) 219-221

English to Russian (Русский) 221-223

band-pass filter 241-289

band-stop filter 242

Bank Fraud data 348

ban-reject filter 242

bell filter 242

BERT model 197-212

substitute mode 212-214

BERT NLP algorithm 199

Biggy 20

Bing 5

BitBucket 14

bit depth 236

bit rate 236

BoxPlot 49

bsh shell 30

C

canonical correlation analysis (CCA) 358

capping technique 351-353

center cropping 65

character augmentation 152

Keyboard augmenting method 152

Optical Character Recognition (OCR) augmenting method 152

Random character method 152

character augmentation, Python Notebook

Keyboard augmenting 170-172

OCR augmenting 168-170

Random augmenting 172-179

Chroma STFT 304-308

classic techniques, photometric transformations

color casting 71

color saturation 70

contrast 71

darken and lighten filter 69

hue shifting 70

Close-Circuit Television (CCTV) 136

clustering 358

color casting 71

color tinting 71

Comma-Separated Values (CSV) 8, 35, 157

Compact Disk (CD) sound 236

computational biases 24-26

examples 25

convolutional neural network (CNN) 64, 327

Council on Foreign Relations 27

cropping 64

center cropping 65

cross-decomposition methods 358

cross-sectional synthesis (CSS) 327

D

data augmentation role 4

data input types 5

audio definition 7

image definition 6

tabular data definition 8

text definition 7

dataset representation (DR) 25

decibels (dB) 236, 292

decomposing 353

deep learning (DL) 61

deep neural networks (DNNs) 324

DeltaPy 325

reference link 325

discretizing 357

E

eigendecomposition (ED) 326, 357

eigenvectors 357

exotic techniques, photometric transformations 71, 72

exponential smoothing (ES) 317

Extended Binary Coded Decimal Interchange Code (EBCDIC) 153

extraction augmentation 358, 359

extraction method 326

F

Facebook 5

Facebook’s Roberta system 152

Fancy Principal Components Analysis (FancyPCA) 106

Fast.ai 81

reference link 81

fastText 197

fbprofet library 347

filtering 353

filters 240

band-pass filter 241

band-stop filter 242

high-pass filter 241

high-shelf filter 242

low-pass filter 241

low-shelf filter 242

peak filter 242

flipping 63

flow method 230

flow technique 224

forecast model 353

for loops statement 36

frequency 236

G

Gabor transform 306

GAN-for-tabular-data

reference link 325

Gaussian noise 240

Generative Adversarial Network (GAN) 104, 325

Generative Pre-trained Transformer 2 (GPT-2) 198

genetic method 357

Gensim library 154

reference link 154

geometric transformations 62

cropping 64

flipping 63

for segmentation 124

noise injection 67, 68

padding 66

resizing 65

rotating 66

translation 67

geometric transformations coding process

cropping 89, 90

flipping 82-89

padding 89

rotating 92-94

translation 94-96

GitHub 14, 243

GitHub repository 74

cloning 30

Global Vectors for Word Representation (GloVe) 197

GloVe NLP algorithm 199

Google 5

Google Bard system 152

Google Colab Jupyter Notebook 8-10

Python Notebook, installing 11-13

Google Colab Notebook 29

GoogleNews-vectors-negative300 197

Grapevine leaves dataset

downloading 43-45

H

Hanna 20

haversine distance 357

heating, ventilation, and air conditioning (HVAC) 297

hertz (Hz) 236

high-pass filter 241, 289

high-shelf filter 242

Histogram 49

histogram graph 333

hue shifting 71

human biases 26, 27

examples 27

HWES 348

I

if else statement 36

image augmentation 61, 347

combining 73

image augmentation libraries 80

Albumentations 81

AugLy 81

Fast.ai 81

Mahotas 81

OpenCV 81

Pgmagick 81

Pillow 81

Scikit-Image 81

image biases 33

image biases, Pluto

Grapevine leaves dataset, downloading 43-45

Nike shoes dataset, downloading 40-42

State Farm distracted drivers detection (SFDDD) dataset, downloading 33-

40

image definition 6

ImageIO library 125

InceptionTime 348

index counter statement 46

Information Commissioner’s Office (ICO) 25

Information Technology (IT) 188

insert mode 209

Integrated Development and Learning Environment (IDLE) 8

integrated development environment (IDE) 8

interacting function 326

interaction augmentation 353

operator augmentation 355-357

regression augmentation 354, 355

International Organization for Standardization (ISO) 153

International Skin Imaging Collaboration (ISIC) 5

J

Jovian 32

Joypi 334

JupyterLab 8, 29

Jupyter Notebook 8, 29

K

Kaggle ID 32, 33

Kaggle username 32

Keras 243

reference link 243

kernel approximation 358

kilohertz (kHz) 236

K-means 348

k-nearest neighbor (k-NN) 358

L

lagging 353

large language models (LLMs) 199

libraries, audio augmentation 243

Audiomentations 243

Augly 243

Keras 243

Librosa 243

Nlpaug 243

Pedalboard 243

Pydiogment 244

torch-augmentations 244

Librosa 243, 244

reference link 243

linear discriminant analysis (LDA) 358

locally linear embedding (LLE) 358

long short-term memory (LSTM) 348

loops statement 46

low-pass filter 241, 276-282

low-shelf filter 242

M

machine learning algorithms (MLAs) 25

machine learning (ML) models 197, 198

magic commands 30

magic keywords 30

Mahotas 81

reference link 81

manifold learning 358

mapping augmentation 357, 358

mapping method 326

Markov chains 357

Matplotlib 334

mel scale 304

Mel-spectrogram 304-308

MiniRocket 348

mono sound 236

Musical Emotions Classification (MEC) real-world audio dataset 244

N

Natural Language Processing (NLP) 45, 151

neighbouring 358

Netflix data 45-53

Nike shoes dataset

downloading 40, 42

Nlpaug library 154, 198, 199, 204, 243

reference link 154

NLP data

visualizing 161-166

NLP datasets 157

NLTK library 154

reference link 154

noise injection 67, 240, 272, 273

Gaussian mode, using 67, 68

noises

buzz 297

clicks and pops 297

digital clipping 297

hiss 297

hum 297

intermittent noises 297

normalization 348

notch filter 242

NumPy 125

numpy library 19

O

OpenAI’s GPT-3 152

OpenCV 19, 81

reference link 81

Open Data Commons Open Database License (ODbL) 78

opendatasets 32

operating system (OS) 30

operations 352

operator augmentation 355-357

or if-else statement 46

P

PacktDataAug 147, 230

padding 66

border padding 66

reflection padding 66

zero padding 66

Pandas 157-160

real-world NLP datasets, importing into 201

Paraphrase Database (PPDB) 153

part-of-speech tagging 326

peak filter 242

Pedalboard 243

reference link 243

People’s Republic of China (PRC) 27

Pgmagick 81

reference link 81

photographic transformations coding process 96, 97

brightness 97, 98

contrast 100-102

FancyPCA 106-108

grayscale 99, 100

hue shifting 100, 101

noise injection 102-104

rain effect 104

saturation 100, 101

Sepia 106-108

sun flare effect 104-106

photometric transformations 68

classic techniques 69

exotic techniques 71, 72

for segmentation 124, 125

PIL library

using 36

Pillow 81

reference link 81

pitch 236

pitch correction 237

pitch scaling 239, 266-272

pitch shifting 239

Pluto 20, 29-31, 74, 126, 156, 157

data images, viewing 129-132

download 293, 294

downloading, in Python Notebook 245, 246

images, loading in Pandas 128, 129

initialize 293, 294

multiple image filters, combining in dataset 109-119

random erasing filter 108, 109

real-world data 127

verifying 31, 200, 201

Pluto class 147, 230

Pluto, segmentation methods 132

combination methods 145-147

cropping 139

FancyPCA 143-145

horizontal flip 132-135

lighting 142, 143

resizing 139

rotating 137, 138

transposing 140-142

vertical flip 136, 137

polarity inversion 240, 273-275

principal component analysis (PCA) 348, 357

Prisoner Assessment Tool Targeting Estimated Risk and Needs (PATTERN)

28

programming styles 13, 14

base class, extending 17, 18

naming convention 16, 17

PacktDataAug class 15

Pluto 20

Python code, exporting 20

referencing library 19

source control 14

Pydiogment 244

reference link 244

pyspellchecker library 51

Python

download link 12

Python Imaging Library (PIL) 81, 125

Python Notebook 8, 9, 29, 30, 74, 75, 156, 157, 204, 230

character augmentation 167

GitHub repository, cloning 30

Kaggle ID 32, 33

Pluto 31

Pluto, verifying 31

used, for reinforce learning 166, 167

word augmentation 179

PyWaffle 334

Q

quantile normalizing method 357

R

random erasing 72, 73

random noise 240

Random word function

parameters 153

Rank 1 tensor 134

Rank 3 tensor 134

real-world audio datasets 244

and Pandas 246-248

Crowd Sourced Emotional Multimodal Actors Dataset (CREMA-D) 244

Musical Emotions Classification (MEC) 244

urban_sound_8k (US8K) 245

real-world image datasets 75, 76

Covid-19 image dataset 76, 77

edible and poisonous fungi dataset 78

image batch, drawing 80

Indian People dataset 77

mall crowd dataset 79

reviewing 110

sea animals dataset 78, 79

vietnamese food dataset 79

real-world NLP datasets 199, 201

importing, into Pandas 201

Pluto, verifying 200, 201

Python Notebook and Pluto, cloning 200

text, viewing 202, 203

real-world segmentation datasets 125

real-world tabular datasets

downloading, from Kaggle website 327, 328

real-world text datasets 155

NLP datasets 157

NLP data, visualizing 161-166

Pandas 157-160

Pluto 156

Python Notebook 156, 157

reflection padding mode 67

regression augmentation 354, 355

reinforce learning

through Python Notebook 166, 167

reoccurring neural network (RNN) 327

resizing 65

squishing 65

zooming 65

ResNet 348

RGB value 68

RoBERTa 197, 198, 215, 216

substitute mode 217-219

robust scaler 348, 349

rolling 353

rotating 66, 67

shearing 66

skewing 66

tilting 66

S

safe level 238

sampling rate 236

SARIMA 348

Scikit-Image 81

reference link 81

Seaborn 334

segmentation

geometric transformations 124

photometric transformations 124, 125

real-world segmentation datasets 125

sentence augmentation 154, 199, 224

Abstractive Summarization method 154

Contextual Word Embeddings method 154

Top-n Similar Word method 154

sentence split 326

Sequence method 199

Sequential method 230

shearing 66

shelf equalization 242

Shirley card 25

short burst noise 240

short noise injection method 273

Short Time Fourier Transformation (STFT) 292

shuffle algorithm statement 46

signal-to-noise ratio (SNR) 240

singular value decomposition (SVD) 357

skewing 66

smoothing 353

Sometimes method 199, 230

sonogram 291

sonograph 291

spectral analysis 353

Spectrogram augmentation 308-317

Spectrogram format 297-303

Spectrogram image 317, 318

spectrograph 7

squishing 65

stable diffusion 26

standard audio augmentation techniques 238

noise injection 240

pitch shifting 239

polarity inversion 240

time shifting 239

time stretching 239

standard scaler 350, 351

State Farm distracted drivers detection (SFDDD) dataset

downloading 33-40

stereo sound 236

summarization technique 224

summary technique 224-227

summary-to-flow technique 224, 227-230

Sunny 20

Synthetic Data Vault (SDV) 325

reference link 325

systemic biases 28, 29

T

T5 NLP algorithm 199

T5 NLP model 224, 227

T5X model 198

tabular augmentation 323, 325

augmenting, challenge 324

tabular augmentation, categories

binning 326

categorical encoding 326

combining technique 327

correlation-based augmentation 326

CSS 327

extraction method 326

interacting function 326

mapping method 326

outlier detection and removal 326

scaling 326

smoothing 326

transforming techniques 326

TSS 326

tabular augmentation, libraries

DeltaPy 325

Generative Adversarial Network (GAN) 325

Synthetic Data Vault (SDV) 325

tabular data

checksum 334, 335

correlogram plot 335-337

data structure 330-332

exploring 329

graph view 333

Swarmplot 338

visualizing 329

World Series data, exploring 340-347

tabular data definition 8

tabular transformation 347

technical indicator 357

text augmentation libraries 154

AugLy library 155

Gensim library 154

Nlpaug library 154

NLTK library 154

TextAugment library 155

TextBlob library 155

text augmentation, Pluto 45

Amazon reviews dataset 53-57

Netflix data 45-53

TextAugment library 155

reference link 155

TextBlob library 155

reference link 155

text definition 7

TikTok 5

tilting 66

time series data 348

time series graph 235

time series synthesis (TSS) 326

time shifting 239, 253-259

time stretching 239, 259-266

tokenization 326

torch-augmentations 244

reference link 244

transformation methods

capping 351-353

robust scaler 348, 349

standard scaler 350, 351

transformer model 211

translation 67

TSflesh library 326

TSfresh package 358

Twitter 5

Twitter Sentiment Analysis (TSA) 155

U

Unification Code (Unicode) 153

urban_sound_8k (US8K) real-world dataset 245

V

voicegram 291

voiceprint 291

W

waveform 7, 353

Waveform graph 235, 236

Waves Tune Real Time 237

Wiki-news-300d-1M 197

windows 292

Word2vec model 197

Word2vec method 198

Word2vec word augmenting 204-206

substitute mode 207-209

word augmentation 153, 198

Antonym augmentation function 153

Misspell augmentation function 153

Random word function 153

Reserved Word augmentation function 154

Split augmentation function 153

Synonym augmentation function 153

word augmentation, Python Notebook

Antonym augmenting 189-191

Misspell augmenting 180, 181

Random augmenting 183-187

Reserved word augmenting 191-194

Split augmenting 181-183

Synonym augmenting 187-189

WordNet 153

World Series data 348

X

XLNet 197

Y

YouTube 5

Z

zooming 65

Why subscribe?

Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version

at www.packtpub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at

customercare@packtpub.com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

[image: Image 263]

Hands-On Graph Neural Networks Using Python

Maxime Labonne

ISBN: 978-1-80461-752-6

Understand the fundamental concepts of graph neural networks Implement graph neural networks using Python and PyTorch

Geometric

Classify nodes, graphs, and edges using millions of samples Predict and generate realistic graph topologies

Combine heterogeneous sources to improve performance

Forecast future events using topological information

Apply graph neural networks to solve real-world problems

[image: Image 264]

The Ultimate Guide to ChatGPT and OpenAI

Valentina Alto

ISBN: 978-1-80512-333-0

Understanding of generative AI concepts from basic to intermediate level

Focus on GPT architecture for generative AI models

Maximize ChatGPT value with an effective prompt design

Explore applications and use cases of ChatGPT

Use OpenAI models and features via API calls

Build and deploy generative AI systems with Python

Leverage Azure infrastructure for enterprise-level use cases Ensure Responsible AI and ethics in generative AI systems

Packt is searching for authors like

you

If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts

Now you’ve finished Data Augmentation with Python, we’d love to hear

your thoughts! If you purchased the book from Amazon, please click here

to go straight to the Amazon review page for this book and share your

feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

[image: Image 265]

Download a free PDF copy of this

book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803246451

1. Submit your proof of purchase

2. That’s it! We’ll send your free PDF and other benefits to your email directly

Document Outline

	Cover Page

	Table of Contents

	Preface

	Part 1: Data Augmentation

	Chapter 1: Data Augmentation Made Easy

	Data augmentation role

	Data input types

	Python Notebook

	Google Colab

	Programming styles

	Summary

	Chapter 2: Biases in Data Augmentation

	Computational biases

	Human biases

	Systemic biases

	Python Notebook

	Image biases

	Text biases

	Summary

	Part 2: Image Augmentation

	Chapter 3: Image Augmentation for Classification

	Geometric transformations

	Photometric transformations

	Random erasing

	Combining

	Reinforcing your learning through Python code

	Summary

	Chapter 4: Image Augmentation for Segmentation

	Geometric and photometric transformations

	Real-world segmentation datasets

	Reinforcing your learning

	Summary

	Part 3: Text Augmentation

	Chapter 5: Text Augmentation

	Character augmenting

	Word augmenting

	Sentence augmentation

	Text augmentation libraries

	Real-world text datasets

	Reinforcing learning through Python Notebook

	Summary

	Chapter 6: Text Augmentation with Machine Learning

	Machine learning models

	Word augmenting

	Sentence augmenting

	Real-world NLP datasets

	Reinforcing your learning through the Python Notebook

	Summary

	Part 4: Audio Data Augmentation

	Chapter 7: Audio Data Augmentation

	Standard audio augmentation techniques

	Filters

	Audio augmentation libraries

	Real-world audio datasets

	Reinforcing your learning

	Summary

	Chapter 8: Audio Data Augmentation with Spectrogram

	Initializing and downloading

	Audio Spectrogram

	Various Spectrogram formats

	Mel-spectrogram and Chroma STFT plots

	Spectrogram augmentation

	Spectrogram images

	Summary

	Part 5: Tabular Data Augmentation

	Chapter 9: Tabular Data Augmentation

	Tabular augmentation libraries

	Augmentation categories

	Real-world tabular datasets

	Exploring and visualizing tabular data

	Transforming augmentation

	Interaction augmentation

	Mapping augmentation

	Extraction augmentation

	Summary

	Index

	Why subscribe?

	Other Books You May Enjoy

	Packt is searching for authors like you

	Share your thoughts

	Download a free PDF copy of this book

index-346_2.jpg

index-346_1.jpg

index-348_1.jpg

index-347_1.jpg

index-343_2.jpg

index-343_1.jpg

index-345_1.jpg

index-344_1.jpg

cover.jpeg

index-341_2.jpg

index-341_1.jpg

index-337_1.jpg

index-336_2.jpg

index-339_1.jpg

index-338_1.jpg

index-333_1.jpg

index-332_1.jpg

index-336_1.jpg

index-335_1.jpg

index-340_1.jpg

index-331_2.jpg

index-327_1.jpg

index-313_1.jpg

index-328_1.jpg

index-327_2.jpg

index-305_1.jpg

index-304_1.jpg

index-311_1.jpg

index-306_1.jpg

index-44_1.jpg

index-30_1.jpg

index-57_1.jpg

index-331_1.jpg

index-53_1.jpg

index-329_1.jpg

index-59_1.jpg

index-58_1.jpg

index-299_1.jpg

index-296_1.jpg

index-300_1.jpg

index-299_2.jpg

index-292_1.jpg

index-295_1.jpg

index-293_1.jpg

index-301_1.jpg

index-300_2.jpg

index-303_1.jpg

index-1_1.jpg

index-12_1.jpg

index-2_1.jpg

index-23_1.jpg

index-18_1.jpg

index-24_1.jpg

index-23_2.jpg

index-28_1.jpg

index-279_1.jpg

index-492_1.jpg

index-277_1.jpg

index-453_1.jpg

index-283_1.jpg

index-496_1.jpg

index-281_1.jpg

index-494_1.jpg

index-446_1.jpg

index-275_1.jpg

index-451_1.jpg

index-273_1.jpg

index-448_1.jpg

index-93_1.jpg

index-92_1.jpg

index-95_1.jpg

index-94_1.jpg

index-99_1.jpg

index-286_1.jpg

index-97_1.jpg

index-285_1.jpg

index-108_1.jpg

index-289_1.jpg

index-101_1.jpg

index-288_1.jpg

index-83_1.jpg

index-81_1.jpg

index-84_1.jpg

index-249_1.jpg

index-435_1.jpg

index-248_1.jpg

index-434_1.jpg

index-252_1.jpg

index-438_1.jpg

index-251_1.jpg

index-437_1.jpg

index-246_1.jpg

index-432_2.jpg

index-432_1.jpg

index-67_1.jpg

index-271_1.jpg

index-71_1.jpg

index-70_1.jpg

index-75_1.jpg

index-265_1.jpg

index-440_1.jpg

index-73_1.jpg

index-256_1.jpg

index-439_1.jpg

index-78_1.jpg

index-269_1.jpg

index-445_1.jpg

index-77_1.jpg

index-266_1.jpg

index-441_1.jpg

index-61_1.jpg

index-60_1.jpg

index-65_1.jpg

index-62_1.jpg

index-237_1.jpg

index-405_2.jpg

index-235_1.jpg

index-405_1.jpg

index-239_1.jpg

index-424_1.jpg

index-238_1.jpg

index-413_1.jpg

index-136_1.jpg

index-404_1.jpg

index-133_1.jpg

index-138_1.jpg

index-245_1.jpg

index-137_1.jpg

index-244_1.jpg

index-431_1.jpg

index-140_1.jpg

index-139_1.jpg

index-141_2.jpg

index-241_1.jpg

index-427_1.jpg

index-141_1.jpg

index-240_1.jpg

index-425_1.jpg

index-144_1.jpg

index-243_1.jpg

index-430_1.jpg

index-143_1.jpg

index-242_1.jpg

index-429_1.jpg

index-131_1.jpg

index-224_1.jpg

index-395_1.jpg

index-393_2.jpg

index-227_1.jpg

index-396_2.jpg

index-226_1.jpg

index-396_1.jpg

index-120_1.jpg

index-122_1.jpg

index-233_1.jpg

index-403_1.jpg

index-121_1.jpg

index-232_1.jpg

index-402_2.jpg

index-124_1.jpg

index-123_1.jpg

index-234_1.jpg

index-127_1.jpg

index-229_1.jpg

index-400_2.jpg

index-126_1.jpg

index-228_1.jpg

index-400_1.jpg

index-130_1.jpg

index-231_1.jpg

index-402_1.jpg

index-128_1.jpg

index-230_1.jpg

index-401_1.jpg

index-118_1.jpg

index-113_1.jpg

index-384_1.jpg

index-208_1.jpg

index-385_1.jpg

index-207_1.jpg

index-384_2.jpg

index-159_1.jpg

index-158_1.jpg

index-162_1.jpg

index-161_1.jpg

index-172_1.jpg

index-218_1.jpg

index-391_1.jpg

index-166_1.jpg

index-216_1.jpg

index-390_1.jpg

index-174_1.jpg

index-223_1.jpg

index-173_1.jpg

index-219_1.jpg

index-393_1.jpg

index-175_2.jpg

index-212_1.jpg

index-387_1.jpg

index-175_1.jpg

index-210_1.jpg

index-386_1.jpg

index-215_1.jpg

index-389_1.jpg

index-214_1.jpg

index-388_1.jpg

index-368_2.jpg

index-368_1.jpg

index-146_1.jpg

index-147_1.jpg

index-146_2.jpg

index-149_1.jpg

index-381_1.jpg

index-148_1.jpg

index-376_1.jpg

index-153_1.jpg

index-382_1.jpg

index-151_1.jpg

index-381_2.jpg

index-156_1.jpg

index-370_1.jpg

index-154_1.jpg

index-369_1.jpg

index-371_2.jpg

index-157_1.jpg

index-371_1.jpg

index-367_1.jpg

index-187_1.jpg

index-360_1.jpg

index-186_1.jpg

index-189_1.jpg

index-187_2.jpg

index-190_1.jpg

index-189_2.jpg

index-192_1.jpg

index-364_1.jpg

index-191_1.jpg

index-363_2.jpg

index-194_1.jpg

index-366_1.jpg

index-193_1.jpg

index-365_1.jpg

index-361_1.jpg

index-360_2.jpg

index-363_1.jpg

index-362_1.jpg

index-176_1.jpg

index-178_2.jpg

index-178_1.jpg

index-180_2.jpg

index-180_1.jpg

index-182_2.jpg

index-182_1.jpg

index-184_1.jpg

index-183_1.jpg

index-185_1.jpg

index-357_1.jpg

index-354_2.jpg

index-358_1.jpg

index-352_1.jpg

index-351_2.jpg

index-354_1.jpg

index-353_1.jpg

index-349_1.jpg

index-351_1.jpg

index-350_1.jpg

